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Associating parallel automata network dynamics
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Pacôme Perrotin
Aix-Marseille Univ., Univ. de Toulon, CNRS,

LIS, UMR 7020, Marseille, France

Abstract

We prove that the limit dynamics of any finite automata network un-
der the parallel update schedule correspond exactly to the fixed points
of a so-called strictly one-way cellular automaton. This correspondence
is proven to be exact, as any strictly one-way cellular automaton can be
transformed into a corresponding automata network, the limit dynam-
ics of the latter corresponding exactly to the fixed points of the former.
This transformation is operated using output functions, which have been
developed in the author’s previous works.

1 Introduction

Automata networks (ANs) are used to model gene regulatory networks [10,
19, 12, 4, 5]. In these applications the dynamics of automata networks
are used to understand how the biological systems might evolve. As such,
there is motivation in improving our computation and characterisation of
automata network dynamics. Cellular automata (CA) are a well stud-
ied family of dynamical systems with broad applications in the study of
physical phenomena [3] and in many other fields [1, 7, 13]. If automata
networks and cellular automata are similar in definition, automata net-
works operate on a finite graph using a variety of local functions, while
cellular automata are defined by their regular (and usually infinite) topol-
ogy as well as their uniform local rule. As such, automata networks are
described by some as non-uniform cellular automata [2].

One-way cellular automata, a subset of cellular automata which only
allows local rules defined on one side of the updated cell, have been
throughoutly studied [18, 9, 11]. Strictly one-way cellular automata are,
as far as the authors are aware, a sub-class of one-way cellular automata
that have not been studied yet. Being strictly one-way is a very restrictive
property, as we can characterise the fixed points of such cellular automata
thanks to automata networks: Corollary 1 implies that a strictly one-way
cellular automata has a finite set of fixed points which are all periodic.

Our work is motivated in improving the formal description of the limit
dynamics of automata networks. A complete characterisation of the limit
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dynamics has only been provided to simply defined families of network
which still have complex behavior, such as isolated cycles and disjunctive
intersection of pairs of cycles [14]. The general approach of the field is
to look for families or properties which allow for limit dynamics that we
might be able to characterise [6, 8].

To help in that effort, we developed the formalism of modules [15]
which are automata networks with inputs. By focusing on modules with
acyclic interaction digraph, we proved that the limit dynamics was deter-
mined (up to the renaming of configurations) by so called output func-
tions [16]. By focusing on output function sets rather than automata
networks, we allow for the automatic removal of many specificities of the
networks which do not determine the limit dynamics.

This paper centers itself on the transformation of any so-called suf-
ficient output function into the local rule of a strictly one-way cellular
automata, and vice versa. This transformation also shows that the limit
dynamics of the automata networks and the fixed points of the cellular
automata are direct translations of one another. This result proposes an
interesting correspondence between cellular automata and automata net-
works, as any AN has an associated strictly one-way CA, and vice-versa.
As such, this result states that computing the limit dynamics of an au-
tomata network under the parallel update schedule and computing the
fixed points of a strictly one-way cellular automaton is the same exact
computational problem. In the case of strictly one-way CA, this means
that enumerating their fixed points can be done with the use of a finite
object.

Additional results are provided that utilise this transformation to ap-
ply an existing result about automata networks to the fixed points of
strictly one-way cellular automata, as well as further transformations into
subshifts of finite type as well as aperiodic necklaces with forbidden pat-
terns.

2 Definitions

2.1 Preliminaries

A digraph is a pair of sets G = (V,E) where V is a finite set of nodes
and E is a set of edges, defined as a subset of V × V . We say that
two digraphs G = (V,E), G′ = (V ′, E′) are isomorphic if there exists a
bijection g : V → V ′ such that (u, v) ∈ E ⇔ (g(u), g(v)) ∈ E′.

Given a function f : A→ B, we denote img(f) the subset of B which
contains all the elements b such that f(a) = b for some a ∈ A. For
A′ any subset of A, we denote f∥A′ : A′ → B the function defined as
∀a ∈ A′, f∥A′(a′) = f(a′). For f : A → B and g : B → C two functions,
we denote g ◦ f : A→ C the composition of f and g defined such that for
all a ∈ A, (g ◦ f)(a) = g(f(a)). We will be abusing this notation in some
specific cases throughout this paper, and every instance of this abuse of
notation will be explicitely defined in context. We say that a function f :
A→ B is injective if and only if for two a, a′ ∈ A, a ̸= a′ ⇒ f(a) ̸= f(a′).
For f : A → B an injective function, we define the inverse of f , denoted
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f−1 : img(f) → A, as the injective function which to any b ∈ img(f)
associates the only value a for which f(a) = b holds. We denote N∗ the
set of strictly positive integers.

2.2 Automata networks

Let Σ be some finite alphabet, and n a positive integer. The set of all
words of size n over Σ is denoted Σn, and we call such words configurations.
Given a configuration w, we denote w the bi-infinite (that is, infinite in
both directions) word defined as the endless repetition of w. For x ∈
Σn, and for any index 1 ≤ k ≤ n, we denote xk the k-th letter of the
configuration x. An automata network (AN) is a function F : Σn → Σn,
where n is the size of the network. We also call F the global function of
the network. The global function F can be divided into functions that are
local to each automaton: ∀k, fk : Σn → Σ, which we call local functions.
The global function can be redefined as the parallel application of each
local function : ∀1 ≤ k ≤ n, F (x)k = fk(x). For convenience, the set of
automata {1, . . . , n} is denoted S, and the automata are denoted using
letters, starting from a. We will abuse notations and for any automaton
a write xa to mean the value of a in x, whatever the corresponding index
might be. Similarly, the notation F (x)a refers to the value of a in the
configuration obtained by the application of the network F on x. In
general, the set of configurations Σn will be equivalently defined as the
set ΣS , the set of words which associate a letter in Σ to every automata in
S. For g : S′ → S some function, S′ a set and x ∈ ΣS some configuration,
we denote x ◦ g as the configuration over S′ such that for any s′ ∈ S′,
(x ◦ g)s′ = xg(s′).

For (i, j) any pair of automata, i is said to influence j if and only
if changing the value of xi can change the value of fj(x). More for-
mally, i influences j if and only if there exists x, x′ ∈ Σn such that
∀k ∈ {1, 2, . . . , n}, xk = x′k ⇔ k ̸= i and fj(x) ̸= fj(x

′).
We denote B = {0, 1} the Boolean set. An AN is called Boolean if it

is defined over the alphabet B.
Example 1. Let S = {a, b, c}. Let F be the Boolean AN with local
functions fa(x) = xc, fb(x) = xa and fc(x) = ¬xa ∨ xb.

It is common to represent an automata network F as a digraph using
its automata as nodes so that (i, j) is an edge if and only if i influences
j. This digraph is called the interaction digraph of F . The automata
network described in Example 1 is illustrated as an interaction digraph in
Figure 1.

Given an automata network F , we define the dynamics of F as the
digraph with the configurations x ∈ Σn as nodes such that (x, y) is an
edge of the dynamics if and only if F (x) = y. The limit dynamics of F is
the subgraph which contains only the limit cycles and the fixed points of
the dynamics. In other terms, x ∈ Σn is part of the limit dynamics of F if
and only if there exists some k ∈ N∗ such that F k(x) = x. The dynamics
of the network from Example 1 are illustrated in Figure 2.

As the dynamics of a network are a graph that is exponential in size
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Figure 1: Interaction digraph of the network F described in Example 1 with
local functions fa(x) = xc, fb(x) = xa and fc(x) = ¬xa ∨ xb.
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Figure 2: Dynamics of the network F as described in Example 1 with local
functions fa(x) = xc, fb(x) = xa and fc(x) = ¬xa ∨ xb.

compared to the number of automata, directly computing the limit dy-
namics of a family of networks is a computationally expensive process.

2.3 Modules

Working with the limit dynamics of automata networks is difficult. Our
general approach is to divide the networks in smaller networks, in the
hope that understanding the limit behavior of the smaller networks would
inform us on the limit behavior of the larger network.

We introduced modules in [15] as a way to execute this division. Mod-
ules are automata networks with added inputs. For Σ a finite alphabet,
we define a module as a functionM : Σn+m → Σn, where n is the number
of automata of the network and m is the number of inputs. Inputs have
influence over automata, as the local function of a module are defined
over f : Σn+m → Σ. To update a module, it is necessary to decide how
to evaluate the inputs of the model. For i ∈ Σm some configuration over
the inputs and x ∈ Σn some configuration over the automata, the update
of x with inputs i is denoted M(x, i). Interaction graphs can be defined
for modules in the same way as they are defined for ANs. A module is
acyclic if and only if its interaction digraph is cycle-free. For convenience,
the set of inputs {1, . . . ,m} is denoted I, and the inputs are denoted us-
ing greek letters, starting with α. Example 2 describes a module with
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Figure 3: Interaction digraph of module M described in Example 2 with local
functions f ′

a(x, i) = iα, f
′
b(x, i) = xa and f ′

c(x, i) = ¬xa ∨ xb.

three automata and one input, and its interaction digraph is represented
in Figure 3.

Example 2. Let S = {a, b, c} and I = {α}. Let M be the module with
local functions f ′

a(x, i) = iα, f
′
b(x, i) = xa, f

′
c(x, i) = ¬xa ∨ xb. The

module M is acyclic.

A module can be transformed into an automata network by the appli-
cation of a total recursive wiring. A total recursive wiring is a function
w : I → S, and its application to a module M results in the network
denoted ⟳w M where the influence of any input α ∈ I is replaced by the
influence of the automaton w(α), that is, any literal iα is substitued for the
literal xw(α). The output set of a total recursive wiring w is the set img(w),
which contains the automata used to replace the influence of the inputs of
the module. Intuitively, the application of w toM just ‘connects together’
the outputs and the inputs of the network, to form a loop. While the
inputs are defined by the local functions of the module, the choice of the
outputs is done through the choice of w which is arbitrary and depends
on the desired result. Example 3 describes the application of a wiring to
the module defined in Example 2.

Example 3. LetM be as defined in Example 2. Let w be the total recursive
wiring such that w(α) = c. The resulting local functions of ⟳w M are
f”a(x) = xw(α) = xc, f”b(x) = xa and f”c(x) = ¬xa ∨ xb. This network
coincides with the network F as defined in Example 1. The output set of
w is img(w) = {c}.

2.4 Output functions

A module M can be viewed as a machine which, given an initial configu-
ration x and an infinite sequence of input configurations J , computes an
infinite sequence of configurations over the automata. If M is acyclic, the
resulting infinite sequence only depends on the initial configuration x up
to a certain point, which is only for as many input configurations as the
size of the longest path between an input and an output in M [16], after
which all trace of the initial configuration x has effectively been ‘flushed
out’ of the network. This is true because cycles are fundamental to the
conservation of information in a network. This results in a shift of per-
spective, and our moduleM can now be seen as a machine that takes in an
infinite sequence of configurations over the inputs, and produces the next
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configuration of the network. This machine is called the output function
of M , and is defined as follows.

An output function is a function O which takes in an infinite sequence
of input sequences J = (ik)k∈N∗ and outputs a configuration in Σn, that
is, a configuration over the automata of the module. This infinite sequence
is called the history of the inputs of the module, where the precendence
of an input configuration grows with its index; that is, the input config-
uration i1 is the most recent, i2 precedes it in time, etc. To be correctly
defined, the output function must only depend on a finite section of the
infinite sequence J . For any automaton s ∈ S, we define the local output
function Os such that Os(J) = O(J)s. Example 4 presents the local out-
put functions associated with each automaton of the module presented in
Example 2, which is possible since that module is acyclic. In this example,
the literal α1 denotes the value of the input α in the input configuration
i1 of the sequence J . For any literal αk, k is called the delay of the literal.

Example 4. Consider module M as developed in Example 2. As M is
acyclic, we can define for it the following local output functions:

Oa(J) = α1

Ob(J) = α2

Oc(J) = ¬α2 ∨ α3,

where J is an infinite sequence of configurations over I. For example,
if J = (0, 1, 1, . . .), we have that α1 = 0, α2 = 1 and α3 = 1. Hence,
Oa(J) = 0, Ob(J) = 1 and Oc(J) = ¬1 ∨ 1 = 1.

When considering some acyclic module M paired with some total re-
cursive wiring w, it has been shown in [16] that the limit dynamics of the
automata network ⟳w M only depend on the output functions of the nodes
in the output set img(w). This theorem is paragraphed here as Lemma 1.

Lemma 1. Let M,M ′ be two acyclic modules on the automata sets S
and S′ respectively, and the same input set I. Let w be a total recursive
wiring defined on M , and let g : img(w) → S′ be an injective function. If
for every infinite sequence of configurations of inputs J and every input
α ∈ I,

Ow(α)(J) = O′
(g◦w)(α)(J) ◦ g (∈ Σimg(w))

then the automata networks ⟳w M and ⟳g◦w M
′ have isomorphic limit

dynamics.

Informally, this lemma expresses that if two automata networks have
equivalent output functions up to some function g on their outputs, then
the limit dynamics resulting from recursively wiring these modules into
networks in a symmetric way respective to g are equivalent up to isomor-
phism. This still holds even if the networks have different sizes. In other
terms, as long as we are only interested in the limit behavior of a network
defined by an acyclic module M and a total recursive wiring w, studying
its output functions over img(w) is enough.

For the rest of the article, we consider an automata network F as
being described by an acyclic module M paired with a total recursive
wiring w such that ⟳w M = F . And since we are only interested in the
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limit dynamics of any given network, we use Lemma 1 and only consider
necessary the description of the local output functions of the automata
in img(w). For convenience, we will call the sufficient output function of
M and denote Ow the output function which takes an infinite sequence
J = (ik)k∈N∗ and produces a configuration over Σ|img(w)|, such that for
all s ∈ img(w), Ow(J)s = Os(J). In other terms, Ow is the function that
takes an infinite sequence of configurations over the inputs of M , and
produces a configuration on the outputs of the network. The sufficient
output function of the acyclic module developped in Example 2 and total
recursive wiring from Example 3 is described in Example 5.

Example 5. Consider the module M as developed in Example 2, and the
total recursive wiring w developed in Example 3. As img(w) = {c}, the
sufficient output function of M is Ow(J) = Oc(J) = ¬α2 ∨ α3. For any
module M ′ and total recursive wiring w′ such that Ow′(J) = ¬α2 ∨ α3, we
can apply Lemma 1 which yields that ⟳w M and ⟳w′ M

′ have isomorphic
limit dynamics.

2.5 Strictly one-way cellular automata

For Σ an alphabet and r ∈ N, a cellular automaton (CA) is defined
by a local rule f : Σ2r+1 → Σ. The number r is the radius of the
CA, and its global rule is defined as F : ΣZ → ΣZ, with F (x)k =
f(xk−r, xk+1−r, . . . , xk+r). A given CA is said to be strictly one-way
if its local function is defined over f : Σr → Σ, and its global rule as
F (x)k = f(x1, x2, . . . , xr) instead. Example 6 presents a strictly one-way
CA.

Example 6. Let Σ = B2 = {00, 01, 10, 11}. The local rule f(x) = x1⊕x2,
where ⊕ denotes the bit by bit XOR operator, has radius 2 and defines a
strictly one-way cellular automaton.

3 Associating sufficient output functions
and local rules

Using the notion of global output function defined in Section 2.4 and
the definition of strictly one-way CA detailed in Section 2.5, we define a
transformation from any sufficient output function Ow to the local rule
of a strictly one-way cellular automata. Multiple steps are involved in
this transformation, and we start with some more definitions around the
sufficient output function Ow.

Let us define ψw : Σimg(w) → ΣI such that for all x ∈ Σimg(w) and
α ∈ I, ψw(x)α = xw(α). The function ψw effectively takes a configuration
defined over the outputs of M and transforms it into a configuration over
the inputs of M , following the wiring instructions provided by w. Let
x ∈ Σ|img(w)| denote the configuration obtained by calling Ow over some
sequence J . We define i ∈ ΣI the input configuration derived from x
such that for any α ∈ I, iα = xw(α). This input configuration can be
equivalently defined as i = ψw(x∥img(w)). We call update of J using Ow the
operation denoted (ψw ◦Ow)(J) which produces a sequence J ′ = (i′k)k∈N∗
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defined such that for all k > 1, i′k = ik−1 (with ik−1 being the element of
index k − 1 in the sequence J), and i′1 is the input configuration derived
from Ow(J). Effectively, J

′ is obtained by shifting the infinite sequence J
by one, and inserting the update of J using Ow as its new first element.

Repeating this update operation starting from some sequence J will
always result in a periodic behavior. This is true because the update of
J using some sufficient output function Ow is a deterministic process, and
the fact that Ow by definition only depends on a finite portion of J . We
call J a periodic sequence generated by Ow if there existsm ∈ N∗ such that
(ψw ◦ Ow)

m(J) = J . It is a consequence of Lemma 1 that these periodic
sequences correspond one-to-one to the fixed points and limit cycles of any
automata network from which the sufficient output function Ow can be
derived. At the end of all this, Ow is just another way to express the limit
computation done by an automata network. This is the central result
of this paper, and the most significant step in the transformation from
automata networks to strictly one-way cellular automata. We formalise
this step in the following property.

Property 1. Let M be an acyclic module and w a total recursive wiring.
Any configuration part of a limit cycle of size m ≥ 1 in the limit dynamics
of the automata network ⟳w M has a one-to-one correspondence with an
infinite sequence J for which (ψw ◦Ow)

m(J) = J holds.

Proof. This proof shows how to construct the sequence J from any limit
cycle, and how to construct a limit cycle from any sequence J , then shows
that these transformations describe a pairing between the two sets.

Let x be a configuration over ⟳w M . We denote x∥img(w) as the con-

figuration in Σimg(w) such that for all s ∈ Σimg(w), (x∥img(w))s = xs. We
now suppose that x is part of a limit cycle of size m in the limit dynamics
of Σimg(w). Let (x1, x2, . . .) denote the infinite sequence defined such that
x1 = x, and for all i > 1, xi =⟳w M(xi+1). This backward recursive defi-
nition is possible by the hypothesis that x is part of the limit dynamics,
which implies that this infinite sequence is actually an infinite repetition
of the limit cycle x is part of, ending in x, and reversed. We now define
the resulting sequence

J = (ψw(x
1∥img(w)), ψw(x

2∥img(w)), . . .).

Note that this sequence has periodm. Let us now prove that ψw(x
1∥img(w)) =

(ψw ◦ Ow)(ψw(x
2∥img(w)), ψw(x

3∥img(w)), . . .). By definition Ow accurately
computes the values of the automata in img(w) provided an infinite his-
tory of the values over the inputs of the network. The sequence x2, x3, . . .
is an history of the values of the network over the attractor which contains
x stopping just before x, with x2 being the direct successor to x3, and so
on. The sequence x2∥img(w), x

3∥img(w), . . . is the same history, but restricted
to the automata that are part of the output set of the network. Finally
the sequence ψw(x

2∥img(w)), ψw(x
3∥img(w)), . . . is the periodic sequence of

the configurations of inputs that generates the limit cycles which contains
x in M . By the definition of output functions (from which Lemma 1
is a consequence), it holds that Ow(ψw(x

2∥img(w)), ψw(x
3∥img(w)), . . .) =

x1∥img(w), which implies that (ψw ◦Ow)(ψw(x
2∥img(w)), ψw(x

3∥img(w)), . . .) =
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ψw(x
1∥img(w)). Note that this argument is agnostic to the choice of x inside

of the limit cycle that contains it. For J the sequence derived this way
from the configuration x, it holds that the input sequence (ψw ◦Ow)(J) is
derived from ⟳w M(x); both update equivalently. As a result, and since
the limit cycle that contains x is of period m, the sequence J is such that
(ψw ◦Ow)

m(J) = J .
We now argue that this transformation works the same from the other

direction; any sequence J such that (ψw ◦ Ow)
m(J) = J can be used to

reconstruct a limit cycle of same periodicity starting at a specific point.
This is true because we can use the output function defined by M and
w (and not the sufficient output function) to generate configurations over
S from J , and it holds that the resulting sequence is periodic and cor-
responds to a limit cycle in the dynamics of ⟳w. It also holds that both
transformations are reverses of each other. It results that these transfor-
mations define a pairing between the limit cycles of size m in ⟳w M and
the periodic sequences J such that (ψw ◦Ow)

m(J) = J .

We now transform Ow directly into the local rule of a strictly one-
way cellular automata. For Ow a sufficient output function, we define
the associated local rule as fw(x) = (ψw ◦ Ow)(Jx), where Jx is the finite
sequence of inputs defined as Jx = (ik)k∈{1,...,r} such that ik = xk for
any k ∈ {1, . . . , r}. It is important to note that this definition implies
an abuse of notation; while Ow only takes as input infinite sequences, by
definition it only depends on a finite portion of it. The radius r is thus
defined as the exact length of the portion on which Ow depends, in which
case the finiteness of Jx poses no pratical problems. We call the associated
CA of the sufficient output function Ow the CA defined by its associated
local rule. The associated CA of the sufficient output function developed
in Example 5 is detailed in Example 7.

Example 7. Consider the sufficient output function Ow developed in Ex-
ample 5. Its associated CA is defined on the alphabet B and its local rule
fw is defined as fw(x) = ¬x2 ∨ x3. The fixed points of that automata net-
work are the configurations 110, 101 and 011, which are all equivalent up
to shifting, and the uniform configuration 1.

We can now state the main result of this paper: the infinite sequences
J for which (ψw ◦ Ow)

m(J) = J for some m ≥ 1 have a one-to-one corre-
spondence with the fixed points of the cellular automata defined by the
associated local rule fw. This fact, chained with the equivalence showed
in Property 1, is stated as the following theorem.

Theorem 1. Let M be an acyclic module and w a total recursive wiring.
Any configuration part of a limit cycle in the limit dynamics of the au-
tomata network ⟳w M has a one-to-one correspondence with a fixed point
of the strictly one-way cellular automata with local rule fw.

Proof. Let x be part of a limit cycle of size m in the limit dynamics
of ⟳w M . We use Property 1 to obtain an infinite sequence J which
corresponds to the limit cycle x, such that (ψw ◦ Ow)

m(J) = J . The
sequence J can be used to update the local rule fw, as it is defined on the
same alphabet. Let us now consider a bi-infinite sequence J+, which is
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the limit of the process of (ψw ◦Ow)(J). This is the sequence obtained by
continuing the repetition of the period in J infinitely many times, in both
directions. This sequence J+ is now a configuration over (ΣI)Z, and we
argue that it is a fixed point of the cellular automata with local rule fw.
This directly derives from the fact that this sequence is constructed from
repeated calls to (ψw ◦ Ow), and that fw(J) = (ψw ◦ Ow)(J) by definition.
his process maps every initial configuration x (there are m different such
initial configurations) to this infinite sequence J+ in a specific shift, which
results in m different fixed point of the automata, all equivalent up to
shifting.

This process is equivalent from the other direction. By considering
some fixed point of the cellular automata, we show that it always has
some period m; this results from the deterministic and limited nature of
the local rule fw. This fixed point can then be decomposed into a sequence
J+ which can be cut at any point to produce a sequence J which, by
application of Property 1, results in a configuration part of a limit cycle
in ⟳w M . Both of these transformations are inverses of each other, hence
the result.

As an example of the application of this theorem, we can observe that
the limit dynamics contained in the dynamics in Figure 2 and the fixed
points of the cellular automata presented in Example 7 are equivalent;
the fixed points 110, 101 and 011 of the cellular automata correspond to
the configurations 110, 101 and 011 of the automata network, and the
uniform fixed point 1 corresponds to the fixed point 111 in the dynamics
of the automata network. Note that the syntaxical equivalence of these
objects does not hold in general, and is a consequence of the choice of the
automata network, as more than one automata network can be described
using a given sufficient output function Ow (Lemma 1).

Theorem 1 is made stronger by the observation that any strictly one-
way cellular automata is the associated cellular automata fw of some mod-
ule M with total recursive wiring w. Which means that this result goes
both ways; the limit dynamics of an automata network corresponds to
the fixed points of an associated cellular automaton, but also the fixed
point of any strictly one-way cellular automaton correspond to the limit
dynamics of an associated automata network.

More formally, let us consider f the local rule of a strictly one-way
cellular automaton of radius r and alphabet Σ. Transforming f into an
automata networks takes multiple steps, which operate in the opposite
direction from the previous transformation. The resulting automata net-
work will need a set of automata S, which is not specified outside of the
fact that it contains an automaton named s. Through this process, we
will define an acyclic module M and associated total recursive wiring w,
for which we define the set of inputs I = {α}, a singleton. Let us now
transform. In the previous transformation, the local function fw was de-
fined as the function fw(x) = (ψw◦Ow)(Jx), in which Jx was the values in x
were encoded as an infinite sequence. In this transformation, we operate
in reverse; from the function f , we define the associated sufficient output
function denoted Of as Of (J) = w−1 ◦ f(xJ), where xJ is a configuration
such that xJk = Jk, for any 1 ≤ k ≤ r, and in which the total recursive
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wiring w is defined as w : α 7→ s, hence w−1 : s 7→ α. As a reminder,
s is an automaton of S. We now consider M an acyclic module which
when associated with w generates a sufficient output function Ow equal to
Of . This acyclic module always exists, and since it only has one input,
it can be computed with a minimal amount of automata in polynomial
time [17]. Let us denote Mf and wf such an associated acyclic module
and total recursive wiring derived from f .

Example 8. Let us consider the local rule f developed in Example 6, and
the set of inputs I = {α}. Taking the alphabet B2 = {00, 01, 10, 11}, let
Of be a sufficient output function such that

Of (J) = α1 ⊕ α2,

where ⊕ is the bit by bit XOR operator. In this example, Of is the as-
sociated sufficient output function of f . Let us construct an example of
an associated acyclic module Mf and total recursive wiring wf . We define
S = {a, b}, and for Mf the following local functions:

fa(x, i) = iα

fb(x, i) = iα ⊕ xa.

We also define wf (α) = b, which implies that the output set of Mf is
img(wf ) = {b}. Here are the local output functions of Mf :

Oa(J) = α1

Ob(J) = α1 ⊕ α2.

Hence the sufficient output function of Mf is equivalent to Ob, which is
equivalent to Of , and by application of Lemma 1 the limit dynamics of
⟳wf Mf are equivalent to the fixed points of the cellular automata with
local rule f .

The fact that any strictly one-way cellular automata can be trans-
formed into an automata network is stated as the following corollary.

Corollary 1. For f the local rule of a strictly one-way cellular automaton
F and Mf , wf the associated acyclic module and total recursive wiring,
the fixed points of F correspond one-to-one with the limit cycles of the
automata network ⟳wf Mf .

Proof. While transforming a CA into an associated automata network is
not the exact opposite transformation from computing the associated CA
of an automata network, it holds that for any strictly one-way CA F ,
applying the transformation into an automata network and then back to
a CA is the same as doing nothing at all. Hence any F can be redefined
as the associated cellular automata of some automata network ⟳w M , and
the result follows from the application of Theorem 1.

4 An application: interlacing cellular au-
tomata

As an example of the usefulness of this correspondence, we propose a
generalisation of a known result about automata neworks [8]: if the length

11



of all the cycles in the interaction digraph of an AN are divisible by some
factor d greater than 1, then this AN is reducible into a smaller AN, from
which its limit dynamics can be derived. This theorem has an intuitive
correspondence in strictly one-way cellular automata. Before stating the
result, some extra formalism is needed.

Let us define that for f : AB → C some function and b ∈ B, the
variable of index b is said to influence f if and only if there exist x, x′ ∈ AB

such that x|B\{b} = x′|B\{b}, xb ̸= x′b and f(x) ̸= f(x′).

For some positive integers r and d such that d|r, let µd : Σ{1,..., r
d
} →

Σ{1,...,r} the function defined by µd(x)k = xd×k.
Let Σ be a set of bi-infinite words, and d a positive integer. The d-

interlacing of Σ is the set of bi-infinite words Σd such that w′ ∈ Σd if and
only if there exists some sequence of words {w1, w2, . . . , wd} in Σ such
that for all k ∈ Z, w′

k = wa
b , for a and b the reminder and quotient of the

division of k by d respectively. This word is also denoted w′ = w1 ∼ w2 ∼
. . . ∼ w.d.

Theorem 2. Let f be the local rule of a strictly one-way CA. If there
exists some integer d > 1 that divides all integers in {k | xk influences f},
then the set of fixed points of the CA with local rule f is the d-interlacing
of the set of fixed points of the CA with local rule f ◦ µd.

Proof. Let C1
z be the set of cells which contains cz and the cells that

influence the update of cell cz. We define Cn+1
z as the union of Cn

z and
the set of cell that influence any cell in Cn

z . As there exists some factor d
that divides the distance between any cell and its influences, this property
is also true of any cell in Cω

z . The same argument follows for the cells
influenced by the cell at z.

Taking cells of index a+ d× b for some a and all b, we obtain a band
of cells that are independant from every other. That is, their values does
not have influence over the value of the rest of the configuration, and the
rest of the configuration does not influence their values; as such, we can
consider every band (one defined by each a < d) as a different cellular
automata with local rule f ◦ µd.

From this, the result is obtained by observing that any fixed point in
the CA with local rule f is obtained by composing the independant fixed
points of the d bands which can be simulated by the CA with local rule
f ◦ µd. To compose all possible fixed points in the right shape we use the
notion of d-interlacing, which intuitively constructs a valid fixed point for
the CA with local rule f .

Example 9. Let us consider the Boolean local rule f(x) = ¬x2 ∨ x4. As
all the indexes of the variables that influence f are divisible by d = 2, the
fixed points of the CA with local rule f are therefore the 2-interlacing of
the fixed points of the CA with local rule f ◦ µ2. This rule is defined as
f ◦ µ2(x) = ¬x1 ∨ x2, and the fixed points of the related CA are 01 and
1, and their shifted equivalents. Let us name those fixed points a and b
respectively. By application of the 2-interlacing, the fixed points of the CA
with local rule f are a ∼ a = 0011, a ∼ b = 0111, b ∼ a = 1011 ≡ 0111
and b ∼ b = 11 = 1, for a total of 3 distinct fixed points up to shifting.
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5 Other equivalent combinatorial prob-
lems

In the pursuit of more combinatorial intuition in the nature of the corre-
spondence highlighted in Theorem 1, the following section explores other
objects which can be proven to be equivalent to the dynamics of automata
networks and thus equivalent to the fixed points of strictly one-way cellu-
lar automata.

5.1 Subshifts of finite type

Subshifts of finite type are collections of infinite words usually defined
through sets of local allowed (or equivalently forbidden) patterns.

It is known that subshifts of finite type and cellular automata are very
similar objects; as any example of the latter can be seen as an example
of the former with an extra dimension. However, since in our case we
are only interested in the fixed points of our cellular automata, it is thus
very natural to consider the equivalent one-dimentionnal subshift that
caracterises our problem.

Remark 1. For any sufficient output function Ow of some acyclic module
M and total recursive wiring w, the associated cellular automata can be
converted to a one dimensionnal subshift of finite type, using the set of
allowed patterns defined by the local rule of the cellular automata. The
words allowed by this subshift of finite type are equivalent to the limit
dynamics of ⟳w M .

Remark that encoding a function using allowed or forbidden patterns
can be an expensive process if the initial function is encoded as, for ex-
ample, a circuit, as it is an equivalent process to the enumeration of the
table of all the possible evaluations of that function.

5.2 Aperiodic necklaces

Necklaces are cyclic words, finite words without a beginning nor an end.
They are a classical model of combinatorial problems. As the fixed points
of our strictly one-way cellular automata always are periodic, we can focus
on caracterising their period, which leads to using necklaces to describe
them.

Remark 2. For any sufficient output function Ow of some acyclic mod-
ule M and SB the associated subshift of finite type constructed from the
cellular automata associated to Ow, the sequences admitted by SB are all
periodic. We can define them as equivalent aperiodic necklaces defined by
the same allowed patterns as SB.

The same remarks applies; the allowed patterns by a sufficient output
function Ow are exponential in number if Ow is provided as a circuit. The
aperiodic necklaces represented in Figure 4 are the aperiodic necklaces
equivalent to the limit dynamics of the automata network detailed in
Example 1, which are equivalent to the fixed points of the strictly one-
way cellular automata detailed in Example 7.
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Figure 4: The two aperiodic binary necklaces that do not contain any pattern
in {0b0, 1bb′0, 01b1 | b, b′ ∈ B}. Black beads stand in for 1, and white beads for
0. As these patterns encode the output function described in Example 7, these
necklaces correspond to the limit cycles of size 3 and 1 showcased in Figure 2.

6 Final words

To us, the main interest of Theorem 1 is to show that the intricate task of
describing the limit behavior of automata networks, which are diverse in
both interaction graphs and local functions, can actually be done by de-
scribing the fixed points of cellular automata, with their uniform structure
and local behavior. In another perspective, this shows that the strictly
one-way property in cellular automata is strongly restrictive, since it im-
plies that their fixed points can be described through a finite object.

We believe that the connections described in this paper are valuable.
We aim to continue the study of strictly one-way cellular automata, in
particular of their orbits, in the hope of results that could have meaning
in the domain of automata networks, as well as to bring more results
concerning automata networks in the domain of cellular automata.
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with Boolean automata networks. In Proc. of MCU’18, volume 10881
of LNCS, pages 121–136, 2018.

[16] K. Perrot, P. Perrotin, and S. Sené. On the complexity of acyclic
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