
HAL Id: hal-04440076
https://hal.science/hal-04440076v3

Preprint submitted on 30 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating the convergence of Newton’s method for
nonlinear elliptic PDEs using Fourier neural operators

Joubine Aghili, Romain Hild, Victor Michel-Dansac, Vincent Vigon,
Emmanuel Franck

To cite this version:
Joubine Aghili, Romain Hild, Victor Michel-Dansac, Vincent Vigon, Emmanuel Franck. Accelerating
the convergence of Newton’s method for nonlinear elliptic PDEs using Fourier neural operators. 2024.
�hal-04440076v3�

https://hal.science/hal-04440076v3
https://hal.archives-ouvertes.fr


Accelerating the convergence of Newton’s method for nonlinear elliptic PDEs
using Fourier neural operators

Joubine Aghilia,b, Emmanuel Francka, Romain Hildc, Victor Michel-Dansaca,∗, Vincent Vigona,b

aUniversité de Strasbourg, CNRS, Inria, IRMA, F-67000, Strasbourg, France
bIRMA, Université de Strasbourg, CNRS UMR 7501, 7 rue René Descartes, 67084, Strasbourg, France

cGE Healthcare, 2 Rue Marie Hamm, 67000, Strasbourg, France

Abstract

It is well known that Newton’s method can have trouble converging if the initial guess is too far from
the solution. Such a problem particularly occurs when this method is used to solve nonlinear elliptic
partial differential equations (PDEs) discretized via finite differences. This work focuses on accelerating
Newton’s method convergence in this context. We seek to construct a mapping from the parameters of
the nonlinear PDE to an approximation of its discrete solution, independently of the mesh resolution.
This approximation is then used as an initial guess for Newton’s method. To achieve these objectives,
we elect to use a Fourier neural operator (FNO). The loss function is the sum of a data term (i.e., the
comparison between known solutions and outputs of the FNO) and a physical term (i.e., the residual of
the PDE discretization). Numerical results, in one and two dimensions, show that the proposed initial
guess accelerates the convergence of Newton’s method by a large margin compared to a naive initial
guess, especially for highly nonlinear and anisotropic problems, with larger gains on coarse grids.

Keywords: Newton’s method, Neural Networks, Fourier Neural Operators, nonlinear elliptic PDEs

1. Introduction

The broad context of this work is the resolution of systems of nonlinear equations using Newton’s
method. Many applications (nonlinear elliptic partial differential equations (PDEs), implicit time-
stepping for nonlinear diffusion or hyperbolic equations, . . . ) require inverting large nonlinear systems.
Throughout this document, such systems will be denoted by

F (u) = 0, (1.1)

where F : RNh → RNh is a known nonlinear function and u ∈ RNh is the unknown vector. The integer
Nh represents the size of the vector u; in the case of a nonlinear system arising from the discretization
of a PDE, Nh would be the number of degrees of freedom of the discretization.

For smaller problems, Newton’s method is often used. It consists in linearizing the system around
a known state u0 ∈ RNh , to obtain an affine approximation of F in a neighborhood of u0:

F (u0) + F ′(u0)(u− u0) ≈ 0.

∗corresponding author
Email addresses: aghili@unistra.fr (Joubine Aghili), emmanuel.franck@inria.fr (Emmanuel Franck),

hild.romain@gmail.com (Romain Hild), victor.michel-dansac@inria.fr (Victor Michel-Dansac),
vigon@math.unistra.fr (Vincent Vigon)

Submitted preprint October 30, 2024



This equation is nothing but a linear system with unknown u, whose matrix is the Jacobian matrix of F .
To apply Newton’s method, this linear system is then repeatedly solved using the previous iteration as
a reference state. This leads to the following iterative process, where u(k) is expected to tend towards u
as k goes to infinity.

Algorithm 1. Newton’s algorithm to solve (1.1).
(1.) initialization step: set u(0) = u0,
(2.) main loop: for k ≥ 0,

(2.a.) solve the linear system F (u(k)) + F ′(u(k))δ(k+1) = 0 for δ(k+1),
(2.b.) update u(k+1) = u(k) + δ(k+1).

In practice, the different steps of Algorithm 1 have to be adapted to ensure convergence. For
instance, the algorithm has to be properly initialized, which means that the initial guess u0 in step (1.)
has to be close enough to the solution. This is the focus of the present work: devising a novel, data-
driven method to predict a suitable initial guess u0. Moreover, for larger systems, such as the ones
stemming from the discretization of a PDE, it is usual to use Jacobian-Free Newton-Krylov (JFNK)
methods [30] or inexact Newton methods [18]. In these methods, the linear systems are solved using
an iterative method like the generalized minimal residual method (GMRES) or the conjugate gradient
method (CG). This means replacing step (2.a.) of Algorithm 1 with an iterative linear solver. Such
iterative methods only compute matrix-vector products with the Jacobian matrix. Consequently, it is
not necessary to construct and store the Jacobian matrix, but it is sufficient to use an approximation
of the matrix-vector product, defined for v ∈ RNh by

F ′(u)v ≈ F (u+ εv)− F (u)

ε
,

and ε is correctly chosen. When the linearization error is large, the linear solver does not need to
converge to machine precision. Therefore, in the JFNK method, the linear solver threshold is adapted
to the nonlinear residual. In practice, the linear solver is stopped as soon as the following criterion is
satisfied:

‖F (u(k)) + F ′(u(k))δ(k+1)‖ ≤ η(k)‖F (u(k))‖,

where the threshold η(k) depends on the nonlinear convergence, see [17, 2, 22].
This JFNK method is, however, not always sufficient. Indeed, if the problem is strongly nonlinear,

the method can converge very slowly, and even sometimes fail to converge. Additionally, for multiscale
PDEs like the magnetohydrodynamics (MHD) equations [19] or anisotropic elliptic equations [11, 12],
the Jacobian matrix can be ill-conditioned, which makes the linear step difficult to solve. For this second
point, linear preconditioning [8] can be applied to the method, but could fail to improve the nonlinear
convergence. There exist several techniques to accelerate this convergence; we provide a brief state of
the art of such approaches in Section 1.1. In this work, we develop a data-driven method to accelerate
the convergence of Newton’s method by enhancing the initialization step (1.) of Algorithm 1. This
methodology, as well as the problems we apply it to, are described in Section 1.2. Finally, the outline
of the paper is given in Section 1.3.

1.1. Convergence acceleration: brief overview of existing approaches
In this paragraph, we give a brief overview of several techniques dedicated to the acceleration of

Newton’s method. We refer the reader to [30] for a more complete review. Namely, we present line
search in Section 1.1.1, adaptive inexact Newton methods in Section 1.1.2, nonlinear preconditioning

2

item:initialization_step
item:solve_step
item:initialization_step


in Section 1.1.3, and initial guess prediction in Section 1.1.4. This paragraph comes in support of the
choice we made in this paper to accelerate Newton’s method convergence through a better prediction
of the initial guess.

1.1.1. Line search
A classical approach to accelerate the convergence of the JFNK method is to use line search [6, 30, 43].

This helps to globalize the JFNK method, i.e. to relax the choice of the initial guess u0. The idea is to
compute a descent direction δ(k+1) from the classical Newton linear solve, i.e. step (2.a.) of Algorithm 1.
Then, at each iteration of the Newton solver, the linear search consists of finding iteratively a large
enough real number λ ≤ 1 such that

‖F (u(k) + λδ(k+1))‖ ≤ ‖F (u(k))‖,

and then replacing the classical Newton update u(k+1) = u(k) + δ(k+1) (corresponding to step (2.b.) of
Algorithm 1) with u(k+1) = u(k) + λδ(k+1). To stop the iterative process of the line search, there exist
many criteria, among which the Armijo or Wolfe conditions [50] are most often used.

1.1.2. Adaptive inexact Newton methods
In the specific case of nonlinear systems stemming from a finite element discretization of a PDE,

there exists a strategy using a posteriori error estimates. This method was first proposed in [18] for
nonlinear elliptic equations, and then extended to multiphase flows in porous media in [13, 14]. First,
an a posteriori estimate is constructed using the finite element method to discretize the PDE. This
estimate is then employed to adaptively change the linear and nonlinear convergence criteria, while
simultaneously refining the mesh. Using such estimates reduces the global cost of the method for a
given accuracy. While efficient, this class of methods suffers from a lack of generality, since the a
posteriori estimate has to be written for the problem and the numerical method under consideration.
Additionally, if the initial guess u0 is too far from the exact solution, then convergence issues may
remain.

1.1.3. Nonlinear preconditioning
Another approach is the use of nonlinear preconditioners. It is an extension of classical linear

preconditioning. Consider a strongly nonlinear system F (u) = 0. Nonlinear preconditioning consists of
finding a nonlinear operator G such that G ◦F ≈ A, with A a linear operator. In addition, if G ≈ F−1,
then A ≈ Id, which accelerates the convergence. Applying nonlinear preconditioning boils down to
solving another (almost linear) nonlinear system

G(F (u)) = G(0),

where a fast convergence is expected, since the operator G ◦ F is close to being linear. The main
difficulty of this approach, in addition to finding G, is ensuring that the Jacobian matrix of G◦F (or an
approximation thereof) is nonsingular and easily computable, to ensure that the linear solve, step (2.a.)
of Algorithm 1, has a satisfactory convergence.

In [7, 15], the authors propose nonlinear Schwarz-based preconditioning for Newton’s method in
the context of domain decomposition. It is an extension of a method commonly used to precondition
linear problems. In [47], the authors design a physics-based nonlinear preconditioner for potentially
discontinuous, time-independent PDEs. Their approach is based on detecting and eliminating strongly
nonlinear or discontinuous regions.

3

item:solve_step
item:update_step
item:solve_step


1.1.4. Initial guess prediction
Like any iterative algorithm, Newton’s method requires an initial guess u0 close enough to the actual

solution u. An alternative approach to accelerate the convergence of the method is the creation of an
initial guess u0, ensuring that u0 is close enough to u. This acts on the initialization step (1.) of
Algorithm 1. To that end, an immediate idea is to construct an operator G which approximates F−1,
and to use G(0) as an initial guess of Newton’s method. Compared to nonlinear preconditioning, this
approach may be more restrictive on G but eliminates the nonsingular requirement on the Jacobian
matrix of G ◦ F .

As explained above, a generic possibility to construct this initial guess is to involve a nonlinear
preconditioner. A second one, for nonlinear systems stemming from PDE discretizations, is to use
discretization- or physics-based criteria. For time-dependent problems, one can use the previous time
step, which was often (not always) sufficient to make Newton’s method converge (albeit potentially
slowly). One can also use the solution to a linearization of the equation at the current time step, see [9].
However, these guesses cannot be used for elliptic equations. Another strategy is to use the solution of
a simpler equation as an initial guess. For example, one can solve a (linear) Stokes problem to obtain
an initial guess for nonlinear PDEs such as the Navier-Stokes or MHD equations, see [29].

Several approaches based on machine learning have also been proposed to predict an initial guess.
For instance, see [27] for more general iterative methods, [42] for nonlinear elasticity problems, [39] for
applications in high Reynolds number compressible flows or [41] to accelerate the simulation of chemical
reactions in the context of a coupling with fluid dynamics.

The main idea behind the current work is similar, but makes use of different neural networks with
a more robust learning approach, as explained in Section 2.

1.2. Target problem and chosen methodology
In this work, we propose to accelerate the convergence of the JFNK method by constructing a suitable

initial guess. To that end, we present the target problem (nonlinear elliptic PDEs) in Section 1.2.1 and
the methodology to construct an initial guess in Section 1.2.3.

1.2.1. Target problem
This work focuses on elliptic problems since there usually is no information on how to choose a

suitable initial guess. Indeed, it is often harder to obtain a suitable initial guess for nonlinear elliptic
PDEs compared to time-dependent PDEs. The main reason for this is that there is no time stepping,
and thus the solution at the previous time step can no longer be used as an initial guess. Note that the
proposed method, however, can also be used to improve the initial guess for time-dependent problems.

For the sake of simplicity in the notation, all continuous quantities are denoted with capital letters,
and discrete ones with lowercase letters; all continuous operators are denoted with calligraphic letters,
and discrete ones with capital letters.

We consider both one-dimensional (1D) and two-dimensional (2D) elliptic problems, described below.
They are governed by similar equations, but with slightly different parameters, and thus we write both
problems separately.

The 1D problem is governed by the following elliptic equation on Ω ⊂ R, with unknown U : Ω → R:{
U(x)− α0 ∂x (K(x) |U(x)|p ∂xU(x)) = Φ(x), ∀x ∈ Ω,

U(x) = 0, ∀x ∈ ∂Ω,
(1.2)

with Φ ∈ L2(Ω) and K ∈ C0(Ω,R) two given functions, p even, and α0 > 0. We assume that there exists
K0 > 0 such that, for all x ∈ R, K(x) > K0(1 + x2). For simplicity, homogeneous Dirichlet boundary
conditions are prescribed on ∂Ω.

4

item:initialization_step


The 2D problem is a general anisotropic nonlinear diffusion equation on Ω ⊂ R2, with unknown
U : Ω → R and governed by:{

U(x)−∇ · (K(x) |U(x)|p∇U(x)) = Φ(x), ∀x ∈ Ω,

U(x) = 0, ∀x ∈ ∂Ω,
(1.3)

with p an even number, and where Φ ∈ L2(Ω) and K ∈ C0(Ω,M2(R)) are two given functions. We have
denoted by M2(R) the space of 2 × 2 real matrices. Homogeneous Dirichlet boundary conditions are
once again prescribed on ∂Ω. We assume K is bounded by below, i.e. there exists K0 > 0 such that,
for all x ∈ R2, 〈x,K(x)x〉 > K0|x|2. Such problems are common in physical applications; it appears
for example in tokamak simulations [26] or simulations of multiphase flows in porous media [1]. For
p = 0, a classical linear anisotropic diffusion equation is obtained. In this case, the asymptotic limit is
ill-posed [11, 12], which may highly degrade the conditioning.

Both problems (1.2) and (1.3) can be rewritten in a more compact form. Indeed, assume that the
solution U belongs to some Hilbert space U ⊂ L2(Ω), and define the function

A = (Φ,K) ∈ A ⊂ L2(Ω)× C0(Ω,Md(R)),

where d is the dimension of the space domain Ω and Md(R) is the space of d×d real matrices. Therefore,
A corresponds to the data of the physical model. Therefore, (1.2) and (1.3) can be rewritten as

F(U ;A) = 0, (1.4)

where F : U ×A → L2(Ω) is the residual operator, with natural boundary conditions for simplicity. In
the remainder of this work, we consider A as a set of “parameters” of the physical model. In reality, A
corresponds to a set of functions parameterizing the physical model.

1.2.2. Main goal
The broad scope of this work is to accelerate high-fidelity PDE simulations, i.e. accelerate the

resolution of the discrete version of (1.4). In this context, a numerical scheme is applied to (1.4),
which provides rigorous convergence guarantees as the mesh is refined. For such nonlinear problems,
numerical schemes require the use of a nonlinear solver like Newton’s method. For a given mesh, we know
that Newton’s method will converge, provided a suitable initial guess is provided. Such convergence
guarantees are of paramount importance in many applications, such as nuclear power plant simulations
[25] or aeronautics [10].

Moreover, note that the source term Φ and the diffusion matrix K in (1.2) and (1.3) are generic. In
practice, this is the case when considering the discretization of time-dependent PDEs, or when studying
the solution with respect to a parameter in uncertainty quantification. The goal of this work is therefore
to provide a unified procedure for a wide range of such source terms and diffusion matrices. This will
be done by solving a single equation (1.4), but whose parameters A can vary widely. All in all, we seek
to obtain a high-fidelity, provably convergent model for a wide range of such source terms and diffusion
matrices.

This last remark is why we choose to predict the initial guess. Indeed, this will make it possible
to benefit from the convergence properties of Newton’s method. Moreover, in general, finding such an
initial guess is a difficult task. For instance, Section 3.1.1 demonstrates the failure of several naive (and
not so naive) initial guesses. We therefore need to construct a good prediction of the initial guess: the
method we elect to use is described in the next section.

5



1.2.3. Methodology to predict an initial guess
As mentioned before, we propose to construct a method able to produce a good initial guess for the

JFNK method. We discretize the generic PDE (1.4) using a classical finite difference scheme with Nh

mesh points. We obtain the following system of nonlinear equations:

F (u; a) = 0, (1.5)

with u ∈ RNh the discretization of the unknown function U , and a a discretization of A, i.e. a dis-
cretization of Φ and K. Analogously to A = {Φ,K}, we write a = {ϕ, k}, with ϕ ∈ RNh a discretization
of Φ and k ∈ Rnc−1 a discretization of K, where nc = 2 in 1D for d = 1 and nc = 5 in 2D for d = 2.
Therefore, F : RNh × RncNh → RNh is a discretization of the operator F . Our objective is then to
construct an operator G+ : RncNh → RNh such that

F (G+(a); a) ≈ 0. (1.6)

Note that, if (1.6) were an equality, G+ would be the pseudo-inverse of F with respect to its first
variable: we therefore seek to approximate this pseudo-inverse. This function G+ can be viewed as a
discrete operator mapping the data on the mesh to the solution on the mesh, contrary to the nonlinear
preconditioners mentioned in Section 1.1.3, which approximates the inverse of the continuous operator.
Since G+ is a function from RncNh to RNh , it quickly becomes high-dimensional when the mesh is
refined.

For this reason, we propose to use a neural network with trainable weights θ to construct a func-
tion G+

θ approximating the inverse of F , like in (1.6). Indeed, for the last ten years, neural networks
have shown their ability to outperform other methods for high-dimensional regression problems. Such
operators constructed via neural networks are called neural operators; the reader is directed to [31] for
a description of a unified framework for operator learning.

Operator learning comes in two flavors: the discrete case, where a map between discretizations of
functions is built, and the continuous case, where the map is between the actual functions themselves.
On the one hand, for the discrete case, the most natural approach is to use a convolutional neural
network (CNN) to construct G+

θ on a structured grid. Such neural networks have been successfully
implemented to learn mappings between functions in various applications, see e.g. [4, 21, 40, 44, 20, 37].
The main drawback of this approach is that the mesh used for the learning process partially restricts
the domain of applicability of the discrete operator. On the other hand, in the continuous approach,
the operator is actually constructed between functions, mapping Φ and K to U . Several approaches
have been proposed to construct such operators, see for instance [3, 33, 38], which have been unified in
a general framework in [31].

The approach best suited to our case seems to be Fourier neural operators (FNOs), introduced in [34].
Indeed, when considering classical neural operators such as FNOs or DeepONets, it seems like FNOs
outperform DeepONets in most cases, see for instance [46], Table 1. The idea behind FNOs is to learn
a convolution in the frequency domain instead of the usual space domain. It makes it possible to obtain
mesh- and discretization-independent operators. We will use an FNO to approximate the continuous
operator, before applying any discretization to obtain an approximation of the pseudo-inverse of F .

An interesting approach to construct an initial guess in the Int-Deep method from [27]. Int-Deep
uses a partially trained neural network to provide an initial guess. As such, one prediction is not very
costly, but this training has to be restarted for each new problem. However, applications such as time-
dependent PDEs or uncertainty quantification require solving the nonlinear equation many times. Each
Newton solve may take a substantial amount of time, depending on how good the initial guess is. In

6



such cases, the training time of the FNO quickly becomes negligible if it manages to provide a good
initial guess.

Another possibility would be to directly solve the continuous PDE (1.4) using a neural network [45,
16] or a neural operator [31, 46]. However, at the moment, such approaches lack a robust convergence
framework, contrary to Newton’s method. Indeed, for a given mesh and a suitable initial guess, we
know that Newton’s method is able to converge. Simply using a neural network or a neural operator
would not provide such theoretical guarantees. Another advantage lies in avoiding the strong drift in
time of the FNO solution compared to the reference in complex time-dependent applications such as
nuclear fusion [23].
1.3. Outline

At this level, we have defined the continuous problem (1.4) under consideration, as well as its discrete
version (1.5). Furthermore, we have elected to use an FNO to construct an initial guess. The remainder
of the paper is dedicated to the learning process, and to validate our approach. To that end, in Section 2,
we describe the whole process of learning this initial guess. Namely, we discuss the choice of the neural
network, the loss functions, and the data generation process. Then, in Section 3, numerical results are
given in 1D and 2D to validate our approach. A conclusion ends the paper in Section 4.

2. Learning an initial guess

The goal of this section is to describe the learning process of the initial guess. It is organized as
follows: firstly, the loss functions are introduced in Section 2.1. Secondly, we discuss the generation
of training, validation and testing datasets in Section 2.2. Thirdly, the structure of FNOs is briefly
sketched in Section 2.3. Fourthly, the hyperparameters of the network are stated, and determined with
a grid search, in Section 2.4.

2.1. Discretization-Informed loss function
Before introducing the full learning process and the specific network architecture considered in this

work, we start by discussing and motivating the loss functions to be minimized. Indeed, we have to
correctly manage the interplay between data, physics and discretization. For the sake of simplicity, we
consider the generic PDE (1.4), governed by F(U ;A) = 0.

To define our loss functions, let us start by temporarily remaining at the continuous level. The best
pseudo-inverse operator G+ : A → U would satisfy∥∥U − G+(A)

∥∥2
L2(Ω)

= 0, (2.1)

for all U and A such that F(U ;A) = 0. This is nothing saying that G+(A) = U in the L2 sense.
Similarly, we can replace the L2 norm in the equation above by the H1

0 norm, to obtain∥∥∇U −∇G+(A)
∥∥2
L2(Ω)

= 0. (2.2)

In addition, since G+ is such that F(G+(A);A) = 0, it also satisfies∥∥F(G+(A);A)
∥∥2
L2(Ω)

= 0. (2.3)

Now, we look for an approximation G+
θ of this ideal operator G+ among a given set of parameterized

operators. To that end, we will build it such that it minimizes a weighted sum of three different discrete
loss functions, consistent with the three equations (2.1), (2.2) and (2.3). Recall that the discretized

7



PDE reads F (u; a) = 0. From now on, we assume that we have at our disposal Ndata data points
(uj , aj)j∈{1,...,Ndata} such that

∀j ∈ {1, . . . , Ndata}, uj ∈ RNh , aj ∈ RncNh , and F (uj ; aj) = 0.

Generating this data is the object of Section 2.2.
First, we wish to minimize, for all j, the L2 error between the prediction G+

θ (aj) of the neural
network and the solution uj of the discretized PDE. This is the discrete analog of (2.1), which reads

LL2

data(θ) =
1

Ndata

Ndata∑
j=1

∥∥uj −G+
θ (aj)

∥∥2. (2.4)

This is a classical loss function used in supervised learning.
Second, minimizing the H1 error instead of the L2 error to provide a discrete analog of (2.2) requires

defining a discrete approximation of the gradient. For simplicity, we use a centered discretization of the
first derivative, which we denote by D. This leads to the following loss function:

LH1

data(θ) =
1

Ndata

Ndata∑
j=1

∥∥∥D(
uj −G+

θ (aj)
)∥∥∥2. (2.5)

Finally, what is usually done in the context of Physics-Informed Neural Operators (PINOs) is to
take the PDE into account in the loss function, see [49, 36]. Therefore, learning such operators mix
classical operator learning and Physics-Informed Neural Networks (PINNs) [45, 28]. This would lead to
a loss function analog to (2.3), where G+

θ would directly approximate G+.
However, in our case, the prediction G+

θ (A) of the neural network is to be used as an initial guess
for Newton’s method. Indeed, recall that the goal of this work is to solve nonlinear systems stemming
from the discretization of (potentially time-dependent) PDEs. In this discrete framework, we therefore
wish to solve the discrete problem, rather than the continuous one. In this case, finding G+

θ close
to G+ (in some sense) has no guarantee of minimizing the residual of the numerical scheme. Indeed,
it is entirely possible that G+

θ , viewed as an approximation of the continuous operator G+, would fail
to minimize the discrete residual F (G+

θ (aj); aj) for some j, leading to a poor initial guess for Newton’s
method. For this reason, we design another loss function, based on the PDE discretization F , which we
call discretization-informed. This loss function takes the discretization F into account rather than the
continuous PDE F , and is defined by

Ldis(θ) =
1

Ndata

Ndata∑
j=1

∥∥∥F (G+
θ (aj); aj)

∥∥∥2. (2.6)

Note that using the discrete F rather than the continuous F in this loss function has another advantage:
it is not necessary to compute second-order space derivatives of the network’s output, which would be
cumbersome and computationally expensive.

2.2. Data generation
Now that the loss functions have been defined, we describe how to generate training and validation

data. In this paragraph, we assume that the nonlinearity p ∈ N is fixed. Moreover, we denote by E the
discrete elliptic operator, defined such that E(u; k) = ϕ. Note that E is simply another formulation
of F : indeed, E(u; k) = ϕ is equivalent to F (u; a) = 0, with a = (k, ϕ).

8



The idea behind our data generation is to randomly generate the solution U and the function K, and
use this information to compute the associated source term Φ. For this strategy to be efficient, we need
to have a rough idea of the family of solutions we wish to approximate. This strategy’s advantage, in
contrast to generating Φ, is that it avoids having to solve the PDE for data generation. Data generation
is summarized in Algorithm 2. It depends on the choice of a random generator, whose definition is the
objective of the remainder of this paragraph.

Algorithm 2. Data generation

Input: p ∈ N, random generator for U and K, Ndata number of data points
Output: input and output datasets X and Y

1: for i ∈ {1, . . . , Ndata} do
2: randomly generate U and K
3: project U and K onto the discrete space to obtain u and k
4: set ϕ = E(u; k)
5: add Xi = (k, ϕ) to the input dataset X and Yi = u to the output dataset Y
6: end for

To complete Algorithm 2, a random generator to build interesting functions U and K has to be
designed. This problem depends on the chosen application. Here, even though it is an important
question, we do not discuss how to construct a representative dataset for one given application. Instead,
we propose the following generic generator, which serves as a proof of concept:

g(x) = 0.5 +

n∑
i=0

Nµi,σi(x), (2.7)

where Nµ,σ is the probability density function of the normal distribution, with mean µ and variance σ2.
The integer n is randomly chosen between 0 and 5, and thus the generated function g corresponds to
a sum of n + 1 Gaussian functions. Each variance σ2

i is uniformly sampled in [0.025, 0.07], and each
mean µi is uniformly sampled in a ball of size 0.25, centered at the midpoint of the space domain Ω.
This generator is then used to generate both the solution u and the space function K. In principle,
the method could work for other function families. However, the larger the family, the poorer the
performance. The definition of this generator completes Algorithm 2. It is then used to define three
datasets:

• the training dataset, which includes several fixed mesh sizes;

• the validation dataset, used to compare the model to data and to select the hyperparameters, is
constructed in the same way but using additional mesh sizes;

• the test dataset, used to evaluate the performance of the model, is constructed like the validation
dataset.

2.3. Neural network structure
As mentioned before, we elect to use an FNO in both cases (1.2) and (1.3). For the sake of complete-

ness, we recall the main ideas behind FNOs, and represent the architecture, following [34], on Figure 1.
The FNO is made of an extrapolation layer, which starts by lifting the input to a higher dimension,
followed by several Fourier layers, and ends with a projection layer, projecting the output back to the

9



original dimension. Such a neural network is exactly equivalent to a fully convolutional one: the input
X is transformed via a succession of convolutions and non-linear activation functions, but convolutions
are performed via a Fast Fourier Transform algorithm:

FFT−1
(
R̂
(
FFT(X)

))
,

where R̂ is a trainable vector with a small support [0,m] (where e.g. m = 20), which multiplicatively
modifies the low frequencies (modes) of the signal. We can imagine that R̂ is itself the Fourier transform
of a (never computed) kernel R; so our convolution is equivalent to the classical one X ?R. In classical
convolutional networks, the kernels R have very small support (e.g. 3), while in the case of FNOs, the
kernel has full spatial support. For the full description of the model, we refer the reader to [34].

A(x)
∈ Rnc

V (x)
∈ RnpP

Fourier
layer 1

Fourier
layer 2

. . . Fourier
layer L

W (x)
∈ Rnp

U(x)
∈ RQ

V (x)
∈ Rnp

F(V )

∈ Rnp/2
R̂(F(V ))
∈ Rm

F−1(R(F(V )))
∈ Rnp

W (V (x))
∈ Rnp

+ σ

Figure 1: Sketch of an FNO, adapted from [34]. The network has nc input channels (nc = 2 in 1D and nc = 5 in 2D), which
are then extrapolated to np dimensions by the extrapolation layer P ; L Fourier layers follow, whose result is projected
back to R to give an approximation of the PDE solution. In the Fourier layers, F denotes the fast Fourier transform FFT.

The network always takes as inputs Φ and K; in 1D, this corresponds to two channels, and five
channels in 2D (since K is matrix-valued in this case). The output is always the real-valued solution U .
To obtain G+

θ , this neural network is then batched on the Nh discretization points, to obtain a map
from RncNh to RNh .

This architecture involves several hyperparameters, written on Figure 1: the number L of Fourier
layers, the number m of Fourier modes to keep, and the width np (corresponding to the higher dimension
after extrapolation). To choose these hyperparameters, we perform a grid search, described below.

2.4. Hyperparameter choice
So far, this section has been dedicated to the construction of the neural network G+

θ to provide a
relevant initial guess, and of the loss functions to be minimized during training. The training process
itself is rather standard, based on gradient methods and back-propagation, as is usual for neural net-
works. However, this process depends on quite a lot of hyperparameters, given in Section 2.4.1; it is
crucial to choose them carefully to obtain a good performance. To that end, we perform a grid search,
described in Section 2.4.2, to find the best hyperparameters.

10



2.4.1. Hyperparameters
As a first step, we recall all the hyperparameters involved in the learning process. We split them into

two categories: the hyperparameters used for the training of the neural network, and the hyperparam-
eters of the neural network itself. For each hyperparameter, we also give the possible values explored
in the grid search.

Training hyperparameters Set of values for the grid search
`0 (Initial learning rate) 10−2, 10−3, 10−4

γ (Exponential decay) 0.98, 0.99, 1
Nb (Batch size) 64, 128, 256, 512
ω (Loss function weight) 0, 0.5, 1

Table 1: Hyperparameters used for the training of the neural network, and values explored in the grid search.

First, the training hyperparameters are collected in Section 2.4.1. The first hyperparameter, `0,
is the initial learning rate of the ADAM optimizer. The learning rate is then exponentially decayed,
with rate γ. The parameter Nb is the batch size, i.e. the number of samples used to compute the
loss functions. The parameter ω corresponds to the weight between the loss functions. The choice of
the final loss function will be discussed in more detail in Section 3. For the moment, suffice it to say
that the loss function combines the three loss functions (2.6)–(2.4)–(2.5) differently in 1D, for (1.2),
and in 2D, for (1.3). In 1D, we use a combination between the L2 data loss function (2.6) and the
discretization-informed loss function (2.5); the resulting loss function is given by

L1D(θ) = ωLL2

data(θ) + (1− ω)10−4Ldis(θ). (2.8)

In 2D, the combination is between the L2 data loss function (2.6) and the H1 data loss function (2.4),
to obtain the following loss function:

L2D(θ) = ωLL2

data(θ) + (1− ω)10−2LH1

data(θ). (2.9)

The factors 10−4 in (2.8) and 10−2 in (2.9) are introduced to normalize the discretization-informed
and the H1 loss functions, which are always larger than the L2 loss function. Indeed, recall that the
generator (2.7) generates functions based on the probability density function of a normal distribution.
Therefore, their spatial derivatives, and especially their second derivatives, have a norm greater than
that of the functions themselves. We have added the normalizing factors to account for this discrepancy.

Network hyperparameters Set of values for the grid search
L (Fourier layers) 2, 3, 4, 5
m (Fourier modes) 10, 20, 30, 40
np (FNO width) 10, 20, 30, 50

Table 2: Hyperparameters used for the neural network itself, and values explored in the grid search.

Second, the hyperparameters of the neural network are summarized in Table 2. We refer the reader
to Section 2.3 and Figure 1 for an explanation of these hyperparameters.

11



2.4.2. Grid search
The main idea behind grid search is to run the training process for all possible combinations of

hyperparameters, and to select the best combination. We denote by µ the set of hyperparameters of
our problem:

µ = {`0, γ,Nb, ω, L,m, p}.

Grid search can be formalized as the following optimization problem:

µopt = argmin
µ

S(µ),

with S a score function to be defined and µopt the optimal parameters. To avoid overfitting and increase
the generalization ability of our model, this score function will be computed on validation data, which is
generated following Section 2.2. We denote by Nval the number of validation data. As we will see upon
defining a suitable score function, this score function will not necessarily be differentiable with respect
to µ. This is why we choose to use a grid search rather than a gradient-based optimization algorithm.

The classical choice in the machine learning community is to set the score function equal to parts
of the loss function of the problem, given here by (2.8) or (2.9). We thus define two score functions:
Sdata, based on the L2 loss function, and Sdis, based on the discretization-informed loss function. Their
evaluations are summarized in Algorithm 3.

Algorithm 3. Evaluation of Sdata(µ) and Sdis(µ)

Input: set of parameters µ, nepoch number of training epochs, Nval number of validation data,
(Xi, Yi)i∈{1,...,Nval} validation data

Output: scores Sdata(µ) and Sdis(µ)

1: train G+
θ during nepoch epochs with hyperparameters µ

2: compute the scores Sdata(µ) =

Nval∑
i=1

‖G+
θ (Xi)− Yi‖22 and Sdis(µ) =

Nval∑
i=1

‖F (G+
θ (Xi);Xi)‖22

However, using such a score function implies the underlying assumption that the better the neural
network approximation of the solution, the faster the convergence of Newton’s method. Even though
this assumption seems natural, it remains debatable. Indeed, there could be cases where the model
provides a good approximation of the PDE solution in the L2 norm, but local errors or irregularities
could slow down the convergence of Newton’s method if using this approximation as an initial guess.
Since our end goal is to accelerate the convergence of Newton’s method, another natural choice for the
score function would be to base it on the actual number of iterations. Computing such a score function
amounts to running Newton’s algorithm with the neural network prediction and with the naive initial
guess, and comparing the number of iterations. The score is then defined as the average gain in iterations
between the two approaches. As a consequence, we suggest computing this new score function Siter(µ)
via Algorithm 4. Note that, in this algorithm, we set a maximum number Miter of Newton iterations
to avoid the algorithm running indefinitely. In practice, we set Miter = 2000.

To evaluate the best values of each hyperparameter, we evaluated the three scores on several mesh
resolutions. For the loss-based scores Sdata and Sdis, we used Nval = 1000 validation data for each
mesh resolution. The iteration-based score Siter, however, is more expensive to compute since Newton’s
method has to be run up to convergence. Therefore, to compute this score, performed Nval = 5 Newton
resolutions per mesh resolution.

12



Algorithm 4. Evaluation of Siter(µ)

Input: set of hyperparameters µ, nepoch number of training epochs, Nval number of validation data,
(Xi)i∈{1,...,Nval} validation data, Miter maximum number of Newton iterations

Output: score Siter(µ)

1: train G+
θ during nepoch epochs with hyperparameters µ

2: for i ∈ {1, . . . , Nval} do
3: compute the initial guess u0 = G+

θ (Xi) using the trained neural network
4: solve the problem with a JFNK solver, with initial guess u0, and denote by ki the number of

iterations needed to reach convergence; if ki > Miter, set ki = Miter
5: solve the problem with a JFNK solver, with the naive initial guess (1, 1, . . . , 1), and denote by

k̃i the number of iterations needed to reach convergence; if k̃i > Miter, set ki = Miter
6: end for

7: compute the score Siter(µ) =
1

Nval

Nval∑
i=1

k̃i
ki

100 200 400 600

10−3

2× 10−3

5× 10−3

Nh

Gdata

100 200 400 600

101

102

103

Nh

Gdis

100 200 400 600

2

5

10

Nh

Giter

Nb = 64 Nb = 128 Nb = 256 Nb = 512

Figure 2: Score with respect to the number of points in the grid, for different values of the batch size Nb. From left to
right, we display scores Sdata, Sdis and Siter. Scores Sdata and Sdis should be as small as possible; score Siter should be as
large as possible.

On Figure 2, we display the results of the grid search on the 1D problem (1.2), only for the batch
size hyperparameter Nb for simplicity. From left to right, we display scores Sdata, Sdis and Siter, with
respect to the number Nh of points, for different values of the batch size Nb. The left and center panels
show that a batch size of Nb = 512 is not efficient, while the other batch sizes yield comparable scores.
Moving on to the right panel, we observe that Nb = 64 is the best choice to reduce the number of
iterations of Newton’s method. Consequently, from these indicators, we choose Nb = 64.

All in all, the hyperparameters are chosen by performing the grid search. Note that, in most cases,
all three scores agree on the best value of each hyperparameter. In case the three scores did not concur,
we have used the hyperparameters associated with Siter. Indeed, this score is the one deemed to be
the most important in practice, since it is associated with reducing the number of iterations. The final
choice of all hyperparameters is summarized in Table 3.

13



Hyperparameters Chosen value
`0 (Initial learning rate) 10−3

γ (Exponential decay) 0.99
Nb (Batch size) 64
ω (Loss function weight) 0.5
L (Fourier layers) 4
m (Fourier modes) 30
np (FNO width) 30

Table 3: Summary of the hyperparameters; for each hyperparameter, we give the best value obtained through grid search.

3. Numerical results

Equipped with the values of the hyperparameters collected in Table 3, we now present some numerical
results to validate our approach. Namely, we compare the convergence of Newton’s method using a naive,
constant initial guess and using our FNO as a predicted initial guess. We first tackle the 1D case in
Section 3.1, and move on to the 2D case in Section 3.2. In each case, we start by displaying the results
of the FNO prediction, to make sure they are close to the exact solution. Then, we compare both types
of initial guesses.

Throughout this section, we use the newton_krylov solver from the scipy library. It is already a
very efficient solver, with built-in advanced optimizations. It is a Jacobian-free Newton-Krylov method,
where linear solves are performed using the LGMRES method and where the convergence is enhanced
with an Armijo line search method from [50]. Such a method is typical for large-scale problems, for
instance, ones stemming from PDE discretizations. Moreover, since this work is essentially a proof
of concept, we remain on relatively coarse meshes in 2D (up to 1002 points), while finer meshes are
considered in 1D (up to 600 points).

3.1. Results in one space dimension
The first batch of experiments we run are based on the 1D PDE (1.2), with the nonlinearity p fixed

to 4. The coefficient α0 tunes the amplitude of the nonlinearity, larger values of α0 lead to a prevalence
of the nonlinear part, and thus make the JFNK method slower to converge. We discretize this equation
with a classical finite difference scheme.

For each experiment, we fix a value of α0 to represent the difficulty of the problem. The model is
trained on two meshes made of 200 and 400 points. These experiments aim at checking the ability of
the FNO to predict a solution for an unknown mesh resolution. We first motivate, in Section 3.1.1,
the need for suitable initial guesses, even in the case of 1D equations such as (1.2). We then discuss
the choice of the loss function in Section 3.1.2, and check the relevance of the initial guess provided by
the FNO for a small nonlinearity α0 = 2 in Section 3.1.3 and for larger nonlinearities α0 ∈ {5, 8} in
Section 3.1.4. Section 3.1.4 also contains a study of the number of simulations needed to overcome the
training time of the FNO. We finally compare our approach to other methods from the literature in
Section 3.1.5.

3.1.1. Motivation: failure of classical initial conditions for Newton’s method
First, we illustrate the need for a suitable initial guess to apply Newton’s method to solve the discrete

1D PDE (1.2). We consider meshes made of Nh = 100 points in Table 4, Nh = 200 points in Table 5,
Nh = 400 points in Table 6, and Nh = 600 points in Table 7. For each mesh, we take values of α0 in

14



{2, 5, 8}, ranging from weak to strong nonlinearities. In such elliptic problems, we usually do not have
any prior on the solution, so changing initial guesses usually amounts to changing the constant value
used as an initial guess, potentially adding some random noise. We consider several initial conditions
for the Newton’s method:

• five constant initial conditions (with values 0.5, 0.75, 1, 1.25, 1.5);
• a constant initialization with value 1 added to a Gaussian perturbation N0,0.25, with mean 0 and

standard deviation 0.25;
• a constant initialization with value 1 added to a Gaussian perturbation N0,σexact , where σexact is

the variance of the exact solution;
• and the exact solution Uexact added to a Gaussian perturbation N0,0.25.

Note that the last two initial conditions are not realistic, since they depend on prior knowledge of the
exact solution.

initial
condition

α0 = 2 α0 = 5 α0 = 8

N̄iter % failure N̄iter % failure N̄iter % failure
0.5 2000 100 2000 100 2000 100
0.75 1686 72.5 1670 72.5 1804 80
1 280 0 1293 30 1824 75

1.25 1435 42.5 1993 97.5 2000 100
1.5 1960 95 2000 100 2000 100

1 +N0,0.25 362 5 1244 27.5 1791 70
1 +N0,σexact 285 0 1277 32.5 1801 75

Uexact +N0,0.25 285 10 338 7.5 580 20

Table 4: Comparison of initial conditions for different values of α0 and Nh = 100 points.

initial
condition

α0 = 2 α0 = 5 α0 = 8

N̄iter % failure N̄iter % failure N̄iter % failure
0.5 2000 100 2000 100 2000 100
0.75 1923 95 1902 92.5 1951 95
1 351 0 781 5 1288 32.5

1.25 1184 25 1943 95 1990 97.5
1.5 1955 95 2000 100 2000 100

1 +N0,0.25 394 0 889 2.5 1453 40
1 +N0,σexact 356 0 791 0 1384 32.5

Uexact +N0,0.25 312 5 304 0 525 7.5

Table 5: Comparison of initial conditions for different values of α0 and Nh = 200 points.

In Tables 4 to 7, we report the average number of iterations N̄iter that Newton’s method took to
converge, as well as the percentage of failures, over 40 different examples generated with the strategy
from Algorithm 2. In the case of a failure, we set the number of iterations to 2000, which is also the
maximum number of Newton iterations Miter. We observe that, as the number Nh of points and the
strength α0 of the nonlinearity grow, each initialization method becomes less efficient. For instance, in
Table 7, all naive initial conditions have failed, and much information needs to be added to the initial

15



initial
condition

α0 = 2 α0 = 5 α0 = 8

N̄iter % failure N̄iter % failure N̄iter % failure
0.5 2000 100 2000 100 2000 100
0.75 2000 100 2000 100 2000 100
1 1157 5 1888 70 2000 100

1.25 1246 2.5 1941 85 2000 100
1.5 1483 27.5 1974 92.5 2000 100

1 +N0,0.25 1307 15 1959 77.5 1997 97.5
1 +N0,σexact 1181 2.5 1931 80 2000 100

Uexact +N0,0.25 642 2.5 1033 10 1249 7.5

Table 6: Comparison of initial conditions for different values of α0 and Nh = 400 points.

initial
condition

α0 = 2 α0 = 5 α0 = 8

N̄iter % failure N̄iter % failure N̄iter % failure
0.5 2000 100 2000 100 2000 100
0.75 1987 97.5 2000 100 2000 100
1 1736 45 2000 100 2000 100

1.25 1934 87.5 2000 100 2000 100
1.5 1982 87.5 2000 100 2000 100

1 +N0,0.25 1724 42.5 2000 100 2000 100
1 +N0,σexact 1684 35 2000 100 2000 100

Uexact +N0,0.25 1018 2.5 1463 5 1739 25

Table 7: Comparison of initial conditions for different values of α0 and Nh = 600 points.

guess to notably decrease the failure rate. This is a clear indication that the classical initial conditions
of Newton’s method are not suitable for this problem. To remedy this issue, we show in the remainder
of this section that our approach can provide a better initial guess and converge in all cases.

3.1.2. Choice of the loss function
In this section, we discuss the choice of the loss function by checking the ability of the FNO to

approximate the solution to (1.2), and to its discretized version (1.5). Since the goal is to compare the
loss functions, we train a smaller FNO, with L = 4, m = 20 and p = 20. Moreover, we take α0 = 5 to
have a strong nonlinearity.

We compare two training strategies: the first one uses only the L2 data loss function given by
(2.4), while the second one uses both the L2 data loss function (2.4) and the discretization-informed
loss function from (2.6). In both cases, the networks are trained until the mean squared error (MSE)
reaches around 2 × 10−4. These two strategies are compared in Figures 3 and 4, where 4 random
examples are displayed. In each example, the functions Φ and K are generated following Section 2.2,
and the FNO is used to predict the resulting solution u. In each row, we display the functions Φ, K, u
(predicted in blue and exact in orange) from left to right. The rightmost figure compares the residuals
of the discretized PDE, in the sense of (1.4), computed with the exact solution (blue line) and the
predicted solution (orange line).

In the case of Figure 3, only the L2 data loss function is used; training time is below 10 minutes on

16



Φ(x) K(x) U(x) Residual

Figure 3: Examples obtained after training the FNO with the loss function LL2

data from (2.4) only. From top to bottom,
each series of graphs corresponds to a different example. In the first three columns, from left to right, we display Φ(x),
K(x), the solution U(x) (blue line) and its prediction (orange line). The rightmost column compares the residuals of the
discretized PDE computed with the exact solution (blue line) and the predicted solution (orange line).

a cloud architecture with shared GPUs. We note that the FNO provides a quite satisfactory prediction
of the solution U . However, we also remark that the residual obtained by plugging this solution into
the numerical scheme becomes quite large. In light of the PDE (1.2), since the third column shows
that U is correctly approximated by the FNO, the high amplitude of the residual in the fourth column
can only be due to a poor approximation of the discrete derivatives of U (and especially of its second
derivative).

Figure 4 shows the results obtained for an FNO trained with both the L2 data and discretization-
informed loss function; training time is below 15 minutes, still on a cloud architecture with shared
GPUs. On the one hand, we observe that the network yields a good approximation of the solution U ,
but that it performs noticeably worse than in the previous case in terms of approximation of u. On
the other hand, the residual of the scheme is much smaller, which will be beneficial for the convergence
of Newton’s method. In fact, by minimizing the discretization residual, we have obtained a better
reconstruction of the residual, and therefore of the discrete derivatives of U . In practice, we will use this
second training strategy for the final results, because it produces a better initial guess for the JFNK
method.

3.1.3. Results for α0 = 2

We start by testing the approach with a weak nonlinearity (α0 = 2). In this case, Newton’s method
is able to converge quite quickly with the naive initial guess. Nevertheless, we expect our predicted
initial guess to outperform the naive one by a significant margin.

Recall that training is done on meshes with 200 and 400 points; validation is performed by running
Algorithm 4 on meshes with varying sizes, 100, 200, 400 and 600 points. The training time is around
15 minutes on a cloud architecture with shared GPUs. The tolerance for the convergence of Newton’s
method is fixed to 10−6. The results are displayed on Figure 5. Namely, in the left panels, we display
the gains in number of iterations; in the right panel, the gains in CPU time are displayed. Note that
we do not take training time into account in these CPU time gains. Indeed, since we are solving

17



Φ(x) K(x) U(x) Residual

Figure 4: Examples obtained after training the FNO with the loss function LL2

data from (2.4) and the discretization-informed
loss function Ldis from (2.6). From top to bottom, the four graphs correspond to a different example. In the first three
columns, from left to right, we display Φ(x), K(x), the solution U(x) (blue line) and its prediction (orange line). The
rightmost column compares the residuals of the discretized PDE computed with the exact solution (blue line) and the
predicted solution (orange line).

multiple problems with the same network, training time can become negligible compared to the time
spent solving the PDE. For an in-depth study of the number of simulations needed to overcome the
training time, we refer to Table 9 in Section 3.1.4. In each case, we perform 50 runs, corresponding
to 50 random choices of Φ and K. The gains in number of iterations are nothing but the score Siter
defined in Algorithm 4, while the gains in CPU time (denoted by SCPU) are computed in the same way
but comparing the CPU time of the two runs instead of the number of iterations. Instead of the raw
gains, we report the gain percentage:

Giter = (Siter − 1)× 100 and GCPU = (SCPU − 1)× 100. (3.1)

Recall from Algorithm 4 that the number of Newton iterations is capped at Miter = 2000. Indeed,
reaching Miter iterations often implies that Newton’s method will fail to converge. Therefore, this also
puts a cap on the maximum possible gain in iterations, which makes it harder to show the true potential
of our method, namely providing an initial guess where Newton’s method almost always converges.

On the top panels of Figure 5, corresponding to gains on a mesh with 100 points, we observe that
the average gain when using the initial guess predicted by the FNO is around 1300% in terms of number
of iterations and 500% in terms of CPU time. In these examples, we note that the gain in the number of
iterations is consistently over 100%. This means that initializing Newton’s method with the prediction
allows it to converge in at most half the number of iterations compared to using the naive initial guess.
This gain in iterations translates into a (lower) gain in CPU time in most cases. However, in one case
out of fifty (i.e. 2.5% of the time), the total CPU time is actually larger when using the predicted initial
guess. This increase in computation time is due to the fact that each iteration of the JFNK method is
quite fast (since the mesh is coarse), which increases the relative weight of the network call in the total
CPU time. This may also be due to the cost of a Newton iteration being lower when starting from a
constant guess, for which the linear solve is quicker. Our prediction is not constant, and thus the first
Newton iterations may be more expensive than in the classical case where the initial guess is constant.

18



0

10

20
avg. gain: 1300%

O
cc

ur
en

ce
s,

N
h
=

1
0
0

0

10

20
avg. gain: 500%

0

10

20 avg. gain: 200%

O
cc

ur
en

ce
s,

N
h
=

2
0
0

0

5

10

15
avg. gain: 88%

0

5

10

15

20 avg. gain: 88%

O
cc

ur
en

ce
s,

N
h
=

4
0
0

0

5

10

15
avg. gain: 82%

−∞
%

−5
0% 0% 25

%
50
%
10
0%

20
0%

50
0%

10
00
%

+
∞
%

0

5

10

15
avg. gain: 93%

Gain in number of iterations

O
cc

ur
en

ce
s,

N
h
=

6
0
0

−∞
%

−5
0% 0% 25

%
50
%
10
0%

20
0%

50
0%

10
00
%

+
∞
%

0

5

10

15
avg. gain: 92%

Gain in CPU time

Figure 5: Statistics of the gains Giter in number of iterations (left panels) and GCPU in CPU time (right panels) for the
1D problem (1.2) with α0 = 2. From top to bottom, we display the results for meshes with 100, 200, 400 and 600 points.
The gains are grouped in bins of varying sizes, and the number of occurrences in each bin is displayed as a histogram.

We expect that, the finer the mesh, the closer the gains in number of iterations and in CPU time will
be.

Indeed, these expectations are confirmed in the bottom three panels of Figure 5, where the results
are displayed, from top to bottom, for meshes with 200, 400 and 600 points. Our predicted initial guess
enables a consistent gain in number of iterations and in CPU time, even on cases which were not part
of the training database. Moreover, we indeed observe that the gains in number of iterations becomes
closer to the gains in CPU time as the mesh becomes finer, since the cost of the FNO call gradually
becomes irrelevant.

An important observation is that the method is less effective on finer meshes than on coarser ones,
with gains five to ten times lower on fine meshes. This can be attributed to the specific way of having
a good initial guess enhances Newton’s method. Indeed, Newton’s method is known to converge in two

19



phases, see e.g. [5]. In the second phase, Newton’s method starts converging, i.e. the residual decreases
with the iterations. This second phase only starts when the residual is small enough, i.e., after the
phase where Newton’s method explores the space of solutions. This first phase corresponds to a plateau
when graphing the residual versus the iteration number. It should be noted that the convergence phase
is longer for harder problems, e.g. on finer meshes. Our prediction jumpstarts the convergence phase
by providing an initial guess corresponding to a small residual. This makes it possible to reduce, or
even skip, the plateau in the convergence curves. This explains the smaller gains for finer meshes: the
convergence phase, which is not changed by our approach, represents a larger part of the total number
of iterations. We expect this behavior to be reproduced for larger values of α0, which also correspond
to harder problems.

3.1.4. Results for α0 = 5 and α0 = 8

To confirm our claims from the previous section, we now treat the same problem with larger values
of α0. For large values of α0, the nonlinear part takes precedence over the linear part in the elliptic
PDE. Therefore, the problem is harder, and the classical JFNK method will take longer to converge
(if it manages to converge at all). In this section, we run 25 experiments for α0 = 5 and α0 = 8,
each corresponding to a random choice of Φ and K. The training time is around 20 minutes, slightly
increased compared to the more linear case.

The results for α0 = 5 are displayed on Figure 6. We observe a broadly similar behavior compared
to the previous case: except in one case, the predicted initial guess consistently outperforms the naive
guess in both iteration number and computation time. Compared to the previous α0 = 2 case, the gains
are even larger, roughly twice as large in all cases. As expected, since the PDE is harder to solve, the
classical JFNK method remains stuck longer in the plateau phase for lack of a suitable initial guess.
Our prediction allows Newton’s method to start with a lower residual, which skips the plateau phase
(or at least greatly reduces its duration).

These results are confirmed by the experiments with α0 = 8. Since this case is harder to deal with,
we increase the width of the FNO to 40 (from 30), and decrease the learning rate to 7.5 × 10−4 (from
10−3). Since the distribution of the gains is similar to the α0 = 5 case, we do not display the histograms
for the sake of brevity. Instead, we collect the values of the average CPU time gains in Table 8. We
also do not report the gains in number of iterations, since they are larger than the gains in computation
time.

mesh size α0 = 2 (50 examples) α0 = 5 (25 examples) α0 = 8 (25 examples)
100 points +500% +1800% +5000%
200 points +88% +230% +600%
400 points +82% +150% +230%
600 points +92% +220% +250%

Table 8: Average gains in CPU time when using the predicted initial guess rather than the naive one, for different values
of α0. For α0 = 2 and α0 = 5, the hyperparameters are given in Table 3. For α0 = 8, the width np of the FNO is increased
to 40 (from 30) and the initial learning rate `0 is decreased to 7.5× 10−4 (from 10−3).

In Table 8, we observe that the mean gains in CPU time are larger for coarser meshes and larger
values of α0. This is consistent with our previous observations. Overall, in each situation under
consideration, our prediction never fails to reduce the number of iterations. There is a small percentage
(around 2%) of simulations where the CPU time is increased by using our prediction. This could be
remedied by a larger network or a longer training time.

20



0

5

10

15

20 avg. gain: 2650%
O

cc
ur

en
ce

s,
N

h
=

1
0
0

0

5

10

15 avg. gain: 1800%

0

2

4

6
avg. gain: 390%

O
cc

ur
en

ce
s,

N
h
=

2
0
0

0

2

4

6

8 avg. gain: 230%

0

5

10

avg. gain: 150%

O
cc

ur
en

ce
s,

N
h
=

4
0
0

0

5

10
avg. gain: 150%

−∞
%

−5
0% 0% 25

%
50
%
10
0%

20
0%

50
0%

10
00
%

+
∞
%

0

5

10

avg. gain: 210%

Gain in number of iterations

O
cc

ur
en

ce
s,

N
h
=

6
0
0

−∞
%

−5
0% 0% 25

%
50
%
10
0%

20
0%

50
0%

10
00
%

+
∞
%

0

5

10

15 avg. gain: 220%

Gain in CPU time

Figure 6: Statistics of the gains Giter in number of iterations (left panels) and GCPU in CPU time (right panels) for the
1D problem (1.2) with α0 = 5. From top to bottom, we display the results for meshes with 100, 200, 400 and 600 points.
The gains are grouped in bins of varying sizes, and the number of occurrences in each bin is displayed as a histogram.

Lastly, we show that, despite the cost of training the FNO, the method remains cost-effective should
multiple simulations be needed, especially since the inference cost is negligible. This is the case, for
instance, for time-dependent problems, where Newton’s method has to be used at each time step.
Another use case is uncertainty quantification, where the PDE has to be solved for many realizations
of the input data. To illustrate this, we compute the number of simulations needed for our method to
become profitable despite the cost of training the FNO. The results are reported in Table 9. We observe
that, as the mesh grows finer and the nonlinearity increases, the number of simulations required for our
method to be profitable decreases, to reach around 25 in the hardest cases. Moreover, recall that our
method is resolution-invariant, and is therefore able to tackle multiple resolutions with one training.
This is confirmed by the last row of Table 9, where the required number of simulations falls below 10
when using the FNO-based initialization on multiple grids.

21



mesh size α0 = 2 α0 = 5 α0 = 8

100 points 139 29 21
200 points 154 58 33
400 points 67 32 26
600 points 44 27 26

all four mesh sizes 20 9 7

Table 9: Number of simulations (i.e., of Newton’s method calls), for each value of α0 and each mesh size, needed for
our method to become profitable despite the FNO training cost. Since our method is able to handle multiple resolutions
without additional training, the last row reports the number of simulations needed for our method to become profitable
when solving the problem on all four mesh sizes with a single trained FNO.

3.1.5. Comparison with other methods
This section is dedicated to a comparison between the naive initial guess, our method, and two

additional methods from the literature: Int-Deep [27] and PINN [45].
Int-Deep uses a partially-trained network based on the Deep Ritz method [16] to provide an initial

guess in Newton’s method. The method we call “PINN” fully trains a PINN to approximate the solution
to the discretized PDE for one specific source term and diffusion coefficient. This PINN is then used
as an initial guess for Newton’s method. In both cases, for each Newton solve, the network has to be
trained on the current data (for 400 epochs for Int-Deep, and 10 000 epochs for PINN), which imposes
an additional, non-negligible cost. This cost will be higher for PINN than for Int-Deep, due to the
larger number of epochs. However, we expect PINN to provide a better initial guess than Int-Deep,
thus leading to fewer Newton iterations and a smaller failure rate.

For these four methods, inference time will be negligible. Therefore, it is meaningful to first compare
their training times and the training methods. This information is reported in Table 10. First off, the
naive method, consisting in a constant initial guess equal to 1, does not require any training. Namely,
we note that the training time for Int-Deep and PINN grows linearly with the number of required
initial guesses to generate, while our method requires a single training for multiple problems. This
behavior was already commented on when discussing Table 9. Namely, it means that our method may
be more suitable for time-dependent problems or uncertainty quantification, where many initial guesses
are required.

method training frequency training time time to generate N initial guesses
naive No training required 0 s 0 s

Int-Deep Once for each problem 400 epochs, 8 s N × 8 s
PINN Once for each problem 10k epochs, 3min N × 3min

ours Once for multiple problems 15min 15min

Table 10: Comparison of training types and times for different methods.

Now, we seek to compare the quality of the initial guess provided by each method. To do so, we
run 40 experiments with each approach, and count the average number of iterations N̄iter required for
Newton’s method to converge, as well as the failure rate (a simulation is said to fail if the number of
iterations reaches 2000). These figures are reported in Tables 11 to 14, for each mesh size (100, 200,
400 and 600 points), and for each value of α0 (2, 5 and 8). We observe that our method consistently
outperforms Int-Deep, probably due to the fact that Int-Deep is based on a partially-trained network.

22



For a single simulation, Int-Deep will be more cost-effective than our method, despite the larger amount
of Newton iterations required. Moreover, our method also outperforms PINN in most cases (in terms of
average number of iterations), while its failure rate is always zero. As a conclusion, in a context where
many initial guesses are required, our method is the most cost-effective.

initial
condition

α0 = 2 α0 = 5 α0 = 8

N̄iter % failure N̄iter % failure N̄iter % failure
naive 280 0 1293 30 1825 75

Int-Deep 276 10 304 10 364 7.5
PINN 81 2.5 40 0 98 2.5
ours 20 0 47 0 37 0

Table 11: Comparison of several methods for different values of α0 and Nh = 100 points. Bold entries correspond to the
best method in terms of average number of iterations or failure rate.

initial
condition

α0 = 2 α0 = 5 α0 = 8

N̄iter % failure N̄iter % failure N̄iter % failure
naive 351 0 781 5 1288 32.5

Int-Deep 442 12.5 702 22.5 681 17.5
PINN 198 2.5 219 0 306 2.5
ours 117 0 159 0 184 0

Table 12: Comparison of several methods for different values of α0 and Nh = 200 points. Bold entries correspond to the
best method in terms of average number of iterations or failure rate.

initial
condition

α0 = 2 α0 = 5 α0 = 8

N̄iter % failure N̄iter % failure N̄iter % failure
naive 1157 5 1888 70 2000 100

Int-Deep 803 15 1117 20 1491 37.5
PINN 495 2.5 696 0 950 2.5
ours 615 0 755 0 606 0

Table 13: Comparison of several methods for different values of α0 and Nh = 400 points. Bold entries correspond to the
best method in terms of average number of iterations or failure rate.

3.2. Results in two space dimensions
We now tackle the extension of the 1D case (1.2) to two space dimensions, namely the elliptic system

(1.3), with p = 2. It is discretized using a classical finite difference scheme for anisotropic equations, see
the review paper [48]. The test case is similar to the one we formulated in 1D. The diffusion matrix K
is obtained by first generating a function δ as in 1D, and then generating a random, constant symmetric
positive matrix B; the resulting matrix K is given for all x ∈ Ω by K(x) = δ(x)B. This enables us to
control the anisotropy of the problem through the ratio of the eigenvalues of B.

23



initial
condition

α0 = 2 α0 = 5 α0 = 8

N̄iter % failure N̄iter % failure N̄iter % failure
naive 1736 45 2000 100 2000 100

Int-Deep 1159 22.5 1614 32.5 1866 60
PINN 769 2.5 1125 0 1520 17.5
ours 899 0 645 0 571 0

Table 14: Comparison of several methods for different values of α0 and Nh = 600 points. Bold entries correspond to the
best method in terms of average number of iterations or failure rate.

Just like before, we first display the capability of our network to predict the solution in Section 3.2.1.
Then, in Section 3.2.2, we compare the performance of Newton’s method with the naive initial guess and
with our predicted initial guess. This time, the initial learning rate is set to `0 = 8×10−4 to account for
the increased difficulty of the problem. Moreover, in this case, we replaced the discretization-informed
loss function (2.6) with the H1 loss function (2.5). Indeed, the value of the discretization-informed loss
function depends on the mesh size, which prevented us from finding good hyperparameters, even with
a grid search.

3.2.1. FNO prediction
We first display, in Figure 7, some random examples of functions U predicted by the trained FNO.

They show that the FNO predicts a reasonable approximation of the solution U for variable matrices
K(x) (corresponding to mostly isotropic diffusion in the top three examples, and to anisotropic diffusion
in the bottom one). We also observe that the FNO does not produce a perfect approximation of the
constant parts of the solution.

3.2.2. Using the FNO prediction as initial guess
Equipped with a suitable prediction, we now study the improvement in the convergence of Newton’s

method when using it as an initial guess rather than a naive guess. This time, Newton’s method is said
to converge if the error has reached the tolerance of 10−5. The FNO was trained on meshes with 602

and 702 points, and the validation is performed on meshes with 402, 602, 802 and 1002 points.
In Table 15, we give the improvement ratios for several mesh sizes, in terms of number of iterations

and CPU times. This table has been produced by averaging out the results of 25 simulations. For
brevity, we do not give a detailed breakdown of the results, and we give the raw multiplicative gains
Siter and SCPU rather than their percentage form (3.1).

Siter SCPU

Nh min avg max min avg max
402 3.76 4.78 5.86 1.73 2.42 2.98
602 2.69 3.29 3.95 1.62 1.94 2.31
802 1.96 2.44 3.02 1.36 1.66 2.05
1002 1.63 2.18 2.85 1.22 1.58 1.83

Table 15: Total gain factor, in CPU time and number of iterations, obtained by using the network rather than the naive
initial guess. We observe that the minimum gain is always greater than 1, in terms of CPU time or number of iterations.

24



Φ(x) K11(x) K12(x) K21(x) K22(x) Reference Prediction

Figure 7: From top to bottom, we display four random examples of generated functions for (1.3), as well as their predictions
by the FNO. From left to right, we display the normalized values of Φ(x), the values of the four coordinates of the matrix
K, denoted by K11(x), K12(x), K21(x) and K22(x), the reference solution U(x), and the prediction of the FNO. In each
case, we observe a good match between the prediction (rightmost column) and the reference solution (column left of the
rightmost one).

These 2D results are somewhat similar to the 1D ones, even if an exact comparison is hard to
perform since there are more computation points in 2D than in 1D. The main takeaway is that, in every
case, our initialization makes it possible to see consistent gains in both numbers of iterations and CPU
time. Furthermore, it can be seen that the difference between the gain in number of iterations and the
gain in computation time is larger than in 1D. This is due to the two-phase convergence of Newton’s
method; the remainder of this section is dedicated to a finer study of both these phases and of how our
prediction affects them.

First, in Table 16, we collect the gains in the number of iterations required to reach some value of
Newton’s residual F . Most of the gains are obtained in the first phase of JFNK convergence, i.e. to help
the residual reach a small enough value to trigger the convergence phase. This means that, compared
with a conventional initialization, using the initial condition from the FNO successfully avoids the first
few iterations of Newton’s method, which exist to bring the residual to a small enough value. As a
consequence, once the residual is small enough, e.g. smaller than 0.1, the new initialization no longer
makes any difference as Newton’s method has already entered its convergence phase. This illustrates
why the gain is lower for finer meshes. The number of iterations below a residual of 0.1 is proportionally
greater as the mesh is finer. These two phases (plateau and convergence), and the fact that using the
predicted guess bypasses the plateau phase, are visible on Figures 8 to 11, where we observe that

25



F ≥ 10 1 ≤ F < 10 0.1 ≤ F < 1 F ≤ 0.1

Nh min avg max min avg max min avg max min avg max
402 24.50 54.19 ∞ 15.25 49.12 69.00 9.14 16.59 23.33 0.88 1.08 1.30
602 33.50 65.45 ∞ 13.17 21.72 33.50 5.93 9.17 13.60 0.95 1.11 1.24
802 16.00 36.91 73.00 7.60 12.72 16.60 3.81 5.83 8.00 0.89 1.07 1.28
1002 13.57 27.67 69.00 6.14 9.85 15.80 3.31 4.77 7.08 0.89 1.12 1.49

Table 16: Minimum, average and maximum gains in the number of iterations required to reach a certain value of the
residual F in Newton’s method. A value of ∞ means that the predicted initial condition was already below the given
threshold. We observe that the gains are mostly obtained for large values of the residual.

reaching a residual of e.g. 10 is much faster when starting with the prediction rather than the naive
guess.

0 20 40 60 80

10−5

10−3

10−1

101

103

105

Nh

F

(a) classical Newton’s method
0 5 10 15 20

10−5

10−3

10−1

101

Nh

F

(b) enhanced Newton’s method

Figure 8: Residual F of the discretized PDE versus the number of Newton iterations for the classical Newton’s method
(left panel) and the enhanced Newton’s method (right panel), for Nh = 402 points. The thin lines correspond to the
different examples, while the thick line is the average over all the examples.

This distribution of average gains also explains the more limited gains in computation time in 2D.
Indeed, the initial iterations, when the residual is around 10, take a shorter time to complete than the
subsequent ones. This is due to the fact the solution is close to being constant, resulting in a quick
linear solve (during the linear stage of the JFNK). In contrast, the later iterations, where the residual
is around 1, involve a solution further from being constant, making the associated linear solving step
more challenging. This means that, in 2D, the iterations saved by using the prediction are the fastest
iterations to compute, which explains why the iteration gain is larger than the computation time gain.
The difference with 1D is that the JFNK method converges much faster in 2D once the residual reaches
around 1. In 1D, the residual needed to be closer to 0.1 to trigger the convergence phase. These
observations could explain why the gain in CPU time is lower than the gain in terms of iterations in
2D, even though they were comparable in 1D.

26



0 20 40 60 80 100 120

10−5

10−3

10−1

101

103

105

Nh

F

(a) classical Newton’s method
0 10 20 30 40

10−5

10−3

10−1

101

103

Nh

F

(b) enhanced Newton’s method

Figure 9: Residual F of the discretized PDE versus the number of Newton iterations for the classical Newton’s method
(left panel) and the enhanced Newton’s method (right panel), for Nh = 602 points. The thin lines correspond to the
different examples, while the thick line is an average over all the examples.

0 50 100 150

10−5

10−3

10−1

101

103

105

Nh

F

(a) classical Newton’s method
0 20 40 60 80

10−5

10−3

10−1

101

103

Nh

F

(b) enhanced Newton’s method

Figure 10: Residual F of the discretized PDE versus the number of Newton iterations for the classical Newton’s method
(left panel) and the enhanced Newton’s method (right panel), for Nh = 802 points. The thin lines correspond to the
different examples, while the thick line is an average over all the examples.

4. Conclusion

In this work, we tested the ability of Fourier Neural Operators (FNOs) to predict a good initial guess
for Newton’s method, applied to nonlinear elliptic partial differential equations (PDEs). To that end,
the FNO was trained to predict the PDE solution on a large family of right-hand sides and diffusion
coefficients, in one and two space dimensions. The solution predicted by the FNO was then used as
an initial guess in an iterative JFNK method. To increase the accuracy of the prediction, we used a
discretization-informed loss function (containing information about the residual of the JFNK method
applied to a discretization of the PDE) in addition to classical data-driven loss functions. A grid search
algorithm was implemented to select the hyperparameters. Instead of using the prediction error as
a selection tool in the grid search, we used a score function based on the gains, in terms of the total

27



0 50 100 150 200

10−5

10−3

10−1

101

103

105

Nh

F

(a) classical Newton’s method
0 20 40 60 80 100

10−5

10−3

10−1

101

103

Nh

F

(b) enhanced Newton’s method

Figure 11: Residual F of the discretized PDE versus the number of Newton iterations for the classical Newton’s method
(left panel) and the enhanced Newton’s method (right panel), for Nh = 1002 points. The thin lines correspond to the
different examples, while the thick line is an average over all the examples.

number of iterations of the JFNK method, of using the FNO prediction rather than a naive initial guess.
In all 1D and 2D test cases, the total number of iterations decreases when using the predicted guess,
even in the case of strong nonlinearities or anisotropy. In the 1D test case, the worst scenario showed an
average number of iterations reduced by 82%, as opposed to a reduction by 5000% in the most favorable
scenario. The initialization mainly speeds up the plateau phase of the JFNK convergence, rather than
its convergence phase. As a consequence, the results namely depend on the grid: the finer the grid, the
greater the number of iterations in the convergence phase, and the lesser the gains obtained with our
initial guess. In any case, the approach saves time, especially as training is quick. The offline phase
of this method (training the FNO) can be seen as the generation of a predictor, which will then be
corrected online by the application of Newton’s method, to accelerate the whole process.

To further test the proposed method, it would be interesting to couple it with a linear or nonlinear
preconditioner. We expect our method to still outperform the naive initialization, even if a precondi-
tioner is applied. In the future, an interesting extension will be tackling unstructured meshes. To that
end, a possibility would be to use Geometry-Informed Neural Operators (GINOs), recently proposed
in [35] for arbitrary geometries. It would also be interesting to consider an application to multi-solution
PDEs. This is a challenging problem, and our approach would require multiple databases and FNOs,
one for each solution. This is in contrast to [24], whose authors propose a new loss function (based
on Newton’s method) to train a neural operator, thus allowing them to tackle multi-solution PDEs.
However, since the final approximate solution is directly given by the neural operator rather than by
Newton’s method, convergence is not ensured, contrary to our approach. Another possible direction, on
the application side, concerns time-dependent strongly nonlinear problems, such as the MHD equations
in tokamaks, see [19], or fluid flow in porous media, for which a hybrid Newton’s method was designed
in [32].

5. Conflict of interest

The authors declared that they have no conflict of interest.

28



References

[1] J. Aghili, K. Brenner, J. Hennicker, R. Masson, and L. Trenty. Two-phase Discrete Fracture Matrix
models with linear and nonlinear transmission conditions. Int. J. Geomath., 10(1), 2019.

[2] H.-B. An, Z.-Y. Mo, and X.-P. Liu. A choice of forcing terms in inexact Newton method. J.
Comput. Appl. Math., 200(1):47–60, 2007.

[3] A. Anandkumar, K. Azizzadenesheli, K. Bhattacharya, N. Kovachki, Z. Li, B. Liu, and A. Stu-
art. Neural Operator: Graph Kernel Network for Partial Differential Equations. In ICLR 2020
Workshop on Integration of Deep Neural Models and Differential Equations, 2019.

[4] L. Bois, E. Franck, L. Navoret, and V. Vigon. A neural network closure for the Euler-Poisson
system based on kinetic simulations. Kinet. Relat. Models, 15(1):49, 2022.

[5] K. Brenner. On Global and Monotone Convergence of the Preconditioned Newton’s Method for
Some Mildly Nonlinear Systems, pages 85–92. Springer Nature Switzerland, 2024.

[6] P. N. Brown and Y. Saad. Hybrid Krylov Methods for Nonlinear Systems of Equations. SIAM J.
Sci. Stat. Comput, 11(3):450–481, 1990.

[7] S.-C. Cai and D. E. Keyes. Nonlinearly Preconditioned Inexact Newton Algorithms. SIAM J. Sci.
Comput., 24(1):183–200, 2002.

[8] G. Chen, L. Chacón, C. A. Leibs, D. A. Knoll, and W. Taitano. Fluid preconditioning for
Newton–Krylov-based, fully implicit, electrostatic particle-in-cell simulations. J. Comput. Phys.,
258:555–567, 2014.

[9] H. Choi, S. D. Kim, and B.-C. Shin. Choice of an initial guess for Newton’s method to solve
nonlinear differential equations. Comput. Math. Appl., 117:69–73, 2022.

[10] S. Deck, F. Gand, V. Brunet, and S. Ben Khelil. High-fidelity simulations of unsteady civil aircraft
aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation. Philos.
Trans. R. Soc. Math. Phys. Eng. Sci., 372(2022):20130325, 2014.

[11] P. Degond, A. Lozinski, J. Narski, and C. Negulescu. An asymptotic-preserving method for
highly anisotropic elliptic equations based on a Micro–Macro decomposition. J. Comput. Phys.,
231(7):2724–2740, 2012.

[12] F. Deluzet and J. Narski. A Two Field Iterated Asymptotic-Preserving Method for Highly
Anisotropic Elliptic Equations. Multiscale Model. Sim., 17(1):434–459, 2019.

[13] D. A. Di Pietro, É. Flauraud, M. Vohralík, and S. Yousef. A posteriori error estimates, stopping
criteria, and adaptivity for multiphase compositional Darcy flows in porous media. J. Comput.
Phys., 276:163–187, 2014.

[14] D. A. Di Pietro, M. Vohralík, and S. Yousef. An a posteriori-based, fully adaptive algorithm
with adaptive stopping criteria and mesh refinement for thermal multiphase compositional flows in
porous media. Comput. Math. Appl., 68(12):2331–2347, 2014.

[15] V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson. Nonlinear Preconditioning: How
to Use a Nonlinear Schwarz Method to Precondition Newton’s Method. SIAM J. Sci. Comput.,
38(6):A3357–A3380, 2016.

29



[16] W. E and B. Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving
Variational Problems. Commun. Math. Stat., 6(1):1–12, 2018.

[17] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact newton method. SIAM
J. Sci. Comput., 17(1):16–32, 1996.

[18] A. Ern and M. Vohralík. Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria
for Nonlinear Diffusion PDEs. SIAM J. Sci. Comput., 35(4):A1761–A1791, 2013.

[19] E. Franck, M. Hölzl, A. Lessig, and E. Sonnendrücker. Energy conservation and numerical stability
for the reduced MHD models of the non-linear JOREK code. ESAIM: M2AN, 49(5):1331–1365,
2015.

[20] J. N. Fuhg, A. Karmarkar, T. Kadeethum, H. Yoon, and N. Bouklas. Deep convolutional Ritz
method: parametric PDE surrogates without labeled data. Appl. Math. Mech. (English Ed.),
44(7):1151–1174, 2023.

[21] M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok. Numerical Solution of the
Parametric Diffusion Equation by Deep Neural Networks. J. Sci. Comput., 88(1), 2021.

[22] M. A. Gomes-Ruggiero, V. L. R. Lopes, and J. V. Toledo-Benavides. A globally convergent inexact
Newton method with a new choice for the forcing term. Ann. Oper. Res., 157(1):193–205, 2007.

[23] V. Gopakumar, S. Pamela, L. Zanisi, Z. Li, A. Gray, D. Brennand, N. Bhatia, G. Stathopoulos,
M. Kusner, M. P. Deisenroth, and A. Anandkumar. Plasma surrogate modelling using Fourier
neural operators. Nucl. Fusion, 64(5):056025, 2024.

[24] W. Hao, X. Liu, and Y. Yang. Newton Informed Neural Operator for Computing Multiple Solutions
of Nonlinear Partials Differential Equations. arXiv preprint 2405.14096, 2024.

[25] Ph. Helluy, O. Hurisse, and L. Quibel. Assessment of numerical schemes for complex two-phase
flows with real equations of state. Comput. Fluids, 196:104347, 2020.

[26] M. et al Hoelzl. The JOREK non-linear extended MHD code and applications to large-scale
instabilities and their control in magnetically confined fusion plasmas. Nucl. Fusion, 61(6):065001,
2021.

[27] J. Huang, H. Wang, and H. Yang. Int-Deep: A deep learning initialized iterative method for
nonlinear problems. J. Comput. Phys., 419:109675, 2020.

[28] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed
machine learning. Nat. Rev. Phys., 3(6):422–440, 2021.

[29] S. D. Kim, E. Lee, and W. Choi. Newton’s algorithm for magnetohydrodynamic equations with
the initial guess from Stokes-like problem. J. Comput. Appl. Math., 309:1–10, 2017.

[30] D. A. Knoll and D. E. Keyes. Jacobian-free Newton–Krylov methods: a survey of approaches and
applications. Journal of Computational Physics, 193(2):357–397, 2004.

[31] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs. J. Mach.
Learn. Res., 24:1–97, 2023.

30



[32] A. Lechevallier, S. Desroziers, T. Faney, É. Flauraud, and F. Nataf. Hybrid Newton method for
the acceleration of well event handling in the simulation of CO2 storage using supervised learning.
working paper or preprint, 2023.

[33] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Multipole Graph Neural Operator for Parametric Partial Differential Equations. In Proceedings of
the 34th International Conference on Neural Information Processing Systems, NIPS’20, Red Hook,
NY, USA, 2020. Curran Associates Inc.

[34] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Fourier Neural Operator for Parametric Partial Differential Equations. In International Conference
on Learning Representations, 2021.

[35] Z. Li, N. B. Kovachki, C. Choy, B. Li, J. Kossaifi, S. P. Otta, M. A. Nabian, M. Stadler, C. Hundt,
K. Azizzadenesheli, and A. Anandkumar. Geometry-Informed Neural Operator for Large-Scale 3D
PDEs. arXiv preprint arXiv:2309.00583, 2023.

[36] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, and A. Anandkumar.
Physics-Informed Neural Operator for Learning Partial Differential Equations. arXiv preprint
arXiv:2111.03794, 2023.

[37] Z. Long, Y. Lu, X. Ma, and B. Dong. PDE-net: Learning PDEs from data. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 3208–3216. PMLR, 2018.

[38] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via Deep-
ONet based on the universal approximation theorem of operators. Nat. Mach. Intell., 3(3):218–229,
2021.

[39] L. Luo and X.-C. Cai. PINl : Preconditioned Inexact Newton with Learning Capability for Non-
linear System of Equations. SIAM J. Sci. Comput., 45(2):A849–A871, 2023.

[40] R. Maulik, B. Lusch, and P. Balaprakash. Reduced-order modeling of advection-dominated systems
with recurrent neural networks and convolutional autoencoders. Phys. Fluids, 33(3), 2021.

[41] P. Novello, G. Poëtte, D. Lugato, S. Peluchon, and P. M. Congedo. Accelerating hypersonic
reentry simulations using deep learning-based hybridization (with guarantees). J. Comput. Phys.,
498:112700, 2024.

[42] A. Odot, R. Haferssas, and S. Cotin. DeepPhysics: A physics aware deep learning framework for
real-time simulation. Int. J. Numer. Meth. Eng., 123(10):2381–2398, 2022.

[43] R. P. Pawlowski, J. N. Shadid, J. P. Simonis, and H. F. Walker. Globalization Techniques for
Newton–Krylov Methods and Applications to the Fully Coupled Solution of the Navier–Stokes
Equations. SIAM Rev., 48(4):700–721, 2006.

[44] J. Qu, W. Cai, and Y. Zhao. Learning time-dependent PDEs with a linear and nonlinear separate
convolutional neural network. J. Comput. Phys., 453:110928, 2022.

[45] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys., 378:686–707, 2019.

31



[46] B. Raonic, R. Molinaro, T. De Ryck, T. Rohner, F. Bartolucci, R. Alaifari, S. Mishra, and
E. de Bezenac. Convolutional Neural Operators for robust and accurate learning of PDEs. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[47] H. Tang, S. Wang, C. Yin, Y. Di, Y.-S. Wu, and Y. Wang. Fully-Coupled Multi-Physical Simulation
with Physics-Based Nonlinearity-Elimination Preconditioned Inexact Newton Method for Enhanced
Oil Recovery. Commun. Comput. Phys., 25(1), 2019.

[48] B. van Es, B. Koren, and H. J. de Blank. Finite-difference schemes for anisotropic diffusion. J.
Comput. Phys., 272:526–549, 2014.

[49] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial differ-
ential equations with physics-informed DeepONets. Sci. Adv., 7(40), 2021.

[50] Ph. Wolfe. Convergence Conditions for Ascent Methods. SIAM Rev., 11(2):226–235, 1969.

32


	Introduction
	Convergence acceleration: brief overview of existing approaches
	Line search
	Adaptive inexact Newton methods
	Nonlinear preconditioning
	Initial guess prediction

	Target problem and chosen methodology
	Target problem
	Main goal
	Methodology to predict an initial guess

	Outline

	Learning an initial guess
	Discretization-Informed loss function
	Data generation
	Neural network structure
	Hyperparameter choice
	Hyperparameters
	Grid search


	Numerical results
	Results in one space dimension
	Motivation: failure of classical initial conditions for Newton's method
	Choice of the loss function
	Results for alpha0=2
	Results for alpha0=5 and alpha0=8
	Comparison with other methods

	Results in two space dimensions
	FNO prediction
	Using the FNO prediction as initial guess


	Conclusion
	Conflict of interest

