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Abstract  22 

The behavior of individuals determines the strength and outcome of ecological 23 

interactions, which drive population, community, and ecosystem organization. Bio-24 

logging, such as telemetry and animal-borne imaging, provides essential individual 25 

viewpoints, tracks, and life histories, but requires capture of individuals and is often 26 

impractical to scale. Recent developments in automated image-based tracking offers 27 

opportunities to remotely quantify and understand individual behavior at scales and 28 

resolutions not previously possible, providing an essential supplement to other tracking 29 

methodologies in ecology. Automated image-based tracking should continue to advance 30 

the field of ecology by enabling better understanding of the linkages between individual 31 

and higher-level ecological processes, via high-throughput quantitative analysis of 32 

complex ecological patterns and processes across scales, including analysis of 33 

environmental drivers.  34 

 35 

Measuring behavior 36 

Individual behavior underlies almost all aspects of ecology [1-5]. Accurate and highly 37 

resolved behavioral data are therefore critical for obtaining a mechanistic and predictive 38 

understanding of ecological systems [5]. Historically, direct observation by trained biologists was 39 

used to quantify behavior [6, 7]. However, the extent and resolution to which direct observations 40 

can be made is highly constrained [8] and the number of individuals that can be observed 41 

simultaneously is small. In addition, an exact record of events is not preserved, only the 42 
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biologist’s subjective account of them. 43 

Recent technological advances in tracking now make it possible to collect large amounts 44 

of highly precise and accurate behavioral data. For many organisms equipment can be attached 45 

that provide information about the individuals spatiotemporal position, orientation, and 46 

physiology. This ‘bio-logging’ allows remote reconstruction of behavior over large 47 

spatiotemporal extents, providing essential individual viewpoints, tracks and life histories, and 48 

thus important ecological and evolutionary insights [9-11]. Image-based tracking, for example 49 

with video, is another tracking method that shows great potential in ecology. Like bio-logging, 50 

image-based tracking involves digital recording of data. This means an objective view of events 51 

is maintained, increasing repeatability of studies, and allowing biologists to mine data for 52 

quantities not originally considered. Image-based tracking can be used when individuals are too 53 

small to attach bio-loggers, or if the equipment itself changes behavior, and it can track all 54 

visible and sufficiently resolved individuals within the imaged area, not just those with loggers 55 

attached. Also, image-based tracking generally allows for higher spatiotemporal resolution of 56 

behavioral data than bio-logging, and many imaging methods allow extraction of quantitative 57 

information about the environment, such as its temperature, topography or the presence of 58 

physical structure. In reality, constraints on the acquisition, processing and storage of digital 59 

information currently limits image-based tracking to smaller spatiotemporal extents, and 60 

extracting the position and pose of every individual in each image is difficult in complex habitat 61 

or at high densities. Nonetheless, these constraints are rapidly being overcome and image-62 

based tracking now provides a valuable tool for ecologists to undertake rigorous hypothesis-63 

driven research (Box 1). 64 

Here we review the state-of-the-art of image-based tracking, its strengths and limitations 65 

when applied to ecological research, and its application to solve relevant ecological questions. 66 

Techniques to determine whether a particular organism is present in an image have been 67 

thoroughly reviewed recently [12], so we focus on the problem of tracking individuals as they 68 

move between images. 69 

 70 

Automated image-based tracking 71 

Initial applications of image-based tracking required manual analysis [13, 14], which is 72 

extremely effort intensive, often leads to poor spatiotemporal resolution, and is open to observer 73 

effects such as subjective decisions about which information to record. Recent advances in 74 

automation are overcoming these issues [15-17], and there now exist several image-based 75 

systems capable of extracting individual behavior with minimal or zero manual intervention 76 

(Table S1). Tracking over ecologically relevant spatiotemporal scales is becoming easier, due to 77 

advances in imaging and computing technologies, and by the development of software capable 78 

of tracking in real-time [18-20] and of recognizing individuals across image-sequences [21, 22]. 79 

Biologists now employ a wide range of imaging methods (e.g., near infrared, thermal infrared, 80 

sonar, 3D) that permit tracking in environments where optical video is unsuitable (Box 2). To 81 

date, automated image-based tracking has primarily been undertaken in the laboratory, where 82 

biologists have examined genetic and physio-chemical drivers of behavior in model species 83 

(Table S1) (Box 1). However, the past decade has seen expansion of these methods into the 84 
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field, and automated image-based tracking has now been undertaken on a wide diversity of 85 

species, including plants, worms, spiders, insects, fish, birds, mammals and more (Table S1).  86 

Automated image-based tracking involves three main steps (Figure 1): i) acquisition of 87 

image sequences (Box 2), ii) detection of individuals and their pose in each image and 88 

appropriate ‘linking’ of detections in consecutive images to create trajectories through time (Box 89 

3), and iii) analysis of behavioral data (Box 4). Real-time tracking is performed as images are 90 

acquired, removing the need for storing large amounts of digital information [18-20] and allowing 91 

researchers to influence the animal’s environment in real-time through virtual reality, robotics or 92 

other dynamical stimulus regimes [23-25]. Even under relatively controlled and simple 93 

laboratory conditions with small numbers of individuals, automated image-based tracking is a 94 

difficult computer vision problem. Biological organisms are highly deformable objects which 95 

behave in unconstrained and variable ways [26] and the environmental landscapes within which 96 

they exist are complex and dynamic. 97 

Ultimately, in automated image-based tracking there is a trade-off between the difficulty 98 

of the tracking problem (horizontal axis in Figure 2) and the quality of tracking output (vertical 99 

axis in Figure 2). 100 

 101 

Difficulty of the tracking problem 102 

Tracking is easiest in laboratory-based systems with a simple environmental landscape 103 

and low numbers of individuals (left side of Figure 2), and most difficult in the field, where many 104 

individuals from many different species interact across a complex environmental landscape 105 

(right side of Figure 2).  106 

 107 

From individuals to interactions 108 

Monitoring the behavior of individuals as they interact with each other is difficult for 109 

several reasons. First, organisms often move rapidly when interacting (Movie S13), requiring 110 

data with high spatiotemporal resolution. Second, because multiple individuals are involved, 111 

interactions are prone to occlusions, made especially worse because interactions often involve 112 

close physical contact. Occlusions cause identity errors, which are not local but propagate 113 

throughout the remaining image sequence. Manual corrections of these errors are labor 114 

intensive. Customized automated algorithms which predict identity based on the relative speed 115 

and direction of movement of individuals can reduce mistakes, and thus dramatically reduce the 116 

number of manual interventions needed [27, 28], but error propagation is still unavoidable 117 

because of the stochastic behavior of organisms [16] (Box 3). ‘Fingerprinting’ somewhat 118 

resolves this problem (see below), but maintaining identities always becomes more difficult as 119 

the number of close individuals scales with increasing density. Tracking individuals during 120 

occlusions is an additional problem, and can be partly overcome when prior knowledge about 121 

the shape of the organisms is incorporated into the system [27-29]. Recent approaches utilizing 122 

multiple 3D depth cameras are especially useful in this regard [30] (Movie S22), and could 123 

eventually be integrated with fingerprinting to assist in resolving identities during occlusions.  124 

Most current attempts to track multiple individuals involve organisms that are similar in 125 

size and shape (Table S1). In nature, however, interactions between species often involve 126 
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individuals that differ greatly in size and shape [31] (Movie S13). While such differences can be 127 

useful for distinguishing individuals [8, 21, 22], many tracking systems rely on knowledge about 128 

the typical shape of individuals, to aid in the segmentation and analysis of images [28, 29, 32]. 129 

Even if shape issues are overcome, it remains a difficult task for computer vision algorithms to 130 

separate small animals from the body and appendages of larger animals. Algorithm features 131 

allowing tracking of differently sized and shaped organisms, such as more sophisticated contour 132 

representations or fingerprinting, would greatly enhance the usefulness of image-based tracking 133 

to ecologists.  134 

 135 

Tracking in three dimensions 136 

Automated image-based tracking in two-dimensional (2D) environments is substantially 137 

more straightforward than in 3D (Figure 2). Therefore, many tracking systems are limited to 138 

simple 2D arenas and either involve organisms that naturally move in 2D, or quasi-2D, or work 139 

by constraining normally 3D individuals to only move in 2D. This latter method can be achieved 140 

by modifying organisms directly, such as by wing-clipping [28], or by using physical boundaries 141 

to constrain behavior to near 2D [1, 21, 22, 28, 33, 34] (Movie S1, Movie S4, Movie S5, Movie 142 

S10). In nature, however, most organisms incorporate at least some degree of movement in 3D, 143 

which influences ecological interactions [3]. Tracking systems designed for 2D can provide 144 

some resolution for behavior in a third spatial dimension [35], but ultimately developers must 145 

produce tracking systems that can successfully track large numbers of animals in 3D space 146 

(Movie S8). 147 

Tracking unconstrained flying or swimming animals can be achieved in several ways, but 148 

most often multiple cameras are employed [19, 30, 36-46] (Movie S8, Movie S6, Movie S22). 149 

Although only two calibrated cameras taking images of the same point in space are required for 150 

triangulation, information from additional cameras can incrementally improve localization, 151 

especially if some cameras are limited by occlusion or low contrast [19]. Synchronizing multiple 152 

cameras requires additional hardware and more complicated software that relates equivalent 153 

objects between image sequences; however, this complexity can be hidden from the user by 154 

dedicated multi-camera systems [19]. Triangulation is optimized when cameras are positioned 155 

with maximally divergent locations, which in the field can introduce problems because arranging 156 

unobstructed cameras at multiple locations can be difficult, as can be obtaining multiple views of 157 

every location of interest.  158 

Some technologies allow 3D tracking from a single imaging device, which could solve 159 

many of these issues. For example, 3D images can be reconstructed from a single image of 160 

reflections or shadows on a 3D surface [47, 48], although this is computationally challenging 161 

and certainly some time away from use in tracking multiple moving targets. Other more recent 162 

and promising developments in hardware are single-point 3D imaging technologies. RGB-D 163 

(red, green, blue, depth) cameras, such as the Microsoft Kinect (www.microsoft.com/en-164 

us/kinectforwindows/), achieve this by combining a color video camera either with an infrared 165 

projector to create a split infrared laser light field from which depth can be obtained (first 166 

generation) or by using time of arrival of the photons themselves (second generation). Light-field 167 

video cameras provide another promising technology (Box 2), where composite optics are used 168 

http://www.microsoft.com/en-us/kinectforwindows/
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to simultaneously capture images focused at multiple distances from the lens, thus allowing for 169 

post-hoc selection of focus and ultimately 3D construction of the scene. As in 2D, multiple 3D 170 

imaging cameras can be employed simultaneously to provide additional resolution and to cope 171 

with occlusion [30]. 172 

 173 

Into the field…  174 

Ecological systems are naturally embedded within environmental landscapes that are 175 

considerably more complex than laboratory arenas, such as within streams, coral reefs, or the 176 

forest floor (Movie S13). Although salient questions can be addressed in the laboratory, it is 177 

critical that tracking can be undertaken in the field because environmental drivers in their natural 178 

context—such as light, temperature, physical habitat, and spatial dimensionality—have 179 

profound influences on behavior and thus ecosystem organization [1, 3, 49, 50] (Box 1). Many 180 

of the techniques that enable automated image-based tracking in the field are similar to those 181 

that enable 3D tracking, such as multiple cameras and single-point 3D imaging devices (see 182 

above). 183 

One of the primary constraints in the field is the ability to distinguish individuals within 184 

each image from the background (Box 2), which often varies unpredictably due to such factors 185 

as wind, water, and sunlight. The simplest method to track in complex environmental 186 

landscapes is to employ an imaging method that provides clear contrast between the organisms 187 

and the background. The growing number of imaging technologies now available (Box 2) means 188 

there is a corresponding growing range of environmental contexts within which individuals can 189 

be tracked. For example, it is now straightforward to image independently of visible light (Box 2), 190 

meaning that tracking is no longer limited to environments with sufficient and homogenous 191 

visible light [1, 4, 51-53] (Box 2). Another alternative is to use computer vision technologies that 192 

detect animals even when their color pattern is statistically indistinguishable from the 193 

background, based for example on their shape or movement [12]. Finally, it is possible to mark 194 

individuals [54] or integrate with other tracking methods such as bio-logging – combining the 195 

robustness of bio-loggers for detecting individuals in complex habitat with the high 196 

spatiotemporal resolution of imaging [55]. 197 

Physical structure, like plant cover or soil, is more difficult to track within because it 198 

increases the number of occlusions. Fingerprinting allows the addition of habitat structure 199 

without increasing assignment errors, as identities are recovered following occlusion [12, 21, 22] 200 

(Movie S5). Again, use of multiple cameras (Movie S6), marking [54], or integration with bio-201 

logging [55] can enable tracking and identity maintenance during or after occlusions. Some 202 

imaging methods can even pass through physical structure, revealing the position of organisms 203 

either behind the structure or embedded within it, thus removing the problem of occlusions from 204 

physical habitat altogether. The behavior of small invertebrates within soil, for example, has 205 

been successfully quantified using high-resolution X-ray microtomography, which works 206 

because biological tissue attenuates X-rays less than the surrounding soil matrix [56] (Box 2). 207 

Acoustic imaging (sonar) also permits imaging through relatively complex habitat, and is 208 

especially effective in aquatic environments. Modern high-resolution sonar has allowed 209 

biologists to investigate predator-prey interactions in habitats that would be impossible with 210 
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other imaging methods [4] (Movie S9) (Box 2). Additional technologies for imaging through 211 

complex physical habitat are on the horizon [57], although these are still likely years away from 212 

being successfully integrated into automated tracking systems.  213 

For many ecological questions it is necessary to obtain quantitative information about 214 

the environmental landscape, which can be integrated with tracking data to understand how the 215 

environment influences behavior [1, 5, 18, 58] (Box 1). Remote quantification of the environment 216 

is a key advantage of imaging over bio-logging, which only provides environmental information 217 

in the immediate vicinity of the individual to which the logger is attached. Remote quantification 218 

of the environment can easily be accomplished by imaging in the appropriate sensory regime, 219 

such as optical video cameras for quantifying light conditions and thermal cameras for 220 

quantifying the thermal landscapes. Methods for quantifying the physical structure of 3D 221 

landscapes are rapidly advancing [59-61], and can be used for rendering features of natural 222 

habitats, such as trees or streams. When combined with behavioral data, this environmental 223 

information should allow biologists to represent an animal’s cognitive map of its environment, 224 

and thus understand the relationship between behavior and fitness [62]. This should be 225 

especially rewarding when combined with methods that reconstruct the sensory fields of 226 

individuals, providing knowledge about the sensory information on which animals base 227 

decisions [27]. 228 

 229 

Quality of the tracking output 230 

Ideally, the final output of tracking is the trajectory of each individual, spanning the entire 231 

image sequence and including detailed information about body posture and positioning of 232 

appendages. Realistically, however, this is a difficult outcome to obtain. We recognize two 233 

primary factors determining the quality of the tracking output: i) how well identities are 234 

maintained throughout the image sequence, and ii) whether only the mid-point point or the 235 

detailed body posture of each individual is tracked. 236 

 237 

Identity maintenance  238 

We recognize three broad categories for how well identity is maintained by automated 239 

tracking systems (vertical axis in Figure 2). In the first category, identity is not maintained 240 

following occlusion, and instead new trajectories are produced each time a new individual is 241 

recognized (top row in Figure 2). In the second category, algorithms link identities across 242 

occlusions, based, for example, on the predicted movement of individuals (middle row in Figure 243 

2). When the number of individuals is not constant, as in the field, or if occlusions are too 244 

complex to link trajectories, the output can become similar to the first category. To prevent 245 

identity switch errors the researcher must manually review uncertain events in the tracking data 246 

and make appropriate corrections (see above) [28, 29, 34, 63] (Movie S1, Movie S10, Movie 247 

S11). 248 

In the third scenario, each trajectory always belongs to a single individual (bottom row in 249 

Figure 2), similar to bio-logging. Here, individual organisms are recognized in each image, so 250 

that following occlusion correct identities are always maintained and identity errors never 251 

propagate. This often involves application of artificial markings, however natural variation in the 252 
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morphology of individuals can also be used to maintain identities throughout image sequences, 253 

even following occlusion (Table S1). The simplest method involves using very general traits to 254 

identify individuals, such as body size or body shape. General traits can be sufficient for 255 

maintaining identities at low densities or when individuals vary greatly in size or shape, but in 256 

many other instances in ecology individuals are likely to be similarly sized or shaped. 257 

‘Fingerprinting’ uses a more comprehensive set of traits to recognize individuals, even when 258 

individuals are indistinguishable to the human eye [12, 21, 22] (Table S1, Movie S5). 259 

Fingerprinting is currently limited to small numbers of individuals and controlled laboratory 260 

conditions, and while these limitations will be reduced as image quality increases and 261 

fingerprinting is combined with other segmentation and recognition methods [12, 64-69], 262 

untimely fingerprinting will always be limited for very large groups due to inevitable ‘overlaps’ in 263 

fingerprints. 264 

 265 

Spatiotemporal position or detailed pose? 266 

Knowledge about the spatiotemporal position of organisms relative to the environmental 267 

landscape, or to each other, is sufficient for many questions in ecology [1, 3, 4, 34, 54] (Box 1). 268 

For other questions, such as those about the mechanics of locomotion or ecological 269 

interactions, it is necessary to know about the positioning of appendages or other specific points 270 

along an individual’s body [8, 18, 20, 29, 30, 70] (Movie S2, Movie S11, Movie S14, Movie S22) 271 

(Box 1). Estimating the center of body mass (position) is much simpler than detecting the 272 

detailed body posture and position of appendages (pose). Obtaining detailed pose information is 273 

not only a technically difficult computer vision problem, but requires higher spatial resolutions 274 

which brings with it associated costs, such as reduced spatial extent of imaging and increased 275 

data management and processing requirements [18]. 276 

Many tracking systems automatically identify individuals in images by fitting contour 277 

models to foreground pixels, once they have been isolated from the background (Box 3). These 278 

contour models can be simple, providing position and sometimes orientation [28] (Movie S1, 279 

Movie S3), or they can be more complex and thus provide detailed information about body 280 

posture or the position of legs, wings, or tails [8, 20, 29, 30, 69, 71] (Movie S2, Movie S11, 281 

Movie S14, Movie S18, Movie S22) (Box 3). Automated tracking systems that use approaches 282 

other than contour fitting [18, 21, 22, 69] (Movie S5, Movie S17) are more generalizable to 283 

different sized and shaped organisms, a key feature ecologists will ultimately require from 284 

tracking systems. 285 

  286 

Automated behavioral analysis 287 

In addition to estimating the position and pose of individuals, automated tracking 288 

systems can also analyze individual and between-individual behaviors (behavior between 289 

individuals is analyzed in much the same way as for single individuals, except the context 290 

becomes behavioral correlations between individuals) (Box 4). Automatically annotating 291 

behavior produces large quantities of consistently defined and highly resolved behavioral data, 292 

providing biologists with unprecedented power to quantitatively understand general mechanisms 293 

and principles underlying behavior [69, 72] (Box 1). Automated behavioral analysis is possible 294 
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with trajectory information alone, such as differentiating between an individual being stationary, 295 

walking, or running, or with more detailed pose information, such as head position, contour 296 

shape, or appendage position [8, 63, 69, 73] (Movie S2, Movie S14, Movie S11). 297 

Identification of behavior into categories is a long-standing tradition in ethology and can 298 

be achieved by automated behavioral phenotyping, where the complex trajectory and pose data 299 

output by automated tracking is categorized into simpler, interpretable categories that best 300 

characterize biologically and ecologically relevant behavioral phenotypes (Box 4). Automated 301 

behavioral phenotyping can be undertaken with either supervised or unsupervised machine 302 

learning, with the core goal of both approaches being to condense the very rich and complex 303 

trajectory and pose data into a simpler form that is biologically and ecologically relevant (Box 4). 304 

In supervised learning, the human expert identifies and categorizes patterns in the data 305 

by informing the software of categorical behavior annotations [8, 16, 72, 74] (Movie S11, Movie 306 

S12, Movie S14). For example, ‘wing grooming’ could represent when a fly rubs one or both 307 

metathoracic legs over the top or the underside of the wing(s) [74]. Categorical annotations like 308 

these simultaneously take into account many different features of the trajectory and pose data, 309 

and result in categories that are generally easily interpretable by biologists and often have a 310 

clear physiological or ecological significance. Besides allowing higher throughput that manual 311 

annotation, the subjective a priori definitions of behavior chosen by a researcher can be 312 

expressed in precise mathematical terms and, once behaviors are defined, the analysis of any 313 

dataset is fully repeatable. 314 

Unsupervised learning methods, on the other hand, apply computational techniques to 315 

the raw data themselves to reveal what degrees of freedom are relevant in the data and then 316 

automatically detect any stereotyped patterns (Movie S12) [69]. These behavioral patterns 317 

might, or might not, be evident to human observers. Unsupervised techniques offer the 318 

advantage of decreased subjectivity, and increased throughput, repeatability, and the chance of 319 

finding rare behaviors [69, 75, 76]. Unsupervised methods use statistical methods to reduce the 320 

dimensionality of trajectory and pose data, and of course these statistical methods themselves 321 

depend on mathematical, human-generated assumptions inherent in the algorithms. It is 322 

therefore critical to compare the output of these unsupervised methods to what biologists 323 

already know about the inherent structure of behavior. As unsupervised methods become 324 

increasingly powerful and more objective [69] they will become an important development for 325 

community ecologists, who often study many different species which otherwise would require 326 

manual behavioral labeling across taxa, which is time consuming and prone to inaccuracies. 327 

 328 

Summary and future directions 329 

Automated image-based tracking provides detailed information about the behavior of 330 

individuals at local scales, such as how they move, with which other individuals they interact, 331 

the sensory information available to them, and the role of internal and environmental drivers in 332 

shaping their behavior (Box 1).  This information should prove integral in mapping linkages 333 

between genes, brain function, behavior, and species interactions (thus linking molecular 334 

biology, neurobiology and ecology). Although development of automated image-based tracking 335 

has been primarily laboratory-based, focused on model organisms in controlled conditions, 336 
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studies using this method now exist from a diversity of taxa and habitats, including in the field 337 

(Table S1, Figure 2) (Box 1). Automation of data collection permits high levels of replication, 338 

substantially increasing the amount and quality of behavioral data available to biologists. For 339 

example, automated tracking of behavior within functional response experiments which 340 

ecologists use to quantify species interaction strength, would allow researchers to run large 341 

numbers of replicate trials where the behavior of every predator and prey is known, providing 342 

unparalleled power to uncover novel patterns in the functional response data [77].  343 

Like all technologies, automated image-based tracking has its limitations. Only 344 

individuals within the imaged area can be tracked – meaning larger animals cannot be tracked 345 

over their entire home range – and tracking in complex physical habitat or at high densities is 346 

difficult. In addition, the storage and management issues that arise from the huge amounts of 347 

digital data that are easily produced by imaging must be addressed. Emerging methods, such 348 

as fingerprinting or real-time tracking, alleviate this problem somewhat [21, 22], but more needs 349 

to be done. As limitations are overcome, and imaging and computational technologies advance, 350 

automated image-based tracking should become firmly established as a powerful tool for 351 

quantitative research in ecology [9]. These methods are already providing conceptual advances 352 

on diverse topics like predator-prey interactions, collective behavior of animal groups, social 353 

hierarchy, and population dynamics, and their continued application will only broaden this list of 354 

topics (Box 1, Table S1). Eventually, automated tracking should influence the field of ecology 355 

similarly to how it is influencing the genetic and behavioral sciences [5], allowing ecologists to 356 

uncover mechanisms and principles that shape ecological systems, leading to a more general 357 

and predictive science of community ecology with significant basic and applied benefits. 358 

 359 
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Box 1. Ecological insights from automated image-based tracking 594 

We see three key areas where considerable intellectual progress has been made in 595 

ecology using automated image-based tracking. First, the kinematics of animal behavior [18-20, 596 

24, 25, 35, 43, 58, 67, 70, 71, 75, 78-83], including the role of the internal state of animals, such 597 

as their physiology or genes, and the external environment. Recent breakthroughs in remote 598 

quantification of physical landscapes [59-61] and 3D imaging [30] should be especially helpful 599 

for these questions. Second, collective behavior in animal groups [1, 27, 34, 39, 41, 44, 46, 63, 600 

84, 85], including understanding how information about the physical and biological environment 601 

transfers between individuals. Generally, this research centers on intraspecific groups 602 

comprised of larger numbers of similar sized individuals. Third, determinants of social behavior 603 

[8, 28-30, 32, 54, 55, 68, 72, 74, 86]. Research in this last category usually focuses on a small 604 

number of individuals, because identifying the detailed pose required for automated behavioral 605 

analysis is difficult in larger groups. Tracking over short durations (minutes) has aided in our 606 

understanding of the genetic basis of social behavior, such as aggression or courtship [8, 87], 607 

where the high throughput that automation allows provides enhanced power for uncovering 608 

patterns in behavioral data [28]. Research over longer times can uncover complex temporal 609 

linkages between social behaviors [8, 29], and experiments over the order of weeks are 610 

providing unique insight into the social and behavioral development of individuals in intraspecific 611 

groups [32, 54, 55].  612 

Enormous potential exists for automated image-based tracking to address other key 613 

issues in ecology. One area we expect significant growth is in the study of interspecific 614 

interactions, which are critical to ecological systems [1-5]. For example, biologists recently used 615 

automated analysis of sonar images to reveal how coordinated hunting by predators leads to 616 

increased fragmentation and irregularities in the spatial structure of prey groups, and thus 617 

inhibition of information transfer among prey [4]. Laboratory research alone provides much 618 

scope for experimentally testing basic ideas about ecology, such as the role of body size or 619 

predator density in determining trophic interaction strength (Movie S3) [77]. Image-based 620 

tracking can also address more applied questions, such as the role of fragmentation in 621 

population dynamics [88] or determining the size of animal populations that are historically 622 

difficult to measure [53]. Integrating automated tracking techniques into images already 623 

collected by trigger-based cameras to assess species occurrence and population abundances 624 

[12] would provide important information about the behavior of organisms in natural 625 

ecosystems. 626 

 627 
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Box 2. Obtaining an image 628 

The first step in automated image-based tracking involves obtaining a machine-readable 629 

sequence of images that accurately represents the real world. This translation between the real 630 

and digital world is a critical step, and time spent optimizing the image (such as ensuring 631 

sufficient contrast between foreground and background) pays substantial dividends during 632 

subsequent steps (Figure 1). Optical video is commonly used due to its accessibility and low 633 

cost, but other imaging technologies considerably expand the range of environmental contexts 634 

within which tracking can be undertaken (Figure I). These include infrared (Figure Ia-b), thermal 635 

infrared [51] (Figure Ic; Movie S7), X-ray microtomography [56] (Figure Id), and sonar [4] (Figure 636 

Ie; Movie S9). Light-field (Figure If) and multi-scale gigapixel [89] (Figure Ig) imaging should 637 

permit tracking and scene reconstruction in 3D from a single image viewpoint. Although frame-638 

rates of giga-pixel cameras are increasing (S.D. Feller, unpublished), at three frames per minute 639 

[89] they are currently too slow for most automated tracking applications. Light-field cameras 640 

work at higher frame rates and there are several laboratories exploring if they can be 641 

successfully incorporated into automated tracking systems (I.D. Couzin, G. G. de Polavieja, 642 

unpublished). Ultimately, decisions about which imaging method to use should be determined 643 

by the specific needs of the project. 644 

Automated tracking generally requires a high-contrast image so that computer vision 645 

algorithms can adequately discern organisms and their appendages from the surrounding 646 

background (Box 3). A common and low-cost method of obtaining such images is to construct 647 

an artificial arena for tracking experiments, which is often colored in contrast with the animals, 648 

and brightly and uniformly lit with diffuse lighting (Figure Ia-b). Deciding on the spatial and 649 

temporal resolution of images is also a key consideration. Higher resolutions generally result in 650 

better tracking results and more precise quantification of behavior, but bottlenecks during the 651 

transmission, storage, and processing of digital information can limit high temporal resolution to 652 

low spatial resolution and/or short durations. Constraints on low spatial resolutions can be 653 

overcome by integrating output from multiple cameras [19], and should become less important 654 

as technology advances. Recording software is another important consideration, such as the 655 

choice of codec for encoding and compressing digital data or ensuring that accurate time 656 

stamps are obtained and that frames are not silently dropped, and robust open-source [90, 91] 657 

and commercial [92, 93] options are available.  658 

 659 

 660 
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 661 
 662 
Figure I. A growing number of technologies allow capture of digital images for automated image-based tracking. (a) The most 663 
common is optical or near-IR video, most often used in simple 2D laboratory settings (left panel in Figure 1) (Movie S1, Movie S2, 664 
Movie S3, Movie S4, Movie S5, Movie S10, Movie S11, Movie S14, Movie S17). (b) Images from multiple cameras allow tracking in 665 
3D, even with some degree of habitat complexity present (Movie S6, Movie S15). (c) Thermal imaging allows tracking in complete 666 
darkness, but requires that tracked animals have a surface temperature different from the surrounding landscape (Movie S7). (d) 667 
High-resolution X-ray microtomography permits imaging through complex habitat structure, such as soil (burrowing invertebrate 668 
highlighted by red arrow). (e) Acoustic imaging (sonar) can also image in habitats where optical video would be unusable, such as 669 
this image of predators foraging for schooling bait fish in a turbid estuary [4] (Movie S9). (f) Light-field cameras allow for post-hoc 670 
selection of focal points, thus potentially allowing tracking and construction of the scene in 3D from a single image point. The three 671 
panels in (f) were obtained from a single light-field image – each panel representing different focal points (highlighted by red arrow). 672 
(g) Newly developed gigapixel technologies also permit capture of images from a single image point with very high spatial resolutions 673 
and at multiscales, again allowing for 3D tracking from a single image point [89]. The three lower panels in (g) are enlarged sections 674 
of the main image. See Acknowledgments for credits and permissions. 675 
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Box 3. Identifying individuals and behaviors in images 676 
Once a set of suitable images has been obtained (Box 2), the position of individuals, and 677 

often their pose, must be automatically computed to form trajectories through time. First, the 678 

software must determine whether and where individuals are present in each image. How easily 679 

this is done varies with the type and quality of images (Box 2), as well as how accurately each 680 

individuals position can be predicted from its previous behavior (see below). Detection is 681 

straightforward when the contrast between individuals and the background is substantial, and 682 

when the background is known or does not change throughout the entire image sequence is 683 

most easily performed by background subtraction (Figure Ia-c). The physical complexity of 684 

natural systems will ultimately require more advanced techniques, such as those which 685 

constantly update their background image [19], or through visual recognition methods [12, 64-686 

68], where the distinctive pattern associated with an individual’s body and its motion can be 687 

recognized against the clutter of the background. 688 

The output of the detection stage is an estimate of the pixels associated with individuals 689 

in each image. The position and pose of organisms with stiff and simple-shaped bodies can be 690 

computed by fitting a shape contour to the image of the organism [8, 28] (Figure Id), including 691 

determining whether clumps of pixels should be separated into multiple individuals (Figure Ie-i). 692 

The situation is more complex when the body is flexible and multiple degrees of freedom are of 693 

interest, such as wing angles or head orientation (Figure Ij). Algorithms for learning and 694 

computing an individual’s pose is an active area of research, and involves either explicit 695 

modeling of the body, or learning associations between image brightness patterns and pose 696 

parameters [69, 73, 78].  697 

Finally, the position of each individual must be linked over multiple frames to form 698 

trajectories (Figure Il-p). This is relatively simple for single individuals, although false and 699 

missed detections become more likely when detection is problematic. Constructing trajectories 700 

for multiple individuals often involves parameterization of a movement model which includes 701 

information from previous frames, such as the acceleration of each individual or their preferred 702 

direction of motion [94, 95]. Movement models also improve the detection phase of tracking, but 703 

ultimately suffer from error propagation and thus can be labor intensive. Fingerprinting identifies 704 

individuals from their image structure (see main text) and therefore recovers identities after 705 

occlusion [21, 22] (Figure Ik, Movie S5). 706 

 707 
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 708 

Figure I. After imaging (Box 2) computer vision software must automatically detect the position, and sometimes pose, of individuals 709 
in the image to create trajectories. (a-c) A common approach for detecting individuals is background subtraction, where detection of 710 
individuals in raw images is achieved by removing an estimated background-only image, resulting in isolation of foreground pixels. 711 
(d) Contours, denoting individuals, can then be mapped on to clusters of these foreground pixels. How many individuals are within a 712 
pixel cluster can be determined in a number of ways. The cluster of pixels in (e-h) can be grouped as one, two, three, or four 713 
individuals, with (i) the optimal grouping being three individuals based on some quantifiable measure. When overlaps are large or 714 
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body shapes are non-ridgid, other methods using past and future dynamics are more suitable (see main text). (j) More complex 715 
contours can precisely map the pose of individuals, such as swimming in C. elegans [20] (Movie S2), wing positioning in Drosophila 716 
[8] (Movie S14), or body posturing of mice during social interactions [29] (Movie S11). (k) Fingerprinting allows for maintenance of 717 
identities through time by analyzing the complete image structure, often using differences between individuals that are undetectable 718 
to the human eye, such as these zebra fish [21, 22] (Movie S5). Once individuals are detected and identified, their positions are 719 
linked across frames to form trajectories. (l) This could be a single individual in a 2D landscape [28], (m) a single individual in a 3D 720 
landscape (shown here with some habitat complexity) [19] (Movie S6), (n) multiple individuals in a simple 2D landscape [28] (Movie 721 
S1), or (o) multiple individuals in a 3D landscape (Movie S8). (p) Trajectories through complex habitat structure can also be 722 
produced, such as this woodlice navigating for 1 h between two habitat patches connected by a dispersal corridor [88]. See 723 
Acknowledgments for credits and permissions.  724 
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Box 4. Analysis of tracking data 725 

Automation results in vast quantities of high-quality behavioral data, which not only 726 

makes data management a key consideration, but presents major challenges in crystalizing this 727 

information into tractable and meaningful statistics. This problem is not unique, and it is possible 728 

to borrow data management and analysis techniques developed within other “big data” fields, 729 

like molecular biology and bioinformatics. 730 

The most basic output from automated tracking is the coordinates of the center of body 731 

mass of one or more individuals through time (Box 3). Converting from pixel values into real 732 

world coordinates is often not as simple as using a pixel-to-distance scale factor, because even 733 

in situations with little depth variation the effects of perspective and foreshortening can be 734 

important. These issues can be readily overcome with standard photogrammetric techniques 735 

[96], or if the filming arena is not flat by integrating a 3D model of the surface into these 736 

calculations [35]. Once coordinates (and pose estimates if available) are produced, then even 737 

very simple analysis can address basic ecological questions such as where and how animals 738 

behave and interact [4, 8] (Figure Ia-c).  739 

Higher order patterns in position and pose data can identify individual or between-740 

individual behaviors [69] (Figure Id-e). Investigation of the relative position and behavior 741 

between individuals, such as conspecifics [21, 39, 63, 84] (Movie S1, Movie S2, Movie S5, 742 

Movie S7, Movie S8, Movie S11) or interacting predators and prey [4] (Movie S3, Movie S9), 743 

provide significant insights into mechanisms underlying the strength and outcome of ecological 744 

interactions, and the role of the physical environment [1] (Movie S10). For instance, how much 745 

time do animals spend grooming, courting, searching, or chasing, and where and when do they 746 

perform these actions, and for interacting individuals, what are the relationships between their 747 

subjective sizes, body angles, and relative directions of motion? [97]. Ultimately, automated 748 

behavioral analysis is limited only by our ability to quantitatively define behavior, or in our ability 749 

to develop machine learning algorithms that can do this for us [74]. One popular procedure is to 750 

have a human identify behaviors in video, such as grooming or eating, without defining them. 751 

Given several examples of each behavior, a computer algorithm can learn distinguishing data 752 

features, creating a classifier or internal model of each behavior. This classifier can then be 753 

applied to new datasets, including new individuals and potentially other species. User-friendly, 754 

automated tools such [74] make these highly technical analyses accessible to non-experts. 755 

 756 



 22 

 757 

Figure I. The final step in automated image-based tracking is analysis, where position and pose data are analyzed to understand 758 
relevant biological, and ecological, patterns and processes. Simple statistics of positional data for individuals include (a) frequency 759 
distributions of body velocity, (b) location intensity maps revealing where throughout the landscape individuals spend their time, and 760 
(c) distance-time plots, which can highlight foraging strategies employed by predators. (a-b) are data from an adult wolf spider 761 
(Lycosa) moving around a 65 cm diameter circular arena for one hour, and (c) is a wolf spider (Lycosa, red line) and a centipede 762 
(Lithobius, blue line) under the same conditions (A.I. Dell, unpublished). This behavioral data can be automatically condensed into 763 
simpler, interpretable categories that characterize real behavioral phenotypes, either for (d) single individuals or (e) between 764 
individuals. The top-left panel in (d, e) show a contour model of the individual/s, together with the quantities (or traits) that can be 765 
measured, such as (d) a fly or (e) an insect predator feeding on a fly [8, 28]. Symbol definitions are: x,y, spatial coordinates of the 766 
midpoint of the individual; t, time; Θ, orientation; Θmove, moving direction; Δ, distance; a, abdomen; h, head; c, midpoint of the animal 767 
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[8]. Also shown in (d, e) are some example behaviors that can be derived from these basic quantities [28]. Blue and red triangles are 768 
plotted at the start and end of each behavior example. For (e) behaviors between individuals the position of the non-target individual 769 
is plotted in gray. (f) From these behavioral assignments, time budgets can reveal how individuals spend their time or the 770 
components of ecological interactions (A.I. Dell, unpublished data). Analysis of between-individual position data can highlight 771 
patterns in the spatial arrangement of individuals within groups, and aid in understanding collective behavior. (g) shows the angular 772 
density of predators around a representative focal prey, with high predation density behind the prey revealing that piscivorous 773 
predators tend to attack from behind their prey [4], and (h) shows a reconstruction of the visual field of an individual fish embedded in 774 
the center of a large school, which provides novel insight into information flows within animal groups [27]. Behavioral information can 775 
also reveal the temporal linkage between complex behaviors, such as (i) this transitional behavioral graph for social interactions in 776 
Drosophila [8]. See Acknowledgments for credits and permissions. 777 
  778 
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Glossary 779 

Background subtraction. A method used by software to compare the current video frame 780 

with a stored picture of the background; any pixel of the current frame that is significantly 781 

different from the corresponding pixel in the background is likely to be associated to the 782 

body of an animal. Useful in situations where the background is unchanging, such as a 783 

stationary camera, the surface of the background is rigid and lighting does not change. 784 

Behavior. The actions of individuals, often in response to stimuli. Behavior can involve 785 

movement of the individual’s body through space, such as walking or chasing, or can 786 

occur while the animal is stationary, such as grooming or eating. 787 

Bio-logging. Attachment or implantation of equipment to organisms to provide information 788 

about their identity, location, behavior, or physiology (e.g., global positioning systems, 789 

accelerometers, video cameras, telemetry tags). 790 

Ecological interaction. Any interaction between an organism and its environment, or 791 

between two organisms (i.e., including interactions between conspecifics). 792 

Fingerprinting. A method used to identify unmarked individuals using natural variation in their 793 

physical and/or behavioral appearance. The method works by transforming the images 794 

of each individual into a characteristic “fingerprint”, which can then be used to distinguish 795 

individual organisms both within and across videos. 796 

FPS. The number of frames in an image sequence collected per second (frames-per-second). 797 

Image. A digital representation of the spatiotemporal location, identity, or pose of an individual 798 

or set of individuals (see Box 2). 799 

Machine learning. A set of techniques that allow computer software to learn from empirical 800 

data, user assumptions or manual annotation. These approaches are becoming 801 

increasingly common in the analysis of behavior, where users can tag behavior in short 802 

sequences of images and the software can predict occurrences of these behaviors 803 

throughout the entire image sequence. 804 

Marking. The attachment of artificial “marks” to organisms to maintain their identity, such as 805 

paint or barcodes. 806 

Occlusion. When the view of any individual in an image is disrupted either by another 807 

individual or physical habitat (i.e., the occluding object lies in a straight line between the 808 

focus individual and the camera). 809 

Pixel. A physical point in a 2D digital image, and therefore the smallest controllable element of 810 

a picture represented on the screen. The equivalent of a pixel in 3D space is a voxel. 811 

Pose. Any additional geometrical quantity of interest other than the center of the main body of 812 

the animal, such as orientation, wing positions, body curvature, etc. 813 

Position. The center of body mass of an individual in time and space. 814 

Resolution. The number of pixels/voxels in a digital image. 815 

  816 
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Call to developers: the ideal automated image-based tracking system for ecologists 817 

Ecologists have a clear need for systems that can robustly and quickly gather large 818 

amounts of precise data on the behavior of multiple individuals from a diversity of species. 819 

Development of an automated image-based tracking system like this will require integrating 820 

disparate pieces of technology and software into a coherent, and user-friendly, package. This 821 

appears possible in the near future because of the continued increase in power, speed and 822 

capabilities of hardware and software technologies. Any system that does this should have a 823 

number of key features. 824 

1) Simple to use. Automated image-based tracking systems involve a complex integration of 825 

software and hardware (Figure 1), but many ecologists have insufficient funding to purchase 826 

expensive imaging and computational equipment, nor the technical expertise required to use 827 

them. While there is some responsibility for ecologists to acquire these skills, tracking 828 

system development is ultimately the role of researchers and engineers with expertise in 829 

computer vision and informatics. 830 

2) Marking should be unnecessary, as this is time-consuming, requires capture of individuals, 831 

and can alter their behavior and how other organisms interact with them. 832 

3) Flexible enough that it can successfully track in a diverse range of experimental conditions, 833 

and individuals that vary greatly in their size, shape, and patterns of behavior. 834 

4) Tracking large numbers of individuals is necessary because ecological systems are often 835 

characterized by high densities. 836 

5) Ecological systems are naturally embedded within a diverse range of environmental 837 

contexts, so it is essential that automated tracking systems function within diverse and 838 

complex habitats. The development of tracking software able to isolate animals from 839 

complex backgrounds, together with increasing automation of behavioral analysis, means 840 

the capabilities of automated image-based tracking for field use will only increase in the 841 

coming years. 842 

6) The system must overcome the significant data storage and data management issues that 843 

inevitably arise when tracking at larger spatial and temporal scales. This can be partly 844 

overcome by real-time tracking, which reduces the need for processing and storing large 845 

amounts of digital data. 846 

7) A single image point (i.e., camera) would be preferred over requiring multiple cameras, 847 

which can be difficult to integrate into a coherent system and can introduce disturbance 848 

effects that alter natural behavior. 849 

8) Be mostly automated so that tracking and analysis is quick and consistent, including 850 

identifying individuals and their interactions, and quantifying their behavior in meaningful 851 

ways. However, still provide flexibility in the ways in which users can extract data, including 852 

at all levels of data acquisition, tracking and analysis.  853 
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 854 

 855 

 856 

 857 

 858 
Figure 1. The three general steps involved in automated image-based tracking of behavior are: imaging (Box 2), detection of 859 
individuals and their pose in the image and appropriate ‘linking’ of detections to create separate tracks through time for each 860 
individual (Box 3), and analysis of trajectory and behavioral data (Box 4). To date, imaging is often done in the laboratory (left panel), 861 
which can more easily provide a clean, crisp image that minimizes tracking errors. Each of these steps are strongly interlinked and 862 
time spent optimizing one step (e.g., imaging) can pay huge dividends in time and effort saved at later steps (e.g., reducing tracking 863 
errors). 864 

 865 

  866 
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 867 
 868 
Figure 2. A number of key automated image-based tracking systems and studies relevant to ecologists, ranging on the horizontal 869 
axis from low numbers of individuals interacting in a simple landscape in the laboratory (left of figure) to a natural system within a 870 
complex biological and physical landscape (right of figure). The vertical axis separates studies and tracking systems by the type of 871 
output provided, specifically whether and how identity is maintained and whether position or detailed pose are tracked. In some 872 
cases positions of labels have been slightly moved for visual clarity. Tracking systems can cover multiple categories, but are only 873 
shown once as tracking in simpler habitats with smaller numbers of individuals and less detailed pose will almost always be possible. 874 
See Table S1 for more details about each tracking system. Publications that use any of the tracking systems in Table S1 are not 875 
listed separately here. Numbers in square brackets are citations (see reference list). * denotes the use of bio-logging or marking.  876 
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Table S1. Key automated image-based tracking systems available to ecologists (pg. 2) 

Table S2. Criteria for describing the automated image-based tracking systems in Table S1 (pg. 6) 

 

Movie S1. Multiple Drosophila moving in a simple 2D landscape.  

Movie S2. Tracking of multiple C. elegans moving in a simple 2D landscape using Multi-Worm Tracker. 

Movie S3. Wolf spider consuming a moth in a simple 2D landscape. 

Movie S4. Tracking shoaling behavior of zebrafish using EthoVision XT. 

Movie S5. Tracking of different animal groups maintaining identities using idTracker. 

Movie S6. Drosophila moving throughout a 3D landscape with physical structure tracked using Flydra. 

Movie S7. Flying bats imaged using multiple thermal cameras. 

Movie S8. 3D tracking of large swarms of flying animals in the field. 

Movie S9. Schooling fish and their predators in a turbid estuary imaged using high-resolution sonar. 

Movie S10. Tracking of schooling fish in a complex light environment. 

Movie S11. Tracking of social interactions in mice using MiceProfiler. 

Movie S12. Automated behavioral annotations of social interactions in Drosophila. 

Movie S13. Field video of a rattlesnake striking at prey. 

Movie S14. Social interactions in Drosophila tracked with CADABRA. 

Movie S15. Position and pose tracking systems from CleverSys. 

Movie S16. Long-term tracking of social behavior in mice using Motr. 

Movie S17. Tracking the posture of a single individual for a range of species using SOS-track. 

Movie S18. Tracking of zebrafish larvae with ZebraZoom. 

Movie S19. Position and pose tracking with Lolitrack. 

Movie S20. Tracking a single bee and multiple ants with Multitrack. 

Movie S21. Position and pose tracking with Phenotracker. 

Movie S22. Tracking social behavior in rats using 3D video. 

 

mailto:adell@gwdg.de
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Table S1. Some key automated image-based tracking systems (in alphabetic order) that are readily available to research ecologists, 
with focus on those suited for tracking behavior during species interactions. See Table S2 for detailed descriptions of each category. 

3DTracker [30] (Movie S22)  
 Availability and usability: open-source, simple to use, specific

1
 

Raw output: 3D trajectories, 3D pose
2
 

Requirements: Win, Matlab, multiple 3D cameras
3
 

Maximum individuals: 2 
Shape requirements: rodent-like

4 

Identity method: crosses solved
5
 

Analysis tools: basic kinematics, social behaviour
6
 

Taxa studied: rats
7
 

Required resolution per individual: 300 points
8
 

 Notes: 
1
Executables and sources available online at http://matsumotoj.github.io/ [30]. Requires uncluttered background. Requires multiple 3D cameras. 

2
Estimates 3D trajectories and detailed 3D pose of four body parts 

(head, neck, trunk, and hip). 
3
Currently uses 4 x Microsoft Kinect cameras. Matlab required for behavioral analysis. 

4
Developed for rats, but could be applied to mice with higher resolution cameras. 

5
3D video enables more 

stable tracking during close contact. On average, automation makes errors in 20% of 1 min videos. Includes tool to facilitate manual correction. 
6
Includes Matlab scripts extracting basic movement parameters (such as velocity 

or angle) and social behaviors (e.g., approaching, mounting, head-hip contact) based on 3D trajectories of body parts. 7Social interactions in rats [30]. 83D points covering the surface of each individual. 

CADABRA [8] (Movie S14)  
 Availability and usability: open-source, simple to use, flexible

1
 

Raw output: 2D trajectories, detailed pose
2
 

Requirements: Win/Linux/Mac, Matlab
3
 

Maximum individuals: 2 
Shape requirements: fly-shaped

4 

Identity method: maintained (size/markings)
5
 

Analysis tools: extensive
6
 

Taxa studied: flies
7
 

Required resolution per individual: 20 pixels 
 Notes: 

1
Executables available online [8]. Source code available upon request. Flexible to different setups. Can use conventional cameras. Can track several arenas simultaneously. Requires constant and uncluttered 

background. 2Estimates 25 traits of the pose and position of each individual (orientation, velocity, size, wing pose). 3Matlab Compiler Runtime library (free). 4Developed for Drosophila. 5Uses size difference between pairs (e.g., 
male or female). Similar sized individuals must be marked (otherwise system makes highest probability matches).

 6
Uses estimates of 25 traits of both flies (position, orientation, velocity, size, wing pose) to automatically 

quantify 8 social behavior (e.g., lunging, wing extension, copulation).  7Genetic and environmental influences on social behavior in Drosophila [8, 87]. 

Ctrax [28] (Movie S1, Movie S3)  
 Availability and usability: open-source, simple to use, flexible

1
 

Raw output: 2D trajectories, orientations 
Requirements: Win/Linux/Mac, Matlab

2
 

Maximum individuals: 50 
Shape requirements: elliptical

3 

Identity method: crosses solved
4
 

Analysis tools: extensive, see JAABA
5
 

Taxa studied: flies, cockroaches, fish, spiders
6
 

Required resolution per individual: 15 pixels  
 Notes: 1Ctrax online at http://ctrax.sourceforge.net. Flexible to different setups. Can use conventional cameras. Requires constant and uncluttered background. Ongoing maintenance, enhancements, and support provided. 

2Matlab required for capabilities beyond tracking, which are important (i.e., error fixing, analysis). 3Developed for Drosophila, works well with any species of elliptical shape. Individuals must have similar size.  4For Drosophila, 
with full automation system makes an identity error on average once every 5 fly-hours with density of 10, once every 1.5 fly-hours with dentisy of 20, and once every 40 fly-minutes with density of 50. Error rate is zero with 
minimal user supervision. Includes application to facilitate manual correction. 5JAABA [74] supersedes Ctrax’s behavioral analysis package (free online at http://jaaba.sourceforge.net). JAABA is a machine-learning system to 
create automatic behavior classifiers, which allows exploration of differences in thousands of behavior statistics between large numbers of individuals. JABBA requires tracking data from other tracking systems (e.g., Ctrax, 
CADABRA, Multi-Worm Tracker, Motr). 6Genetic and environmental influences on Drosophila social behavior [24, 28], cockroach locomotion [70], collective behavior in fish [85], spider foraging behavior (Dell et al. 
unpublished).  

EthoVision XT (Movie S4)  
 Availability and usability: commercial, simple to use, flexible

1
 

Raw output: 2D trajectories, orientations
2
  

Requirements: Win  

Maximum individuals: 16
(note 3) 

Shape requirements: flexible
4 

Identity method: maintained (size/markings)
5
 

Analysis tools: extensive
6
 

Taxa studied: rodents, fish, insects, pigs, spiders, more
7
 

Required resolution per individual: 15 pixels8 
 Notes: 1Developed by Noldus Information Technology BV. Available online at http://www.noldus.com/ethovision. Free trial version available. Software only or with integrated hardware. Valid for conventional cameras and 

laboratory setups, including multiple arenas. A constant and uncluttered background not required. Shadows, bedding material and objects can be present in the arena. Dedicated systems available for fish (DanioVision) and 
rodents (PhenoTyper). 2Track3D (http://www.noldus.com/innovationworks/products/track3d) extension allows 3D tracking of single individuals using 2 cameras. Standard software tracks center of body mass, specialized 
modules recognize body shape and multiple body points (e.g. nose point, tail base) of rodents. Simple and easy-to-use interface. 

3
Can track 100 arenas (16 individuals in each arena) with a single camera.) 

4
Can track many 

shapes, from small insects to large mammals. 5Similar-sized individuals require color marking (when maintenance of identity required). With small numbers of individuals the system can often maintain identities of unmarked 
animals. 6Includes visualization, data editing and animation options. Module for automated behavior recognition (rodents: rearing, grooming, sniffing), trial and hardware control, behavior-physiology integration. 7See all 
publications at http://www.noldus.com/ethovision-xt/selected-publications. 8Requires 3 pixels per individual for position only. 

http://matsumotoj.github.io/
http://ctrax.sourceforge.net/
http://jaaba.sourceforge.net/
http://www.noldus.com/ethovision
http://www.noldus.com/innovationworks/products/track3d
http://www.noldus.com/ethovision-xt/selected-publications


 3 

Flydra [19] (Movie S6)  
 Availability and usability: open-source, difficult to use, specific

1
 

Raw output: 3D trajectories (real-time) 
Requirements: Linux, multiple cameras 

Maximum individuals: 3
(note 2)

  
Shape requirements: flexible

3 

Identity method: not maintained 

Analysis tools: none  
Taxa studied: flies, birds

4
 

Required resolution per individual: 1 pixel 
 Notes: 

1
Core 3D algorithms available under open-source license at https://github.com/strawlab/pymvg (image acquisition and synchronization code, extended kalman filter for tracking, and analysis tools to verify tracking is 

working are not currently open-source). Requires synchronization of multiple computers and high-speed cameras. Requires constant and uncluttered background (some degree of habitat complexity possible). Advanced Linux 
skills needed. 

2
Limited by computer speed. 

3
Individuals should be roughly the same size, and have independent behavior (i.e. not valid for social species, aggression, courtship, predation, etc.).

 4
Flight control in Drosophila and 

hummingbirds [19, 25, 79, 80, 82]. 

GroupHousedScan (Movie S15)  
 Availability and usability: commercial, simple to use, flexible

1
 

Raw output: 3D trajectories, detailed pose (real-time)
2
 

Requirements: Win, two cameras
3
 

Maximum individuals: 2
(note 4)

 
Shape requirements: rodent-like

5 

Identity method: maintained (size/markings) 

Analysis tools: extensive
6
 

Taxa studied: rats, mice, primates
7
 

Required resolution per individual: 200 pixels
8
 

 Notes: 1Developed by CleverSys Inc. Available online at http://cleversysinc.com/?csi_products=grouphousedscan. Software only or with integrated hardware. Valid for conventional cameras and laboratory setups. Requires 
contrasting background. Ability to easily characterize spatial components of the physical environment for integration with tracking data. Bedding material , food and water containers, and other objects can be present in the 
arena. Useful for long-term tracking over longer durations, such as multiple days, as is capable of adjusting between day and night conditions automatically. Simple and easy-to-use interface. 2Dedicated 2D systems can 
monitor the movement and detailed pose of single animals either from the side (HomeCageScan - http://cleversysinc.com/?csi_products=homecagescan and PrimateScan - http://cleversysinc.com/?csi_products=primatescan) 
or top (TopScan - http://cleversysinc.com/?csi_products=topscan-suite). TopScan can be extended to 4 individuals with SocialScan add-on. Pose data include 8 different body points on a rodent: head or nose, ears, forelimbs, 
hindlimbs, upper back, lower back, abdomen, tail. HomeCageScan identifies same 8 points. PrimateScan identies same 8 points on a primate. TopScan and SocialScan identify 4 points on a rodent: nose, forelimb, center of 
mass, tailbase. 

3
Single-camera options available (see note 2). 

4
see note 2. 

5
Developed for mice and rats, has dedicated system for a single primate (see note 2). 

6
Kinematic measurements such as speed, velocity, orientation, 

shape, etc. Automatically outputs individual (eat, drink, sleep, walk, jump, rear up, hang, groom, sniff, twitch, stretch, etc.) and social interaction (contact, sniff, follow, leave, approach, etc.) behaviors and events. 7Genetic and 
environmental disorders in rats and mice (unpublished). 8Can be set as a threshold. 

GroupScan (Movie S15)  
 Availability and usability: commercial, simple to use, flexible

1
 

Raw output: 2D trajectories 
Requirements: Win 

Maximum individuals: 100
(note 2)

 
Shape requirements: flexible

3 

Identity method: not maintained 

Analysis tools: basic kinematics
4
 

Taxa studied: Drosophila, fish
5
 

Required resolution per individual: 10 pixels
6
 

 Notes: 1Developed by CleverSys Inc. Available online at http://cleversysinc.com/?csi_products=groupscan. Software only or with integrated hardware. Valid for conventional cameras and laboratory setups. Requires 
contrasting background. Ability to easily characterize spatial components of the physical environment for integration with tracking data. Simple and easy-to-use interface. 2Preset at 100, but can be varied. 3Developed for fruit 
flies and fish, but extendible to any species. 4Basic population-level statistics, including count, and average distance travelled, velocity, inter-frame body pixel change, etc. 5Genetic and environmental disorders in Drosophila 
and fish (unpublished). 6Can be set as a threshold. 

idTracker [21, 22] (Movie S5)  
 Availability and usability: open-source, simple to use, flexible

1
 

Raw output: 2D trajectories, orientations 
Requirements: Win/Linux/Mac, matlab

2
 

Maximum individuals: 20
(note 3)

 
Shape requirements: flexible

4
 

Identity method: maintained (fingerprinting)
5
 

Analysis tools: extensive, see idSocial
6 

Taxa studied: mice, fish, flies, ants
7 

Required resolution per individual: 150 pixels 
 Notes: 1Available at www.idtracker.es. Simple to use. Adaptable to different laboratory setups. Requires image with good contrast between animals and background. Valid for conventional cameras. Can track compressed 

videos.
 2

Development version requires Matlab (free compiled binaries do not). Fingerprinting computationally heavy, runs on conventional computer with at least 4GB RAM .
 3

Depends on species and conditions. 
4
No inherent 

contour. Can track wide range of size and shaped individuals.  5Maintains identities automatically in videos of any length, enabling tracking with complex crossings, occlusions, or perturbations. Ability to identify individuals 
across videos. 6idSocial [99] is an accompanying open source analysis package giving mean distances, distribution of distances, kinematic parameters of interactions, probabilities for relative distances, aggression leadership or 
followership hierarchies and collective behavior. 7Movement and collective behavior in fish, flies, mice, and ants [21, 22]. 

https://github.com/strawlab/pymvg
http://cleversysinc.com/?csi_products=grouphousedscan
http://cleversysinc.com/?csi_products=homecagescan
http://cleversysinc.com/?csi_products=primatescan
http://cleversysinc.com/?csi_products=topscan-suite
http://cleversysinc.com/?csi_products=groupscan
http://www.idtracker.es/
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LoliTrack (Movie S19)  
 Availability and usability: commercial, simple to use, flexible

1
 

Raw output: 2D trajectories, simple pose
2
 

Requirements: Win 

Maximum individuals: 24 
Shape requirements: flexible

3 

Identity method: crosses solved
4
 

Analysis tools: basic kinematics
5
 

Taxa studied: fish, rodents, birds, insects, crustaceans, more
6
 

Required resolution per individual: 9 pixels
 

 Notes: 1Developed by Loligo Systems. Available online at http://www.loligosystems.com/?action=shop_show&varenr=AB10190. Free trial version available. Valid for conventional cameras and laboratory setups, including 
multiple arenas. Software only or with integrated hardware. Does not require constant and uncluttered background. Ability to easily characterize spatial components of the physical environment for integration with tracking 
data. Simple and easy-to-use interface. Shuttlesoft (http://www.loligosystems.com/?action=shop_show&varenr=AB10202) is a dedicated multi-chamber system for analysis of preference or avoidance to environmental 
drivers, such as temperature or dissolved compounds. 

2
Three points along body axis. 

3
No inherent contour. Can track wide range of size and shaped individuals. 

4
Error rate data not available. 

5
Basic measurements per 

individual, such as body velocity, distance moved, turning rate, time spent in zone. Dedicated solutions avaliable upon request. 
6
See all publications at 

http://www.loligosystems.com/index.php?action=references_show_all&menu=14&keyword=VIDEO%20TRACKING. 

MiceProfiler [29] (Movie S11)   
 Availability and usability: open-source, simple to use, flexible

1
 

Raw output: 2D trajectory, detailed pose  
Requirements: Win/Linux/Mac  

Maximum individuals: 2
(note 2)

 
Shape requirements: rodent-like

3
 

Identity method: crosses solved
4
 

Analysis tools: extensive
5
 

Taxa studied: rodents
6
 

Required resolution per individual: 350 pixels  
 Notes: 

1
Available online at http://icy.bioimageanalysis.org/plugin/Mice_Profiler_Tracker.

 
Easy to use and adaptable to different laboratory setups. Requires unchanging and uncluttered background. Tracker struggles when 

individuals are in very close contact.
 2

Behavioral analysis limited to two individuals. 
3
Developed for mice.

 4
Switches identities on average twice per minute. Includes tool to facilitate manual correction.

 5
System includes a 

behavioral chronogram generator (e.g., contact events, sniffing, chase, escape) and a temporal behavioral analysis module. 6Social interactions in mice [29, 55], rats, guinea pigs (unpublished). 

Motr [32] (Movie S16)   
 Availability and usability: open-source, simple to use, flexible

1
 

Raw output: 2D trajectory, simple pose
2
  

Requirements: Win/Linux/Mac, Matlab
3
 

Maximum individuals: 6
(note 4)

 
Shape requirements: elliptical

5
 

Identity method: maintained (marking)
6
 

Analysis tools: extensive, see JAABA
7
 

Taxa studied: mice
8
 

Required resolution per individual: 5000 pixels
9
 

 Notes: 1Available at http://motr.janelia.org. Can use conventional cameras. Requires unchanging and uncluttered background and uniform illumination. 2Pose represented as an ellipse, including x,y coordinates, major and 
minor axis of ellipse, and ellipse orientation. 3Matlab 2009b or later. 4System validated up to 6 individuals, possibly can manage more. 5Developed for rodents, but generalizable to other elliptical-shaped organisms. 6Requires 
that individuals are marked – might also work with natural differences in pattern, but this has not been tested. The system automatically learns external appearance of individuals from training videos and generalizes to 
identify them in a group. 7JAABA [74] was used to learn complex behaviors such as following and chasing (for details on JAABA [74] see Ctrax - note 6). 8Social development in groups of mice [32].9In their standard 
configuration (1024 x 768 pixel resolution), they fit a small rectangle (50 x 100 pixels) around each mouse to extract features needed for individual identification. With these specifications, each mouse body formed an ellipse 
with a long axis ~30-85 pixels, and the small axis ~10-45 pixels.  

Multitrack (Movie S20)  
 Availability and usability: open-source, simple to use, flexible

1
 

Raw output: 2D trajectory, orientation 
Requirements: Linux, additional libraries

2
 

Maximum individuals: 1000
(note 3)

 
Shape requirements: flexible

4
 

Identity method: not maintained
5
 

Analysis tools: none
6
 

Taxa studied: ants, bees
7
 

Required resolution per individual: 3 pixels
8
 

 Notes: 
1
Avaliable online at www.bio-tracking.org/category/software. Flexible to different setups. Can use conventional cameras. Requires constant background. System packed with companion programs for creating shape 

models and backgrounds for different experimental setups. 2OpenCV and PCL (standard computer vision libraries), and Qt 4.0 (for creating graphical user interfaces). All three are cross platform and freely available. 3Maximum 
tested ~1000 individuals, but can track an arbitrarily large number. 4Individuals are assumed to be rigid (see note 1). Different types of body shapes can be tracked simultaneously by creating multiple models. 5A proportion of 
crossings can be solved with movement models. 

6
Only produces tracking data. 

7
Spatial dynamics of ant [100] and bee (unpublished) behavior. 

8
Can be set as a threshold.  

Multi-Worm Tracker [20] (Movie S2)  
 Availability and usability: open-source, simple to use, flexible

1
 

Raw output: 2D trajectory, detailed pose (real-time)
2
 

Requirements: Win, LabVIEW Vision (NI) run-time license
3
 

Maximum individuals: 80
(note 4) 

Shape requirements: worm-like
5
 

Identity method: not maintained
6
 

Analysis tools: basic kinematics, basic behaviour
7
 

Taxa studied: nematodes, fly larvae
8
 

Required resolution per individual: 160 pixels 
 Notes: 1Available online at http://sourceforge.net/projects/mwt/. Requires unchanging and uncluttered background. Can use conventional cameras. 2Includes position of centroid, body size (number of pixels), vectors defining 

long (and orthogonal) axes of the shape, skeleton (11 point line along midline), and outline of body (compressed bitcode stored as a string). Summary file can store when a stimuli occurred, and 13 simple statistics (number of 
objects, mean speed, mean size, etc.). 3Choreography runs on Win/Linux/Mac. 4Up to ~500 individuals with lower frame rate (~10-15 fps). 5Optimized for C. elegans. 6Identities not maintained – trajectories lost when animals 
touch. 7Choreography is an offline basic behavioral analysis package (direction, velocity). Plugins can compute organism- or condition-specific behaviors. 8Determinants of behaviour in C. elegans [20], neural biology of 
Drosophila larvae [81, 83].  

http://www.loligosystems.com/?action=shop_show&varenr=AB10190
http://www.loligosystems.com/?action=shop_show&varenr=AB10202
http://www.loligosystems.com/index.php?action=references_show_all&menu=14&keyword=VIDEO%20TRACKING
http://icy.bioimageanalysis.org/plugin/Mice_Profiler_Tracker
http://motr.janelia.org/
http://www.bio-tracking.org/category/software
http://sourceforge.net/projects/mwt/
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PhenoTracker (Movie S21)   
 Availability and usability: commercial, easy to use, flexible

1
 

Raw output: 2D trajectories, basic pose
2
 

Requirements: Win
3
 

Maximum individuals: 50
(note 4)

 
Shape requirements: flexible

 

Identity method: maintained (size/markings) 

Analysis tools: basic kinematics, social behaviour
5
 

Taxa studied: flies, ants, fish, rodents
6
 

Required resolution per individual: 200 pixels
7
 

 Notes: 
1
Developed by TSE Systems. Available online at http://www.tse-systems.com/products/behavior/video-tracking-software/phenotracker/index.htm. Free trial version available. Software only or with integrated 

hardware. A constant and uncluttered background not required. Shadows, bedding material and objects can be present in the arena. Valid for conventional cameras and laboratory setups, including multiple arenas. Online 
support avaliable. 

2
Identity not maintained if individuals not marked. Basic pose icludes head, center of body, and tail. 

3
Server version also available, requiring web browser. 

4
Maximum tested, but in principle could do more. 

5Basic measurements per individual, such as body velocity, distance moved, turning rate, time spent in zone. Basic analysis for social interactions, including orientation towards or distance from other individuals. Can do 
statistical analyses between videos. 

6
See all publications at http://www.tse-systems.com/cgi-bin/refsearchn.pl?type=pub. 

7
Requires 4 pixels per individual for position only. 

SOS-track [18] (Movie S17)  
 Availability and usability: open-source, simple to use, flexible

1
 

Raw output: 2D trajectory, detailed pose (real-time)
2
 

Requirements: Win/Linux/Mac, Matlab  

Maximum individuals: 1
(note 3)

 
Shape requirements: flexible

4 

Identity method: not maintained
5
 

Analysis tools: basic kinematics, sensory biology
6
 

Taxa studied: flatworm, larvae, fly, fish, rodent
7
 

Required resolution per individual: variable
8
 

 Notes: 
1
Available online at http://sourceforge.net/projects/sos-track/. Valid for conventional cameras and laboratory setups. Suited for different organisms and arenas. Can track several arenas simultaneously. Ability to add 

and track accurate information about the environment-organism interaction. Ability to easily correct errors (e.g., head-tail swaps). Requires constant uncluttered background. 2Includes position of centroid, head, tail, and 
midpoint, and skeleton, curvature, and total area. Real-time data does not include pose information. 

3
Main package can track a single individual. Extendable to multiple individuals (Movie S17), but loses identity when 

individuals are similar (code available from authors upon request).  4Wide range of size and shaped individuals can be tracked, including elliptical, worm-shaped, and legged organisms. 5see note 3. 6Low-level motorsensory 
measurements (body posture, kinematic variables – angles, velocities, distances) and sensory information relevant to the individual (i.e., system can map relevant points along the individuals body to the sensory landscape, 
such as local orientation relative to the sensory gradient, or stimulus intensity at the front of the animal). Automated basic behavior classification available for worm-shaped animals: turns and head casts. 

7
Environmental 

control of behavior in Drosophila larva [18, 58], other taxa (unpublished). 8Can be set as a threshold, although pose tracking impossible at low resolutions.  

ZebraZoom [71] (Movie S18)  
 Availability and usability: open-source, simple to use, specific

1
 

Raw output: 2D trajectory, basic pose 
Requirements: Linux, Matlab, OpenCV, C++

2
 

Maximum individuals: 7
(note 3)

 
Shape requirements: zebrafish-like

4 

Identity method: crosses solved
5
 

Analysis tools: basic kinematics, basic behaviour
6
 

Taxa studied: zebrafish
7
 

Required resolution per individual: 350 pixels 
 Notes: 1Free online at http://sourceforge.net/p/zebrazoom/wiki/Home/. Limited flexibility to other setups. High-speed camera (~330 Hz). Probably requires tuning of several parameters to adapt it to a new set-up. Not ideal 

for interactions involving close encounters between individuals.  2Tested on Linux. 3Validation for up to 7 individuals, possibly system can deal with more. 4Optimized for zebrafish larvae, probably not generalizable to many 
other fish species. 5Tracking algorithm not robust to crossings - switching of identification between two larvae estimated to occur every ~109 s (density of 7 individuals). Solves crossings, making on average one mistake per 
animal every 110 seconds. 6For each behavior detected, extraction of output parameters per swim burst (i.e, number of oscillations, tail beat frequency, duration, orientation, distance travelled, mean speed) and parameters 
also calculated for population. Attached behavioral cluster package includes an automatic (trained) classifier of behaviors in three classes: slow forward swim, routine turn, and scape. 7Genetic and environmental drivers of 
behavior in zebrafish [71]. 

  

http://www.tse-systems.com/products/behavior/video-tracking-software/phenotracker/index.htm
http://sourceforge.net/projects/sos-track/
http://sourceforge.net/p/zebrazoom/wiki/Home/
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Table S2. Criteria for describing the automated image-based tracking systems in Table S1. 

 

Category Description 

Analysis tools Does the system automatically (or semi-automatically) output higher-

dimensional indices of trajectory and pose data, such as individual kinematics 

(e.g., body velocity, distance to wall) or between individual behaviors (nearest 

neighbor, relative velocity). Is there behavioral phenotyping available? What 

packages or add-ons are available to assist with behavioral analysis? 

Availability and 

usability 

Where can the system be obtained? How easy is the system to adapt to 

different experimental setups and how easy is the system to use? 

Shape requirements What body shape is the tracking system optimized for? 

Taxa studied List of taxa that have already been tracked with the system, and 

corresponding publications. 

Identity method Is the identity of individuals maintained through occlusions, or are they solved 

using movement models (see Box 3)? If they are maintained, then is this 

through i) markers, ii) body size, or iii) other more specific morphological or 

behavioral traits that we group under the umbrella of fingerprinting. See Figure 

2 (main text) for more information about identity maintenance. 

Required resolution 

per individual 

The approximate minimum size of individuals required for the system to 

perform in the way described in Table S1 (e.g. maximum number of 

individuals, ability to solve crossings, etc.). It is measured as the number of 

pixels that cover the area of an individual, averaged across a video in which 

the animals are as small (relative to arena size) as possible for the system. 

Maximum individuals Maximum number of individuals that can be tracked. 

Raw output Does the output of tracking include trajectories in 2D or 3D? Is any pose data 

collected, such as orientation or more detailed pose? Does the system run in 

real-time. 

Requirements What OS and any other software does the system require? Do you need any 

special imaging equipment, such as multiple cameras? 

 

 
 
 


