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ABSTRACT
This paper presents an adaptation of the admittance multimodal method for computing the mean flow
around an engine intake and the associated radiated acoustic field. The basic idea is to surround the
engine with a fictive duct with a perfectly matched layer on its outer wall which simulates far-field
conditions and avoids any acoustic reflection. The use of matching conditions between this duct
and the engine duct allows for calculating the flow and acoustic admittance matrices (and then the
associated fields) everywhere. The developed method, initially devoted to acoustic propagation, can
also compute the mean flow field with some adjustments and is very efficient if some assumptions are
added (typically an incompressible flow hypothesis in the far-field). The flow and acoustic results
are then compared against a finite element method and highlight the accuracy and efficiency of the
proposed approach.

1. INTRODUCTION
The intake of aircraft engines plays a frequency high-pass filter role which leads to an exponential

decay of cutoff modes, that can therefore generally be neglected. However, the evolution of engines
towards ultra high bypass ratio (UHBR) architectures has come with a shortening of the engine nacelle
for weight and drag reasons. This shortening significantly reduces the high-pass filter efficiency of
the duct. Therefore, it now becomes essential to account for these cut-off modes in the prediction
methods. Analytical models based on the Kirchhoff-Helmholtz method could be used to address their
radiation from the engine intake [1, 2, 3]. However, a more complex modelling is needed to accurately
predict the directivity patterns [4, 5]. Numerical simulations can be used to overcome these difficulties.
Among them, the finite element method (FEM) applied to the potential equation is a powerful tool
for computing acoustic far-field radiation but can be computationally expensive. The current paper
proposes an alternative and less computationally demanding multimodal approach. This method has
already been used for computing the acoustic radiated field and has demonstrated high performance,
making it suitable for optimization procedures [6, 7, 8]. However, like most multimodal methods, it
is currently limited to cases without mean flow. Previous articles have been devoted to the adaptation
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of the method to flow cases for in-duct computations [9, 10]. In this article, we propose to extend to
flow cases the multimodal method with radiation.

The original multimodal method with the radiation problem involves considering an isolated
duct surrounded by a fictive one with a larger radius and a perfectly matched annular layer (PML) on
its outer wall. This PML simulates an infinite domain by damping the waves that propagate inside.
In this article, we present a revised approach that considers in addition the presence of a mean flow.
At first, we rewrite the perturbation equation to account for the presence of a mean flow in a duct
with PML walls. Then we show that these equations can also be applied to compute the mean flow
by modifying the definition of the admittance matrices at the end of the ducts and by carrying out an
induction process on the density, as done in [10].

The paper is structured as follows. Section 2 provides a brief overview of the equations governing
the flow and acoustic fields and introduces the concept of PML walls. In section 3, we develop the
multimodal equations in a duct with PML walls in the presence of heterogeneous potential flow.
Section 4 explains the numerical procedure used to validate the method. The developed method is
then compared against a FEM code in section 5 where a parametric study is conducted. Finally, section
6 presents the conclusions and discussions of the study.

2. DESCRIPTION OF THE PROBLEM
2.1. Governing equations in a hard-walled duct

When performing acoustic calculations for an aircraft at take-off and approach conditions, the
flow properties are typically assumed to be those of an ideal gas with no viscous or thermal effects.
These assumptions, combined with an irrotational hypothesis for the flow in the intake, allow us to
model the unsteady velocity field of the flow as the gradient of a potential function.

In the following, all the parameters are transformed to be dimensionless (see [11] for more
details). The velocity vector, density, speed of sound and potential variables are written ṽ = V +
Re(v e𝑖𝜔𝑡) = (𝑈,𝑉,𝑊) + Re((𝑢, 𝑣, 𝑤) e𝑖𝜔𝑡), �̃� = 𝐷 + Re(𝜌 e𝑖𝜔𝑡), 𝑐 = 𝐶 + Re(𝑐 e𝑖𝜔𝑡) and 𝜙 =

Φ+Re(𝜙 e𝑖𝜔𝑡) respectively. Capital letters are linked to the mean flow variables and lower-case letters
to the acoustic variables. With these hypotheses and notations, the equations that govern the mean
flow are:

∇ · (𝐷∇Φ) = 0, V = ∇Φ,
𝐷𝛾−1

𝛾 − 1
+ 1

2
∇Φ · ∇Φ = 𝐸, (1)

where 𝛾 is the ratio of specific heats and 𝐸 is a Bernoulli constant, and the equation that governs the
acoustics writes:

∇ · (𝐷∇𝜙) − 𝐷 (𝑖𝜔 + V · ∇)
[

1
𝐶2 (𝑖𝜔 + V · ∇)𝜙

]
= 0. (2)

Hard-wall boundary conditions are considered at the wall for both the mean flow and the
acoustics. They write:

∇Φ · n = 0, ∇𝜙 · n = 0, (3)

with n the unit outgoing vector normal to the surface.

2.2. Governing equations in a duct with a PML wall
The goal is to simulate the propagation of acoustic waves within an isolated nacelle, without

any external support, and then radiate the resulting sound waves in the near field. To achieve this,
we model the nacelle as an axisymmetric waveguide and surround it with a duct that has a PML on
its outer wall to model far-field radiation conditions. This is illustrated in Figure 1. It appears that
the computational domain can be separated into three regions A, B and 𝒞. In the waveguide A, the
propagation is a standard in-duct acoustic propagation, while in the regions B and 𝒞, the propagation
occurs in a duct with a PML outer wall.
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Figure 1: Sketch of a generic turbofan inlet and the associated free-field radiation problem.

The equation governing the acoustic propagation inside an hard-walled duct has been given in
the section 1. Now in the scope of simulating far-field boundary conditions, this equation is slightly
modified to account for a PML. This PML is defined using the function 𝛼 which aims to modify
the radial coordinate 𝑟 into a stretched on �̃� and to damp the acoustic waves. Its values are complex
numbers inside the PML and are equal to one elsewhere [12]. Here the function 𝛼 is chosen to be:

𝛼 = 1 + 2(𝛼 − 1) 𝑟 − (𝑅2 − 𝛿)
𝛿

, (4)

with 𝛿 the size of the PML, 𝑅2 the radius of the outer duct and 𝛼 a complex number. When this
parameter is used, the radial derivative and the radius can be rewritten: 𝜕𝑟 = 𝛼−1𝜕𝑟 and �̃� = 𝛽𝑟, with

𝛽 = 1 + (𝛼 − 1) (𝑟 − (𝑅2 − 𝛿))2

𝛿
. (5)

In such a duct, the equation (2) becomes:

𝛼𝛽
𝜕

𝜕𝑥

(
𝐷
𝜕𝜙

𝜕𝑥

)
+ ∇⊥ · (𝐷𝐻∇⊥𝜙)

− 𝐷𝛼𝛽

(
i𝜔 +𝑈

𝜕

𝜕𝑥
+ V⊥ · (𝐿∇⊥)

) [
1
𝐶2

(
i𝜔 +𝑈

𝜕

𝜕𝑥
+ V⊥ · (𝐿∇⊥)

)
𝜙

]
= 0,

(6)

where ⊥ refers to the transverse direction and:

𝐻 =

(
𝛽/𝛼 0
0 𝛼/𝛽

)
, 𝐿 =

(
𝛽 0
0 𝛼

)
. (7)

The boundary conditions write:

( 𝜕𝜙
𝜕𝑥

e𝑥 + 𝐿∇⊥𝜙) · n = 0. (8)

3. MULTIMODAL EQUATIONS
3.1. Main equation

The in-duct multimodal method derived in [10] can be applied in the duct A. We aim to use the
same method in the ducts B and 𝒞, but we do not yet have the multimodal equations in the presence
of a PML wall. Therefore, the goal is here to obtain those equations. We begin by writing the weak
formulation of the equation (6) over a transverse cross section 𝑆 bounded by a contour Λ. It writes



after some manipulations:

d
d𝑥

(∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝑢𝑔∗ −

𝐷𝑈

𝐶2 𝛼𝛽 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜙𝑔∗(d𝑆
)
=

+
∫
𝑆

[
𝐷𝛼𝛽(1 − 𝑀2

𝑥 )𝑢
𝜕𝑔∗

𝜕𝑥
+ 𝐷𝐻∇⊥𝑔

∗ · ∇⊥𝜙

− 𝐷

𝐶2𝛼𝛽((i𝜔 + V⊥ · (𝐿∇⊥)) 𝜙 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝑔∗ +𝑈𝑢 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝑔∗

+𝑈𝜕𝑔∗

𝜕𝑥
(i𝜔 + V⊥ · (𝐿∇⊥)) 𝜙)

]
d𝑆

(9)

where 𝑔 is a test function, ∗ denotes the complex conjugate and 𝑀𝑥 = 𝑈/𝐶 is the axial Mach number.
We then project the variable 𝜙 and its axial derivative 𝑢 = 𝜕𝑥𝜙 on transverse cross-section

functions as in standard multimodal formulations. This basis is denoted (𝜑 𝑗 ) 𝑗∈N, and the variables
write 𝜙 =

∑
𝑗 𝜙 𝑗 (𝑥)𝜑 𝑗 (𝑥, 𝑟, \) and 𝑢 =

∑
𝑗 𝑢 𝑗 (𝑥)𝜑 𝑗 (𝑥, 𝑟, \) respectively. The test function 𝑔 in

equation (9) is chosen to be the complex conjugate of a basis function 𝜑∗
𝑖
, which yields:

d
d𝑥

(∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝜑 𝑗𝜑

∗
𝑖 𝑢 𝑗 −

𝐷𝑈

𝐶2 𝛼𝛽 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗𝜑
∗
𝑖 𝜙 𝑗d𝑆

)
=

+
∫
𝑆

[
𝐷𝛼𝛽(1 − 𝑀2

𝑥 )𝜑 𝑗

𝜕𝜑∗
𝑖

𝜕𝑥
𝑢 𝑗 + 𝐷𝐻∇⊥𝜑

∗
𝑖 · ∇⊥𝜑 𝑗𝜙 𝑗

− 𝐷

𝐶2𝛼𝛽((i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑∗
𝑖 𝜙 𝑗

+𝑈𝜑 𝑗 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑∗
𝑖 𝑢 𝑗 +𝑈 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗

𝜕𝜑∗
𝑖

𝜕𝑥
𝜙 𝑗 )

]
d𝑆.

(10)

This gives the equation that governs the axial variation of the base function amplitudes (𝜙𝜙𝜙, u) =

(𝜙 𝑗 , 𝑢 𝑗 ) 𝑗∈N in a duct with a PML wall:(
𝐴11 0
𝐴21 𝐴22

)
d
d𝑥

(
𝜙𝜙𝜙

u

)
=

(
𝑀11 𝑀12

𝑀21 𝑀22

) (
𝜙𝜙𝜙

u

)
, (11)

with:

(𝐴11)𝑖 𝑗 = (𝑀12)𝑖 𝑗 =
∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝜑 𝑗𝜑

∗
𝑖 d𝑆,

(𝑀11)𝑖 𝑗 = −
∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )
𝜕𝜑 𝑗

𝜕𝑥
𝜑∗
𝑖 d𝑆,

(𝐴21)𝑖 𝑗 = −
∫
𝑆

𝐷𝑈

𝐶2 𝛼𝛽 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗𝜑
∗
𝑖 d𝑆,

(𝐴22)𝑖 𝑗 =
∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝜑 𝑗𝜑

∗
𝑖 d𝑆,

(𝑀21)𝑖 𝑗 =
d
d𝑥

(∫
𝑆

𝐷𝑈

𝐶2 𝛼𝛽 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗𝜑
∗
𝑖 d𝑆

)
+

∫
𝑆

𝐷𝐻∇⊥𝜑
∗
𝑖 · ∇⊥𝜑 𝑗d𝑆

−
∫
𝑆

𝐷

𝐶2𝛼𝛽

(
(i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑∗

𝑖 +𝑈 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗

𝜕𝜑∗
𝑖

𝜕𝑥

)
d𝑆,

(𝑀22)𝑖 𝑗 = − d
d𝑥

(∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝜑 𝑗𝜑

∗
𝑖 d𝑆

)
+

∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝜑 𝑗

𝜕𝜑∗
𝑖

𝜕𝑥
d𝑆 −

∫
𝑆

𝐷𝑈

𝐶2 𝛼𝛽𝜑 𝑗 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑∗
𝑖 d𝑆.



This is the main equation of the problem that is solved in the ducts B and𝒞 using the multimodal
method. However, the question that remains is how the information is exchanged between the three
ducts.

3.2. Matching procedure
At the junction between the ducts, it is necessary to have a formulation that links the admittance

matrix 𝑌 (defined such that u = 𝑌𝜙𝜙𝜙) of each duct and another one that relates the potential amplitudes
𝜙𝜙𝜙. We impose continuity on the potential and use the mass conservation equation to obtain these
conditions. At the interfaces between the ducts, this implies that [6]:∫

A

(
𝜑A
𝑖

)∗
𝜙A d𝑆 =

∫
A

(
𝜑A
𝑖

)∗
𝜙B d𝑆,∫

𝒞

(
𝜑𝒞

𝑖

)∗
𝜙𝒞 d𝑆 =

∫
𝒞

(
𝜑𝒞

𝑖

)∗
𝜙B d𝑆,∫

B

(
𝜑B
𝑖

)∗
𝐷𝑢B d𝑆 =

∫
A

(
𝜑B
𝑖

)∗
𝐷𝑢A d𝑆 +

∫
𝒞

(
𝜑B
𝑖

)∗
𝐷𝑢𝒞 d𝑆,

(12)

where the subscripts and exponents A, B, and 𝒞 indicate that the variables or integrals are associated
with the ducts A, B, and 𝒞 respectively. In a matrix form, this writes:

𝜙𝜙𝜙A = 𝐹B
A𝜙𝜙𝜙B , 𝜙𝜙𝜙𝒞 = 𝐺B

𝒞
𝜙𝜙𝜙B ,

uB = 𝐹A
B uA + 𝐺𝒞

Bu𝒞,
(13)

where (𝐹B
A)𝑖 𝑗 =

∫
A (𝜑A

𝑖
)∗𝜑B

𝑗
𝑤Ad𝑆 is the transfer matrix from duct B to duct A, (𝐺B

𝒞
)𝑖 𝑗 =∫

𝒞
(𝜑𝒞

𝑖
)∗𝜑B

𝑗
𝑤𝒞d𝑆 is the transfer matrix from duct B to duct 𝒞, and 𝜑A

𝑖
, 𝜑𝒞

𝑖
are orthogonal with

respect to the weights functions 𝑤A , 𝑤𝒞 respectively. The admittance at the exit of the duct A is
therefore:

𝑌A = (𝐹B
A𝑌

−1
B (𝐼𝑑 + 𝐺B

𝒞
𝑌𝒞𝐺

𝒞

B )
−1𝐹A

B )−1. (14)

The admittances 𝑌B and 𝑌𝒞 are found by applying a multimodal method inside the ducts B and 𝒞

from their initial value at far-field to the matching region.

3.3. Mean flow computation
In a previous paper [10], it was shown that the multimodal approach could also be used to

compute the mean flow. The basic idea is that the equation that governs the acoustic propagation
without base flow and at zero frequency is equivalent to the one that governs the mean flow provided
that the density is known. Therefore, a mean flow computation can be performed using an acoustic
approach. To obtain the mean flow density, a convergence process is applied. However, the acoustic
computation becomes unstable when performed at zero frequency with a complex PML. Therefore,
for the flow computations, the PML is turned off and a large outer radius is chosen for the surrounding
duct so that the flow at its outer wall approximately matches the free-field desired Mach number.

Enforcing the ratio between the potential and axial velocity amplitudes associated with the
"plane wave" is another issue to consider when dealing with flow computations. For a single duct,
this is not a problem as the potential is defined up to a constant. Thus, imposing this ratio only fixes
the potential constant and has no impact on the results. However, in cases where multiple ducts are
present, it becomes necessary to enforce this ratio at different axial locations. It must be done in the
ducts B and 𝒞 in our case (in order to find 𝑌B and 𝑌𝒞 at the junction location). While one of the two
values can still be freely imposed to fix the potential constant, the other enforces a specific mass flow
distribution between the three ducts. We then conduct a convergence process to determine the value
of this second potential-to-velocity ratio required to ensure the desired mass flow distribution. One



could use a random guess for the initial value, but this would be time-consuming. A good guess for
this initial value can be obtained easily because the flow should be constant near the outer wall of the
upper duct since we want to represent free-field conditions. Indeed, in the free field, the potential can
be written Φ∞ = 𝑈∞𝑥 + 𝑐𝑠𝑡 where 𝑈∞ is the free-stream axial velocity (defined by the user). If the
constant is fixed by choosing an arbitrary potential-to-velocity ratio in duct B, then the initial guess of
the potential-to-velocity ratio in duct 𝒞 can be determined. Finally, the convergence process on this
second ratio stops when the Mach at the end of duct 𝒞 equals 𝑀∞.

4. VALIDATION PROCEDURE
4.1. Computation hypotheses

The computation can be directly carried out using the formulation derived in the previous
section. However, this does not offer any significant advantage compared to finite element methods.
In particular, the flow computation would be time-consuming due to the need for many polynomials
in the duct B to represent the strong velocity gradient near the stagnation point that appears near
the nacelle lip. Therefore, the flow is assumed to be incompressible in the duct B which leads to
a single point admittance calculation for computing the flow (constant cross-section and no density
variation). With this hypothesis, the time taken for the flow computation is similar to the one of an
in-duct computation.

4.2. Definition of test cases
A geometry representative of a CFM56 engine has been used in the following. The geometry

can be found on the GitHub of one of the authors (https://github.com/brumann/CFM56-geometry).
The nacelle is placed inside a mean flow with a free-stream Mach number of 𝑀∞ = 0.2 and density
𝐷∞ = 1, while at the fan plane, the Mach number is 𝑀 𝑓 = 0.5. The tip radius of the outer duct is
equal to 3 m. For all cases studied below, the acoustic injected mode is defined such that the root mean
square (RMS) pressure at the injection equals one at the outer wall.

4.3. Validation methodology
The validation is done using a FEM [13] which computes both the steady potential flow and

the acoustic field. It is important to note that for the FEM, the fan plane is moved backwards since
this method requires the flow to be uniform at its boundary, unlike the multimodal method. A mesh
convergence process was carried out for all presented test cases for the FEM.

In the case of the multimodal method, as the problem is axisymmetric, a single Fourier mode in
the circumferential direction is used. Chebyshev functions are used in the radial direction (this basis
is the same as in [9]). In the axial direction, an axial mesh density [8] equal to 0.5 in the ducts A and
𝒞 is used, and 100 points are used in the duct B (where the mesh criterion can be relaxed because
there are minor flow changes and no wall variation). The numerical parameters used in all ducts for
the mean flow and acoustic computations are summed up in Table 1.

Duct A Duct B Duct 𝒞 PML definition
Mean flow 25 polynomials 200 polynomials 25 polynomials —
Acoustics 50 polynomials 150 polynomials 100 polynomials 𝛿 = 0.5, 𝛼 = exp(i𝜋/4)

Table 1: Summary of the multimodal computation parameters.



5. RESULTS
5.1. Flow results

Three flow computations are conducted, including one with the FEM code and two with the
MM code. The first MM computation is performed without assuming an incompressible flow inside
the duct B to demonstrate the method’s ability to compute the precise mean flow. The second one
is done with the simplification hypothesis to check its validity. Figure 2 displays the axial velocity
contours obtained from these three computations. Although there are some minor differences in the
region associated with the domain B, the results are generally similar.

The small discrepancies between the FEM and exact MM computation can be attributed to
different definitions of the boundary conditions. In fact in the multimodal method, we assume an
hardwalled boundary condition at the outer wall while in the FEM the velocity value is fixed. The
differences between the full and simplified MM computations, only visible in duct B, are minor and
are not expected to affect acoustic computations. Therefore, we only use the flow field resulting from
the simplified MM computation in the following.

(a) FEM (b) MM

(c) MM with simplifed flow

Figure 2: Contours of normalized axial velocity.

5.2. Qualitative acoustic results
Some qualitative acoustic results are given to assess the multimodal method’s capability with a

PML wall to represent the radiation condition in the presence of mean flow. The simplified flow is
interpolated onto the acoustic grid for multimodal computations. For the FEM simulations which serve
as a reference, the same grid is used for the flow and acoustics to avoid errors from grid interpolation.

Figures 3 and 4 depict the sound pressure level (SPL) in dB for the injected modes (𝑚, 𝑛) =



(a) FEM (b) MM

Figure 3: SPL pressure field for a mode (𝑚, 𝑛) = (10, 1) at 𝜔 = 15.

(a) FEM (b) MM

Figure 4: SPL pressure field for a mode (𝑚, 𝑛) = (25, 1) at 𝜔 = 30.

(a) (𝑚, 𝑛) = (10, 1) at 𝜔 = 15 (b) (𝑚, 𝑛) = (25, 1) at 𝜔 = 30

Figure 5: SPL directivity for the modes (𝑚, 𝑛) = (10, 1) at 𝜔 = 15 and (𝑚, 𝑛) = (25, 1) at 𝜔 = 30.

(10, 1) at 𝜔 = 15 and (𝑚, 𝑛) = (25, 1) at 𝜔 = 30, obtained using the MM and FEM. The two
methods yield similar results. However, slight discrepancies can be observed near the injection and
are attributed to the differences in the definition of injection conditions. In Figure 3, non-physical
perturbations can be seen at the junction level (𝑥 = −2.05). These perturbations arise due to the
appearance of high-order modes generated by the poorly conditioned junction matrices. However,



these parasite fluctuations are quickly attenuated and seem not to propagate.
Figure 5 shows the SPL directivity for the two previously studied test cases. The directivity is

computed on an arc located 2 m from the engine exit, with 0 degrees corresponding to the forward
direction. We use the term "quiet zone" to refer to the area near the engine axis where the SPL is
low (below 50 dB). Despite the flow hypothesis used in the MM and the differences in the injection
boundary conditions, the radiation pattern given by the method is accurate for both modes, which
validates the chosen approach. Note that, as expected for modes close to the transition, the radiation
pattern presents one main lobe directed towards the forward arc with a large angle of the quiet zone
(peak radiation near 60◦ and 70◦). Investigating if the method also performs well when different
acoustic parameters vary is now necessary.

5.3. Parameter study for cut-on modes
In this section, we study the evolution of the directivity with regards to multiple parameters for

injected modes which remain cut-on throughout the whole duct. The parameter study encompasses
the variation of the nondimensionalized pulsation 𝜔, the circumferential mode order 𝑚, and the radial
mode order 𝑛. FEM computations are also performed to validate the results.

Frequency evolution
The same mode orders as studied above, (𝑚, 𝑛) = (10, 1) and (𝑚, 𝑛) = (25, 1), are taken but

the frequency is multiplied by 1.5 and 2 to evaluate the effects of frequency variation on the radiation
pattern. The results are shown in Figure 6. Both methods produce consistent results. Note that
the agreement is good for the azimuthal mode 𝑚 = 10 at all frequency but some minor differences
are observed for the mode 𝑚 = 25 at high frequency. From a physical perspective, we observe
that, the directivity patterns maintain roughly the same peak SPL levels as the pulsation 𝜔 increases.
But, at low frequencies, the directivity pattern is typically dominated by a single lobe, whereas at
higher frequencies, additional lobes appear. This suggests that different radial modes contribute to the
radiated field. This phenomenon can be explained by the creation of scattered radial modes within the
duct that become cut-on for higher frequencies and thus contribute to the radiated field. Furthermore,
we observe that the main radiation lobe is directed towards the forward-arc, which is an expected
behaviour given that all modes are cut-on modes. It should also be noted that the size of the quiet zone
decreases as the frequency increases, and the angle of the main lobe moves towards the engine axis.

(a) (𝑚, 𝑛) = (10, 1) (b) (𝑚, 𝑛) = (25, 1)

Figure 6: SPL directivity evolution with the increase of the frequency.

Radial order evolution
We start with both modes studied in the qualitative comparison and increase the radial order

of the injected mode to check its effect on the directivity. For the frequency, a frequency where all
the modes are cut-on is kept. We chose 𝜔 = 30 for the azimuthal order 𝑚 = 10 and 𝜔 = 45 for the



azimuthal order 𝑚 = 25 and look at the first three radial orders. The results are shown in Figure 7.
The results obtained using the proposed method are in good agreement with those obtained using the
FEM for all radial orders. The first observation is a decrease in the number of lobes in the radiation
pattern as the radial order increases. This result may initially seem counter-intuitive, but it can be
explained by considering the distance to the transition phenomenon. For instance, for the azimuthal
order 𝑚 = 10, when the radial order is 𝑛 = 3, the mode is weakly cut-on, which results in a weak
modal scattering [14]. As a result, we observe only three lobes in the directivity pattern. On the other
hand, when the radial order is 𝑛 = 1, the mode is well cut-on, and there is significant modal scattering
inside the duct, which leads to the five observed main lobes. In addition, we note that the pressure
levels are higher in the rear-arc for low radial orders. This behaviour can be attributed to the same
reason. Indeed the high-radial order modes generated by scattering mechanisms are weakly cut-on or
cut-off, and therefore they tend to have higher levels in the rear-arc [5]. Note that here the size of the
quiet zone does not vary for the different radial orders.

(a) 𝑚 = 10 at 𝜔 = 30 (b) 𝑚 = 25 at 𝜔 = 45

Figure 7: SPL directivity evolution with the increase of the radial order.

Azimuthal order evolution
Here the impact of the azimuthal order on the directivity pattern is evaluated. The radial order is

kept constant and equals one. Three azimuthal orders are considered, 𝑚 = 10, 20, 30 for the pulsation
𝜔 = 40. The results are shown in Figure 8. Once again the two methods agree on the directivity
patterns. As the azimuthal wavenumber increases, the number of lobes in the radiation pattern
decreases. These observations can again be explained by the distance to a transition phenomenon.
The further away from it, the more lobes are present in the radiation pattern and the smaller is the
angle of the quiet zone. Moreover as the azimuthal wavenumber order increases, the angle of the
main lobe increases. Therefore, the effect of the azimuthal mode is at the opposite of the one of the
frequency.

5.4. Parameter study for cut-off modes
Since the injection is moved backward in the FEM computation, cut-off comparisons cannot be

made as such. Therefore, the source amplitude is increased for the FEM computations to mitigate
the exponential decay in this extended part. Both radial order and frequency evolutions are examined
to understand their impact on the directivity when the injected mode is cut-off. The radial test cases
are conducted at 𝜔 = 30 for the azimuthal order 𝑚 = 10, and the frequency test cases are conducted
for a mode (𝑚, 𝑛) = (25, 1). First, for the azimuthal order 𝑚 = 10, the studied radial order ranges
from 𝑛 = 6 to 𝑛 = 8. 𝑛 = 6 is cut-on while the other ones are cut-off. Then, for the azimuthal order
𝑚 = 25, three different frequencies are tested: 𝜔 = 24.5, 24.7 and 25. For these frequencies, the
source amplitude is multiplied by 105 to avoid low SPL in the radiation pattern. The results are plotted



Figure 8: SPL directivity evolution with the increase of the azimuthal order for 𝑛 = 1 at 𝜔 = 40.

in Figure 9. Both methods agree on the directivity pattern for all cases except for the challenging mode
(𝑚, 𝑛) = (10, 8) where we are close to the numerical precision. For the radial order evolution, apart
from the exponential decay, scattering phenomena cause the injected mode to have almost no impact.
The directivity pattern for modes 𝑛 = 7 and 𝑛 = 8 is close to that of mode 𝑛 = 6. This suggests that
the directivity of cut-off modes is not explicitly dependent on the radial order of the injected mode
but rather depends on the one of the closest cut-on mode. Note that this conclusion can be derived
analytically for a constant cross-section duct by using the far-field directivity formulation derived by
Gabard & Astley [15]. The impact of the frequency is not as clear, but it seems that as it increases,
the main directivity lobe shifts towards the engine axis. Only one lobe is observed in all cases, which
comes from the fact that the injected mode radial order is 𝑛 = 1 and that no cut-on mode that could
alter the directivity pattern can be excited.

(a) Radial order evolution for 𝑚 = 10 at
𝜔 = 30

(b) Frequency evolution for (𝑚, 𝑛) = (25, 1)

Figure 9: SPL directivity of cut-off modes.

6. CONCLUSIONS
We have developed a modified multimodal method to compute the mean flow around an engine

intake and the acoustic radiation from this intake. This was achieved by surrounding the engine with a
duct with a perfectly matched layer wall, rewriting the acoustic propagation equation inside this duct,
and using connection formulas between the inner and outer ducts. Our proposed approach enables the
efficient calculation of the radiated field. The flow computation takes approximately 20 seconds for
the presented test cases, while the acoustic computations take between 20 and 60 seconds. Although
our method is faster than the FEM for all the presented test cases, the advantage of the method when
compared to FEM is not as important as for in-duct computations. Still, the formulation was validated
against FEM results and proved to be accurate in computing the mean flow and acoustic fields. A



parametric study has also been conducted using this method to understand the impact of various
parameters on acoustic radiation. It is found that the distance to the transition drives the main lobe
direction, while the highest radial cut-on mode order determines the number of lobes in the radiation
pattern.
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