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1 Abstract 
Global coarse-resolution (≥ 250 m) burned area (BA) products have been used to 

estimate fire related forest loss, but we hypothesised that a significant part of fire 

impacts might be undetected because of the underestimation of small fires (< 100 

ha), especially in the tropics. In this paper, we analysed fire-related forest cover 

loss in sub-Saharan Africa (SSA) for 2016 and 2019 based on a BA product 

generated from Sentinel-2 data (20 m), which was observed to have significantly 

lower omission errors than the coarse-resolution BA products. Using these higher 

resolution BA datasets, we found that fires contribute to more than 46% of total 

forest losses over SSA, more than twice the estimates from coarse-resolution BA 

products. In addition, burned forest areas showed more than twofold likelihood of 

subsequent loss compared to unburned ones. In moist tropical forests, the most 

fire-vulnerable biome, burning had even six times more chance to precede forest 

loss than unburned areas. We also found that  fire-related characteristics, such as 

fire size and season, and forest fragmentation play a major role in the 

determination of tree cover fate. Our results reveal that medium-resolution BA 

detects more fires in late fire season, which tend to have higher impact on forests 

than early season ones. On the other hand, small fires represented the major driver 

of forest loss after fires and the vast majority of these losses occur in fragmented 

landscapes near forest edge (< 260 m). Therefore medium-resolution BA products 

are required to obtain a more accurate evaluation of fire impacts in tropical 

ecosystems. 

 

2 Highlights 
- Sentinel-2 burned area detects higher fire-related loss than previous 

estimations. 

- Fires contribute to 46% of total forest losses in sub-Saharan Africa. 

- Burned areas in Moist Tropical Forest are six times more likely to be 

deforested than unburned ones.  

 

3 Keywords 
Sentinel-2, Burned areas, Fires, Wildfires, Deforestation, Forest loss, Tropics, 

Africa, Satellite Earth Observation 

4 Introduction  
Forests cover almost 30% of the land surface and play a central role in the climate 

system through their association with core physical and biochemical processes, 
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the hydrologic cycle, and atmospheric composition (Bonan, 2008). Forests are 

prone to several sources of disturbance and degradation leading to deforestation. 

Global gross forest losses are estimated at approximately 5 Mha yr-1 (Curtis et al., 

2018). Fires have been identified as a critical driver of forest area loss (Curtis et 

al., 2018; Liu et al., 2019; van Wees et al., 2021), especially in the sub-Saharan 

African (SSA) continent, the most affected by fires. This region is responsible for 

over two-thirds of the global area burned (Lizundia-Loiola et al., 2020) and for more 

than half of the global pyrogenic greenhouse gas emissions (van der Werf et al., 

2017). For these reasons, it was chosen as a priority to derive a continental burned 

area (BA) product at 20 m resolution based on the Multi-Spectral Instrument (MSI) 

onboard the European Space Agency’s Sentinel-2 (S-2) satellite. A first version of 

this dataset was produced for 2016 using a single S-2 satellite (Roteta et al., 2019) 

and a more recent one for 2019 included the two S-2 satellites currently in 

operation (Chuvieco et al., 2022). The resulting product, named FireCCISFD20, 

was validated using a dedicated spatial sampling, obtaining significantly lower 

omission errors than for products based on coarse-resolution BA sensors 

(Chuvieco et al., 2022; Stroppiana et al., 2022). 

Among fire impact assessments, large-scale estimations of fire-induced forest loss 

are very limited and associated with several sources of inconsistency. Some 

authors have linked the 30-m Global Forest Change (GFC) dataset with associated 

drivers based on reference samples (Curtis et al., 2018). These authors estimated 

that only 22 to 29% of forest loss globally was related to fires, and much less in 

Africa (< 2%). Crop cultivation was considered the main driver of deforestation in 

this continent, resulting from the increasing demand for agricultural products 

associated with the high rate of population growth (Rudel, 2013). However, these 

estimations generally ignore fire practices such as slash burning, which are 

commonly involved during conversion to agriculture (Doggart et al., 2020; van 

Wees et al., 2021). Due to the considerable challenge of accurately identifying 

slash-and-burn fires, the mentioned approach focused exclusively on large burn 

patches that were not followed by any subsequent conversion to cropland (Curtis 

et al., 2018). Consequently, the classification model's capacity to account for the 

contribution of smaller fires was constrained, acknowledging a substantial 

uncertainty. Additionally, the use of fire as a practice of conversion whether solely 

or jointly with other practices (e.g. mechanical cutting) is always leading to similar 

consequences in terms of Greenhouse Gas emissions, aerosol plumes, soil 

degradation (Davidson et al., 2008; Pellegrini et al., 2018) and biodiversity loss 

(Styger et al., 2007). These fire-enabled practices are significantly more damaging 

in comparison with fire-free conversion methods such as slash-and-mulch 

(Davidson et al., 2008) or agroforestry systems (Clark et al., 2016).  
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To account for all kinds of forest fire events, other authors aggregated the GFC 

data to the native resolution of global fire products (500 m) concluding with an 

overall estimation of fire-related forest loss of 20% over SSA (Liu et al., 2019; van 

Wees et al., 2021). This estimation is deemed conservative since small fires are 

mostly undetected in coarse-resolution global BA products (Ramo et al., 2021). In 

fact, a significant increase of fire-related forest loss was reported, especially in the 

tropics, when active fire observations were used for BA estimations through a 

statistical model (van Wees et al., 2021). This approach provided a first estimation 

of 31% of fire-related forest losses, yet omitting a large proportion of small, fast-

spreading or low-intensity fires that the active fire sensor missed during the actual 

burning process.  

In this study, we used more accurate BA information derived from a higher-

resolution sensor to obtain improved estimations of fire-related forest loss, 

particularly in regions with frequent and fragmented fires such as SSA. We cross-

analysed high-resolution (≤ 30 m) BA and forest cover loss datasets generated 

from satellite sensors for the SSA, and compared the results with previous 

estimations based on coarse-resolution (≥ 250 m) satellite data. We defined fire-

related forest loss as any causal relationship where fire is associated with forest 

loss. This includes situations where fire and forest loss occur simultaneously (e.g. 

wildfires), cases where forest loss follows a fire event (e.g. tree mortality 

subsequent to fire damage), and instances where forest loss precedes fire but both 

occur in the same year and typically within a couple of weeks (e.g. slash-and-burn).  

We examined, across different biomes (Dinerstein et al., 2017) of the whole SSA 

region, fire impacts on forest cover change, as estimated from two datasets: the 

Global Forest Change (GFC) v.1.8 (Hansen et al., 2013) and two years of the 

FireCCISFD BA products generated from S-2 MSI images at 20 m resolution. Fire 

impacts on forest loss were estimated from these BA datasets and compared, for 

the same years and area, with two global BA products based on MODIS data, 

namely MCD64A1 Collection 6  (at 500 m), the standard BA product of NASA 

(Giglio et al., 2018), and FireCCI51 (at 250 m), created within the European Space 

Agency’s Climate Change Initiative (CCI) Programme (Lizundia-Loiola et al., 

2020), the same as the FireCCISFD’s, but with a different algorithm and sensor. A 

similar comparison was performed with the GLAD fire-related forest loss dataset 

developed by the Global Forest Watch, using a sample-based unbiased estimator 

of forest loss drivers (Tyukavina et al., 2022). Fire-related forest loss was analysed 

by biome and country, while the assessment of the relationship between fire 

occurrence and tree cover loss included three different factors influencing 

deforestation: seasonal patterns, fire energy released and distance to forest 

edges. We hypothesised that: 1) fires with higher released energy (Fire Radiative 

Power, FRP) would imply a higher chance of forest loss; 2) late-season fires would 
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be more severe, as vegetation would be drier, and therefore more prone to 

deforestation or forest dieback, and 3) burning in fragmented landscapes located 

at forest edges is more likely to trigger forest loss due to light penetration and drier 

microclimate.   

5 Materials and methods 

5.1 Main input datasets 

FireCCISFD products include two years of BA at 20 m resolution detected over 

SSA based on reflectance images acquired by the Multi-Spectral Instrument (MSI), 

onboard the S-2 satellite, complemented with active fire observations. The 2016 

version, called FireCCISFD11, was generated from S-2A data in combination with 

the MODIS active fires (MCD14ML), whereas, the second version (2019), called 

FireCCISFD20, included images acquired by both S-2A and S-2B satellites in 

order to improve the revisit time from 10 to 5 days, while MODIS active fires were 

replaced with an active fire product derived from the Visible Infrared Imaging 

Radiometer Suite (VIIRS) sensor onboard the Suomi-NPP satellite (Schroeder et 

al., 2014) and NOAA-20. VIIRS offers higher spatial resolution for active fires 

(375 m) than MODIS (1 km). Although we performed the analysis with the two 

years of S-2 data, we mostly focused on 2019, since in this year the two S-2 

satellites were in orbit (S-2B was launched in 2017), and therefore the product had 

lower omission and commission errors (8.5 and 15%), than the 2016 product (26.5 

and 19.3%, respectively), which was based on a single S-2 satellite (Roteta et al., 

2019; Stroppiana et al., 2022).  

The BA algorithm for the two years have a similar structure, based on 

multitemporal change detection over all cloud-free scenes and backs up to 4 

previous images in the case where clouds are contaminating the observations. The 

NIR spectral band (8A) of S-2 MSI, and two spectral indices were used as input 

for the BA algorithm, the Mid-Infrared Burned Index (MIRBI) and the Normalized 

Burned Ratio 2 (NBR2). The BA detection process included four major steps. First, 

an unburnable mask was created based on the scene classification map , then, 

the three abovementioned variables in addition to their multitemporal difference 

were used to generate an initial burn classification by applying fixed thresholds. 

The outputs of this classification were later overlaid with the VIIRS Active Fire 

hotspots in order to obtain the confirmed burned pixels, which were used to 

compute regional thresholds. These thresholds were applied for producing the final 

BA classification using a two-stage procedure, high-probability seeds were first 

detected and then neighbouring burned areas with lower probabilities were 

mapped. Intercomparisons were performed against two common global BA 

products. (Chuvieco et al., 2022; Roteta et al., 2019). 
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The coarse-resolution BA products were designed to provide global information on 

fire occurrence. They were generated by applying a hybrid approach combining 

MODIS active fire observations with a multitemporal change detection process. 

This process was carried out using a vegetation index based on MODIS SWIR 

bands at 500 m for MCD64A1 Collection 6 (Giglio et al., 2018), while MODIS 250 m 

NIR band was used in the case of FireCCI51 (Lizundia-Loiola et al., 2020). 

As for the analysis of forest cover loss, tree cover layers were obtained from the 

Global Forest Change (GFC) v.1.8 dataset (Hansen et al., 2013). The GFC 

provides the fraction of forest tree cover of the year 2000 along with the annual 

changes (loss/gain) at a medium spatial resolution (30 m). This dataset was 

derived from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 

Operational Land Imager (OLI). Forest cover map was obtained by applying a 30% 

threshold to convert the fraction of tree cover to a forest/non-forest binary layer 

similarly to previous studies (Hansen et al., 2020; Taubert et al., 2018). This binary 

layer was used as the baseline of forest extent in 2000, then the annual binary 

layers of forest loss/gain were used to update yearly tree cover extent and get the 

most recent one prior to the year of processing. 

The spatial analysis was performed based on terrestrial biomes obtained from the 

Ecoregions2017 dataset (Dinerstein et al., 2017), which provides a map of Earth’s 

846 terrestrial ecoregions and 14 biomes. The SSA comprises 8 terrestrial biomes, 

however, due to the insignificant size of some of them, a reclassification to major 

biomes was performed. This reclassification was similar to the approach adopted 

by other authors (Boschetti et al., 2016; Franquesa et al., 2022; Padilla et al., 

2014), except for tropical forests where the merging between dry and moist tropical 

forests obscured their significant differences in terms of fire activity and impacts 

caused by fuel moisture content and therefore they were kept discriminated (Table 

A.1).  

5.2 Estimation of fire-related forest loss 

Fire-related forest loss refers to the different situations where fire is directly linked 

with the process of tree cover loss. These losses include irreversible forest cover 

conversion as well as disturbances followed by regrowth. In addition to forest loss 

observed during the year of fire detection, several authors found a significant tree 

stand-replacement during the succeeding years (Liu et al., 2019; van Wees et al., 

2021). To balance the trade-off between delayed fire-induced tree mortality and 

commission errors related to tree mortality caused by factors other than fire, one 

lag year of losses was taken into account, following the proposal of van Wees et 

al. (2021). For instance, to assess fire-related losses of 2019, forest losses of 2019 

and 2020 were aggregated. The GFC dataset was resampled to the 20 m 

resolution using the nearest neighbour method in the case of FireCCISFD, while 
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in the case of coarse-resolution BA products, it was aggregated to the native 

resolution of each product (500 for MCD64A1 and 250 m for FireCCI51). The three 

layers of fire-related loss were then aggregated to a 0.05° resolution grid. Finally, 

the average value was estimated using proportional weights corresponding to the 

gross forest loss within each grid cell. This procedure was implemented in order to 

minimize the dominance of cells with very low forest losses (i.e. up to 90% 

experienced less than 0.05% of losses).  

Two calibration parameters served to compute uncertainty. The first concerns 

threshold values of tree cover fraction of GFC, in which 6 different values were 

assessed (1, 10, 20, 30, 40 and 50%). The inclusion or exclusion of the lag year 

was the second parameter. Similar adjustments were also considered by Liu et al. 

(2019) and van Wees et al. (2021). The 95% confidence interval was used in our 

study rather than the range between the minimum and maximum estimates. 

The other parameter analysed at this stage was the fraction of loss in burned 

forest, which refers to the proportion of the total forest burned area that 

experienced a forest loss. Once again, the losses of the following year to fire event 

were considered as fire is assumed to be the main driver of loss in such case.   

Due to the limited temporal resolution of medium-resolution satellite missions (~5 

days for the two Sentinel-2 satellites and ~8 days in the case of using two 

Landsats), the comparison between fire and forest loss dates entails substantial 

uncertainties. Therefore, we consider forest loss as fire-related as long as they 

both occur in the same year or when fire precedes tree cover loss by one year 

(delayed mortality).  

5.3 Modelling of fire-related forest loss drivers  

In order to assess the factors driving fire-related forest loss, an Extreme Gradient 

Boosting model (XGBoost) (Chen and Guestrin, 2016) was implemented. The 

model linked four categories of variables to the fraction of forest loss at 0.25º grid 

cells, including fire traits, forest structure characteristics climatic variables and 

human factors. The model parameters were optimised using a 10-fold cross-

validation approach and we used 80/20 train-test splits. To mitigate overfitting 

issues the “early_stopping_rounds” functionality was applied, which ceases the 

growth of trees once the log-loss stops decreasing.  

Concerning fire traits, the total forest BA was aggregated and grid cells with less 

than 5 ha of total BA (i.e. less than 0.007% of the cell is burned) were ignored as 

they represented insignificant statistics about fire regimes. Areas with frequent 

fires such as Tropical Savanna were expected to exhibit higher resistance to fires 

and lower proportions of losses (Hoffmann et al., 2003). The difference between 

burn day (BD) and the mid-fire season was calculated for each native pixel and 
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then the aggregation to grid cells was performed using the 75th percentile. The 

rationale behind this aggregation was to assess the symmetry of BD distribution, 

and in particular, the prevalence of late-season fires, presumably leading to more 

severe impacts (Govender et al., 2006). Depending on the hemisphere, fire season 

considerably diverges. In general terms, the regular fire season extends from 

November to February in the Northern Hemisphere of SSA, while most fires in the 

Southern Hemisphere occur from June to September (Ramo et al., 2021). The 

remaining fire-related variables were derived after delineating fire patches (FPs). 

The main aggregation parameter to build these FPs is the maximum burn date 

time-gap between two neighbouring pixels that has been fixed at 6 days. As a first 

step, pixels sharing the same BD are grouped into clusters under an eight-

neighbour queens adjacency scheme. Then clusters are aggregated into FPs to 

generate unique-ignition point FP as described in Oom et al. (2016).  

Self-organized criticality (SOC) (Bak et al., 1988) has been widely used to explain 

the distribution function of fire sizes (Laurent et al., 2018; Malamud et al., 1998) 

following a power law: 

𝑁𝐹𝑃 =  𝛼. 𝐴𝐹𝑃
−𝛽 (1) 

Where AFP refers to the area of the fire patch, NFP  is the number of fire patches of 

a given size AFP, α is a normalization constant and β (Beta elsewhere in the paper) 

is the exponent of the power law or the slope of fire distribution function. A value 

of zero for Beta indicates constant fire size density, while a high value translates a 

high frequency of small fires with respect to large ones. This parameter was fitted 

at grid cells of 0.25° for fires larger than 1 ha. Fire density (Density) was calculated 

based on the number of FPs within each cell. Since small fires were predominant, 

a strong skewness of the mean fire duration was observed, and therefore, this 

variable was reformulated as: 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑙 + 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑙𝑎𝑟𝑔𝑒

2
 (2) 

  
Where: Durationall  is the mean duration in grid cell and Durationlarge is the mean 

duration of fires exceeding 100 ha. 

The fire radiative power (FRP) was used as a proxy for fire intensity. FRP estimates 

the radiant heat power released by fires during the combustion process (Wooster 

et al., 2005). It was derived from VIIRS active fires, and aggregated to the 

modelling grid cell by using the median following Laurent et al. (2019). On the other 

hand, a detailed analysis of FRP distribution by BA product was performed. The 

corresponding value of FRP was attributed to burned pixels falling within 375-m 

buffer from each active fire, and in the case a pixel overlaps with several active 
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fires (i.e. from different time observations), the maximum value of FRP was 

retained.  

The impact of forest structure on forest loss was taken into account in the predictive 

model using two variables: the distance to forest edge (Edge-distance) and the 

Above-Ground Biomass (AGB). The former was generated by computing the 

proximity of fire events to the first non-forest pixel. The overall distribution of this 

feature was evaluated, and then aggregated by averaging. The AGB was derived 

from the ESA-CCI Biomass product (100-m) for the year 2018 (Santoro and 

Cartus, 2021) and was aggregated by averaging as well.  

Climate-related explanatory variables were retrieved from the TerraClimate 

dataset (Abatzoglou et al., 2018), from which, six variables were included in the 

model,  namely the annual rainfall (Rainfall, mm.yr-1), the annual mean maximum 

temperature (Tmax, °C), the annual actual and potential evapotranspiration (AET 

and PET, respectively in mm.yr-1), the annual soil moisture (Soil, mm.yr-1) and the 

annual mean vapour pressure deficit (VPD, kPa.yr-1). The Markham Seasonality 

Index (MSI) (Markham, 1970) was calculated based on the monthly precipitation. 

It describes the rainfall distribution over the year. A value of 0% implies an 

equivalent distribution over the months, while 100% indicates that all rainfall occurs 

in a single month. Monthly values are considered as vectors, where the magnitude 

is defined by the corresponding rainfall (Pm) and the direction, is defined by an 

angle θm. The 365 days of the year are represented by a circle (2π = 6.28 radians).  

The angle θm denotes the position of the mid-day of each month within the year 

circle (e.g., January 0.267 radians; February 0.775 radians; March 1.282 radians, 

etc.). Then, these vectors are summed following: 

𝑀𝑆𝐼 (%) =
√(∑ 𝑃𝑚  𝑠𝑖𝑛(𝜃𝑚)

12

𝑚=1
)

2

+ (∑ 𝑃𝑚 𝑐𝑜𝑠(𝜃𝑚) 
12

𝑚=1
)

2

∑ 𝑃𝑚 12
𝑚=1

∗ 100 
(3) 

Climate-related variables for the year of fire (2019) as well as the previous and 

subsequent ones were averaged to characterise the conditions before and after 

fire events.  

Human factors have been identified as major drivers of deforestation in SSA, 

particularly through shifting agriculture (Curtis et al., 2018). The net rate of 

cropland expansion between 2003 and 2019 was derived from Potapov et al. 

(2022). While population density (Population, persons per km2) was derived from 

Tatem (2017), the human development index (HDI), developed by the United 

Nations Development Programme as to measure nations' welfare, was retrieved 

from Kummu et al. (2018). This index ranges from 0 to 1 and could account for 

differences in living conditions of different regions and can be used as an indicator 

of population prosperity (Chuvieco et al., 2021). Finally, Gridded Livestock of the 
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World (GLW 3) (Gilbert et al., 2018) was used to estimate the livestock density 

(Livestock) in Tropical Livestock Units (TLU) expressed as 250-kg-equivalent of 

animal units. The TLU coefficients were defined by the Food and Agriculture 

Organization (FAO) using a scale of 0.7 for cattle, 0.5 for buffaloes and 0.1 for 

goats and sheep (Bernardi et al., 2019). All climate and human datasets were 

aggregated to the same grid size (0.25°) by averaging.  

Predictor features importance was estimated using the SHAP (Shapley Additive 

exPlanations) Python library (Lundberg and Lee, 2017). The feature importance 

values, called Shapley values, were used as a proxy to evaluate the impact of each 

predictor variable on the target. These values are based on the cooperative game 

theory (Shapley et al., 1953). The model is retrained on all feature subsets 𝑆 ⊆ 𝐹, 

where 𝐹 is the set of all predictor features, and then an importance value is 

calculated for each feature that represents a non-zero effect on the model 

prediction. To compute the effect of a feature 𝑖 in the observation 𝑗 (grid cell in our 

case), for each subset 𝑆 ⊆ 𝐹 ∖ {𝑖}, a model 𝑓𝑆∪{𝑖} including the feature 𝑖 is trained, 

and another model 𝑓𝑆 is trained with 𝑖 withheld. The predictions from the two 

models are compared based on the current input 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆), where 𝑥𝑆 

refers to the values of the input features in the set 𝑆. The Shapley values are then 

computed. They are a weighted average of all possible differences: 

𝜙𝑖,𝑗 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
𝑆⊆𝐹∖{𝑖}

 [𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]
𝑗
 (4) 

  
Where 𝜙𝑖,𝑗 refers to the Shapley value of the feature 𝑖 in the grid cell 𝑗. This method 

has the potential to appropriately handle multicollinearity (Lundberg and Lee, 

2017) conversely to feature importance approaches used in common machine 

learning models such as Random Forest (Zhou et al., 2021). An example of 

additive Shapley values is shown in Fig. A.1. 

6 Results and Discussion 

6.1 Overview of fire activity in SSA forests 

The total BA estimated by FireCCISFD in 2019 was 4.8 Mkm2 (4.9 Mkm2 in 2016), 

out of which approximately two-thirds occurred in forest covers, that is 68 % (63% 

in 2016). For the entire SSA region, the FireCCISFD BA products detected in both 

years significantly higher forest BA than the two coarse-resolution products: 2.08 

times more than MCD64A1 and 1.66 times more than FireCCI51 in 2019. The 

ratios were a bit lower for 2016: 1.71 and 1.38 times more, respectively (Table 1), 

because of the higher omission errors for 2016: 26.5% (Roteta et al., 2019) 

compared to 8.5% in 2019 (Chuvieco et al., 2022), as the 2016 product was 

derived from a single S-2 satellite. The underestimation by coarse-resolution BA 
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products was considerably more pronounced in Dry Tropical Forest (DTF), where  

the S-2 product detected 2.5 times more burned forest than MCD64A1, and in 

Moist Tropical Forest (MTF), principally in 2019 where S-2 detected 4 times more 

forest BA than coarse-resolution products. Such a result confirms the significant 

omission rates of global BA products in tropical forest fires reported by other 

authors (Boschetti et al., 2019; Franquesa et al., 2022). In fact, for the same year 

of study (2019) and using the same validation strategy, authors reported that 

FireCCISFD20 only omits 21.2% of tropical forest fires, whereas MCD64A1 and 

FireCCI51 failed to detect 70.9 and 61.9%, respectively (Chuvieco et al., 2022; 

Franquesa et al., 2022). 

Table 1 | Fraction of burned forest per biome over the different BA products 

All BA products confirmed that Deserts & Xeric Shrublands (DXS in Table 1), which 

are the dominant biome of the northern Sahel as well as the Mediterranean zone 

of the Cape region, have marginal forest fires because of fuel scarcity and low 

forest cover. The DXS biome contributes to less than 1% of SSA’s total BA 

although it covers nearly a quarter of the total area (Table A.1), which can be 

attributed to the prevalence of unburnable barelands and very sparse fuel-limited 

Aggregated 
biomes 

Forest 
area 

in 
2019 

(x1000 
km2) 

Fraction of burned forest in 
2019 (%) 

Forest 
area 

in 
2016 

(x1000 
km2) 

Fraction of burned forest in 
2016 (%) 

FireCCISF
D 

MCD64A
1 

FireCCI5
1 

FireCCISF
D 

MCD64A
1 

FireCCI5
1 

Tropical 

Savanna 

(TrS)  

2922.

7 
46.6 23.8 30.3 

2975.

5 
42.9 26.2 32.5 

Moist 

Tropical 

Forest (MTF) 

2411.

6 
7.3 1.8 1.8 

2487.

1 
5.7 2.2 2.7 

Dry Tropical 

Forest (DTF) 
49.0 31.5 12.6 17.1 50.9 30.8 10.7 14.8 

Temperate 

Savanna 

(TeS)  

34.0 20.6 9.0 13.6 35.6 18.7 8.3 13.0 

Deserts & 

Xeric 

Shrublands 

(DXS) 

11.4 12.4 2.7 6.2 12.4 18.3 4.4 9.7 

Mediterranea

n (Med) 
11.5 3.0 2.2 2.0 12.0 5.6 3.5 3.3 

SSA 
5440.

2 
28.7 13.8 17.3 

5573.

5 
25.9 15.1 18.8 
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vegetation (Fig. A.2) (Krawchuk and Moritz, 2011; Mondal and Sukumar, 2016), 

and where only rare and large fire events occurring during wettest years can have 

enough fuel to burn (Hantson et al., 2017). The Med biome, which covers a small 

area in the region (< 0.5% of SSA), shows low fire occurrence rates and hence 

contributes to a marginal proportion of the total BA across SSA (< 0.15%). 

Therefore, DXS and Med biomes were omitted from further analyses. 

6.2 The role of fire in forest loss 

The analysis of all BA products showed that fire is a major driver of land cover 

changes in general, and of forest loss, in particular, with a special evidence in the 

FireCCISFD datasets. When combining forest change for two years after burning, 

we estimated that on average a burned forest pixel had more than twice the chance 

to be converted to another land cover than an unburned pixel (2.15 times in 2019 

and 2.52 in 2016), with lower proportions for the coarse-resolution BA products, 

particularly in Moist Tropical Forest and Temperate Savanna (Fig. 1). Fires were 

found to be involved in almost half of forest losses in SSA (46 ± 3.80% in 2019 and 

47 ± 4.21% in 2016).  

 

Fig. 1 | Forest loss proportions in each biome attributed to unburned and 

burned area (for different BA products). Unburned refers to forest areas 

classified as not burned in the FireCCISFD product.  
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Depending on biomes and the year of study, fire-related forest cover loss ranged 

from 32 ± 1.83% to 75 ± 3.65% of total losses (Fig. 2). The lower values were found 

in MTF because of their dense canopy and high moisture, which constrain fire 

ignitions and limit fire spread (Krawchuk and Moritz, 2011). However, the relative 

impact of fire occurrence on forest losses was prominent in this biome as well (Fig. 

1). In fact, in MTF the probability of a burned forest to change to another cover was 

up to 6 times higher than for unburned areas in 2019 and 8 times higher in 2016. 

It suggests that although fire activity was limited in MTF, its relative repercussions 

on forest cover were prominent, mainly because of the limited resistance of MTF 

trees to fire events (Poorter et al., 2014; Scheper et al., 2021). Most MTF tree 

species carry poor resistance strategies thus experiencing high mortality during 

fires, along with poor post-fire recovery, observed even after several years from 

burning (Ferry Slik et al., 2002; Nikonovas et al., 2020).   

 

Fig. 2 | Fire-related forest loss comparison between BA products. The bars 

refer to the average of the best estimate of fire-related loss weighted by the area 

of forest loss within each grid cell of 0.05°. The error bars denote the 95% 

confidence interval, while for GLAD, there was no uncertainty estimate provided.  

Similar findings were observed in dry forests (DTF), particularly during 2016 when 

the fraction of forest cover loss was more than 6 times higher in burned patches 

than in unburned ones. The conjunction of the high probability of forest fires to be 

followed by loss and the high level of fire occurrence in 2016 resulted in a fire 

contribution to forest losses reaching 75%, significantly higher than in 2019 (52 ± 

3.24%). The extreme drought conditions prompted by the 2015–2016 El Niño 

Southern Oscillation event are likely to be the main driver of the larger loss of DTF 
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from fires, since those water-limited forest ecosystems are very sensitive to the 

interannual weather variability (Ahlstrom et al., 2015).  

In tropical savannas (TrS) tree species are well adapted to fires and therefore the 

subsequent losses were lower compared to other biomes (only ~1% in 2016 and 

2019). Fire-adapted tree species of savanna ecosystems are avoidant (self-

pruning or elevated canopy base height preventing surface fires to extend to the 

canopy) and resistant to fire, through specific life-history strategies and functional 

traits (Bond et al., 2005; Pausas, 2019; Pausas et al., 2004). These species also 

present efficient resilience traits thanks to their greater allocation to coarse roots 

and their plastic responses to light in comparison with other forest species 

(Hoffmann and Franco, 2003; Hoffmann et al., 2003). These strategies involve 

sprouting and allow seedlings to survive next fires (Bond et al., 2005). Moreover, 

fire and herbivory interactions constitute another mechanism that facilitates tree 

recovery in TrS. High levels of grazing reduce grass fuel load, which is later 

reflected in a lower flammability and intensity of fires, with lower tree damage and 

a higher competitive advantage for trees to acquire resources (Van Langevelde et 

al., 2003). These mechanisms reduce the impacts of fire on TrS tree cover loss. 

Nevertheless, due to the frequent and intense burning regimes within this biome, 

fire remains the major source of tree disturbances and drives more than 60% of 

forest loss. In temperate savannas (TeS) the abundance of temperate highland C3 

grass species is generally altering fire spread and activity, yet in the north-eastern 

zone of the Highveld grasslands associated with important tree cover proportions, 

exceptional fire activity was observed, which highly contributed to forest losses 

(Fig. A.3). It is worthwhile to mention that the threshold used for forest cover 

fraction (30%) excludes sparse trees in savannas (both TrS and TeS), which is 

probably the main reason for the relatively high uncertainties in TrS.  

On average, S-2 BA products give more than twice larger fire-related forest loss 

than the coarse-resolution products. Substantial differences were found in MTF, 

especially in 2019 where MCD64A1 and FireCCI51 failed to estimate a significant 

proportion of BA (Table 1) and gave 5 and 10 times less fire-related loss than S-2, 

respectively. This might also suggest that the lower omission errors of the 2019 

version of FireCCISFD provided an enhanced potential to capture an additional 

proportion of small fires leading to forest damages within humid ecosystems. 

Significant differences were also noticed in the rates of forest loss fractions within 

burned regions detected using the different products (Fig. 1). These differences 

are mainly linked to the commission errors of coarse-resolution products, which 

engender an interference of actually unburned areas generally implying smaller 

fractions of forest loss. Additionally, the omission of small-scale fragmented burns 

used to clear forests lowers the estimations of the contribution of fire to forest loss 

in coarse-resolution datasets, which aligns with the fact that more than 60% of 
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small fires (< 125 ha, in this reference) detected by S-2 BA in 2019 were missed 

by coarse-resolution products (Chuvieco et al., 2022).  

The comparison with the GLAD product (30 m) (Tyukavina et al., 2022) revealed 

an underestimation of forest loss due to fires, 45% less than our S-2 based 

estimations and 15% smaller than the coarse-resolution BA products. The main 

reason of this discrepancy is linked to the more restrictive GLAD definition of fire 

as a driver of forest loss, based on a classification model of forest loss drivers 

where fire attribution includes only wildfires not followed by agricultural activities 

(Tyukavina et al., 2018; Tyukavina et al., 2022). Therefore, using such an 

approach it was reported that shifting agriculture accounts for 92% of forest losses 

in Africa, while wildfires drive no more than 1% of these losses (Curtis et al., 2018). 

In reality, fire is strongly associated with shifting cultivation through slash-and-burn 

practices (Davidson et al., 2008), but Earth observation sensors cannot accurately 

distinguish whether fire initiates or follows deforestation practices, given the short 

time intervals in which these events occur (typically 1-2 months). Moreover, burned 

lands (also called swiddens), particularly over fertile soils, are exposed to a decline 

of soil carbon and nitrogen with limited recovery over time (Pellegrini et al., 2018).  

To assess the short-term fate of fire-induced tree cover loss, NDVI change before 

and after fire has been evaluated as a proxy of forest productivity (Gazol et al., 

2018). A notable decrease of this vegetation index was constantly observed in all 

biomes in areas affected by forest losses, especially in DTF, where the drop 

reached 25%. On the other hand, burned forests that were capable to resist fire 

events didn’t show a significant NDVI drop (Fig. A.4). Such a decline in forest 

productivity confirms the adequacy of GFC to assess the fate of tree covered areas 

following fire disturbance.  

6.3 Forest loss and fire impacts at country level  

An estimated gross area of 36,690 km2 of SSA’s forest cover was lost during the 

year 2019, compared to 41,170 km2 in the dry year of 2016. In general, the 

equatorial belt (5° N to 5° S), characterized by the prevalence of MTF, had lower 

fire-related forest losses, whereas in TrS and DTF, fire was the dominant driver 

associated with forest loss (Fig. 3B and D).  
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Fig. 3 | Fire impact on forest loss from FireCCISFD calculated through two 

parameters: the fraction of tree cover loss within burned forests in 2016 (A) and 

2019 (C), and fire-related forest loss for the same years 2016 (B) and 2019 (D). 

The former indicates the percentage of burned area that was deforested, while the 

latter shows what proportion of total deforested area was fire-related. 

At a country level, the Democratic Republic of the Congo (DRC) accounted for 

approximately one-third of total forest area losses in 2019 and 2016, of which 44 

and 38% were fire-related, respectively (Fig. 4). This rate was noticeably high in 

the tropical savanna of DRC (Extended Data Tables A.2 and A.3) as well as in 

Zambia, Mozambique and Angola, where TrS is dominant. Forest losses in the 

aforementioned countries were associated with the largest expansion of croplands 

during the last two decades (Potapov et al., 2022), which indicates a widespread 

utilisation of slash-and-burn farming (Kalaba et al., 2013; Montfort et al., 2021).  



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

 

Fig. 4 | Fire-related forest loss (in proportion to total forest loss) vs total 

forest loss (in proportion to total forested area) across countries of SSA in 

2016 and 2019. Countries with forest losses lower than 100 km2 were not labelled. 

Colour of circles indicate the most affected biome by fire-related deforestation (see 

table A.2). 

Among countries with high losses (greater than 1000 km2), the severe drought of 

the 2015–2016 El Niño Southern Oscillation resulted in higher forest losses in 2016 

than in 2019 in most of them, except in countries highly dominated by MTF (i.e. 

Ivory Coast, Liberia and Cameron). This finding is in accordance with the drought-

resistance plant strategy found within these ecosystems during extreme climate 

anomalies (Bennett et al., 2021). The case of Madagascar needed further 

investigations as the losses in 2016 were 50% higher than in 2019. These losses 

were also associated with a large contribution of fires, reaching up to 48% in 2016 

(Table A.2) even in the MTF zone. These losses are mainly attributed to 

pastureland management practices using fire to stimulate the encroachment grass 

appreciated by cattle instead of woody plants presenting unpalatable lignified 

stems and to maintain certain vegetation types commonly used for subsistence 

foraging (Bloesch, 1999). On the other hand, several authors confirmed a drastic 

forest stand-replacement experienced in west SSA during the twentieth century 

(Fairhead and Leach, 1998; Rudel et al., 2009; Sayer et al., 1992). This process 

was mainly driven by cropland expansion and is still largely pronounced (Fig. 3A 

and C), especially in drier ecosystems (Brandt et al., 2018; Rudel, 2013). Our 
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analysis highlights the three distinct regimes in the region (Fig. A.5): 1) the tropical 

savanna regime, represented by Guinea and Guinea-Bissau, which shows broad 

forest losses largely associated with the occurrence of fires (55 and 47% in 2019 

and 2016, respectively); 2) the humid tropical forest regime where fires were less 

involved in forest loss despite the high rates of deforestation. Ivory Coast and 

Liberia are the major illustrative examples of this regime; 3) the Sierra Leonean 

case, which reveals a very particular pattern. This country represents the highest 

rate of forest loss (~ 4% annually) and notwithstanding the fact that MTF losses 

were dominant (~ 70%), forest fires were extensively involved in this change. This 

suggests that this country might be susceptible to a rapid expansion of the 

northwest SSA’s savanna through humid forests leading to the encroachment of 

vegetation dominated by grasses and subject to annual fires (Leach and Fairhead, 

2000). The Sierra Leonean zone revealed the most significant differences between 

S-2 and coarse-resolution BA products in terms of forest loss fractions associated 

with the presence of fires (Fig. A.6), whereas high underestimations of fire-related 

losses reported by the global products were also identified across the majority of 

dry ecosystems as well as the rainforest of eastern Madagascar (Fig. 5).  
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Fig. 5 | Differences of fire-related forest loss estimations: (A) FireCCISFD – 

MCD64A1 (2016); (B) FireCCISFD – FireCCI51 (2016); (C) FireCCISFD – 

MCD64A1 (2019); (D) FireCCISFD – FireCCI51 (2019) 

6.4 Drivers of forest loss after fire 

Forest loss after fire events was linked to fire characteristics, forest structure, 

climate and human predictors based on an Extreme Gradient Boosting regression 

model (R2 = 0.67, RMSE = 3.61%). The model indicates that fire characteristics 

are highly linked to the likelihood of forest loss. More specifically, the Beta value, 

used as a proxy to account for the prevalence of small fires) was found to have the 

highest proportion of fire-related forest loss. The positive correlation of the Beta 

index with forest loss (Fig. 6) suggests that areas predominated by small fire 

patches are associated with a higher rate of fire-driven tree cover loss, in 

agreement with previous findings reporting the role of fire in forest conversion to 
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fragmented small-scale agriculture (Doggart et al., 2020), which represent the 

major fate of deforested areas in SSA (Curtis et al., 2018; Tyukavina et al., 2018).  

 

Fig. 6 | Importance of drivers of forest loss after fire in 2019. (A) The mean of 

absolute values of impact of each predictive variable on forest loss. The sign in 

association with the colour indicates the direction of impact based on the 

correlation with the predictions (red positive, blue negative); (B) Distribution of the 

predictive variable’s values according to their impact on the predicted forest loss; 

(C) Geographical distribution of the most important predictor variables explaining 

forest loss per grid cell; (D) Proportions of the most important predictor variables 

explaining forest loss per biome. The impact values are derived from the Shapely 

feature importance analysis of the XGBoost model.  

The association of small fires with shifting agriculture was confirmed by the positive 

correlation between the net cropland expansion within the period 2003-2019 

(Crop-gain) and Beta (R = 0.14, p-value < 0.0001). This supports that slash-and-

burn agriculture is deemed to remain driving deforestation over areas with high 

rates of cropland expansion during the last two decades. Fire seasonal date also 
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had a major impact on the fate of forest cover. Fires occurring outside of the dry 

season, and particularly after it, tend to be a direct driver of forest stand-

replacement in agreement with the findings of Krylov et al. (2014) who found that 

the majority of stand-replacement fires occur in late summer. The end of the fire 

season actually corresponds to the prevailing occurrence of more intense fire 

events when compared to the early fire season in northern hemisphere Africa 

(Laurent et al., 2019), and thus affecting individual trees with more damages. 

Smaller proportions of trees survived burning events occurring outside the fire 

season, especially in MTF and DTF (Fig. 7A). This observation was valid for all BA 

products; nevertheless, FireCCISFD detected more late fires than coarse-

resolution products. These late fires are more frequently leading to tree damage 

than those within the fire season, and therefore the date of fire occurrence should 

be considered an important driver of fire-related deforestation over all biomes. The 

total forest burned area was higher in fire-adapted ecosystems such as TrS, and 

therefore was associated with lower rates of forest loss. Fire intensity was another 

fire parameter driving forest losses. Actually, burn events with fire radiative power 

(FRP) higher than 1 MW.ha-1 predominantly associated with forest losses (Fig. 

7B).  

In addition to fire characteristics, forest structure variables had a major impact on 

forest loss, especially in MTF (Fig. 7D). Over the entire SSA, the analysis based 

on distances to forest edges revealed that interior intact forests had a tendency to 

be less affected by fire-induced forest loss, which might be the consequence of a 

constrained fire spread (Cochrane et al., 1999). On the contrary, when fires 

occurred nearby forest edges, implicitly more fragmented, deforestation was more 

likely to take place. Canopy cover on edge forests is usually less dense (Ordway 

and Asner, 2020), so light penetration through the fragmented canopy to the 

ground (Nascimento and Laurance, 2002) is facilitated, which increases the 

dryness of the litter (Flores and Staal, 2022; Holdsworth and Uhl, 1997), and can 

make fires more intense and more damageable to trees (Armenteras et al., 2013; 

Cochrane et al., 1999). Actually, we found that fires occurring far from forest edge 

generally exhibit a low fire radiative power (FRP) (less than 1 MW.ha-1) and 

subsequently small proportions of forest loss, while 97.5% of the lost tree covers 

after fires lay within 260 m from forest edges (Fig. 7B and C). Conversely, the 

Above-Ground Biomass (AGB) (Santoro and Cartus, 2021) impact was influenced 

by the interaction with Beta (Fig. A.7A). Forest covers with medium to large AGB 

levels (100-200 Mg.ha-1) associated with a larger number of small fires tend to be 

prone to fire-related loss in MTF, which could perhaps indicate a higher exposure 

of productive forests to conversion processes. AGB stocks larger than 200 Mg ha-1 

didn’t show a significant impact.  
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Fig. 7 | Impact of fire properties on loss or no loss of burned forests in 2019. 

(A) BD difference with the mid-fire season in days; The blue horizontal band 

represents the four months of fire season; (B)Intensity of fires estimated through 

FRP ; (C) Distance to forest edge. In the case where the 1.5 interquartile range, in 

either direction of boxplots, is farther from the median (absolute difference) than 

the limits of the 95% confidence interval, the values of this later are retained in 

boxplot whiskers. The numbers above boxplots indicate the value of whiskers 

falling outside the y-axis limit. 

Climate factors (Abatzoglou et al., 2018) had a nonlinear relationship with forest 

loss. For instance, the high tree cover losses in moist forests of western Sahel and 

eastern Madagascar were mainly observed along higher rainfall gradients 

confirming the consistent link between deforestation and Mesoscale Convective 

Systems (MCSs) over tropical regions with extreme rainfall (Taylor et al., 2022), 

while the relatively high losses in Highveld grasslands of south-western Africa 

(TeS) were associated with low temperatures constraint limiting tree cover 

regrowth in such high-altitude ecosystems (Lehmann et al., 2011). The Actual 

Evapotranspiration (AET) was strongly positively correlated with rainfall (R = 0.74, 

p-value < 0.0001) and both parameters were linked with large forest losses at 

extreme ranges, especially the latter one (Fig. A.7B and C). Population density 

(Tatem, 2017) showed a low impact on forest losses and had an apparent positive 

impact only at low-density ranges (< 50 persons per km2, see Fig. A.7D and E), 

which characterise rural populations (Tritsch and Le Tourneau, 2016). It might 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

evidence the high pressure exerted by dense rural communities far from urban 

centres on forest ecosystems. The rest of human indicators didn’t exhibit 

remarkable influence.  

The study evidences the potential of medium-resolution BA datasets such 

FireCCISFD and GFC to enhance our understanding of fire impacts on forest loss 

over coarse-resolution products, particularly, in tropical regions dominated by 

small fires. Nevertheless, some limitations should be acknowledged. Notably, due 

to the tremendous computational resources involved in the product generation, the 

FireCCISFD datasets only cover two years (2016 and 2019), hindering a 

comprehensive long-term assessment of fire history and impacts. Furthermore, the 

GFC dataset keeps track of forest gains only until 2012, subsequently, the young 

trees were overlooked. The GFC was also found to have low sensitivity to sparse 

tree covers (Reiner et al., 2023). Actually, up to 30% of additional tree cover was 

detected using high-resolution nanosatellites (< 3 m spatial resolution), which 

would increase the estimation of forest loss fractions after fires as these areas are 

highly fragmented (Reiner et al., 2023). Ultimately, distinguishing between shifting 

agriculture techniques solely reliant on fire and those involving fire along with other 

mechanical operations (i.e., cutting part of or the integrity of the tree before 

burning) using common medium-resolution data sensors is extremely challenging 

and therefore in all of these cases fire was considered as a driver of loss.  

7 Conclusions 
This study presented different perspectives to compare medium- and coarse-

resolution BA products over SSA, the most burnable region worldwide. The 

emphasis was dedicated to the assessment of fire impacts on forest loss and 

degradation. The discrepancies in estimations derived from both resolution 

products were significant but varied depending on biomes and the particular 

characteristics of regions. In any case, our study reveals that the quantification and 

the understanding of the relationship between fires and tropical deforestation need 

to be based on higher spatial-resolution BA datasets (≤ 30 m) rather than those 

currently used, which are based on coarse-resolution sensors. The substantial 

omissions of small fires used to clear forests for various purposes, ranging from 

shifting agriculture to pastureland management to industrial commodities, remain 

the main reason that might explain the differences found in this paper between 

medium and coarse-resolution data estimations. We found that MTF biome was 

extremely vulnerable to fire events, and that global BA products noticeably 

underrepresent the impacts of fire on this ecosystem. The interannual comparison 

of forest loss responses to extreme drought caused by anomalous climate events 

such as the 2015–2016 El Niño Southern Oscillation event revealed positive 

feedback (i.e. an increase of loss) in dry forest ecosystems and an important 
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resistance of moist rainforest. However, the impact of fire has significantly 

exacerbated forest loss, especially in Madagascar, in which we found higher fire-

related forest stand-replacement not only in DTF but also in the tropical rainforest 

(MTF). The review of policy-making strategies with regard to forest conservation is 

highly encouraged and must be prioritized in parallel to the socio-economic 

strategies to attain consistent and sustainable development goals. Similar 

recommendations can be raised about the situation of the Democratic Republic of 

the Congo, Zambia, Mozambique, Angola and western countries of the Sahel, 

particularly Sierra Leone, which seems to present a massive expansion of savanna 

fire regimes over moist forest ecosystems. Fire size distribution, as measured by 

the Beta coefficient, confirm the dominant role of small fires, generally associated 

with slash-and-burn agriculture in deforestation across the SSA, while the analysis 

of fire season and intensity, as well as forest density, complements our 

understanding of the impact of fires on forest ecosystems. In fact, fires occurring 

towards forest edges, which are associated with intense fire flames, as well as 

late-season fires had higher probabilities of forest loss. With that regard, S-2 

allowed better detection of less intense fires towards the late season and 

fragmented forest edge than coarse-resolution products.  The assessment of long-

term tree cover fate along with fire occurrence using medium-resolution datasets 

would present a great potential to generalise the results of this study and evaluate 

particular trends and patterns. Moreover, it would allow to disentangle forest losses 

solely triggered by fires from losses involving the use of other drivers prior to 

burning such as mechanical clearing and felling widely used in slash-and-burn 

conversions.   
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10 Appendices 
 

 

Fig. A.1 | Example of additive Shapely values explaining the predictions of 

forest loss. The grid cell was located in Ghana (MTF). The predicted forest loss 

value (f(x) = 15.119%) was significantly higher than the mean (E[f(X)] = 3.04%). 

Rainfall and Beta had higher values than their respective means and contributed 

to the increase of forest loss by 5.61 and 2.8%, respectively (positive correlation), 

while Edge-distance that is negatively correlated with the target, was leading the 

rate of forest loss to decrease by 1.69%. Without the latter variable, the model 

expects to estimate a forest loss rate of 16.809%.   
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Fig. A.2 | Proportions of land cover types per biome in 2019 
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Fig. A.3 | Impact of fire on Temperate Savanna trees in 2016. (A) Biomes; (B) 

Area of forest loss; (C) Fire-related loss 
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Fig. A.4 | NDVI change between before and after fire year (2019). The dots 

represent the biome mean of annual composite medians. The error bars denote 

the standard deviation. 
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Fig. A.5 | West SSA’s regimes. (A) Biomes and countries; (B) Forest loss fraction; 

(C) Fire-related forest loss. The maps were based on data of 2019. 
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Fig. A.6 | Differences of estimations of the fraction of tree cover loss within 

burned forests: (A) FireCCISFD – MCD64A1 (2016); (B) FireCCISFD – 

FireCCI51 (2016); (C) FireCCISFD – MCD64A1 (2019); (D) FireCCISFD – 

FireCCI51 (2019) 
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Fig. A.7 | Partial dependence plots of some predictor variables with their 

impact on forest loss predictions. (A) AGB; (B) AET; (C) Rainfall; (D) 

Population with the 99.99 percentile of values as an x-axis limit; (E) Population 

filtered with a maximum of 200 persons per km2. Except for E, all the other plots 

were limited to the 99.99 percentile along the x-axis. The colour indicates the 

interaction with Beta, the most dominant variable explaining forest loss 

predictions.  
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Table A.1 | Reclassification scheme of terrestrial biomes 

 

 

  

Aggregated biomes 
Original Dinerstein’s 

Ecoregions 

Proportion of 

SSA (%) 

Proportion of 

SSA BA (%) 

2019 2016 

Tropical Savanna 

(TrS)  

Tropical & Subtropical 

Grasslands, Savannas &  

Shrublands  

Flooded Grasslands & Savannas 

(latitude 23° S to 23° N)  

60.62 88.49 88.71 

Moist Tropical 

Forest (MTF) 

Mangroves  

Tropical & Subtropical Moist 

Broadleaf Forests 

13.23 8.23 7.39 

Dry Tropical Forest 

(DTF) 

Tropical & Subtropical Dry 

Broadleaf Forests  
0.71 1.42 1.61 

Temperate Savanna 

(TeS)  

Montane Grasslands & 

Shrublands  

Flooded Grasslands & Savannas 

(latitude greater than 23° S or 

23° N)  

2.13 1.04 1.08 

Deserts & Xeric 

Shrublands (DXS) 
Deserts & Xeric Shrublands  22.82 0.78 1.06 

Mediterranean 

(Med) 

Mediterranean Forests, 

Woodlands & Scrub  
0.46 0.04 0.15 
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Table A.2 | FireCCISFD estimations of fire-related forest loss across SSA 

countries in 2016. Fire-related forest loss is estimated within biomes of each 

country (columns 2-5). Columns 7-10 indicate the contributions of the different 

biomes to the total forest losses by country. The biome with the highest 

contribution is used in Fig. 4 

Country 
Fire-related loss (%) 

Distribution of forest 

losses by Biome (%) 

Forest loss  

(Km2) 

DTF MTF TeS TrS Average DTF MTF TeS TrS 

DRC   17.12 4.73 55.54 38.04  61.45 ~ 0 38.55 13847.14 

Madagascar 63.72 47.72 41.71   53.92 11.77 88.05 0.18  3843.9 

Mozambique   60.56 62.99 66.92 64.93  33.49 0.15 66.36 2521.42 

Angola 87.35 2.75 64.57 58.3 58.18 0.14 0.59 1.79 97.48 2294.76 

Ivory Coast   7.93   37.06 20.41  83.47  16.53 2219.11 

Guinea   71.85   82.91 79.91  32.76  67.24 2178.55 

Sierra Leone   70.7   75.08 71.78  81.01  18.99 1766.56 

Liberia   18.52   47.5 18.6  99.27  0.73 1678.38 

Tanzania   40.6 34.61 50.52 48.07  32.07 3.64 64.29 1565.24 

Zambia 86.77   72.31 77.79 78.03 9.01  ~ 0 90.99 1415.29 

Ghana   17.18   57.51 27.89  95.21  4.79 1205.5 

Cameroon   9.69   36.19 18.83  80.64  19.36 1164.86 

Congo   10.29   16.42 12.87  69.39  30.61 1149.16 

South Africa   30.64 29.45 24.47 26.08  13.59 32.74 53.67 940.18 

Nigeria   22.61 34.88 45.9 31.83  84.91 0.01 15.08 729.24 

Uganda   37.51 10.13 46.32 43.15  25.51 0.01 74.48 686.01 

Central African Republic   33.82   63.72 58.8  47.64  52.36 513.95 

Gabon   0.45   5.16 1.44  73.01  26.99 314.71 

Kenya   17.15 20.73 24.39 20.03  83.22 0.67 16.1 201.23 

Ethiopia   25.13 11.95 44.23 31.22  36.53 13.21 50.26 199.54 

Malawi   4.17 62.32 59.78 59.38  0.47 23.86 75.67 139.76 

Guinea-Bissau   53.95   67.06 63.04  36.64  63.36 139.09 

Zimbabwe   62.49 45.04 48.23 48.14  8.86 39.82 51.32 117.93 

Equatorial Guinea   0     0  100   91.4 

eSwatini   56.7 24.11 27.37 27.47  0.05 60.89 39.06 62.84 

South Sudan   57.51   62.52 62.22  7.01  92.99 41.99 

Togo   44.83   42.69 43.24  61.09  38.91 35.68 

Chad       80.29 80.29    100 30.44 

Rwanda   8.82   27.77 14.51  94.31  5.69 29.37 

Benin   18.33   38.24 37.81  20.41  79.59 22.5 

Burundi   15.58   26.81 19.81  81.08  18.92 16.1 

Mali       58.98 58.98    100 3.01 

Senegal   31.89   48.39 45.81  63.2  36.8 2.44 

Somalia   47.05   60.88 50.79  63.58  36.42 0.91 

Comoros   0     0  100   0.87 

Lesotho     4.41 0 2.98   73.01 26.99 0.29 

Sudan       74.95 74.95    100 0.27 

Gambia   63.72   59.66 57.6  6.49  93.51 0.06 

Namibia       37.19 37.19    100 0.01 
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Table A.3 | FireCCISFD estimations of fire-related forest loss across SSA 

countries in 2019. The estimations are calculated in the same way as in 

Table A.2 

Country 
Fire-related loss (%) 

Distribution of forest 

losses by Biome (%) 

Forest loss  

(Km2) 

DTF MTF TeS TrS Average DTF MTF TeS TrS 

DRC   23.21 68.21 61.94 44.38  63.05 0.01 36.94 12221.87 

Madagascar 47.16 43.55 22.54   43.85 19.03 70.5 0.21  2551.2 

Ivory Coast   9.98   35.97 21.13  80.51  19.49 2432.26 

Mozambique   54.29 40.7 64.74 61.89  38.88 0.19 60.93 2374.29 

Guinea   76.62   86.73 84.01  32.88  67.12 1947.75 

Angola 84.01 7.41 71.88 64.13 63.94 0.11 0.73 2.42 96.68 1745.69 

Sierra Leone   67.94   83.54 71.94  85.17  14.83 1743.3 

Liberia   22.83   78.95 22.91  99.58  0.42 1709.44 

Tanzania   29.47 46.91 45.94 42.83  39.81 3.51 56.69 1459.28 

Zambia 87.4    75.29 75.63 4.88   95.11 1247.62 

Cameroon   14.33   53.91 29.2  77.34  22.66 1216.2 

South Africa   27.17 32.65 30.86 27.35  13.37 29.91 56.69 930.88 

Ghana   18.29   55.3 27.41  94  6 894.29 

Nigeria   21.15 32.44 36.56 27.21  71.86 0.01 28.13 875.43 

Congo   17.37   29.98 22.53  60.55  39.45 745.75 

Uganda   28.05  32.57 30.94  21.97  78.03 644.4 

Central African Republic   33.72   65.36 60.12  30.29  69.71 496.58 

Gabon   2.95   16.24 5.87  79.44  20.56 279.54 

Ethiopia   16.29 11.07 49.66 30.4  51.23 15.06 33.68 259.62 

Kenya   14.62 28.73 14.42 14.9  79.84 0.87 19.29 168.01 

Guinea-Bissau   64.17   77.17 73.14  33.19  66.81 143.71 

Malawi   1.18 58.17 51.93 52.67  0.22 18.23 81.55 123.54 

Zimbabwe   31.39 30.37 33.11 32.87  18.08 40.66 41.27 113.22 

Equatorial Guinea   0.53     0.57  100   91.45 

eSwatini   50.02 42.89 40.87 42.15  1.39 60.08 38.53 58.11 

Togo   42.16   39.42 40.22  79.22  20.78 54.61 

Chad       67.24 67.24    100 48.9 

South Sudan   64.47   65.58 65.48  20.86  79.14 40.94 

Rwanda   6.84 57.47 11.72 8.39  96.49 0.03 3.48 26.47 

Burundi   13.5   13.47 13.36  75.33  24.67 24.11 

Benin   38.94   34.74 34.84  1.14  98.86 9.15 

Somalia   15.68   15.29 15.56  84.14  15.86 3.84 

Mali       63.69 63.69    100 2.82 

Senegal   56.85   49.68 50.78  63.72  36.28 2.65 

Comoros   0     0  100   1.93 

Sudan       56.47 56.47    100 0.56 

Gambia   7.29   55.2 44.55  4.83  95.17 0.2 

Lesotho     20.1 48.58 32.3   52.23 47.77 0.12 
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Highlights 
 – Sentinel-2 burned area detects higher fire-related loss than previous estimations. 
 - Fires contribute to 46% of total forest losses in sub-Saharan Africa. 
 - Burned areas in moist Tropical Forest are six times more likely to be deforested than 

unburned ones. 


