
HAL Id: hal-04439426
https://hal.science/hal-04439426

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

pyMeshFOAM: Automated meshing for CFD and
fluid–structure simulations
Fabien Salmon, Ludovic Chatellier

To cite this version:
Fabien Salmon, Ludovic Chatellier. pyMeshFOAM: Automated meshing for CFD and fluid–structure
simulations. SoftwareX, 2023, 23, pp.101431. �10.1016/j.softx.2023.101431�. �hal-04439426�

https://hal.science/hal-04439426
https://hal.archives-ouvertes.fr


SoftwareX 23 (2023) 101431

o
n
p
s
o
f
h
m
f
(

p
s

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

pyMeshFOAM: Automatedmeshing for CFD and fluid–structure
simulations
Fabien Salmon ∗, Ludovic Chatellier
Institut Pprime, CNRS - Université de Poitiers - ISAE-ENSMA, UPR 3346, Poitiers, France

a r t i c l e i n f o

Article history:
Received 23 November 2021
Received in revised form 3 April 2023
Accepted 1 June 2023

Keywords:
Computational fluid dynamics
Fluid–structure interaction
Meshing tool
Boundary layers
OpenFOAM

a b s t r a c t

The generation of high-quality meshes is of paramount importance for accurate numerical fluid
simulations. As this can be a tedious task, we have developed pyMeshFOAM, an easy-to-use code
based on existing free meshing tools that automatically generates different types of structured or
unstructured meshes in OpenFOAM format. From a 2D contour, pyMeshFOAM can generate a 2D mesh
of the fluid around it or a 3D mesh around the shape extruded from the contour. CAD files can also be
used for the geometry. Boundary layer meshing is also available. In addition, pyMeshFOAM manages
the reciprocal solid meshes compatible with CalculiX in order to perform coupled fluid–structure
simulations.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version 1.1
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00220
Code Ocean compute capsule
Legal Code License GNU GPL v3 or later
Code versioning system used git
Software code languages, tools, and services used Python, shell
Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual https://github.com/FabienSalmon/pyMeshFOAM/tree/main/docs
Support email for questions Salmon.Fabien@yahoo.com

1. Motivation and significance

Both applied and fundamental studies of fluid flows often rely
n computational fluid dynamics (CFD). This approach consists of
umerically solving the equations governing fluid mechanics. In
arallel to commercial and industrial CFD suites, several open-
ource software packages have been developed. OpenFOAM [1] is
ne of the most widely used free open-source codes in various
ields of fluid mechanics [2–4]. The OpenFOAM community is
eavily involved in its improvement through numerical develop-
ents [5,6]. OpenFOAM is also embedded in a free open-source

luid–structure interaction solver, which also consists of CalculiX
solid solver) [7] and preCICE (interface coupling) [8].

OpenFOAM provides all the necessary tools to perform com-
lete fluid simulations, from mesh generation (subdivision of the
tudied geometry into cells) to visualisation of the results. A

∗ Corresponding author.
E-mail address: Fabien.Salmon@u-bordeaux.fr (Fabien Salmon).

weakness of this code is the meshing process, especially when
the meshed geometry is rather complex. The native meshing tools
can be tedious and even fail to produce the quality of mesh
required for a successful simulation. Note that fluid–structure
simulations are even more sensitive to mesh quality due to the
inherent difficulties in ensuring numerical stability, which can
be exacerbated by the difference in cell size between the two
meshes.

To overcome this difficulty, the researchers developed cfMesh
[9], another meshing tool compatible with OpenFOAM. It allows
users to generate meshes of better quality than the OpenFOAM
meshing libraries. Unfortunately, the free version of cfMesh does
not include boundary layer meshing. And boundary layer meshing
is often required in such fluid simulations where high accuracy is
needed close to physical boundaries. The anisotropic nature of the
meshes near the boundaries is replaced by a regular mesh, which
is better suited to simulating the high gradients that occur in this
zone. Building the mesh of a geometry can therefore be a difficult
ttps://doi.org/10.1016/j.softx.2023.101431
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Logical scheme of the pyMeshFOAM usage.

roblem. Users often either use commercial meshing software or
truggle to create suitable meshes.
In order to efficiently produce high quality OpenFOAM com-

atible meshes using free tools, we have developed pyMesh-
OAM, a set of Python scripts that make the best use of free
eshing tools: native OpenFOAM meshers (blockMesh and snap-
yHexMesh), cfMesh [9] and GMSH [10]. These tools will be
nvolved in the meshing process as follows: blockMesh for simple
nough geometries, cfMesh for complex geometries and snappy-
exMesh to mesh boundary layers after the first step achieved by
fMesh. For fluid–structure simulations, an additional solid mesh
s generated using GMSH for use in finite element software such
s CalculiX. The software code manages any shape based on a 2D
ontour. This contour is given as an input file containing a list of
oints. It corresponds to a polygon constructed from these points
nd can represent any desired shape: circle, square, irregular
olygons, etc. Some examples are given in Section 3. The code also
ncludes symmetrical NACA wing profiles as a special case, for
hich the contour is given directly by an equation, without the
eed for a list of points. For 3D meshing pyMeshFOAM handles
wo cases. Either a CAD file is provided or the 2D contour is
xtruded in the third direction with a specified length.
It is worth noting that although pyMeshFOAM makes fluid

eshes compatible with OpenFOAM, existing conversion tools
an convert the resulting meshes into various other formats com-
atible with other CFD software. Furthermore, pyMeshFOAM con-
ists of several Python scripts that are independent of each other
nd can be used separately.
This tool was used to generate finite element and finite vol-

me meshes in and around an extruded NACA0015 profile for
luid–structure simulations in turbulent flows [11].

. Software description

pyMeshFOAM consists of several Python scripts that automat-
cally performs the meshing process for OpenFOAM simulations
ased on existing free meshing software: OpenFOAM native tools
blockMesh and snappyHexMesh), cfMesh [9] and GMSH [10].
yMeshFOAM also manages the meshing process of solid meshes
or fluid–structure simulations.

2.1. Software architecture

Fig. 1 shows an explanatory scheme of pyMeshFOAM. The user
parameters are provided in an executable file (‘‘mesh_fluid’’ or
‘‘mesh_solid’’). Except when the user wants to obtain the mesh
of a symmetric NACA profile or a 3D mesh based on a file, an
input file corresponding to a 2D contour (list of points) must be
provided. Then pyMeshFOAM generates a 2D mesh or a 3D mesh
with a given extrusion length for the 2D contour, according to the
user’s choice (cell size, boundary layers, mesh type, etc.). If a CAD
file is provided, the extrusion step is skipped and pyMeshFOAM
goes directly to the meshing process with cfMesh and possibly
snappyHexMesh. The properties of the desired mesh are given in
the executable file.

In 2D, a structured mesh may be required. In such a case, the
developed tool creates the input file for blockMesh. Otherwise
the same work is done for cfMesh. In both configurations, the
user can request the mesh of a boundary layer created by either
blockMesh (structured) or cfMesh (unstructured) during mesh
generation.

In 3D, the global mesh is necessarily created with cfMesh.
If required, snappyHexMesh takes care of the meshing of the
boundary layers. If the user wants to run a fluid–structure sim-
ulation, pyMeshFOAM will also create the solid mesh. The input
file for GMSH is written before the solid mesh is meshed with it.
Since the tool is initially designed for fluid–structure simulations
with OpenFOAM and CalculiX, a Python script converts the mesh
into the format read by CalculiX.

The Python scripts and the executable files must be placed in
the case directory as shown in the tutorial cases. The ‘‘mesh_fluid’’
executable must be run in the OpenFOAM directory to generate
the fluid mesh. The ‘‘mesh_solid’’ executable must be run in the
finite element software directory (e.g. CalculiX) to generate the
solid mesh.

2.2. Software functionalities

2.2.1. 2D mesh

Structured Fluid mesh
The structured mesh is generated by the OpenFOAM utility

blockMesh. The Python script divides the domain into several
2
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Fig. 2. (a) Fluid mesh around a triangle. (b) Mesh of a 3D non-symmetrical H-shape.

arts so that blockMesh can generate a regular and a structured
esh. Users can specify the general cell size of the mesh. The ratio
etween cells can also be modified to have coarser cells far away
rom the area of interest. No refinement box can be requested by
he user due to the inherently Cartesian nature of the blockMesh
tility. There are two ways to generate a structured mesh with
yMeshFOAM.
The first is to continue the refinement at the geometry bound-

ry up to the edge of the meshed domain (Fig. 4a). In order
o maintain a structured mesh, this approach is necessary in
he case of sharp geometry such as the trailing edge of a wing
rofile. The Python script ‘‘Mesh_pointe.py’’ writes this input file
o blockMesh which then generates the mesh.

The second is to create a refinement that surrounds the profile
Fig. 4b). This approach is preferred for geometries without sharp
ngles. The Python script ’Mesh_block.py’ writes this input file to
lockMesh. As in the previous approach, there is no additional
arameter.

nstructured Fluid mesh
Based on the 2D contour, the script ‘‘2D2ftr.py’’ creates a file

n .ftr format, a cfMesh compatible format [9]. This file simply
ontains a list of the points that make up the 2D contour and the
ertices of the numerical domain. cfMesh can then read this file to
uild the mesh. The properties of the mesh must be provided in
he standard input dictionary for cfMesh (meshDict). Additional
efinement boxes can thus be provided in this dictionary. Fig. 2a
hows an unstructured mesh around a triangle.

.2.2. 3D mesh

luid mesh
The choice of cfMesh is motivated by the high quality of this

oftware code for 3D meshes. ‘‘dat2gmsh.py’’ converts the 2D
ontour into an extruded 3D geometry, creates the input file
or GMSH and then runs GMSH to generate the stl file of the
eometry. ‘‘CreateBox.py’’ creates the stl file of the computational
omain. cfMesh functions then convert both stl files into an ftr file
nd create the 3D mesh.
Since the free version of cfMesh does not manage satisfactorily

D boundary layers, snappyHexMesh is used for this step. The
eshing process achieved by snappyHexMesh does not modify

he first mesh created by cfMesh far enough from the boundary,
ut only replaces the mesh close to the boundary of the geometry
ith a refined mesh adapted to the resolution of the boundary

ayers. The input parameters of the boundary layer mesh are the
xponential ratio R, the desired y+, s the size of the cell close
o the shape in the cfMesh mesh, the properties of the fluid
density ρ, viscosity µ), its velocity U∞ before the shape and

the size of the first cell y1st and the number of layers Nlayers are
computed as follows:⎧⎪⎪⎨⎪⎪⎩

y1st =
2µy+

√
ρτw

(a)

Nlayers =

⌊
ln s − ln y1st

ln R

⌋
(b)

(1)

with τw =
1
2Cf ρU2

∞
, Cf = 0.026×Re−1/7 and Re =

ρU∞L
µ

. ⌊⌋ refers
to the floor function. The number of layers, the exponential ratio
and the first cell size are filled in the snappyHexMesh dictionary.

Solid mesh
The input file for GMSH is written by Recup_Aile.py to mesh

the solid part. The type of elements used in the solid mesh can
be selected in the Python script. The default is second order ele-
ments but first order elements can be chosen. For fluid–structure
simulations it is desirable to collocate the fluid and solid mesh
nodes at the fluid–solid interfaces to avoid interpolation errors.
To ensure this, the Python script extracts the fluid nodes at the
interface to generate the solid nodes. Without manually adding
refinement options to the GMSH file, refinement is constrained
by the fluid mesh, but a GMSH user can easily add refinements
in the process [10].

As the tool is initially designed for fluid–structure simulations
with OpenFOAM and CalculiX, a Python script (‘‘RewriteINP.py’’)
converts the mesh to the CalculiX format. Three files are written,
‘‘All.msh’’, ‘‘fix.nam’’ and ‘‘surface.nam’’. These files are input files
for CalculiX [7].

2.2.3. Special options
Here we present some functionalities that are useful for spe-

cific cases. As already mentioned, pyMeshFOAM simplifies the
treatment of symmetrical NACA profiles thanks to the use of
analytical equations. The wing tip geometry can be simply flat
or circular as shown in Fig. 4. The trailing edge of the wing can
also be automatically smoothed to avoid any sharp edge in the
geometry (Fig. 4b). This often results in a poor-quality mesh. The
smoothing is included in the modification of the profile equation.
Finally, for 2D meshes with a sharp edge, such as a standard
trailing edge, the mesh will look like Fig. 4a. There is an option
to break the propagation of the boundary layer mesh up to the
outflow boundary. This results in a local unstructured area in the
2D mesh instead of the Cartesian propagation of the boundary
layer mesh, but is still achieved by blockMesh. This option is not
enabled by default as it requires more complex parameterisation
and may result in meshes of lower quality.

3. Illustrative examples

Fig. 2 shows the regular meshes of two basic shapes, a 2D
triangle (target of 40 cells per side) and a 3D non-symmetrical
a characteristic length of the shape L. From these parameters,

3
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Fig. 3. (a) Fluid mesh (blue) around a cylinder and inner solid mesh (red). (b) Zoom on the solid cylinder mesh with collocated interface nodes. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. 2D mesh of the fluid around a NACA0015 profile, (a) with a sharp trailing edge, (b) with a smoothed trailing edge.

-shape (target of 18 cells for the height). To generate them, the
nput file contained the three points of the triangle and the twelve
oints of the 2D H-shape respectively. Fig. 3 shows the mesh of a
ylinder (target of 25 cells along the diameter) based on the two
undred points that make up the initial circle. Fig. 3b focuses on
he solid cylinder and shows that the solid boundary nodes are
ollocated with the fluid boundary nodes.
Fig. 4 shows two resulting meshes of a fluid around a

ACA0015 airfoil. Fig. 4a shows the mesh produced using the
irst method described in Section 2.2.1. Fig. 4b shows the mesh
roduced using the second method. The trailing edge is automat-
cally smoothed (can be disabled, see Section 2.2.3), which allows
he use of good quality cells surrounding the wing. Both meshes
ave a high refinement in the boundary layer (30 layers with an
xponential ratio of 1.15). There are 30 cells along the chord for
he two meshes.

The 3D mesh of the same airfoil is shown in Fig. 5. The mesh
s composed of areas with different refinements (user parameters
n the cfMesh dictionary). The refinement levels produce cells
wice the size of the next finer level. In the finest zone around
he wing, there are 100 cells along the chord. The boundary
ayer has also been thoroughly meshed, as is often done in fluid
imulations. The exponential ratio is equal to 0.15 and there 17
ayers in the boundary layer. A circular wing tip (option presented
n Section 2.2.3) has been chosen for this illustration.

We finally show an example of a very irregular geometry in
ig. 6. An arterial system is meshed with 160,000 cells based
n the CAD file of this geometry. This mesh is only achieved by
fMesh as no boundary layer has been demanded.

4. Impact

In numerical simulations, the mesh of the geometry is of
paramount importance as all results depend on its quality. How-
ever, creating a mesh, especially a refined one for CFD simula-
tions, can be very tedious and time-consuming. The functionality
of free tools is limited and sometimes defective. To overcome
these problems, pyMeshFOAM allows the user to create paramet-
ric meshes in an easy and fast way. In particular, the automatic
meshing of boundary layers, trailing edges and wing tips are
key features of the tool. For complex geometries, the mesh of
boundary layers can remain difficult. This limitation is directly
correlated with that of snappyHexMesh in 3D. This software code
will help CFD users who want or need to use free meshing
software for their work. The automation of mesh generation also
allows iterative testing of meshes based on different parameters,
a cumbersome problem faced by CFD users looking for a suitable
mesh for their problems.

The tool is designed to be intuitive and flexible. The Python
scripts can be easily modified by any Python user and can also be
used independently. For example, the circular wing tip shown in
Fig. 5 is an option that can be replaced or enriched with other end
shapes depending on the case. Local refinements can also be ap-
plied using the software dictionary files. For now, pyMeshFOAM is
strictly limited to CAD files and extruded 2D shapes, but could be
extended to include different extrusion rules (e.g. swept, curved,
twisted or tapered wings).

Although pyMeshFOAM is primarily intended for OpenFOAM
users, it can be used for other CFD software by using avail-
able mesh conversion tools. The tool developed is also dedicated
to fluid–structure simulations. It allows the generation of two
4
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Fig. 5. Mesh of a 3D NACA0015 airfoil profile with a circular wing tip.

Fig. 6. Mesh of an arterial system.

eshes, one for the fluid and one for the solid. To avoid interpola-
ions in fluid–structure simulations, pyMeshFOAM automatically
enerates two meshes with the same boundary nodes. Primarily
ntended for OpenFOAM-CalculiX simulations, pyMeshFOAM calls
MSH to generate CalculiX compatible finite element meshes.
ote that any other format supported by GMSH is practicable.

. Conclusions

pyMeshFOAM is a Python application that generates meshes
ased on existing free or open source meshing tools. It basi-
ally writes input files for blockMesh, cfMesh, snappyHexMesh
nd GMSH depending on user parameters. Among other things,
yMeshFOAM manages the meshing process of boundary layers,
crucial issue in most CFD simulations. The developed tool also
andles solid meshes for fluid–structure simulations.
Several types of shapes can be meshed based on pyMesh-

OAM. We have introduced three basic shapes: triangle, cylinder
nd non-symmetric H-shape. Two 2D fluid meshes around a

NACA0015 profile have also been treated. The 3D mesh of a
cantilever wing is also successfully managed by pyMeshFOAM by
extruding an airfoil profile and terminating it with a wing tip. The
tool developed was also able to generate the mesh of an arterial
system, a very irregular geometry.

In an ongoing work, this tool allows us to perform fluid–
structure simulations of a NACA0015 airfoil surrounded by a
water flow.
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