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ISOSINGULARITY, DIFFERENTIALITY, AND NON-TRIVIAL ANALYTIC FACTORS OF

ALGEBRAIC SINGULARITIES

DAVID BOURQUI AND MARIO MORÁN CAÑÓN

ABSTRACT. We establish a strong connection between the minimal differential closed
subset containing a closed singular point of an algebraic variety on the one hand, the
isosingular locus of the point and the analytic nature of its singularity on the other hand.

1. INTRODUCTION

A differential ideal of a ring is an ideal that is stable under all the derivations of the
ring. If the ring contains the field of rational numbers, then the maximal differential ideal
contained in a given ideal is prime, a fact first pointed out by Seidenberg in [Sei67] in
the Noetherian case. As a consequence, one can define, for any point x of an algebraic
variety defined over a field of characteristic zero, the notion of minimal differential
closed subset containing x, corresponding in the affine case x = p ∈ Spec(A) to the
closure of the maximal differential ideal contained in p. The main results of the present
paper are summed up in the following statement. It provides a geometric interpretation
of the minimal differential closed subset containing a given point and of the formal
neighborhood of its generic point in terms of the analytic nature of the singularity at x.

Theorem 1.1. Let x be a closed point of an algebraic variety X defined over a field of
characteristic zero, and let F be the minimal differential closed subset containing x.

Then F is the closure of the unique component through x of the isosingular locus of x.
Moreover, the formal neighborhood of the generic point of F is, up to a scalar extension,
isomorphic to the non-trivial factor of the formal neighborhood of x.

The notion of isosingular loci of algebraic varieties was defined and studied recently in
[CH22] when the base field is algebraically closed. Roughly speaking, they are the subsets
where the formal neighborhood, in other words, the analytic nature of the singularities,
remains constant (up to isomorphism). The non-trivial factor of a formal neighborhood�OX ,x is the complete local ring A such that �OX ,x

∼→ A[[t1, . . . , tr ]] and A is not isomorphic
to B [[t ]] for some B . This uniquely determines A (up to isomorphism). In some sense, A
contains the interesting information on the analytic nature of the singularity at x.

The second assertion of Theorem 1.1, which is in a certain sense a comparison the-
orem for formal neighborhoods, was motivated by analogous phenomena observed in
the case of arc spaces associated with curves and toric varieties in [BMCS, BMCn23].
However, the general situation for arc spaces seems more involved (see Section 6).

Here is a brief description of the content of the sections of the paper.

In Section 2 we provide a recap, as well as some complements, on the connection
between differentiality and cylindricity (i.e., the property of having smooth factors), and
the notion of maximal differential ideals.
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In Section 3, we define two notions of analytical isosingularity for closed subsets of an
algebraic variety, a strong and a (a priori) weaker one. We use the weak version to extend
the notion of isosingular locus discussed in [CH22] over an arbitrary field.

In Section 4, we positively answer Question C of [CH22], showing that over an alge-
braically closed field of characteristic p > 0, informally speaking, the bigger an analyti-
cally isosingular subset is, the more cylindrical the formal neighborhoods of its points
are. In order to do so, we state and prove a version of the Lipman-Nagata-Zarisiki simpli-
fication lemma valid in arbitrary characteristic in terms of multivariate Hasse-Schmidt
derivations. Our arguments also permit us to recover the characteristic zero case.

In Section 5, we prove the results leading to the statement of Theorem 1.1, showing
along the way that the two notions of isosingularity defined in Section 3 coincide. One of
the key ingredients is the study of the maximal differential ideal with respect to a regular
family of derivations.

In Section 6, we discuss the situation in the case of arc spaces.

2. DIFFERENTIALITY AND CYLINDRICITY

In this section, we will provide a recap of classical ideas revolving around Lipman’s
extension of Zariski’s simplification lemma in terms of regular derivations (See [Lip65,
Theorem 2] and Subsection 2.15) and the notion of maximal differential ideal first
explored in [Sei67], as well as some further results and complements. In view of the
upcoming proofs of our main results, we shall in particular focus on the maximal differ-
ential ideals with respect to a set of regular derivations (see Definitions 2.2 and 2.5 below,
which are motivated by Lipman’s result).

2.1. Differentiality.

Definition 2.2. Let A be a ring and p be a prime ideal of A. Let r be a positive integer.
An r -tuple D1, . . . ,Dr of elements of Der(A) is said to be regular with respect to p if there
exist elements x1, . . . , xr ∈ p such that det(Di (x j ))16i , j6r ∉ p. If there exist such x1, . . . , xr

such that the matrix (Di (x j )) is moreover diagonal, the r -tuple D1, . . . ,Dr is said to be
normalizable. In case A is local, the family of derivations D1, . . . ,Dr is said to be regular if
it is regular with respect to the maximal ideal of A.

Remark 2.3. As we shall see later, there exist regular yet non-normalizable families of
derivations (See Lemma 2.39 and Remark 2.40).

Remark 2.4. If D1, . . . ,Dr is regular with respect to p and S is a any set of generators of
p, then there exist elements x1, . . . , xr ∈S such that det(Di (x j ))16i , j6r ∉ p. Indeed, take
y1, . . . , yr ∈ p such that det(Di (y j ))16i , j6r ∉ p. Then the multilinearity of the determinant
implies that det(Di (y j )) is equal modulo p to a linear combination of elements of the
form det(Di (x j ))16i , j6r , where x1, . . . , xr ∈S .

Definition 2.5. Let A be a ring and p be a prime ideal of A. Let r be a positive integer.
One says that p is:

(1) r -differential if every r -tuple D1, . . . ,Dr of elements of Der(A) is not regular with
respect to p;

(2) locally r -differential if every r -tuple D1, . . . ,Dr of elements of Der(Ap) is not
regular;

(3) formally r -differential if every r -tuple D1, . . . ,Dr of continuous elements of
Der(Âp) is not regular.

Remark 2.6. In particular, being 1-differential in the above sense is equivalent to being
differential in the usual sense (see also Subsection 2.29).
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Remark 2.7. If k is a field and A is endowed with a structure of k-algebra, one defines
analogously the notion of being (locally, formally) differential over k by considering in
the above definition only those derivations of A that are k-linear.

Example 2.8. Let B be a complete local ring (resp. k-algebra) and A = B [[t1, . . . , tr ]] the
ring of formal power series in r indeterminates over B . Then ∂t1 , . . . ,∂tr is a regular family
of elements of Der(A) (resp. Derk (A), thus the maximal ideal of A is not r -differential
(resp. not r -differential over k).

Let us recall the following well-known lemma.

Lemma 2.9. Let A be a ring and D ∈ Der(A).

(a) Let S be a multiplicative part of A. Then there exists an unique extension of D
to the localization S−1 A, that is to say: denoting by ι : A → S−1 A the localization
morphism there exists a unique D ′ ∈ Der(S−1 A) such that D ′ ◦ ι= ι◦D.

(b) Let I be an ideal of A. Then there exists a unique continuous (for the limit
topology) extension of D to the completion Â. That is to say: denoting by τ : A → Â
the completion morphism, there exists a unique continuous derivation D̂ ∈ Der(Â)
such that D̂ ◦τ= τ◦D.

Moreover, if k is a field, A is endowed with a structure of k-algebra, and the derivation D is
k-linear, then D̂ and D ′ are also k-linear.

Remark 2.10. In the notation of lemma 2.9, any derivation on Â is automatically continu-
ous for the Î1-adic topology, since D(Î n

1 ) ⊂ Î n−1
1 for any positive n.

In case I is finitely generated, the limit topology on Â is the Î1-adic topology ([Bou85,
Ch. III, §2, n◦ 12, Corollaire 2]). Thus any derivation on Â is also continuous for the limit
topology.

Proposition 2.11. Let A be a ring and p be a prime ideal of A.

(1) If p is formally r -differential, then p is locally r -differential.
(2) If p is locally r -differential, then p is r -differential.

Assuming that k is a field and A is a k-algebra, the statements whith the analogous notions
“over k” are also true.

Proof. The pull-back by the localization morphism A → Ap (resp. the completion mor-
phism A → Âp) of the maximal ideal of Ap (resp. Âp) is p (resp. the maximal ideal of Ap).
Thus the result is a consequence of the definitions and Lemma 2.9. The last statement is
a consequence of the end of Lemma 2.9. �

The converse statements of Proposition 2.11 for r -differentiality hold in case A is an
algebra of finite type over a field. This easily follows from the arguments in the proofs
of [Sei67, Theorems 2 and 12]. Let us state the result and its proof, giving a somewhat
simplified version of the aforementioned arguments.

Proposition 2.12. Let k be a field, A be a k-algebra of finite type and p be a prime ideal of
A.

(1) For any D ∈ Derk (Ap), there exists s ∉ p and D ′ ∈ Derk (A) such that s ·D is the
extension of D ′.

(2) If p is r -differential over k, then p is locally r -differential over k.
(3) If p is locally r -differential over k, then p is formally r -differential over k.

Proof. Let ϕ : R := k[X1, . . . , Xn] → A be a presentation of the k-algebra A, xi := ϕ(Xi ).
Let n= Ker(A → Ap) = {a ∈ A,∃s ∉ p, sa = 0}.

Let D ∈ Derk (Ap). Up to multiplying D by an element s ∉ p (a common denominator
of all the Dxi , i = 1, . . . ,n), one may assume that D is the extension of a derivation
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D̃ ∈ Derk (A/n). Let n′ =ϕ−1(n) and D̄ ∈ Derk (R) such that ϕ(D̄(Xi )) = D̃(xi ) (mod n). In
particular D̄n′ ⊂ n′.

Now since n is finitely generated, one may find t ∉ p such that t ·n= 0. But then if T ∈ R
is such thatϕ(T ) = t then Ker(ϕ) ⊂ n′ is stable under T D̄ . Thus T ·D̄ induces D ′ ∈ Derk (A)
whose extension to Ap is t ·D

The second assertion is a consequence of the first: let (D1, . . . ,Dr ) be a regular family
of k-derivation on Ap and (z1, . . . , zr ) ∈ p · Ap such that det(Di z j ) ∉ p · Ap. Up to replacing
zi by ti · zi for a suitable ti ∉ p one may assume that the zi ’s are images of elements of
A. And by the first assertion, up to replacing Di by si ·Di for a suitable si ∉ p one may
assume that Di is the extension of D ′

i ∈ Derk (A). Thus (D ′
1, . . . ,D ′

r ) is a regular family of

Derk (A). Now let D1, . . . ,Dr ∈ Derk (Âp) be a regular r -tuple of continuous derivations.

Let us show that there exists a regular r -tuple of elements of Derk (Âp). Quotienting A by
the kernel of the localization morphism, one may assume that the localization morphism
is injective. By continuity of the Di ’s and the fact that the closure of p is p̂ (the maximal
ideal of Âp), there exist z1, . . . , zr ∈ p such that det(Di z j )16i , j6r ∉ p. Therefore, up to
changing the Di ’s and the presentation morphism ϕ, one may assume that x1, . . . , xr ∈ p
and (Di x j )16i , j6r is the identity matrix.

Let f1, . . . , fs be a finite family of generators of Ker(ϕ). Set y1 = 1 and y2 = ·· · = yr = 0.
Then any family (y j ) j=r+1,...,n of elements of Ap such that∑

16 j6n
∂X j fi (x) · y j = 0, i = 1, . . . , s

yields an element of Derk (Ap). The above system has a solution in Âp given by y j = D1x j

for j > r +1. Since Ap → Âp is faithfully flat, the system also has a solution in Ap (see e.g.,
[Bou61, I.3.7, Proposition 13]. This yields an element D ′

1 ∈ Derk (Ap) such that D ′
1x1 = 1,

and D ′
1x2 = ·· · = D ′

r xr = 0. Similarly, for any 26 i 6 r , one may construct D ′
i such that

D ′
i xi = 1 and D ′

i x j = 0 for j 6= i . �

2.13. Interlude on families of pairwise commuting derivations. The following will be
used to give a more precise version of the Lipman-Nagata-Zariski simplification lemma
as stated in [Mat86, Theorem 30.1].

Proposition 2.14. Let A be a ring, and let E1, . . . ,Er and D1, . . . ,Dr be elements of Der(A).
Assume that there exists a square matrix B = [bi , j ]16i , j6r with coefficients in A such that

Di =
r∑

j=1
bi , j ·E j .

Consider the following property, called property (P):

∀16 i , j ,k 6 r, Di b j ,k = D j bi ,k .

(1) Assume that the Ei ’s are pairwise commuting.
(a) If (P) holds, then the Di ’s are pairwise commuting.
(b) If the Di ’s are pairwise commuting and the Ei ’s form a free family over A,

then (P) holds.
(c) If B ∈GLr (A), then [Di ,D j ] ∈∑r

k=1 A ·Dk .
(2) Assume that the Di ’s are pairwise commuting.

(a) If (P) holds and B ∈ GLr (A), then the Ei ’s are pairwise commuting.
(b) If Ei ’s are pairwise commuting and form a free family over A, then (P) holds.

Proof. For 1 6 i , j 6 r , an elementary computation (akin to the one in the proof of
[Now86, Lemma 4] ) shows the relation

[Di ,D j ] = ∑
16k6r

(Di b j ,k −D j bi ,k ) ·Ek +
∑

16k,`6r
b j ,k bi ,`[Ek ,E`]
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This immediately shows 1(abc) and 2(b). Moreover if the Di ’s are pairwise commuting
and (P) holds, the above relations show that the matrix product B 2 · ([Ek ,E`])16k,`6r is
zero, allowing to conclude for 2(a). �

2.15. Connection with cylindricity.

Definition 2.16. Let k be a field, A be a complete local ring (resp. k-algebra). Let r be
a positive integer. Then A is said to be r -cylindrical (resp. r -cylindrical over k) if there
exists a complete local ring (resp. k-algebra) B and a ring (resp. k-algebra) isomorphism
between A and B [[t1, . . . , tr ]] (the formal power series ring in r variables with coefficients
in B). It is said to be maximally r -cylindrical if it is r -cylindrical and not (r +1)-cylindrical.

Remark 2.17. If A and B are complete local rings (resp. complete local k-algebras) then
any ring (resp. k-algebra) isomorphism between A and B isomorphism is automatically
an isomorphism of complete local rings (resp. k-algebras).

Remark 2.18. If A is an r -cylindrical complete local ring (resp. k-algebra), and B1, B2

are complete local rings (resp. k-algebras) such that A and B1[[t1, . . . , tr ]] on one hand,
A and B2[[t1, . . . , tr ]] on the other hand, are isomorphic rings (resp. k-algebras) then, by
[Ham75, Theorem 4] (and its proof in the case of k-algebras), B1 and B2 are isomorphic
rings (resp. k-algebras).

For rings containing Q, the relation between r -differentiality and r -cylindricity is
given by the Lipman-Nagata-Zariski simplification lemma, see e.g., [Lip65, Theorem 2]
or [Mat86, Theorem 30.1]. Here is a more precise version of [Mat86, Theorem 30.1].

Lemma 2.19. Let (A,m) be a complete local ring containing Q, and let r be a positive
integer.

(1) The ideal m is not r -differential if and only if A is r -cylindrical. More precisely, if
D1, . . . ,Dr is a regular family of derivations on A and x1, . . . , xr ∈m are such that
det(Di x j )16i , j6r ∉m, then there exists a complete local ring B and an isomor-
phism ϕ : B [[t1, . . . , tr ]] → A mapping ti to xi .

(2) Let D1, . . . ,Dr be a regular family of derivations on A. Then:
(a) The following are equivalent:

(i) There exists a complete local ring B and an isomorphismϕ : B [[t1, . . . , tr ]] →
A such that ϕ(B) = {a ∈ A : D1a = ·· · = Dr a = 0}.

(ii) For any i , j , [Di ,D j ] ∈∑r
k=1 A ·Dk .

(b) The following are equivalent:
(i) There exists a complete local ring B and an isomorphismϕ : B [[t1, . . . , tr ]] →

A such that ϕ◦∂ti = Di ◦ϕ for any i .
(ii) The Di ’s are pairwise commuting.

Remark 2.20. Let (A,m) be as in the statement of Lemma 2.19 and assume that m is
not r -differential. Let B , x1, . . . , xr ∈ m, ϕ : B [[t1, . . . , tr ]] → A be as in the conclusion
of Assertion 1. Then the quotient morphism A → A/

∑
A · xi induces an isomorphism

ϕ(B)
∼→ A/

∑
A · xi . Assume moreover that A is endowed with a structure of k-algebra,

where k is a field of characteristic 0. Then ϕ(B)
∼→ A/

∑
A ·xi is a sub-k-algebra of A and

ϕ is a k-algebra isomorphism. Therefore in this case the two equivalent statements of
Assertion (1) of the lemma are also equivalent to “A is r -cylindrical over k” and “m is not
r -differential over k”.

Proof. (of Lemma 2.19). The “if” in Assertion (1) is a straightforward consequence of
Example 2.8.

Assume m is not r -differential and let x1, . . . , xr ∈m such that det(Di x j )16i , j6r ∉m. In
particular the matrix (Di x j ) is invertible and up to changing (D1, . . . ,Dr ) by its image by
the inverse of the matrix, one may assume that (Di x j ) is the identity matrix. By the case
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r = 1 there exists a complete local ring B1 and an isomorphism ϕ : B1[[t1]]
∼→ A mapping

t1 to x1. Identifying A with B1[[t1]] via this isomorphism, for 26 i 6 r , let D̃i ∈ Der(B1)
be defined by D̃i (b) = Di (b)t1=0. Note that x2, . . . , xr ∈ B1 = {a ∈ A : D1a = 0} and that
(D̃i x j )26i , j6r is the identity matrix. Thus one obtains the result by induction.

Let us show Assertion 2(a). (i i ) ⇒ (i ) is part of [Mat86, Theorem 30.1]. Now assume
A = B [[t1, . . . , tr ]] and (D1, . . . ,Dr ) is a regular family of derivations on A such that B =
{a ∈ A, D1a = ·· · = Dr a = 0}. In particular, for any i one has Di = ∑r

j=1 Di t j ·∂t j . Let

x1, . . . , xr ∈m such that det(Di x j ) ∈ A×. Then the equality of matrices

(Di x j ) = (Di t j ) · (∂ti x j )

shows that det(Di t j ) ∈ A×, and one may apply Assertion 1(c) of Proposition 2.14 in order
to conclude.

Let us show Assertion 2(b). (i ) ⇒ (i i ) is straightforward. Now assume that the Di ’s are
pairwise commuting and take x1, . . . , xr ∈m such that such that det(Di x j ) ∈ A×. As in the
proof of Assertion 1, consider the derivations E1, . . . ,Er determined by the relations

Di =
r∑

j=1
Di x j ·E j

so that (Ei x j ) is the identity matrix. Then by Assertion 2(a) of Proposition 2.14, the Ei ’s are
pairwise commuting. Thus in the above proof of Assertion 1, since one may choseϕ such
that B1 = {a ∈ A,E1a = 0}, B1 is then Ei -stable for i > 1, and Ẽi is simply the restriction of
Ei to B1. By induction one thus may construct an isomorphismϕ : B [[t1, . . . , tr ]] → A map-
ping ti to xi and such thatϕ◦∂ti = Ei ◦ϕ for any i andϕ(B) = {a ∈ A, E1a = ·· · = Er a = 0}.
Note that one also has ϕ(B) = {a ∈ A, D1a = ·· · = Dr a = 0}. In order to conclude, it
suffices to find y1, . . . , yr ∈m such that (Di y j ) is the identity matrix. Identifying A with
B [[t1, . . . , tr ]] and thus Ri with ∂ti , the existence of such yi ’s is a consequence of [Now86,
Theorem 2]. �

Remark 2.21. One may also recover Assertion (1) by applying Theorem 4.14 below to the
formal flow associated with D1, . . . ,Dr (see Example 4.12).

Example 2.22. As an illustration of Assertion 2(a), consider A = k[[x1, x2, x3]], and (D1,D2)
the regular family given by D1 = ∂x1 and D2 = ∂x2 +x1 ·∂x3 . One easily sees that {a ∈ A :
D1a = D2a = 0} = k; on the other hand, for any isomorphismϕ : B [[t1, t2]]

∼→ A, one must
have dim(ϕ(B)) = 1.

From Propositions 2.11 and 2.12, Lemma 2.19 and Remark 2.20, one deduces the
following corollary, that we state in geometric terms.

Corollary 2.23. Let k be a field and X be a k-scheme of finite type. Let x ∈ X be a
(schematic) point. Then the following assertions are equivalent, and are also equiva-
lent to the same assertions with “over k” removed:

(1) There exists an open affine subset U of X containing x such that the prime ideal
px of OX (U ) corresponding to x is r -differential over k.

(2) For any open affine subset U of X containing x, the prime ideal px of OX (U )
corresponding to x is r -differential over k.

(3) The maximal ideal of OX ,x is r -differential over k.
(4) The maximal ideal of �OX ,x is r -differential over k.
(5) (Requires char(k) = 0) The complete local k-algebra �OX ,x is not r -cylindrical over

k.

Definition 2.24. Let k be a field and X be a k-scheme of finite type. Let x ∈ X be a
(schematic) point. One says that x is an r -differential point of X if one of the equivalent
assertions of Corollary 2.23 holds for x. If chark = 0, a point that is not r -differential is
called an r -cylindrical point.
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Example 2.25. Let k be a field of characteristic zero and X be an algebraic k-variety. Then
by [Sei67, Theorem 5], the generic point of any component of the singular locus of X is a
1-differential point of X .

Lemma 2.26. Let k be a field of characteristic zero, A be a complete local Noetherian
k-algebra with residue field k-isomorphic to k and r be a positive integer. Assume that
there exists an extension L/k such that A⊗̂k L is r -cylindrical. Then A is r -cylindrical.

Remark 2.27. In case k has positive characteristic and L/k is not separable, the statement
does not hold (see Example 4.17). We do not know whether the statement holds in case k
has positive characteristic and L/k is separable.

Proof. The case r = 1 directly follows from arguments contained in the proofs of [Sei69a,
Theorems 2 and 3]. The general case may then be deduced by induction, using Remark
2.18

Alternatively, one can use Lemma 2.19 and the following extension of the aforemen-
tioned arguments. Write A = k[[t1, . . . , ts ]]/I . Let (D1, . . . ,Dr ) be a regular family of
derivations on A⊗̂k L = L[[t1, . . . , ts ]]/I ·L[[t1, . . . , ts ]]. By Remark 2.4 up to permuting
the ti ’s and changing the Di ’s, one may assume that (Di t̄ j )16i , j6r is the identity matrix,
where t̄i is the image of ti in A⊗̂k L.

For 16 i 6 r , one may lift Di to a derivation Di on L[[t1, . . . , ts ]] such that Di t j = δi , j

for 16 j 6 r and for any F ∈ I , Di F ∈ I ·L[[t1, . . . , ts ]]. Now let {eα} be a k-basis of L
containing 1, and consider the k[[t1, . . . , ts ]]-linear map π : L[[t1, . . . , ts ]] → k[[t1, . . . , ts ]]
induced by the linear projection of L on k ·1. Then Dk,i :=π(Di )|k[[t1,...,ts ]] is a derivation
of k[[t1, . . . , ts ]] such that Dk,i t j = δi , j , and for any F ∈ I , one has that Dk,i F ∈ π(I ·
L[[t1, . . . , ts ]]) =I . �

Here is another consequence of Lemma 2.19 (noted in [BS18, §5.6] in the case r = 1)

Corollary 2.28. Let k be a field of characteristic zero and X be a k-scheme of finite type.
Let x ∈ X be an r -cylindrical point. Then there exists an affine k-scheme of finite type Y
and y ∈ Y such that κ(x)

∼→ κ(y) with the following property: if (y,0) denotes the point of
Y ×k Ar

k corresponding to the prime ideal 〈py , t1, . . . , tr 〉 of O(Y )[t1, . . . , tr ] = O(Y ×k Ar
k ),

there exists an isomorphism of complete local k-algebras�OX ,x
∼→ áOY ×k Ar

k ,(y,0) = �OY ,y [[t1, . . . , tr ]].

Proof. Let D1, . . . ,Dr be a regular family of derivations on �OX ,x . Since moreover the
derivations are continuous (Remark 2.10), there exist elements x1, . . . , xr ∈ m := mX ,x

such that det(Di (x j )) ∉ m̂. By lemma 2.19, there exists a complete local k-algebra B and

an isomorphism of k-algebras ϕ : B [[t1, . . . , tr ]]
∼→ �OX ,x mapping ti to xi . Thus one has

an isomorphism B
∼→ �OX ,x /〈x1, . . . , xr 〉 and B is isomorphic to the completion of

OX ,x
〈x1,...,xr 〉 ,

hence the existence of (Y , y) as in the statement �

2.29. Maximal differential ideals. Let A be a ring and T be a family of derivations of
A. Recall that an ideal of A is said to be T -differential (or simply differential in case
T = Der(A)) if it is stable under any element D ∈ T . Now let i be an ideal of A. The
sum of all the T -differential ideals contained in i is a T -differential ideal contained in
i and maximal for this property. We call this ideal the maximal T -differential ideal of
A contained in i. In case A is a local ring and i is the maximal ideal, we simply say the
maximal T -differential ideal of A.

Lemma 2.30. Keep the above notation and assume that A is a ring containing Q and i is
a proper ideal. Then the maximal T -differential ideal of A contained in i is a prime ideal.

In case A is Noetherian, the above lemma follows from [Sei67, Theorem 1]), which
shows that in this case the associated primes of a T -differential ideal are T -differential.
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As explained in the proof below, a slight variation of the arguments of [Sei67] allows to
drop the Noetherianity hypothesis; this should be useful in the context of the extension
of the present work to arc spaces (see Section 6).

Proof. Let D ∈ Der(A). Following [Sei67], consider the morphism ϕD : A[[t ]] → A[[t ]]

mapping t to t and inducing the formal flow HD : a 7→∑
i>0

D(i )a
i ! ·t i associated with D on

A, which is easily seen to be an automorphism, with inverse the morphism ψD mapping
t to t and inducing a 7→ HD (a)(−t ) on A. Moreover, for any ideal I of A, I is D-stable if
and only if I [[t ]] is ϕD -stable.

Now it suffices to show that for any D ∈ Der(A) and any proper D-stable ideal I of A,
any minimal prime ideal containing I is again D-stable. Since A contains Q and I is
D-stable, the radical

p
I is again D-stable (see e.g., [Bui94, Chapter 2, (1.3)]). Thus we

may assume that I is radical.
Let {pe }e∈E be the family of minimal prime ideals containing I . In particular, I =

∩e∈Epe . Thus I [[t ]] = ∩e∈E pe [[t ]]. We claim that for any e ∈ E , the prime ideal pe [[t ]]
is a minimal prime ideal containing I [[t ]]. Indeed, if q is a prime ideal of A[[t ]] such
that I [[t ]] ⊂ q⊂ pe [[t ]], one must have q∩ A = pe ; now for a = ∑

i>0 ai · t i ∈ q, one has
a0 ∈ pe , thus t ·∑i>1 ai · t i−1 ∈ q. Since q⊂ pe [[t ]], one has t ∉ q and since q is prime, one
has

∑
i>1 ai · t i−1 ∈ q thus a1 ∈ pe and so on.

Thus {pe [[t ]]}e∈E is the family of minimal prime ideals containing I [[t ]]. Since I

is D-stable, one has I [[t ]] = ϕD (I [[t ]]) = ∩e∈E ϕD (pe [[t ]]). Thus for e ∈ E one must
have ϕD (pe [[t ]]) = pe ′ [[t ]] for e ′ ∈ E . Since for a ∈ A, ϕD (a) = a (mod 〈t〉), one infers that
pe ⊂ pe ′ thus pe ′ [[t ]] = pe [[t ]] and pe is D-stable. �

Remark 2.31. If k is a field of characteristic p > 0, the maximal ∂t1 , . . . ,∂tr -differential
ideal of k[t1, . . . , tr ] (or k[[t1, . . . , tr ]]) contained in 〈t1, . . . , tr 〉 is 〈t p

1 , . . . , t p
r 〉. In particular

the conclusion of Lemma 2.30 does not hold in this case, and the hypothesis that A
contains Q is crucial. See Remark 4.13 below for a characteristic-free version of Lemma
2.30.

Definition 2.32. Let X be a k-scheme of finite type and x ∈ X a schematic point. The
maximal differential generization of X is the unique differential point x ′ ∈ X (see Defini-
tion 2.24) whose closure contains x and such that any other differential point of X whose
closure contains x also contains x ′ in its closure.

Remark 2.33. If Spec(A) is an open affine subset of X containing x and p is the prime ideal
of A corresponding to x, the prime ideal of A corresponding to the maximal differential
generization of X is the maximal differential ideal of A contained in p.

The following lemma shows the functoriality of the notion of maximal T -differential
ideal.

Lemma 2.34. Let A and B be a rings, TA = {Di }i∈I (resp. TB = {Ei }i∈I ) be a family of
elements of Der(A), (resp. Der(B)), and ϕ : A → B be a ring morphism such that for any
i ∈ I , Ei ◦ϕ=ϕ◦Di . Let I be an ideal of B and J be the maximal TB -differential ideal
of B contained in I . Then ϕ−1J is the maximal TA-differential ideal of A contained in
ϕ−1I .

Proof. Due to the relations Ei ◦ϕ=ϕ◦Di , it is clear that ϕ−1J is a TA-differential ideal
of A contained in ϕ−1I . Let K be any TA-differential ideal of A contained in ϕ−1I .
Since J ∪ϕ(K ) is TB -stable, the ideal 〈J ,ϕ(K )〉 is TB -differential. Since it contains J

and is contained in I , it coincides with J , in particular ϕ(K ) ⊂J thus K ⊂ϕ−1J . �

Corollary 2.35. Let (A,m) be a local ring, D1, . . . ,Dr ∈ Derk (A) be a family of derivations
on A and n be the maximal D1, . . . ,Dr -differential ideal of A. Let D̂1, . . . ,D̂r be the exten-
sions of D1, . . . ,Dr to the completion Â and n∗ be the maximal (D̂1, . . . ,D̂r )-differential
ideal of Â. Then we have the relation n= n∗∩ A.
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2.36. Maximal differential ideals with respect to regular families, 1. We shall pay par-
ticular attention, now and later in Section 5, to the description and properties of T -
maximal differential ideals in case the family of derivations T is a finite regular family.
Lemma 2.37 below is a basic instance of this situation.

Lemma 2.37. Let A be ring containing Q, p be a prime ideal of A and r be a positive
integer. Then the maximal (∂t1 , . . . ,∂tr )-differential ideal of A[t1, . . . , tr ] (resp. A[[t1, . . . , tr ]])
contained in 〈p, t1, . . . , tr 〉 is p[t1, . . . , tr ] (resp. p[[t1, . . . , tr ]]).

Proof. The prime ideal p[t1, . . . , tr ] of A[t1, . . . , tr ] is ∂t1 , . . . ,∂tr -differential and contained
in 〈p, t1, . . . , tr 〉. Now letα ∈ A[t1, . . . , tr ] be such thatα ∉ p[t1, . . . , tr ]. Sinceα (mod p[t1, . . . , tr ])
is a non-zero element of (A/p)[t1, . . . , tr ] and the latter ring contains Q, there exist
i1, . . . , ir > 0 such that ∂(i1)

t1
. . .∂(ir )

tr
α (mod p[t1, . . . , tr ]) has a non-zero constant term.

Thus ∂(i1)
t1

. . .∂(ir )
tr
αdoes not belong to 〈p, t1, . . . , tr 〉. Thus the maximal (∂t1 , . . . ,∂tr )-differential

ideal of A[t1, . . . , tr ] contained in 〈p, t1, . . . , tr 〉 is p[t1, . . . , tr ].
A strictly analogous argument works for A[[t1, . . . , tr ]]. �

Remark 2.38. Let (D1, . . . ,Dr ) be a regular family of derivations on a complete local
ring (A,m). Then in general the maximal (D1, . . . ,Dr )-differential ideal p of A does not
coincide, via the isomorphism A

∼→ B [[t1, . . . , tr ]] constructed in the proof of Assertion 1
of Lemma 2.19, with the maximal (∂t1 , . . . ,∂tr )-differential ideal q of B [[t1, . . . , tr ]], that is,
the ideal generated by the maximal ideal of B .

Consider e.g., A = k[[x1, x2, x3]], D1 = ∂x1 and D2 = ∂x2 +x1 ·∂x3 . Then the derivation
D̃2 (remember the notation in the proof of Lemma 2.19) on k[[x2, x3]] is ∂x2 , and q= 〈x3〉.
Yet D2x3 = x1 thus q is not stable under D2. This shows that p 6= q.

Lemma 2.39. Let A be a ring containing Q, p be a prime ideal of A, r be a positive integer,
and D1, . . . ,Dr be a family of elements of Der(A) that is regular with respect to p. For
0 6 s 6 r , denote by qs the maximal D1, . . . ,Ds -differential ideal of A contained in p.
Then:

(1) One has codimA/qr p> r .
(2) If D1, . . . ,Dr is moreover normalizable (see Definition 2.2) and codimA/qr p= r ,

one has codimA/qs p= s for any 06 s6 r .

Proof. Localizing and using Lemma 2.34 and 2.9, one may assume that A is local and
p is its maximal ideal. Let us show the first assertion. Let (x1, . . . , xr ) ∈ p such that
det(Di (x j ))16i , j6r ∉ p. Replacing the r -tuple of derivations D1, . . . ,Dr with its product
by the inverse of the matrix (Di (x j )), one may assume that (Di (x j )) is the identity matrix.
Note that qr remains the same by this change of family (however, the qs ’s for s < r may
have been modified). Recall that qs is prime (Lemma 2.30). Moreover, one has qs+1 ⊂ qs

and for 0 6 s 6 r − 1 one has xs+1 ∈ qs \ qs+1 since Ds+1xs+1 = 1 and (in case s > 1)
Ds xs+1 = 0. The conclusion follows.

As for the second assertion, note that under the given assumptions, the previous
argument shows directly (without having to change the family of derivations) that we
have a chain of proper inclusions of prime ideals qr á qr+1 á ·· · á q0 = p. �

Remark 2.40. In case A is a complete local ring and D1, . . . ,Dr is a finite regular family
of derivations that are pairwise commuting, the dimension of the maximal D1, . . . ,Dr -
differential ideal equals r . This follows from Lemmas 2.19 and 2.37. The equality holds
even under the weaker assumption [Di ,D j ] ∈∑r

k=1 A ·Dk . Indeed, in this case, by Lemma
2.19, one may assume that A = B [[t1, . . . , tr ]] where (B ,mB ) is a complete local ring such
that B = {a ∈ A : D1a = ·· · = Dr a = 0}. But then Di =∑r

j=1 Di t j ·∂t j and (see the proof of
Assertion 2(a) of Lemma 2.19) (Di t j ) ∈GLr (A). Thus the maximal D1, . . . ,Dr -differential
ideal coincides with the maximal ∂t1 , . . . ,∂tr -differential ideal, and one may conclude
with Lemma 2.37 as before.
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In general the inequality in the first assertion of the lemma is strict. Consider again the
example A = k[[x1, x2, x3]], D1 = ∂x1 and D2 = ∂x2 + x1 ·∂x3 . Then the maximal (D1,D2)-
differential ideal q is zero. Indeed, by the lemma, its dimension is 2 or 3. If it is 2, then one
must have q = 〈F 〉 with F ∈ k[[x1, x2, x3]] such that ∂x1 F ∈ 〈F 〉 and ∂x2 F + x1∂x3 F ∈ 〈F 〉.
The latter conditions are easily seen to imply F ∈ k, a contradiction. Thus q= {0}.

The latter example also shows that the second assertion fails in general. Indeed, in
this case, setting D3 = ∂x3 , the maximal (D1,D2)-differential ideal coincides with the
maximal D1,D2,D3-differential, both having dimension 3. This shows in particular that
D1,D2,D3 is not normalizable (see remark 2.3).

3. ANALYTICALLY ISOSINGULAR SUBSETS AND ISOSINGULAR LOCI OF ALGEBRAIC VARIETIES

Motivated by our comparison theorems for formal neighborhoods in arc schemes
([BMCS, BMCn23]) and Chiu and Hauser’s study of isosingular loci of algebraic varieties
over algebraically closed field ([CH22]), in this section, we first introduce the notion of
strongly and weakly analytically isosingular (in short SAI and WAI) closed subsets of an
algebraic variety defined over a perfect field. Then we extend the notion of isosingular
loci, as well as some of their properties, to the case of perfect fields.

The definitions of SAI and WAI are such that any SAI subset is trivially WAI, but later
we will be able to show that both notions coincide (see Corollary 5.20). We do not know
whether a similar statement holds in the case of arc schemes (see Question 6.11).

3.1. Preliminaries : notation and technical lemmas. We will say that a finitely gener-
ated field extension K /k is separable if there exists a finite family {xi } of elements of K
that are algebraically independent over k and such that any element of K is algebraic
over k({xi }) with separable minimal polynomials. An arbitrary extension K /k is said to
be separable if any finitely generated subextension L/k is.

Definition 3.2. Let k be a field and A be a local k-algebra with residue field κ(A). A
k-section of (the local k-algebra) A is a section s : κ(A) → A of the quotient morphism
which is a morphism of k-algebras.

Recall that if A is a complete local k-algebra and k ′ is sub-k-extension of κ(A) such
that k ′/k is algebraic separable, all the k-sections of A have the same restriction to k ′
(see e.g., [Bou06, Chapitre 9, §3, Proposition 1]). In particular, if κ(A)/k is algebraic
separable, there exists a unique k-section of A ; in this case, A will be tacitly assumed to
be equipped with the resulting κ(A)-algebra structure. More generally, if A is endowed
with a k ′-algebra structure, every k-section of A is automatically a k ′-section.

Notation 3.3. If A is a ring, K is a field and ι : K → A is a morphism, we shall sometimes
denote by A(ι) the ring A equipped with the induced K -algebra structure. This will be
relevant in contexts where several K -algebra structures on A are involved.

Remark 3.4. For any extension K /k, two local K -algebras A and B with residue field
K -isomorphic to K are isomorphic as k-algebras if and only if there exists a k-section s of
B such that the K -algebras A and B (s) are isomorphic. Indeed, if ϕ : A → B is a k-algebra
isomorphism, one may take s =ϕ◦ ιA where ιA : K → A is the structural morphism.

For the next lemma, see [Sei73, Lemma, p.29].

Lemma 3.5. Let k be a field, A = k[X1, . . . , XN ]/I and m be a maximal ideal of A such
that the residue field κ(m) of m is an algebraic separable extension of k. Let αi be the
image of Xi in κ(m). Then the κ(m)-algebras Âm and κ(m)[[X1, . . . , XN ]]/〈F (Xi +αi )〉F∈I

are isomorphic.

Corollary 3.6. Let k be a perfect field, k be an algebraic closure of k, X be an algebraic k-
variety, x be a closed point of X , ι : κ(x) ,→ k be a k-embedding and x ′ be the point of X (k)
lying over x induced by ι. Then the k-algebras OXk ,x ′ and OX ,x⊗̂κ(x),ιk are isomorphic.
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Lemma 3.7. Let k be a field.

(1) Let A be a complete local Noetherian k-algebra with residue field k-isomorphic
to k, K /k be an extension and AK := A⊗̂k K . Let s : K → AK be a k-section of AK .
Then there exists a k-algebra automorphism ϕ of AK inducing s : K → s(K ).

(2) Let k ′/k be an algebraic separable extension of k, A be a complete local Noetherian
k ′-algebra with residue field k ′-isomorphic to k ′, K /k ′ be an extension and B a K -
algebra such that the K -algebras AK := A⊗̂k ′K and B are isomorphic as k-algebras.
Then AK and B are isomorphic K -algebras.

Proof. One may write AK = K [[X1, . . . , Xn]]/〈F1, . . . ,Fm〉 with F j ∈ k[[X1, . . . , Xn]]. Denote
by xi the image of Xi in AK . Considerϕ : K [[X1, . . . , Xn]] → A mapping

∑
aI ·XI to

∑
s(aI )·

x I . Since s is a morphism of k-algebras, any F ∈ k[[X1, . . . , Xn]] is mapped to F (x1, . . . , xn).
In particular, for any 16 i 6m one has ϕ(F j ) = 0, and therefore ϕ factors through an
endomorphism ϕ : A → A, mapping

∑
aI · x I to

∑
s(aI ) · x I .

Since for any α ∈ K one has s(α)−α ∈M, one sees that ϕ induces the identity on
Mn/Mn+1. Thus ϕ is a ring automorphism. This show the first assertion.

As for the second assertion, since AK and B are isomorphic k-algebras and k ′/k is
algebraic separable, AK and B are isomorphic k ′-algebras. Thus one reduces to the
case k ′ = k. Denote by ιAK : K → AK and ιB : K → B the structural morphisms. Let
ϕ : AK → B be a k-algebra isomorphism. Since ϕ−1 ◦ ιB is a k-section of AK and by the
first assertion, there exists a k-algebra automorphism ψ of A such that ψιAK =ϕ−1 ◦ ιB
Then ϕψ : AK → BK is a ring isomorphism and (ϕψ)ιA,K = ιB . Thus ϕψ is a K -algebra
isomorphism between AK and B . �

3.8. Strongly and weakly analytically isosingular subsets of an algebraic variety.

Notation 3.9. For any topological space X , one denotes by X (0) the set of its closed
points. Note that in case X is an algebraic variety and Y is a locally closed subset of X ,
one has Y (0) = Y ∩X (0).

Definition 3.10. Let k be a perfect field and X be a k-scheme of finite type.
Let x1, x2 ∈ X (0). One says that x1 and x2 are geometrically analytically equivalent if

there exist an extension K /k and k-embeddings ι1 : κ(x1) ,→ K and ι2 : κ(x2) ,→ K such
that �OX ,x1 ⊗̂κ(x1)K (ι1) and �OX ,x2 ⊗̂κ(x2)K (ι2) are isomorphic K -algebras.

An irreducible closed subset F of X is said to be weakly analytically isosingular (in
short WAI) if there exists a non-empty Zariski open subset U of F such that any x1, x2 ∈
U (0) are geometrically analytically equivalent. Such an open subset of F is called an
analytical isosingularity (in short AI) open subset of F .

A WAI closed subset F is said to be maximal (in short MWAI) if there does not exist
a WAI closed subset G containing properly F and an AI open subset U of G such that
U ∩F 6=∅.

Remark 3.11. Let k/k be an algebraic closure of k. Let x1, x2 ∈ X (0). Then x1 and x2 are
geometrically analytically equivalent if and only if there exist k-embeddings ι1 : κ(x1) ,→
k and ι2 : κ(x2) ,→ k such that �OX ,x1 ⊗̂κ(x1)k

(ι1)
and �OX ,x2 ⊗̂κ(x2)k

(ι2)
are isomorphic k-

algebras (see also remark 3.25 below). Indeed, the “if” is clear. Conversely, let K /k, ι1, and
ι2 be as in the definition. Upon extending K , one may assume that K /k factors through

k/k. For i = 1,2, let ι′i : κ(xi ) ,→ k be the induced embedding and Ai := �OX ,xi ⊗̂κ(xi )k
(ι′i )

.
Since A1⊗̂k K and A2⊗̂k K are isomorphic K -algebras, by [Sei69b, Theorem 5], A1 and A2

are isomorphic k-algebras.
In particular, if k = k̄, x1, x2 ∈ X (0) are geometrically analytically equivalent if and only

if �OX ,x1 and �OX ,x2 are isomorphic k-algebras.
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Example 3.12. Assume that X is an algebraic k-variety.
Then X itself is a MWAI closed subset of X (we call it the trivial MWAI closed subset)

with maximal AI open subset the set of smooth points of X .
In case X is smooth, X is the only MWAI closed subset of X .
In case X has only isolated singularities, the non-trivial MWAI closed subsets are the

subsets {x} where x is a singular point.

Example 3.13. Assume that char(k) = 0 and X = Spec(k[X1, X2, X3]/〈X 2
1 − X3X 2

2 〉) (the
Whitney umbrella), whose singular locus is the line L := {X1 = X2 = 0}. Then the non-
trivial MWAI closed subsets are {(0,0,0)} and L (with maximal AI open subset the comple-
ment of the origin).

Indeed, for any x ∈ L(0) \ {(0,0,0)} and any embedding ι : κ(x) ,→ k one has by Lemma
3.5 �OX ,x⊗̂κ(x)k

(ι) ∼→ k[[X1, X2, X3]]/〈X 2
1 −X 2

2 (X3 +α)〉
where α ∈ k, α 6= 0. Let β ∈ k such that β2 = 0 and

p
X3 +α the unique element of k[[X3]]

squaring to X3 +α and with constant term β. Then the change of coordinates

X ∗
1 = X1

β
, X ∗

2 = X2p
X3 +α

, X ∗
3 = X3

defines an isomorphism

k[[X1, X2, X3]]

〈X 2
2 −X 2

1 (X3 +α)〉
∼→ k[[X1, X2]]

〈X 2
2 −β2 ·X 2

1 〉
[[X3]].

Thus �OX ,x⊗̂κ(x)k
(ι)

is isomorphic to k[[X1,X2]]
〈X1 X2〉 [[X3]] (in particular x is maximally 1-cylindrical).

On the other hand, if x = (0,0,0),�OX ,x
∼→ k[[X1, X2, X3]]/〈X 2

1 −X 2
2 X3〉

is not cylindrical (see [BS18, Example 5.12]).

Example 3.14. Assume now that char(k) = p and consider the p-Whitney umbrella
X = Spec(k[X1, X2, X3]/〈X p

1 −X3X p
2 〉). Then the only non-trivial MWAI closed subset is

the line L = {X1 = X2 = 0}. In fact, for any x1, x2 ∈ L(0), it follows from [CH22, Example 2.6]

that �OX ,x1 ⊗̂κ(x1)k
(ι1) ∼→ �OX ,x2 ⊗̂κ(x2)k

(ι2)
for any choice of ι1, ι2.

Definition 3.15. Let k be a perfect field and X be a k-scheme of finite type. Let F be an
irreducible closed subset of X and ηF be its generic point. Then F is said to be strongly
analytically isosingular (in short SAI) if there exists a non-empty Zariski open subset U
of F such that the following holds: there exists a k-section sF of �OX ,ηF such that for any

x ∈U (0), there exists a common extension K of κ(x) and κ(ηF ) such that �OX ,x⊗̂κ(x)K and

( �OX ,ηF

(sF )⊗̂κ(ηF )K )[[t1, . . . , tdim(F )]] are isomorphic K -algebras.

Remark 3.16. Since k is perfect, by lemma 3.7, one obtains an equivalent notion by

requiring that �OX ,x⊗̂κ(x)K and ( �OX ,ηF

(sF )⊗̂κ(ηF )K )[[t1, . . . , tdim(F )]] be only isomorphic
k-algebras.

The notion of a maximal SAI closed subset is defined similarly to the case of WAI
subsets. The following lemma is a direct consequence of the definitions.

Lemma 3.17. Keep the above notation. If F is SAI, then F is WAI.

Example 3.18. If X is an algebraic k-variety, any closed subset F meeting the smooth
locus of X is SAI, and X itself is MSAI.

Example 3.19. Let us get back to Example 3.13 and show that L is S AI (thus MSAI).
Since ηL corresponds to the prime ideal 〈X1, X2〉, of k[X1,X2,X3]

〈X 2
1−X3 X 2

2 〉
, the quotient morphism
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�OX ,ηL → κ(ηL) induces an isomorphism k(X3)
∼→ κ(ηL), thus a natural k-section s of�OX ,ηL and one has a k(X3)-algebra isomorphism

�OX ,ηL

(s) ∼→ k(X3)[[X1, X2]]

〈X 2
1 −X3X 2

2 〉
.

Thus for any extension K /k(X3) such that X3 is a square in K , one has

�OX ,ηL

(s)⊗̂k(X3)K
∼→ K [[t1, t2]]

〈t1t2〉
. (3.1)

Therefore, for any x ∈ L(0) \ {(0,0,0)} and any extension K of k(X3)[v]/〈v2 −X3〉, one has
by Example 3.13 and for any ι : κ(x) ,→ k an isomorphism

(�OX ,ηL

(s)⊗̂k(X3)K )[[v]]
∼→ �OX ,x⊗̂κ(x)K

(ι).

Isomorphism (3.1) also shows that ηL is differential; this may also be seen as a conse-
quence of [Sei67, Theorem 5], see Example 2.25). Thus for any x ∈ L(0) \ {(0,0,0)}, ηL is
the maximal differential generization of x.

Theorem 5.18 and corollary 5.20 below will in particular generalize the observations
in Example 3.19. Namely, they will show that WAI and SAI turns out to be equivalent
notions and give an interpretation of the maximal differential generization of a closed
point x as the generic point of the component through x of its (geometric) isosingular
locus (to be discussed in the next subsection), as well as the generic point of the unique
MWAI closed subset containing x.

3.20. The geometric isosingular locus of a closed point. We want to use the notion of
geometrically analytically equivalent closed points to extend Chiu and Hauser’s notion
of isosingular locus, defined in [CH22] for closed points of an algebraic variety over an
algebraically closed field, to the case where the base field is perfect, keeping in particular
the property that such a locus is the set of closed points of a locally closed subset.

First we have to make some reminders on contact groups and their truncations, which
play a pivotal role in Chiu and Hauser’s argument. See [CH22] for more details and
relevant facts.

Let e be a nonnegative integer, N be a positive integer, and X = (X1, . . . , XN ) be a set of
indeterminates. Let VN ,e be the affine k-space whose L-points, for any extension L/k, are
in natural correspondence with the set of coefficients of elements of L[[X]] modulo 〈X〉e .

For any positive integer n, let KN ,n,e be the associated (truncated) contact group of
order e; this is a linear algebraic group over k, that naturally acts on V n

N ,e , in such a way
that for any extension L/k and any (F1,1, . . . ,F1,n), (F2,1, . . . ,F2,n) ∈ V n

N ,e (L), the L-algebras
L[[X]]/〈F1,1(X), . . . ,F1,n(X)〉+〈X〉e and L[[X]]/〈F2,1(X), . . . ,F2,n(X)〉+〈X〉e are isomorphic if
and only if there exists g ∈KN ,n,e (L) such that g · (F1,1, . . . ,F1,n) = (F2,1, . . . ,F2,n).

Let now VN be the affine k-space whose L-points, for any extension L/k, are in natural
correspondence with the set of coefficients of elements of L[[X]]. For any n-tuple f =
( f1, . . . , fn) of elements of k[X], for any k-algebra A and any a ∈ An , set ev f (a) := ( fi (X+
a))16i6n . This defines a morphism ev f : An

k → V n
N .

For fixed N and n, note that (V n
N ,e )e , (KN ,n,e )e are inverse systems such that the action

of KN ,n,e on V n
N ,e is compatible with the transition morphisms. In particular the k-group

scheme KN ,n := lim←− KN ,n,e acts on lim←− V n
N ,e = VN . By [CH22, Lemma 1.5] and Lemma 3.5,

this action enjoys the following properties.

Lemma 3.21. (1) Let K be an extension of k. Let f and g be n-tuples of elements of
K [[X]] = VN (K ). Then K [[X]]

〈 f 〉 and K [[X]]
〈g 〉 are isomorphic if and only if there exists

κ ∈KN ,n(K ) such that κ · f = g .
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(2) Let f be an n-tuple of elements of k[[X]] and X := Spec(k[X]/〈 f 〉). Let x1, x2 ∈ X (0)

such that κ(x1) and κ(x2) are separable extensions of k. Then for any common
extension K of κ(x1) and κ(x2) (inducing elements of K n still denoted by x1 and
x2), �OX ,x1 ⊗̂κ(x1)K

∼→ �OX ,x2 ⊗̂κ(x1)K if and only if there exists κ ∈KN ,n(K ) such that
κ ·ev f (x1) = ev f (x2).

Remark 3.22. Let t = (t1, . . . , td ) be a set of indeterminates. Let f1, f2 ∈ VN (k[[t ]]). Assume
that there exists κ ∈KN (k[[t ]]) such that κ · f1 = f2. Then the complete local k-algebras
k[[X, t ]]/〈 f1〉 and k[[X, t ]]/〈 f2〉 are isomorphic. A similar remark holds for KN ,n for any
positive integer n.

As pointed out in [CH22, Remark 1.1], the strict extension of the notion of isosingular
locus defined there to the case where the base field is not algebraically closed is not
well-behaved. Here one adopts the following definition, that coincide with the one in
[CH22] in case k̄ = k (see Remark 3.11).

Definition 3.23. Let k be a perfect field, X be a k-scheme of finite type and x be a closed
point of X . The (geometric) isosingular locus of x, denoted by Iso(X , x), is the set of
elements x ′ ∈ X (0) such that x and x ′ are geometrically analytically equivalent.

Using a Galois descent argument, one obtains the following generalization of [CH22,
Proposition 1.9].

Proposition 3.24. Let k be a perfect field, X be a k-scheme of finite type and x a closed
point of X . Then there exists a locally closed subset Y of X such that Y (0) = Iso(X , x).

Proof. We may assume that X = Spec(k[X]/〈 f 〉) is affine, where X = (X1, . . . , XN ) and f
is a n-tuple of elements of k[X]. Let {x ′

i }i∈I be the finite set of those elements of X (k)
lying over x. By [CH22, Corollary 1.8], there exists a positive integer e such that for any
y ′ ∈ X (k) and any i ∈ I one has àOXk ,x′

i

∼→ �OXk ,y ′ if and only if

∃κ ∈KN ,n,e (k), κ ·ev f (x ′
i ) = ev f (y ′). (3.2)

On the other hand, by the definition of Iso(X , x), for any y ∈ X (0), one has y ∈ Iso(X , x)
if and only if there exists y ′ ∈ X (k) lying over y and i ∈ I such that (3.2) holds. Note
that in this case, for any γ ∈ Gal(k/k), (3.2) also holds for γ · x ′

i and γ · y ′. Thus the set

Iso(X , x)(k) of elements of X (k) lying over an element of Iso(X , x) is the pullback by ev f

of ∪i∈I KN ,n,e (k) · ev f (x ′
i ). Since {ev f (x ′

i )}i∈I is the set of elements of V n
N (k) lying over

ev f (x), by lemma 3.26 below, the above union of orbits equals Z (k) where Z is a locally
closed subset of V n

N ,e . Setting Y := ev−1
f (Z ), one thus has Iso(X , x) = Y (0). �

Remark 3.25. The above argument also shows that x1 and x2 are geometrically ana-
lytically equivalent if and only if for any k-embedding ι1 : κ(x1) ,→ k, one may find a

k-embedding ι2 : κ(x2) ,→ k such that �OX ,x1 ⊗̂κ(x1)k
(ι1)

and �OX ,x2 ⊗̂κ(x2)k
(ι2)

are isomor-

phic k-algebras (see Remark 3.11).
However, in general, such an isomorphism will not exist for any choice (ι1, ι2) of

such k-embeddings. Indeed, consider e.g., k = R and the celebrated Whitney exam-

ple X = Spec
(

k[X1,X2,X3]
X1 X2(X1+X2)(X1+X3 X2))

)
. For x1 = x2 the closed point given by the maximal

ideal 〈X1, X2, X 2
3 +1〉, the completions corresponding to the two different R-embeddings

κ(x1) → C are C[[X1,X2,X3]]
X1 X2(X1+X2)(X1+(X3+i )X2) and C[[X1,X2,X3]]

X1 X2(X1+X2)(X1+(X3−i )X2) which are not isomor-
phic C-algebras by Whitney’s cross-ratio argument.

Lemma 3.26. Let k be a perfect field, G be a smooth connected algebraic group over k
acting on an affine k-scheme of finite type X . Let x ∈ X (0) and {x ′

i }i∈I be the finite set of the

points of X (k) lying over x.
Then there exists a locally closed subset Y of X such that ∪

i∈I
G(k) · x ′

i = Y (k).
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Proof. Let Γ= Gal(k/k) be the absolute Galois group of k. Take J ⊂ I such that the orbits
{G(k).x ′

i }i∈J are pairwise disjoint. For i ∈ J , let Fi be the closure of G(k).x ′
i in X (k). In

particular Ui =: G(k).x ′
i is open in Fi . Since Γ acts transitively on {Ui }i∈J , dim(Fi ) is

constant. Let i , j ∈ J , i 6= j . Since Fi \Ui is a union of G(k)-orbit, if U j ∩Fi were non
empty, one would have U j ⊂ Fi \Ui . Since dim(Fi ) = dim(F j ) this is impossible. Thus
U j ∩Fi =∅.

It follows that U :=∪i∈IUi is open and dense in F =∪i∈I Fi . Thus since U is Γ-stable,
F is also Γ-stable, as well as F \U . This implies that there exist closed subsets F1 and
F2 of X such that F1(k) =F and F2(k) =F \U (see e.g., [Mil15, Chapter 16]). Therefore
Y := F1 \ F2 has the required properties. �

Notation 3.27. Using a notation strictly similar to [CH22], for x ∈ X (0) one denotes by
X (x) the unique locally closed subset of X such that (X (x))(0) = Iso(X , x), and one endows
it with its reduced subscheme structure.

Remark 3.28. The proof of Lemma 3.26 shows that for a suitable subset {x j } j∈J of the

set of elements of X (k) lying over x, the underlying topological space of X (x) ⊗k k is the

disjoint union of the locally closed subsets X
(x j )

k
.

One has the following extensions of [CH22, Lemmas 1.13 & 2.5 & Proposition 1.14].

Lemma 3.29. Let k be a perfect field and X be a k-scheme of finite type.

(1) Let Y be a k-scheme of finite type, f : X → Y be an étale morphism and x ∈
X (0). Then f −1(Iso(Y , f (x))) = Iso(X , x). Moreover the induced morphism X (x) →
Y ( f (x)) is étale.

(2) Let x ∈ X (0). If x is r -cylindrical, then dimx (X (x))> r .
(3) X (x) is smooth over k.

Remark 3.30. By Corollary 2.28 (in case char(k) = 0) and Remark 4.15 (in case char(k) > 0)
the formulation of the second assertion is indeed equivalent to the one of [CH22, Lemma
2.5].

Proof. If f : X → Y be an étale morphism and x ∈ X (0), then by Proposition 5.2, �OX ,x

and àOY , f (x)⊗̂κ( f (x))κ(x) are isomorphic κ(x)-algebras. That being said, the first and the
second assertions can now be proved exactly as the corresponding statements in [CH22].

For the third assertion, one may reduce to the case k = k (and thus to [CH22, Proposi-
tion 1.14]) using Remark 3.28. �

Notation 3.31. For any x ∈ X (0), by Assertion 3 of Lemma 3.29, the closure of X (x) in X
has a unique component passing through x. We denote this component by G (X , x).

Remark 3.32. By Assertion 2 of Lemma 3.29, if x is r -cylindrical, then dim(G (X , x))> r .

4. ISOSINGULARITY IMPLIES CYLINDRICITY

Our main goal in this section is to show the following result.

Theorem 4.1. Let k be a perfect field and X be a k-scheme of finite type. Let Z be a locally
closed subset of X such that any x1, x2 ∈ Z (0) are geometrically analytically equivalent.

In case char(k) > 0, assume moreover that k = k and there exist z ∈ Z (k) that is a
smooth point of Z (endowed with its reduced scheme structure), an open affine subset U of
X containing z and an isomorphism U

∼→ Spec(k[X1, . . . , XN ]/〈 f1, . . . , fn〉) mapping z to
the origin and such that the orbit map of KN ,n through f = ( f1, . . . , fn) is separable (see
Definition 4.4 below).

Then any x ∈ Z (0) is dim(Z )-cylindrical.
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Remark 4.2. Taking Z = X (x) and using Lemma 3.29 as well as Corollary 2.28 (in case
char(k) = 0) and Remark 4.15 (in case char(k) > 0), the result recovers Theorem B of
[CH22] in case k = k and char(k) = 0, and answers Question C of op.cit..

Remark 4.3. In case char(k) = 0, the proof reduces to the case k = k using Lemma 2.26. If
Lemma 2.26 happened to also hold for separable extensions in positive characteristic
(see Remark 2.27), one could drop the assumption k = k in Theorem 4.1 in case k is a
perfect field of positive characteristic.

Definition 4.4. Let k be a field, N a positive integers, X = (X1, . . . , XN ) a set of N indeter-
minates. For any positive integer n and n-tuple f = ( f1, . . . , fn) of elements of k[X], one
says that the orbit map of the contact group KN ,n (see Subsection 3.20) through f is

separable if for any e large enough the orbit map
KN ,n,e −→ VN ,e

κ 7−→ κ · f
is separable.

The proof of Theorem 4.1 follows the general line of arguments in [CH22], but one uses
a multivariate version of Hasse-Schmidt derivations instead of a mere family of regular
derivations. In this framework, the basic idea is that, under the given assumptions, one
may lift a formal parametrization of a smooth point z of Z along the action of the contact
group, which in turn allows us to construct such a multivariate Hasse-Schmidt derivation
locally at z, showing the claimed cylindricity by a generalization of the Lipman-Nagata-
Zariski simplification lemma involving multivariate Hasse-Schmidt derivations. In the
following, we first state the result allowing us to perform the aforementioned lifting. Then
we state and prove an r -cylindricity criterion (Theorem 4.14) in terms of multivariate
Hasse-Schmidt derivations, before proving Theorem 4.1. At the end of the section, we
explain how very similar arguments allow us to recover a related result of Seidenberg in
the context of algebroid geometry.

4.5. Wedge-transitivity of a limit of linear algebraic group actions. The following state-
ment is an abstract version of a result used and proved in [CH22] (see Lemma 2.2 & 2.3
and their proofs therein; the same arguments allow us to show Lemma 4.6).

Lemma 4.6. Let k be a field. Let ({Gn}n∈N, {πn′,n}n,n′∈N,n6n′ ) be an inverse system of linear
algebraic groups over k and ({Vn}n∈N, {τn′,n}n,n′∈N,n6n′ }) be an inverse system of affine
algebraic k-varieties. Let G be the affine group scheme over k defined by G := lim←− Gn

and V be the affine k-scheme defined by V := lim←− Vn . Assume that for any n ∈ N we are

given an algebraic action an : Gn ×Vn →Vn of Gn over Vn compatible with the transition
morphisms, thus inducing an algebraic action a : G ×V →V

Let x ∈V (k) and Y be the closure of the orbit G ·x, endowed with its reduced subscheme
structure. Let ax : G → Y be the morphism g 7→ g · x. For n ∈ N, let xn = τn(x), Yn be the
closure of the orbit Gn · xn , endowed with its reduced subscheme structure and axn : Gn →
Yn be the morphism g 7→ g · xn .

Assume that either:

(1) k is of characteristic zero;
(2) or for n large enough Gn is smooth and the morphism axn is separable.

Then the morphism �OY ,x → �OG ,1G admits a retraction.

Remark 4.7. Let t = (t1, . . . , tr ) be a r -tuple of indeterminates. For any k-scheme of
finite type X , an element w of X (k[[t ]]) is usually called an (r )-wedge (an arc in case
r = 1; see also Subsection 6.1). Its origin is the element of X (k) obtained from w by the
specialization t1 = ·· · = tr = 0. Thus a straightforward consequence of the above lemma
may be stated as follows: any r -wedge γ ∈ Y (k[[t ]]) with origin x may be lifted to a wedge
γ̃ ∈G(k[[t ]]) with origin 1G ; hence the title of the section.



ISOSINGULARITY, DIFFERENTIALITY, AND NON-TRIVIAL ANALYTIC FACTORS OF ALGEBRAIC SINGULARITIES 17

4.8. Hasse-Schmidt multivariate derivations and cylindricity in arbitrary character-
istic. As already pointed out, the proof of Theorem 4.1 relies in particular on a version
of Lemma 2.19 valid in any characteristic and involving a multivariate version of the
notion of Hasse-Schmidt derivation. The latter (which corresponds to the case r = 1 in
the definition below) is by now very classical, whereas as far as we know, the multivariate
version has not been much studied so far in the literature (see [HK16, NM18]).

Definition 4.9. Let A be a ring and r be a positive integer. A Hasse-Schmidt r -derivation
on A is a morphism D : A → A[[t1, . . . , tr ]] (where t1, . . . , tr are indeterminates) such that
for any a ∈ A, D(a)t1=···=tr =0 = a. We denote by HSr (A) the set of Hasse-Schmidt r -
derivations on A. If k is a field and A is a k-algebra, we denote by HSr,k (A) the set of
Hasse-Schmidt r -derivations on A that are morphisms of k-algebras.

In case (A,MA) is a local ring, an element D = IdA +∑
16i6r Di · ti + . . . of HSr (A) is

said to be regular if there exist elements x1, . . . , xr ∈MA such that

det(D j xi ) ∉MA .

Remark 4.10. If D = IdA +∑
16i6r Di ·ti +. . . is an element of HSr (A) (resp. HSr,k (A)) then

the Di ’s are elements of Der(A) (resp. Derk (A)) and the Hasse-Schmidt r -derivation D is
regular if and only if D1, . . . ,Dr is a regular tuple in the sense of Definition 2.2. Moreover,
if x1, . . . , xr ∈MA are such that det(D j xi ) ∉MA , then there exists D̃ = IdA +∑

16i6r D̃i ·
ti +·· · ∈ HSr (A) such that (D̃ j xi ) is the identity matrix: just compose D on the target with
the inverse of the A-automorphism of A[[t1, . . . , tr ]] mapping ti to D(xi )−xi .

Example 4.11. In case A is a complete local ring, setting t = (t1, . . . , tr ) and u = (u1, . . . ,ur ),
the morphism A[[u]] → A[[u, t ]] mapping F (u) to F (u + t ) is a regular Hasse-Schmidt
r -derivation on A[[u]], which is moreover an element of HSr,k (A) in case k is a field and
A is a k-algebra.

Example 4.12. Let A be a ring containing Q and D1, . . . ,Dr be a tuple of derivations on A.
Then the map D =DD1,...,Dr : A → A[[t1, . . . , tr ]] defined by

D(a) = ∑
(i1,...,ir )∈Nr

(D (i1)
1 . . .D (ir )

r )(a)∏
16 j6r i j !

∏
16 j6r

t
i j

j

is a Hasse-Schmidt r -derivation on A, called the formal flow associated with the tuple
D1, . . . ,Dr . Indeed, additivity is clear and for i ∈ Nr and a,b ∈ A, one has by the Leibniz
rule

(D (i1)
1 . . .D (ir )

r )(ab) = D (i1)
1 . . .D (ir−1)

r−1 (
∑

αr ,βr ∈N
αr +βr =ir

ir !

αr !βr !
D (αr )

r aD (βr )
r b)

thus by induction

(D (i1)
1 . . .D (ir )

r )(ab)

i1! . . . ir !
= ∑
α,β∈Nr

α+β=i

1

α1! . . .αr !β1! . . .βr !
(D (α1)

1 . . .D (αr )
r )(a)(D (β1)

1 . . .D (βr )
r )(b)

which shows that D(ab) =D(a)D(b).
Note that in case the derivations D1, . . . ,Dr do not pairwise commute, the associated

formal flow will depend on the chosen ordering of the r derivations.

Remark 4.13. Let A be a ring. An ideal I of A is said to be HS-differential if for any
Hasse-Schmidt derivation D = ∑

j>0 D j · t j on A and any j , one has D j I ⊂ I . If this

holds, then it also holds for
p

I (see e.g., [Tra00, Corollary 2.3]). The version of Lemma
2.30 where differentiality is replaced by HS-differentiality holds in any characteristic. In
the Noetherian case, this is a consequence of [BK72, Theorem 1], where it is observed
that for any Hasse-Schmidt derivation D on A, the extension ϕD : A[[t ]] → A[[t ]] of D to
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A[[t ]] mapping t to t is an automorphism. The same observation also allows to adapt
the argument of the proof of Lemma 2.30 to this context.

Here is a generalization in arbitrary characteristic of the Lipman-Nagata-Zariski sim-
plification lemma, using the notion of regular Hasse-Schmidt r -derivation. Such a
generalization is well-known in the case r = 1 (see [BK72, Kua74, Ish76, BS19]).

Theorem 4.14. Let (A,m) be a complete local ring.
Then A is r -cylindrical if and only if there exists a regular Hasse-Schmidt r -derivation

on A.

More precisely, assume that there exists a Hasse-Schmidt r -derivation

D = IdA + ∑
16i6r

Di · ti + . . . : A → A[[t1, . . . , tr ]]

on A and x1, . . . , xr ∈m such that det(Di x j ) ∈ A×.
Then there exists a complete local ring B and an isomorphism of complete local rings

ϕ : B [[u1, . . . ,ur ]] → A mapping ui to xi .

Remark 4.15. By Example 4.11, if A is moreover a k-algebra which is r -cylindrical over k,
then there exists a regular element of HSr,k (A).

On the other hand, in case there exists a regular element of HSr (A), and keeping the
notation of the statement of the theorem, the quotient morphism A → A/

∑
A ·xi induces

an isomorphism B
∼→ A/

∑
A ·xi . Therefore, going back to the case where A is a k-algebra,

B is a sub k-algebra of A and ϕ is an isomorphism of k-algebras.

Proof. By Example 4.11, we only have to show that if there exists a regular Hasse-Schmidt
r -derivation on A then A is r -cylindrical.

Let D = IdA +∑
16i6r Di · ti + . . . be a regular Hasse-Schmidt r -derivation on A and let

x1, . . . , xr ∈m such that the matrix (D j xi ) is the identity matrix (see Remark 4.10)
Consider the ring morphism θ : A → A obtained by composing D with the evaluations

t1 =−x1, . . . , tr =−xr . Clearly x1, . . . , xr ∈ Ker(θ). On the other hand, by the very definition
of θ, for any a, one has θ(a)− a ∈ ∑

A · xi . One infers that Ker(θ) = ∑
A · xi and A =

Ker(θ)+ Im(θ). Morevoer, since θ(a)−a ∈ Ker(θ) for any a, one has Ker(θ)∩ Im(θ) = {0}.
Thus, setting B = Im(θ), the quotient map A 7→ A/

∑
A · xi induces an isomorphism

B
∼→ A/

∑
A · xi and one has A = B +∑

A · xi . Thus the morphism of complete local rings
ϕ : B [[u1, . . . ,ur ]] → A inducing the identity on B and mapping ui to xi is onto.

Moreover, for any homogeneous element Fd ∈ B [u1, . . . ,ur ] of degree d , one has
ϕ(Fd ) ∈ (

∑
A.xi )d . Therefore, in order to show that ϕ is injective, it suffices to show

the following: let Fd ∈ B [u1, . . . ,ur ] be an homogeneous element of degree d such that
ϕ(Fd ) ∈ (

∑
A.xi )d+1; then Fd = 0.

But since D(xi ) = xi + ti for 16 i 6 r , one has in A[[t1, . . . , tr ]] the relation

D[(
∑

A.xi )d+1] ⊂ 〈t1, . . . , tr 〉d+1 +〈x1, . . . , xr 〉.
On the other hand, for any F ∈ B [[u1, . . . ,ur ]], one has

Dϕ(F ) = F (t1, . . . , tr ) (mod 〈x1, . . . , xr 〉).

Hence if ϕ(Fd ) ∈ (
∑

A.xi )d+1, one has

Fd (t1, . . . , tr ) ∈ 〈t1, . . . , tr 〉d+1 +〈x1, . . . , xr 〉.
In particular, all the coefficients of Fd (t1, . . . , tr ) lie in B ∩∑

A.xi = {0}, and Fd = 0. �

Corollary 4.16. Corollay 2.28 also holds in case char(k) > 0.

Proof. If (A,mA) is any Noetherian local k-algebra and D = IdÂ +∑
16 j6r D j · t j + . . . is a

regular element of HSr,k (A), by continuity of the derivations Di ’s, there exist elements
x1, . . . , xr ∈mA that det(Di (x j )) ∉ m̂A . One may now conclude as in the proof of Corollary
2.28. �
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Example 4.17. Let k be a field of characteristic p > 0, s a transcendental element over
k and A = k(s)[[X1,X2]]

〈X
p
1 −s·X p

2 〉 ; note that A is isomorphic to the formal neighborhood of the

generic point of the singular locus of the Witney p-umbrella (see Example 3.14). Then
for any extension K /k containing a p-th root of s, a linear change of variables shows that
A⊗̂k(u)K is isomorphic to K [[X1, X2]]/〈X p

1 〉 and is thus 1-cylindrical.
Yet A itself is not 1-cylindrical. In fact, denoting by mA the maximal ideal of A, let us

show the stronger statement that for any Hasse-Schmidt derivation D : A → A[[t ]], one
has DmA ⊂mA[[t ]]. Let x1, x2 be the images of X1,X2 in A and π : A → k(s)[[t ]] be the
composition of D with the morphism A[[t ]] → A/MA[[t ]] of coefficientwise reduction.
Set xi (s, t) = π(xi ). Since x1(s, t)p = s · x2(s, t)p , either x1(s, t) = x2(s, t) = 0 (and then
our statement is proved) or ordt (x1(s, t)) = ordt (x2(s, t)) =: n. In the latter case, write
xi (s, t ) = xi ,n(s) · t n + . . . where xi ,n(s) ∈ k(s)×. Then in k(s) one has the relation x1,n(s)p =
s · x2,n(s)p which is impossible.

4.18. Proof of Theorem 4.1. One may assume that X is affine, say X = Spec(k[X1, . . . , XN ]/〈 f1, . . . , fn〉).
Moreover, in case char(k) = 0, we shall reduce to the case where k = k. Let X ′ := X ⊗k k,
Z ′ := Z ⊗k k, and x ′ ∈ Z ′(k). Then x ′ induces an element xK of X (K ) contained in Z (K )
(for a certain finite algebraic extension K /k) and an element x ∈ X (0) contained in Z .
Denote by αi the image of Xi in K by x#

K : k[X]/〈 f1, . . . , fn〉→ K . Then by [Sei73, Lemma,
p.29], one has �OX ,x⊗̂κ(x)k

∼→ k[[X]]/〈 f j ((Xi +αi ))〉16 j6n
∼→ �OX ′,x′ .

Thus by Lemma 2.26, one may assume that k = k in case char(k) = 0.
We moreover may assume that the origin o of AN

k lies on Z and is a smooth point of
Z (equipped with its reduced scheme structure), and, in case char(k) > 0, that the orbit
map of KN ,n through f = ( f1, . . . , fn) is separable.

Let d = dim(Z ), t = (t1, . . . , td ) a d-tuple of indeterminates and x(t ) = (xi (t ))16i6N ∈
(〈t〉 ·k[[t ]])N be a formal parametrization of Z at the origin, corresponding to a choice of
étale coordinates z1, . . . , zd of Z at the origin inducing an isomorphism k[[t ]]

∼→ �OZ ,o. In
particular, denoting by p# : OX (X ) → k[[t ]] the corresponding morphism, one has

det(∂ti p#(z j )) ∈ k[[t ]]×. (4.1)

Let Y ⊂ (VN )n be the closure of the orbit KN ,n · f . By assumption and Lemma 3.21, the
set ev f (Z (k)) is contained in Y , thus, since k is algebraically closed, ev f (Z ) is contained
in Y . Therefore the element w ∈ (VN )n(k[[t ]]) defined by the composition of

êv f : �OZ ,o → áO(VN )n , f

with the chosen isomorphism k[[t ]]
∼→ �OZ ,o is an element of Y (k[[t ]]). Note that w

corresponds to the element of (VN )n(k[[t ]]) defined by f (X+x(t )).
Thus, applying Lemma 4.6 (and Remark 4.7) one obtains the existence of w̃ ∈KN ,n(k[[t ]]))

such that the element of KN ,n(k) induced by mapping t to 0 is 1KN ,n and

f (X+x(t )) = w̃ · f (X).

That means that there exists a n ×n matrix A(t ) with coefficient in k[[X, t ]] and such that
A(t ) = In (mod 〈t〉 ·k[[X, t ]]) and a N -tuple ϕ(t ) of elements of 〈X〉 ·k[[X, t ]] such that
ϕ(t ) = 0 (mod 〈t〉 ·k[[X, t ]]) satisfying

A(t ) f (X+x(t )+ϕ(t )) = f (X)

Multiplying by the adjugate matrix A(t )ad of A(t ) yields

f (X+x(t )+ϕ(t )) = det(A(t ))−1 · A(t )ad · f (X) (4.2)
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Now consider the following Hasse-Schmidt d-derivation on k[[X]]:

D : g 7→ g (X+x(t )+ϕ(t )).

By (4.2), for 16 i 6 n, one has D( fi ) ∈ 〈 f 〉 ·k[[X, t ]]. Thus D defines a Hasse-Schmidt
d-derivation on k[[X]]/〈 f 〉.

By the Taylor formula and sinceϕ(t ) ∈ 〈X〉 ·k[[X, t ]], one has

D(g ) = p#(g ) (mod 〈X〉 ·k[[X, t ]]).

Therefore (4.1) shows that

det(∂t j D(z j )) ∈ k×+〈X, t〉 ·k[[X, t ]].

Thus D is a regular Hasse-Schmidt d-derivation of k[[X]]/〈 f 〉. By Theorem 4.14, we are
done.

4.19. Isosingularity and cylindricity in an algebroid context. It is interesting to note
that the wedge-transitivity of the action of the contact group allows to easily recover
the main result of [Sei69a], that is another instance of a situation where isosingularity
implies cylindricity (see also [HM89, Remark (b), p. 834]). More precisely, Theorem 4.20
below for r = d recovers [Sei69a, Theorem 3]. Geometrically, it could be interpreted as
follows: let X be an algebroid variety and π : X →W ×W ′ be a morphism to a product of
formal disks of respective dimension r and d − r , admitting a section ; if the generic fiber
over W ′ is geometrically analytically equivalent to the special fiber, then X is isomorphic
to the product of the special fiber with W . For the sake of simplicity, we assume that
the base field has characteristic zero but a suitable extra separability assumption on the
action of the contact group would allow to also deal with the positive characteristic case.

Theorem 4.20. Let k be a field of characteristic zero. Let (A,mA) be a complete local
Noetherian k-algebra with residue field k-isomorphic to k. Let n be a prime ideal of A such
that A/n is smooth of dimension d, and a1, . . . , ad a system of regular parameters at n; in
other words, the morphism of complete local k-algebras k[[t1, . . . , td ]] → A mapping ti to
ai induces an isomorphism k[[t1, . . . , td ]]

∼→ A/n. Note that this defines an isomorphism
k((t1, . . . , td ))

∼→ κn and a section s of κn.
Assume that there exists an extension K of k((t1, . . . , td )) such that the K -algebras

A/〈a1, . . . , ar 〉⊗̂k K and Ân/〈a1 − s(a1), . . . , ar − s(ar )〉⊗̂κnK are isomorphic.
Then A is r -cylindrical, more precisely A is isomorphic to A

〈a1,...,ar 〉 [[t1, . . . , tr ]].

Proof. One may write A = k[[X,Y]]/I X = (X1, . . . , XN ), Y = (Y1, . . . ,Yr ), in such a way
that there exists an isomorphism A/n

∼→ k[[t1, . . . , td ]] mapping ai to ti and such that for
16 i 6 r one has ai = Yi (mod I ). The assumption is then translated as: the complete
local K -algebras

K [[X]]

〈 f (X,0)〉 f ∈I
and

K [[X]]

〈 f (X+x(t ), t1, . . . , tr )〉 f ∈I

are isomorphic. One may now apply Proposition 4.21 below in order to conclude. �

Proposition 4.21. Let k be a field of characteristic zero. Let N , r , d be positive integers,
X = (X1, . . . , XN ), Y = (Y1, . . . ,Yr ) be indeterminates, and I be a proper ideal of k[[X ,Y ]].
Let t = (t1, . . . , td ), x(t ) ∈ (〈t〉 ·k[[t ]])N and y(t ) ∈ (〈t〉 ·k[[t ]])r such that

∀ f ∈I , f (x(t ), y(t )) = 0.

Assume that there exists an extension K of k((t )) such that the K -algebras K [[X ]]
〈 f (X ,0)〉 f ∈I

and
K [[X ]]

〈 f (X+x(t ),y(t ))〉 f ∈I
are isomorphic.

Then:

(1) The k-algebras k[[X ,t ]]
〈 f (X ,0)〉 f ∈I

and k[[X ,t ]]
〈 f (X+x(t ),z(t ))〉 f ∈I

are isomorphic.



ISOSINGULARITY, DIFFERENTIALITY, AND NON-TRIVIAL ANALYTIC FACTORS OF ALGEBRAIC SINGULARITIES 21

(2) Assuming moreover that det(∂ti yi (t ))16i , j6r ∈ k[[t ]]×, the k-algebra k[[X ,Y ]]
I is

isomorphic to k[[X ]]
〈 f (X ,0)〉 f ∈I

[[t1, . . . , tr ]].

Proof. One uses in particular the notation introduced in Subsection 3.20.
Write I = 〈 f1, . . . , fn〉 and let w = w(t ) be the element of VN+r (k[[t ]]))n corresponding

to
( fi (X +x(t ), y(t )))16i6n .

In particular w(0) ∈ (VN+r (k))n corresponds to fi (X ,0))16i6n . Denote by Z the closure of
the KN+r,n-orbit of w(0) in V n

N+r . The assumptions imply that there exists g ∈KN+r,n(K )
such that g ·w(0) = w , where w is seen as an element of VN+r (k((t )))n ⊂ VN+r (K )n . Thus
the generic point of w , that is to say, the schematic point defined by w ∈ VN+r (k((t )))n ,
lies in Z , hence w ∈ Z (k[[t ]]).

By Lemma 4.6 and Remark 4.7, there exists g̃ ∈KN+r (k[[t ]]) such that g̃ ·γ(0) = γ. By
Remark 3.22, this gives the first assertion.

As for the second assertion, the assumption implies that

X 7→ X +x(t ), ti 7→ zi (t ), (16 i 6 r ), ti 7→ ti (r +16 i 6 d)

is an automorphism of k[[X , t ]], hence the following isomorphism:

k[[X , t ]]

〈 f (X +x(t ), y(t ))〉 f ∈I

∼→ k[[X ,Y , tr+1, . . . , td ]]

I
= k[[X ,Y ]]

I
[[tr+1, . . . , td ]].

By the first assertion and the cancellation Theorem for complete local Noetherian k-
algebras ([Ham75]; see Remark 2.18), one gets the result. �

5. CYLINDRICITY IMPLIES ISOSINGULARITY

In this section we show the different assertions of Theorem 1.1, using in particular the
properties of the isosingular loci discussed in the two previous sections, as well as the
results of Section 2. Key ingredients include Artin’s characterization of isomorphic formal
neighborhoods in terms of étale neighborhoods and a study of maximal differential
ideals with respect to a regular tuple of derivations. A key step is to show that the closure
of the associated schematic point is a SAI subset of the expected dimension (hence the
name of the section).

5.1. Étaleness and completions.

Proposition 5.2. Let f : (R,MR ) → (S,MS ) be a local morphism of Noetherian local rings.
Choose a section σ : κR → R̂ of R̂ and assume that σ extends to a section of Ŝ.

Then the following are equivalent:

(1) S is R-flat and MR ·S =MS .
(2) the map R̂⊗κR κS → Ŝ sending r ⊗α toσ(α)· f̂ (r ) is an isomorphism of κS -algebras.

Remark 5.3. By [Bou06, Chapitre 9, §3, Proposition 1], the assumption that a section of
R̂ extends to a section of Ŝ holds as soon as κS /κR is separable.

Remark 5.4. In particular R → S is étale if and only if 2) holds andκS /κR is finite separable.
The latter result is stated as an exercise in [Har77, III, exer. 10.4].

Proof. Note that for any n> 1, one may use σ to endow R
Mn

R
(resp. S

Mn
S

) with a structure

of κR -algebra (resp. κS -algebra). For n = 1, this structure is nothing but the canonical
structure of κR = R/MR -algebra on R/MR and ditto for S.

Also note that for any n > 1, any r ∈Mn
R and any α = r ′ (mod MR ) ∈ κR , one has

r ′r =σ(α)r (mod Mn+1
R ). Thus the natural exact sequence

0 −→ Mn
R

Mn+1
R

ιR,n−→ R

Mn+1
R

πR,n−→ R

Mn
R

−→ 0
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is an exact sequence of κR -vector spaces, and ditto for S.

For any n> 1, denote by qn the group morphism
Mn

R

Mn+1
R

⊗κR κS → Mn
S

Mn+1
S

such that

qn(r (mod Mn+1
R )⊗ s (mod MS )) = f (r )s (mod Mn+1

S )

and by pn the group morphism R
Mn

R
⊗κR κS → S

Mn
S

such that

pn(r (mod Mn
R )⊗β) = f (r )σ(β) (mod Mn

S ).

Then qn (resp. pn) is a morphism of κS -vector spaces (resp. κS -algebras) and one has a
commutative diagram of κS -vector spaces:

0 // Mn
R

Mn+1
R

⊗κR κS

ιR,n⊗κR κS//

qn

��

R
Mn+1

R
⊗κR κS

πR,n⊗κR κS//

pn+1

��

R
Mn

R
⊗κR κS

//

pn

��

0

0 // Mn
S

Mn+1
S

ιS,n // S
Mn+1

S

πS,n // S
Mn

S

// 0

Now assume MR ·S =MS and S is R-flat. Since MR ·S =MS , p1 is an isomorphism.
Moreover, since MR ·S =MS , S is R-flat and using [Mat86, Theorem 22.3], one gets that
qn is an isomorphism for any n. Thus by induction pn is an isomorphism for any n.
Therefore

R̂⊗̂κRκS = lim←−
R

Mn+1
R

⊗κR κS = lim←−
S

Mn+1
S

= Ŝ.

Conversely, if R̂⊗̂κRκS → Ŝ is an isomorphism, then pn is an isomorphism for any
n> 1, thus also qn . Since p1 is an isomorphism, one has MR ·S =MS . Now the fact that
qn is an isomorphism for any n and [Mat86, Theorem 22.3] show that S is R-flat. �

Lemma 5.5. Let (R,MR ,κR ) be a Noetherian local ring, (S,MS ,κS ) be the localization
of R[t1, . . . , tr ] at the ideal MR [t1, . . . , tr ], f : R → S be the composition of the canonical
injection R → R[t1, . . . , tr ] with the localization, and f̂ : R̂ → Ŝ be the induced morphism.
The following assertions are true:

(a) The natural morphism R[t1, . . . , tr ] → κR [t1, . . . , tr ] induces an isomorphism κS
∼→

κR (t1, . . . , tr ).
(b) Choose a section σ : κR → R̂. Let σ′ : κR (t1, . . . , tr ) → Ŝ be the section that extends

σ canonically. Then the map

R̂⊗̂κRκR (t1, . . . , tr )
∼→ Ŝ

sending r ⊗α to σ′(α) · f̂ (r ) is an isomorphism of κR (t1, . . . , tr )-algebras.

Proof. By the exactness of the localization functor, the morphism of the statement in-
duces the following isomorphisms:(

R[t1, . . . , tr ]

MR [t1, . . . , tr ]

)
〈0〉

∼→ (κR [t1, . . . , tr ])〈0〉
∼→ κR (t1, . . . , tr ).

We now prove part (b). Since R[t1, . . . , tr ] is a free R-module, R → R[t1, . . . , tr ] is flat.
Since any localization morphism is flat, f is also flat, and the result follows from Proposi-
tion 5.2. �

5.6. Maximal differential ideals with respect to regular families, 2.

Proposition 5.7. Let k be a field of characteristic 0 and X be a k-scheme of finite type. Let
r be a positive integer and x ∈ X be an r -cylindrical point. Then, there exists a regular
family of pairwise commuting derivations D1, . . . ,Dr ∈ Derk (�OX ,x ) such that, denoting by
p∗ the maximal (D1, . . . ,Dr )-differential ideal of �OX ,x , and setting p := p∗∩OX ,x :

(1) One has dim(OX ,x /p) = r .
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(2) Let η ∈ X be the schematic point corresponding to p. Then, there exist a k-section sx

of �OX ,x and a common extension K of κ(η) and κ(x) such that for any k-section sη

of �OX ,η, the complete local K -algebras �OX ,x
(sx )⊗̂κ(x)K and (�OX ,η

(sη)⊗̂κ(η)K )[[t1, . . . , tr ]]
are isomorphic as k-algebras.

Example 5.8. For an arbitrary regular family of pairwise commuting derivations D1, . . . ,Dr ∈
Derk (�OX ,x ), one always has dim(�OX ,x /p∗) = r by Lemma 2.37. However, in general, one
may have dim(OX ,x /p) > r , even in case r = 1 and D is the extension of an element of
Derk (OX ,x ), as the following example (taken from [Sin83, Example 2.10], but with a dif-
ferent argument) shows. Consider the derivation D on k[[t1, t2]] defined by D(t1) = 1 and
D(t2) = 1+ t2. Since D(t1− ln(1+ t2)) = 0, one has p∗ = 〈t1− ln(1+ t2)〉, whose intersection
with k[t1, t2]〈t1,t2〉 is the zero ideal.

Proof. Since x ∈ X is r -cylindrical, then corollary 2.28 ensures the existence of an affine
k-scheme of finite type Y , a point y ∈ Y and an isomorphism of k-algebras

�OX ,x
∼→ áOY ×k Ar

k ,(y,0) = �OY ,y [[t1, . . . , tr ]].

Set (Z , z) := (Y ×k Ar
k , (y,0)). By [Art69, Corollary 2.6], there exists a k-scheme of finite

type W and w ∈W and a diagram

OW,w

OX ,x OZ ,z

θZθX

where θZ and θX are étale morphisms of local k-algebras, inducing isomorphisms of
k-algebras

θ̂X : �OX ,x
∼→ �OW,w and θ̂Z : �OZ ,z

∼→ �OW,w .

For the sake of simplicity, we hereby identify �OX ,x and �OZ ,z = �OY ,y [[t1, . . . , tr ]] with�OW,w := A via these isomorphisms, and view OX ,x , OZ ,z and OW,w as subrings of A.
For 1 É i É r , let Di ∈ Derk (A) be the extension of the the partial derivative ∂ti on
OY ,y [t1, . . . , tr ]; note that the Di ’s are pairwise commuting. Let p∗ be the maximal
D1, . . . ,Dr -differential ideal of A, p := p∗∩OX ,x , pZ := p∗∩OZ ,z , and pW := p∗∩OW,w . In
particular, θ−1

X (pW ) = p and θ−1
Z (pW ) = pZ . We deduce that dim(OX ,x /p) = dim(OW,w /pW ) =

dim(OZ ,z /pZ ), because θX and θZ are étale morphisms.
Then, for the first part, we only have to show that dim(OZ ,z /pZ ) = r . Recall that

(Z , z) = (Y ×k Ar
k , (y,0)). Let py be the maximal ideal of OY ,y . Then OZ ,z is the localization

of OY ,y [t1, . . . , tr ] at the maximal ideal py +〈t1, . . . , tr 〉. From Lemma 2.37, we deduce that
the maximal (∂t1 , . . . ,∂tr )-differential ideal of OZ ,z , namely pZ by Corollary 2.35, coincides
with py [t1, . . . , tr ]. Thus

OZ ,z

qZ
=

OY ,y [t1, . . . , tr ]py+〈t1,...,tr 〉
py [t1, . . . , tr ]

∼= κ(y)[t1, . . . , tr ]〈t1,...,tr 〉,

and this proves that dim(OZ ,z /qZ ) equals r , the dimension of the latter ring.

Let us now prove the second assertion. We denote byηW ,ηX ,ηZ andκ(ηW ),κ(ηX ),κ(ηZ )
respectively the points of W, X , Z corresponding to the prime ideals qW ,qX ,qZ and their
residue fields. Note that ηX = η.

Let sy : κ(y) → �OY ,y be an arbitrary k-section. Via the inclusion �OY ,y ⊂ �OY ,y [[t1 . . . , tr ]] =�OX ,x it may be extended to a k-section sx : κ(x) = κ(y) → �OX ,x .
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We identify κ(ηZ ) with κ(y)(t1, . . . , tr ) via the isomorphism of Lemma 5.5 and consider
the k-section sηZ : κ(y)(t1, . . . , tr ) → �OZ ,ηZ that extends sy canonically. The same lemma
then provides an isomorphism of κ(y)(t1, . . . , tr )-algebras

�OZ ,ηZ

(sηZ ) ∼→ �OY ,y
(sy )⊗̂κ(y)κ(y)(t1, . . . , tr ). (5.1)

We now choose an arbitrary k-section sηX of �OX ,ηX . The étale morphism θX induces
an étale morphism OX ,ηX →OW,ηW , thus the extension κ(ηW )/κ(ηX ) is finite separable.

Then, by Remark 5.3, sηX extends to a section s1 : κ(ηW ) → àOW,ηW . An analogous reason-

ing with θZ shows that sηZ extends to a section s2 : κ(ηW ) → àOW,ηW . Hence, Proposition
5.2 provides isomorphisms of complete local κ(ηW )-algebras

àOW,ηW

(s1) ∼→ �OX ,ηX

(sηX )⊗̂κ(ηX )κ(ηW ) and àOW,ηW

(s2) ∼→ �OZ ,ηZ

(sηZ )⊗̂κ(ηZ )κ(ηW ). (5.2)

On the one hand, from (5.2) we deduce an isomorphism of κ(ηW )-algebras

àOW,ηW [[t1 . . . , tr ]](s1) ∼→
( �OX ,ηX

(sηX )⊗̂κ(ηX )κ(ηW )
)

[[t1 . . . , tr ]]. (5.3)

On the other hand, combining (5.2) and (5.1) we obtain an isomorphism of κ(ηW )-
algebras àOW,ηW

(s2) ∼→ �OY ,y
(sy )⊗̂κ(y)κ(ηW ),

that induces an isomorphism of κ(ηW )-algebras

àOW,ηW [[t1 . . . , tr ]](s2) ∼→
(�OY ,y

(sy )⊗̂κ(y)κ(ηW )
)

[[t1 . . . , tr ]]. (5.4)

Via our previous identification �OY ,y [[t1, . . . , tr ]] = �OX ,x and choice of section sx , the RHS

of the previous isomorphism is nothing but �OX ,x
(sx )⊗̂κ(x)κ(ηW ). Finally, comparing

with (5.3), we deduce that the complete local κ(ηW )-algebras �OX ,x
(sx )⊗̂κ(x)κ(ηW ) and( �OX ,ηX

(sηX )⊗̂κ(ηX )κ(ηW )
)

[[t1 . . . , tr ]] are isomorphic as k-algebras (see Remark 3.4), which

proves the second assertion for any common extension K of κ(ηW ) and κ(x). �

Remark 5.9. In Proposition 5.7, if the point x is assumed to be closed, then the field
extension κ(x)/k is finite. Since κ(ηW )/κ(η) is also finite, we may choose K such that
K /κ(η) is a finite field extension (take, e.g., , a compositum over k of κ(x) and κ(ηW )). .

Corollary 5.10. Let k be a field of characteristic zero, X be a k-scheme of finite type, and
x ∈ X be a maximally r -cylindrical point. Let px be the maximal differential ideal of OX ,x

and ηx ∈ X be its corresponding schematic point. Then

(1) one has dim(OX ,x /px ) = r ;
(2) for any regular r -tuple D1, . . . ,Dr of derivations on OX ,x , px is the maximal

D1, . . . ,Dr -differential ideal of OX ,x ;
(3) There exist a k-section sx of �OX ,x and a common extension K of κ(x) and κ(ηx ),

such that, for any k-section sηx of �OX ,ηx , �OX ,x
(sx )⊗̂κ(x)K and (�OX ,ηx

(sηx )⊗̂κ(ηx )K )[[t1, . . . , tr ]]
are isomorphic k-algebras.

Proof. Consider a family of derivations as in Proposition 5.7 and keep the notation of the
statement of the proposition.

First, note that p is differential. If that were not the case, by the last assertion of

Proposition 5.7, �OX ,x
(sx )⊗̂κ(x)K would be (r +1)-cylindrical. By Lemma 2.26, �OX ,x would

also be (r +1)-cylindrical, a contradiction.
Now consider a regular r -tuple D1, . . . ,Dr of derivations on OX ,x and p′ ∈ Spec(OX ,x )

the maximal D1, . . . ,Dr -differential ideal of OX ,x . Since p is differential, one has p⊂ p′.
On the other hand, by Lemma 2.39, one has dim(OX ,x /p′)> r . Since dim(OX ,x /p) = r by
the first assertion of Proposition 5.7, one has p′ = p.
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Finally, consider px the maximal differential ideal of OX ,x . Since p is differential,
one has p ⊂ px . Since px is D1, . . . ,Dr -differential, one has px ⊂ p′. Hence p = px and
Proposition 5.7 again allows to conclude. �

Corollary 5.11. Let k be a field of characteristic zero, X be a k-scheme of finite type, and
x ∈ X be a maximally r -cylindrical point. For any s É r and any regular family D1, . . . ,Ds

of derivations on OX ,x , if we denote by px,s the maximal D1, . . . ,Ds -differential ideal of
OX ,x , then one has s É dim(OX ,x /px,s ) É r .

Proof. The first inequality is given by Lemma 2.39. As for the second one, let px be the
maximal differential ideal of OX ,x . In particular, it is D1, . . . ,Ds -differential, then px ⊂ px,s .
Thus dim(OX ,x /px,s ) É dim(OX ,x /px ), and by Corollary 5.10 gives dim(OX ,x /px ) = r. �

Lemma 5.12. Let k be a field of characteristic zero and X be a k-scheme of finite type.
Then the set of r -cylindrical points of X (0) is open in X (0).

Notation 5.13. We shall denote by Xcyl,r the unique open subset of X such that Xcyl,r ∩
X (0) is the set of r -cylindrical points of X (0).

Proof. Let x ∈ X (0) be an r -cylindrical point and D1, . . . ,Dr be a regular family of deriva-
tions on OX ,x . Up to replacing X by an open affine subset containing x, one may assume
that Di is the extension of Di ∈ Derk (Γ(X )), for every 1 É i É r . Let mx be the maximal
ideal of Γ(X ) corresponding to x, f1, . . . , fr ∈mx such that det(Di f j ) ∉mx and Ux be the
open subset of X defined by {det(Di ( f j )) 6= 0}. Let us show that any point in x ′ ∈Ux ∩X (0)

is r -cylindrical.
Let K = κ(x ′). Since x ′ is a closed point and char(k) = 0, K is a finite separable

extension of k. Let us choose K ⊂�OX ,x′ a coefficient field containing k. For any 16 i 6 r ,

D̂i induces an element Ei of Derk (K ,�OX ,x ′ ). Since K /k is a finite separable extension and

Ei (k) = {0}, by [Mat86, Theorem 5.23], one also has Ei (K ) = {0}. Thus D̂i ∈ DerK (�OX ,x′ ).

Let πx′ : �OX ,x′ → K be the canonical quotient morphism. Then, for any 1 É i , j É r ,
g j := f j −πx′ ( f j ) ∈ �mX ,x′ and D̂i (g j ) = D̂i ( f j ). Since x ′ ∈Ux , one has det(D̂i (g j )) ∉ �mX ,x′ .
Thus x ′ is r -cylindrical.

We conclude by taking Xcyl,r =⋃
x Ux , where x ∈ X (0) is an r -cylindrical point. �

Notation 5.14. If X is a scheme and x ∈ X is a schematic point, one denotes by dimX (x)
the dimension of the closure of x in X .

Corollary 5.15. Let k be a field of characteristic zero, and X be a k-scheme of finite
type. Let x ∈ X be a closed point that is maximally r -cylindrical, η be the maximal
differential generization of x, and F be the Zariski closure of η in X . Let U := F ∩ Xcyl,r

(see Notation 5.13). For any x ′ ∈U , there exist a k-section sx′ of �OX ,x′ and K /κ(η) a finite

field extension that is a common extension of κ(x) and κ(x ′), such that �OX ,x⊗̂κ(x)K and

(�OX ,x′
(sx′ )⊗̂κ(x′)K )[[t1, . . . , tdimX (x′)]] are isomorphic K -algebras.

In particular (taking x ′ = η), F is SAI. Moreover, U is the maximal AI open subset of F .

Proof. Let x ′ ∈U . First assume that x ′ is closed (in particular r -cylindrical). Since x ′ ∈ F ,
η is a differential generization of x ′. On the other hand, since x is closed and by Corollary
5.10, one has dimX (η) = r . Let η′ be the maximal differential generization of x ′. Then η is
a generization of η′, but on the other hand, since x ′ is r -cylindrical, by Lemma 2.39 one
has dimX (η′)> r = dimX (η) thus η′ = η and η is the maximal differential generization
of x ′. By Corollary 5.10 and Lemma 3.7, x ′ is maximally r -cylindrical, and there exists
a common extension K of κ(η), κ(x) and κ(x ′) such that K /κ(η) is finite (see Remark
5.9, that also applies when taking the compositum over k of K as in Corollary 5.10 and
κ(x ′), because κ(x ′)/k is finite) and, for any k-section sη of �OX ,η, both the K -algebras�OX ,x⊗̂κ(x)K and �OX ,x′ ⊗̂κ(x′)K are isomorphic to (�OX ,η

(sη)⊗̂κ(η)K )[[t1, . . . , tr ]], hence the
result follows.
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Now take any x ′ ∈U . Pick a closed point x ′′ ∈U that lies in the closure of x ′. By the
previous argument, η is the maximal differential generization of x ′′, hence also of x ′.
Assume x ′ is maximally s-cylindrical, then Corollary 5.10 ensures that dim(OX ,x′/pη) = s.
Then s = dim(OX ,x′/pη) = dim(OX ,x /pη)−dim(x ′) = dim(η)−dim(x ′). By Corollary 5.10,

there exist a k-section sx ′ of �OX ,x′ and a common extension K of κ(η), κ(x ′) and κ(x ′′)
such that K /κ(η) is finite (Remark 5.9 applies again) and, for any k-section sη of �OX ,η,
there exist k-algebras isomorphisms�OX ,x′′ ⊗̂κ(x′′)K

∼→ (�OX ,η
(sη)⊗̂κ(η)K )[[t1, . . . , tr ]]

and �OX ,x′
(sx′ )⊗̂κ(x ′)K

∼→ (�OX ,η
(sη)⊗̂κ(η)K )[[t1, . . . , tdimX (η)−dimX (x′)]].

Therefore, since dimX (η) = r , �OX ,x′′ ⊗̂κ(x ′′)K and (�OX ,x′
(sx′ )⊗̂κ(x′)K )[[t1, . . . , tdimX (x′)]] are

isomorphic k-algebras. By Lemma 3.7, they are also isomorphic K -algebras. The previ-
ously discussed particular case allows to conclude.

Let us show that U is the maximal AI open subset of F . By the very definition of U ,
any element x ′ of (F \U )∩X (0) is not r -cylindrical. In particular, by Lemma 2.26, for any
extension K /κ(x ′), �OX ,x′ ⊗̂κ(x′)K is not r -cylindrical, thus not isomorphic to �OX ,x⊗̂κ(x)K .
This shows that U is the maximal AI open subset of F . �

Corollary 5.16. We keep the hypotheses and notation in Corollary 5.15 and assume
moreover that the field k is algebraically closed, in particular x ∈ X (k). Then for any
x ′ ∈U (k), the k-algebras �OX ,x and �OX ,x′ are isomorphic.

Proof. Corollary 5.15 ensures that there exists an extension K of k such that �OX ,x⊗̂k K
and �OX ,x′ ⊗̂k K are isomorphic K -algebras. Since k is algebraically closed, by [Sei69b],�OX ,x′ and �OX ,x are isomorphic k-algebras. �

5.17. Application to the geometric isosingular locus.

Theorem 5.18. Let k be a field of characteristic zero and X be a k-scheme of finite type. Let
x ∈ X (0) be a maximally r -cylindrical point. Then dim(G (X , x)) = r (see Notation 3.31).

Moreover, for any irreducible closed subset F of X , the following are equivalent:

(i) There exists x ∈ X (0) such that F =G (X , x).
(ii) There exists x ∈ X (0) such that F is the closure of the maximal differential gener-

ization of x.
(iii) F is a MWAI closed subset of X .

Proof. For any x ∈ X (0), by Theorem 4.1, x is dim(G (X , x))-cylindrical. Thus if x is maxi-
mally r -cylindrical, one has dim(G (X , x))6 r and by Remark 3.32 one has dim(G (X , x)) =
r .

Moreover, by the definition of G (X , x), any AI closed subset F whose AI open subset
contains x is contained in G (X , x), and X (x) ∩F = X (x) ∩G (X , x)∩F is an AI open subset
of F . In particular G (X , x) is MWAI, and is the only MWAI closed subset of X containing
x in its maximal AI open subset.

Now let F be the closure of the maximal differential generization of a maximally r -
cylindrical closed point x. Then by Corollary 5.15 F is SAI thus WAI and by Corollary 5.10,
one has dim(F ) = r . Let U be the maximal AI open subset of F . Thus for any x ′ ∈U (0),
one has G (X , x ′) ⊂ F and dim(G (X , x ′)) = r thus G (X , x ′) = F .

The equivalences in the statement are now clear. �

Remark 5.19. In particular, the generic point of a MWAI closed subset is always differen-
tial. Yet in general the closure of a differential point need not be WAI: [Sei67, Example 3,
p.32] is an example of an irreducible integral surface whose singular locus is irreducible
of dimension 1 and contains exclusively non-cylindrical points. The generic point of
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the singular locus is differential by [Sei67, Theorem 5], yet the singular locus can not
be a WAI closed subset. Indeed, since its dimension is positive, by Theorem 4.1, any
sufficiently generic k-rational point of the singular locus would be cylindrical.

Corollary 5.20. Let k be a field of characteristic zero and X be a k-scheme of finite type.
Then any WAI closed subset of X is SAI.

More precisely, let F be a WAI closed subset of X with maximal AI open subset U and
generic point η. Let x ′ ∈ U and d ′ = dimX (η)−dimX (η′). Then there exist a common
extension K of κ(η) and κ(x ′), and a k-section sη (resp. sx′ ) of �OX ,η (resp. �OX ,x′ ) such that�OX ,x′

(sx′ )⊗̂κ(x′)K and (�OX ,η
(sη)⊗̂κ(η)K )[[u1, . . . ,ud ′ ]] are isomorphic K -algebras.

Proof. In case F is a MWAI closed subset of X , this is a direct consequence of Theorem
5.18, Corollary 5.15 and Remark 2.18. In case F is WAI, let G be a MWAI closed subset
containing F , ηG be the generic point of G and UG be the maximal AI open subset of G .
In particular UG ∩F =U and one may again conclude via Corollary 5.15 applied to G and
Remark 2.18. �

6. ANALYTIC ISOSINGULARITY FOR ARC SPACES

In this concluding section, we initiate a study of the extent to which the concepts
and results discussed in the rest of the paper are amenable to generalize to the frame-
work of arc spaces, which are one of the most natural example of so-to-speak infinite-
dimensional algebraic varieties. In the next three subsections, we provide brief reminders
of the aspects of the topic that are relevant for the discussion to follow (refering the reader
to the given references for more details) as well as some remarks and a useful lemma.

6.1. Reminder: arc spaces. (See e.g., [BNS20, CLNS18]) Let k be a field and X be an
algebraic k-variety. The arc space associated with X , denoted by L∞(X ), is a k-scheme
parameterizing the smooth formal germs of curves on X . One stresses that as soon
as dim(X ) is positive, L∞(X ) is not a k-scheme of finite type. For any extension K /k,
there is a functorial bijection between the set of K -points of L∞(X ) and the set of K [[t ]]-
points of X . If γ ∈L∞(X ) is an arc, with residue field K = κ(γ), it induces a K -point of
L∞(X ) thus a K [[t ]]-points of X , which in turn defines a K ((t))-point and a K -point
(through the specialization t = 0) of X . The corresponding schematic points of X are
called respectively the generic point and the center of the arc γ. One says that an arc
is non-degenerate if its generic point belongs to the smooth locus of X . The set of non-
degenerate arcs is a non-empty Zariski open subset of L∞(X ).

In case X = Spec(Γ(X )) is affine, L∞(X ) = Spec(Γ(X )∞ is also affine. Assuming more-
over that char(k) = 0, one can givex an explicit differential description a presentation
of Γ(X )∞ in terms of a presentation of Γ(X ): write Γ(X ) = k[x1,...,xn ]

I ; let k[x1, . . . , xn]∞ be
the polynomial k-algebra over the countable set of variables {xi , j }16i6n

j∈N
, and identify

k[x1, . . . , xn] with a subalgebra of k[x1, . . . , xn]∞ via xi 7→ xi ,0; let ∆ be the k-derivation on
k[x1, . . . , xn]∞ such that for any i , j one has ∆(xi , j ) = xi , j+1; then Γ(X )∞ is isomorphic

to k[x1,...,xn ]∞
[I ] where I is the ∆-differential ideal generated by I . Note that ∆ descends

to a k-derivation on Γ(X )∞ and there is an inclusion Γ(X ) ⊂ Γ(X )∞. Let now p be a
prime ideal of Γ(X )∞, γp ∈L∞(X ) be the corresponding arc, K be the residue field of
p and θ ∈ Hom(Γ∞(X ),K ) the morphism of k-algebras. Then the induced morphism
γ∗p : Γ(X ) → K [[t ]] is given by the composition of the morphism Γ(X ) → Γ(X )∞ mappint

ϕ to
∑

j>0
∆( j )ϕ

j ! t j with
∑
ϕ j · t j 7→∑

θ(ϕ j ) · t j . The center of γp corresponds to the kernel

of (t = 0)◦γ∗p, thus to the prime ideal p∩Γ(X ), whereas its generic center corresponds to
the kernel of γ∗p. That being said, one easily obtains the following lemma, which will be
useful below.
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Lemma 6.2. Keep the previous notation. If ∆(p) ⊂ p, then the arc γp is pseudo-constant,
i.e., its center and generic point coincide.

Proof. For any ϕ ∈ p∩Γ(X ) and any j > 0, one has ∆( j )ϕ ∈ p, thus p∩Γ(X ) ⊂ Ker(γ∗p). �

6.3. Reminder: the Drinfeld-Grinberg-Kazhdan theorem and the minimal formal model
of a rational non-denegerate arc. (See [Dri20, BS20, BS17]) Let X be an algebraic k-
variety of positive dimension and γ ∈L∞(X )(k) be a non-degenerate k-rational arc. The
Drinfeld-Grinberg-Kazhdan theorem states that there exists a k-scheme of finite type
Y and y ∈ Y (k) such that the formal neigborhood áOL∞(X ),γ is isomorphic (as a topo-

logical k-algebra) to �OY ,y [[(ur )r∈N]] where ur are indeterminates. A minimal formal

model of γ is such a �OY ,y with the additional property that it is non-cylindrical. By
Gabber’s cancellation theorem, a minimal formal model of γ is uniquely determined (up
to isomorphism).

6.4. Reminder: maximal divisorial sets on arc spaces. (See [Ish08, dFEI08, dF18]). We
continue our short reminders by discussing the notion of maximal divisorial sets, which
form an important class of irreducible closed sets of the arc space of an algebraic variety,
closely related to the well-known Nash problem and birational geometry. We assume
that k is a field of characteristic zero. Let ν be a divisorial valuation on an algebraic
k-variety X . We associate with it a closed subset NX (ν) of L∞(X ) as follows: let W → X
be a resolution of the singularities of X (inducing a morphism L∞(W ) →L∞(X ) such
that there is a prime divisor E on W and a positive integer q such that ν= q ·ordE . Let
L∞(W )E ,q be the set of arcs on W with contact order> q along E . Then NX (ν) is the
closure of the image of L∞(W )E ,q in L∞(X ). It does not depend on the choice of W
and E , and is irreducible. The arc corresponding to the generic point of NX (ν) is a
non-degenerate arc, in fact its generic point is the generic point of X (it is a fat arc in the
sense of [Ish05]). Moreover its center is the center of the valuation ν on X .

Remark 6.5. By the latter result, the generic point ην of NX (ν) is not a pseudo-constant
arc, thus by Lemma 6.2 is not a differential point. In particular áL∞(X ),ην (which is Noe-
therian by [Reg06], see also [dFD20]) is 1-cylindrical. This gives a general explanation of a
phenomenon observed in [BMCS] for toric valuations of toric varieties and in [BMCn23,
Theorem 1.7] for valuations on curves.

Remark 6.6. Assuming that k is moreover algebraically closed, it is worth remarking
that the set of k-rational points of NX (ν) is in NX (ν). Let us roughly explain why (A
very similar argument is used to show that NX (ν) is irreducible.). Using suitable étale
coordinates and the compatibility of the formation of arc spaces with étale morphism,
one reduces to show that L∞(W )E ,q (k) is dense in L∞(W )E ,q for W = An

k and E =
{x1 = 0}; But then L∞(W )E ,q is the closed subscheme of L∞(An

k ) = Spec(k[(xi , j )]16i6n
j∈N

.

defined by the ideal 〈x1, j 〉06 j6q−1 On the other hand, for any non-zero f ∈ k[(xr )]r∈N,
one has f ∈ k[(xr )]06r6s for a suitable s, hence the existence of (xr ) ∈ kN such that
f ((xr )) 6= 0, and the result.

It is the occasion to recall that in case the algebraically closed field k is countable, there
exist closed points of Spec(k[(xr )]r∈N) that are not k-rational points: write k = {αr }r∈N\{0}

and consider e.g., the kernel of the morphism k[(xr )]r∈N → k(t ) mapping x0 to t and xr

(r > 1) to 1
t−αr

, which is surjective (see also [Ish04, Proposition 2.11])

6.7. SAI and WAI subsets of arc spaces. From now on one assumes that the basefield k
is algebraically closed and of characteristic zero The following result, which is a concate-
nation of [BMCS, Theorem 6.18] and [BMCn23, Theorem 1.7] was the initial motivation
of the present paper.
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Theorem 6.8. Let X be a k-curve or a normal toric k-variety Let ν be divisorial valuation
on X , assumed to be toric in case X is toric. Then there exists a non-empty Zariski open set
U of NX (ν) such that the following holds:

(1) such that for anyγ1,γ2 in U (k), the formal neighborhoods áOL∞(X ),γ1
and áOL∞(X ),γ2

are isomorphic.
(2) Let ην be the generic point of NX (ν). Then there exists a k-section s of áOL∞(X ),ην

such that for any γ ∈U (k), the topological κ(ην)-algebras áOL∞(X ),γ⊗̂kκ(ην) andáOL∞(X ),ην
(s)

[[ur ]]r∈N (where ur are indeterminates) are isomorphic.

This motivates the following definition, that features evident analogies with the con-
cepts introduced in Subsection 3.8:

Definition 6.9. Let X be an arbitrary algebraic k-variety and ν be an arbitrary divisorial
valuation. One says that ν is weakly analytically isosingular (WAI), resp. strongly ana-
lytically isosingular (SAI), if there exists a non-empty Zariski open set U of NX (ν) such
that assertion (1) of Theorem 6.8 holds for ν, resp. assertion (2) of Theorem 6.8 holds
for ν, possibly only over a suitable extension of K of κ(ην), that is to say, after applying
−⊗̂κ(ην)K to the involved topological κ(ην)-algebras.

The following proposition supports the chosen terminology.

Proposition 6.10. If ν is SAI, then ν is WAI.

Proof. By the very definition, if ν is SAI, there exists an extension K of k such that for
any γ1, γ2 in U (k), the topological K -algebras áOL∞(X ),γ1

⊗̂k K and áOL∞(X ),γ2
⊗̂k K are

isomorphic. Since ην lies in the open set of non-degenerate arcs, one may assume that
any arc in U is non-degenerate. For i = 1,2, let Ai be a minimal finite formal model of
γi (see 6.3). Thus the topological K -algebras (A1⊗̂k K )[[un]]n∈N and (A2⊗̂k K )[[un]]n∈N

are isomorphic. By Gabber’s cancellation theorem ([BS17, Theorem 7.1]), the complete
local K -algebras A1⊗̂k K and A2⊗̂k K are isomorphic. Since k is algebraically closed, by
[Sei69b, Theorem 5], the complete local k-algebras A1 and A2 are isomorphic. Thus
the topological k-algebras áOL∞(X ),γ1

∼→ A1[[un]]n∈N and áOL∞(X ),γ2

∼→ A2[[un]]n∈N are
isomorphic. Thus ν is WAI. �

The following question has a positive answer in the cases considered in Theorem 6.8.
Recall that the analogous question for subsets of algebraic varieties also has a positive
answer, as shown in the present paper (See Corollary 5.20).

Question 6.11. Let ν be a divisorial valuation on an algebraic variety. If ν is WAI, then is
ν SAI?

The following question is equivalent to one already raised in [BMCS].

Question 6.12. Is any divisorial valuation SAI (resp. WAI)?

In case it turns out that there exist in general divisorial valuations that are not SAI
(resp. WAI), it would then be interesting to try to characterize them geometrically.

6.13. Concluding observations. It might be possible that a line of thought analogous
to the one used in the present paper to show that any WAI closed subset of an algebraic
variety is SAI could lead to a positive answer to Question 6.11. This would in particular
provide a new a unified proof of the main results of [BMCS] and [BMCn23]. It is worth
noting that regarding this kind of issues the context of arc spaces may present a priori
notorious differences with that of algebraic varieties, as illustrated by the following
proposition and Remark 6.15 below.
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Proposition 6.14. Let k be an algebraically closed field of characteristic zero. Let C be an
affine algebraic affine k-curve. We assume that C is singular. For the sake of simplicity, we
moreover assume that C has only one singular point c ∈C (k), and that c is analytically
irreducible, i.e., �OC ,c is a domain. Choose an isomorphism between the normalization
of �OC ,c and k[[t ]]. Let ν be the valuation on C induced by ordt and U be a non-empty
Zariski open subset of NC (ν) such as in the statement of Theorem 6.8.

Then for any γ′ ∈ L∞(C )(k) \ NC (ν) and any γ ∈ U (k), the formal neighborhoodsáOL∞(C ),γ and áOL∞(C ),γ′ are not isomorphic.

Remark 6.15. In particular, NC (ν) is in some sense a maximal WAI subset, yet, by Remark
6.5, its generic point is not differential, contrarily to what happens in the case of algebraic
varieties (See Remark 5.19).

Proof. Under the given assumptions, L∞(C ) \ NC (ν) is exactly the set of arcs on C

whose center is smooth (see e.g., [BMCn23, Remark 3.14]). In particular, for any γ′ ∈
L∞(C )(k) \ NC (ν), áOL∞(C ),γ′ is isomorphic to k[[un]]n∈N (as easily follows from the
compatibility of the formation of arc spaces with étale morphisms) and the minimal
formal model of γ′ is k. On the other hand, by [Bou23, Theorem 1.3], for any γ ∈U (k), the
minimal formal model of γ has embedding dimension the multiplicity of the singularity
c minus one. This shows that áOL∞(C ),γ′ and áOL∞(C ),γ are not isomorphic. �

As a last observation, let us point out that as a consequence of Corollary 5.15 and
Theorem 5.18, in the case X is an algebraic variety and x ∈ X (k) is a k-rational point, the
dimension of the minimal formal model of �OX ,x exactly corresponds to the dimension
of the formal neighborhood of the generic point ηx of the component through x of
its isosingular locus. In case ν is a SAI divisorial valuation, it should be sensible that
for a generic k-rational arc γ of NX (ν), a suitable analog of ηx is given by the generic
point ην of NX (ν) (Proposition 6.14 is a supporting fact in this direction). Both the
dimension of the minimal formal model of γ and the dimension of áOL∞(X ),ην seem to
carry subtle yet interesting informations on the nature of the singularities of X (see
e.g., [Bou23, MR18, CdFD22]). Yet they differ in general, and it would be interesting to
understand the exact discrepancy between them.
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