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We establish a strong connection between the minimal differential closed subset containing a closed singular point of an algebraic variety on the one hand, the isosingular locus of the point and the analytic nature of its singularity on the other hand.

INTRODUCTION

A differential ideal of a ring is an ideal that is stable under all the derivations of the ring. If the ring contains the field of rational numbers, then the maximal differential ideal contained in a given ideal is prime, a fact first pointed out by Seidenberg in [START_REF] Seidenberg | Differential ideals in rings of finitely generated type[END_REF] in the Noetherian case. As a consequence, one can define, for any point x of an algebraic variety defined over a field of characteristic zero, the notion of minimal differential closed subset containing x, corresponding in the affine case x = p ∈ Spec(A) to the closure of the maximal differential ideal contained in p. The main results of the present paper are summed up in the following statement. It provides a geometric interpretation of the minimal differential closed subset containing a given point and of the formal neighborhood of its generic point in terms of the analytic nature of the singularity at x. Theorem 1.1. Let x be a closed point of an algebraic variety X defined over a field of characteristic zero, and let F be the minimal differential closed subset containing x.

Then F is the closure of the unique component through x of the isosingular locus of x. Moreover, the formal neighborhood of the generic point of F is, up to a scalar extension, isomorphic to the non-trivial factor of the formal neighborhood of x.

The notion of isosingular loci of algebraic varieties was defined and studied recently in [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF] when the base field is algebraically closed. Roughly speaking, they are the subsets where the formal neighborhood, in other words, the analytic nature of the singularities, remains constant (up to isomorphism). The non-trivial factor of a formal neighborhood O X ,x is the complete local ring A such that O X ,x ∼ → A[[t 1 , . . . , t r ]] and A is not isomorphic to B [[t ]] for some B . This uniquely determines A (up to isomorphism). In some sense, A contains the interesting information on the analytic nature of the singularity at x.

The second assertion of Theorem 1.1, which is in a certain sense a comparison theorem for formal neighborhoods, was motivated by analogous phenomena observed in the case of arc spaces associated with curves and toric varieties in [START_REF] Bourqui | On the behaviour of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem[END_REF][START_REF] Bourqui | Deformations of arcs and comparison of formal neighborhoods for a curve singularity[END_REF]. However, the general situation for arc spaces seems more involved (see Section 6).

Here is a brief description of the content of the sections of the paper.

In Section 2 we provide a recap, as well as some complements, on the connection between differentiality and cylindricity (i.e., the property of having smooth factors), and the notion of maximal differential ideals.

In Section 3, we define two notions of analytical isosingularity for closed subsets of an algebraic variety, a strong and a (a priori) weaker one. We use the weak version to extend the notion of isosingular locus discussed in [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF] over an arbitrary field.

In Section 4, we positively answer Question C of [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF], showing that over an algebraically closed field of characteristic p > 0, informally speaking, the bigger an analytically isosingular subset is, the more cylindrical the formal neighborhoods of its points are. In order to do so, we state and prove a version of the Lipman-Nagata-Zarisiki simplification lemma valid in arbitrary characteristic in terms of multivariate Hasse-Schmidt derivations. Our arguments also permit us to recover the characteristic zero case.

In Section 5, we prove the results leading to the statement of Theorem 1.1, showing along the way that the two notions of isosingularity defined in Section 3 coincide. One of the key ingredients is the study of the maximal differential ideal with respect to a regular family of derivations.

In Section 6, we discuss the situation in the case of arc spaces.

DIFFERENTIALITY AND CYLINDRICITY

In this section, we will provide a recap of classical ideas revolving around Lipman's extension of Zariski's simplification lemma in terms of regular derivations (See [Lip65, Theorem 2] and Subsection 2.15) and the notion of maximal differential ideal first explored in [START_REF] Seidenberg | Differential ideals in rings of finitely generated type[END_REF], as well as some further results and complements. In view of the upcoming proofs of our main results, we shall in particular focus on the maximal differential ideals with respect to a set of regular derivations (see Definitions 2.2 and 2.5 below, which are motivated by Lipman's result).

2.1. Differentiality. Definition 2.2. Let A be a ring and p be a prime ideal of A. Let r be a positive integer. An r -tuple D 1 , . . . , D r of elements of Der(A) is said to be regular with respect to p if there exist elements x 1 , . . . , x r ∈ p such that det(D i (x j )) 1 i , j r ∉ p. If there exist such x 1 , . . . , x r such that the matrix (D i (x j )) is moreover diagonal, the r -tuple D 1 , . . . , D r is said to be normalizable. In case A is local, the family of derivations D 1 , . . . , D r is said to be regular if it is regular with respect to the maximal ideal of A.

Remark 2.3. As we shall see later, there exist regular yet non-normalizable families of derivations (See Lemma 2.39 and Remark 2.40).

Remark 2.4. If D 1 , . . . , D r is regular with respect to p and S is a any set of generators of p, then there exist elements x 1 , . . . , x r ∈ S such that det(D i (x j )) 1 i , j r ∉ p. Indeed, take y 1 , . . . , y r ∈ p such that det(D i (y j )) 1 i , j r ∉ p. Then the multilinearity of the determinant implies that det(D i (y j )) is equal modulo p to a linear combination of elements of the form det(D i (x j )) 1 i , j r , where x 1 , . . . , x r ∈ S . Definition 2.5. Let A be a ring and p be a prime ideal of A. Let r be a positive integer. One says that p is:

(1) r -differential if every r -tuple D 1 , . . . , D r of elements of Der(A) is not regular with respect to p;

(2) locally r -differential if every r -tuple D 1 , . . . , D r of elements of Der(A p ) is not regular;

(3) formally r -differential if every r -tuple D 1 , . . . , D r of continuous elements of Der( A p ) is not regular.

Remark 2.6. In particular, being 1-differential in the above sense is equivalent to being differential in the usual sense (see also Subsection 2.29).

Remark 2.7. If k is a field and A is endowed with a structure of k-algebra, one defines analogously the notion of being (locally, formally) differential over k by considering in the above definition only those derivations of A that are k-linear.

Example 2.8. Let B be a complete local ring (resp. k-algebra) and A = B [[t 1 , . . . , t r ]] the ring of formal power series in r indeterminates over B . Then ∂ t 1 , . . . , ∂ t r is a regular family of elements of Der(A) (resp. Der k (A), thus the maximal ideal of A is not r -differential (resp. not r -differential over k).

Let us recall the following well-known lemma.

Lemma 2.9. Let A be a ring and D ∈ Der(A).

(a) Let S be a multiplicative part of A. Then there exists an unique extension of D to the localization S -1 A, that is to say: denoting by ι : A → S -1 A the localization morphism there exists a unique D ∈ Der(S -1 A) such that D • ι = ι • D. (b) Let I be an ideal of A. Then there exists a unique continuous (for the limit topology) extension of D to the completion A. That is to say: denoting by τ : A → A the completion morphism, there exists a unique continuous derivation D ∈ Der( A) such that

D • τ = τ • D.
Moreover, if k is a field, A is endowed with a structure of k-algebra, and the derivation D is k-linear, then D and D are also k-linear.

Remark 2.10. In the notation of lemma 2.9, any derivation on A is automatically continuous for the I 1 -adic topology, since D( I n 1 ) ⊂ I n-1 1 for any positive n. In case I is finitely generated, the limit topology on A is the I 1 -adic topology ([Bou85, Ch. III, §2, n • 12, Corollaire 2]). Thus any derivation on A is also continuous for the limit topology.

Proposition 2.11. Let A be a ring and p be a prime ideal of A.

(1) If p is formally r -differential, then p is locally r -differential.

(2) If p is locally r -differential, then p is r -differential.

Assuming that k is a field and A is a k-algebra, the statements whith the analogous notions "over k" are also true.

Proof. The pull-back by the localization morphism A → A p (resp. the completion morphism A → A p ) of the maximal ideal of A p (resp. A p ) is p (resp. the maximal ideal of A p ).

Thus the result is a consequence of the definitions and Lemma 2.9. The last statement is a consequence of the end of Lemma 2.9.

The converse statements of Proposition 2.11 for r -differentiality hold in case A is an algebra of finite type over a field. This easily follows from the arguments in the proofs of [Sei67, Theorems 2 and 12]. Let us state the result and its proof, giving a somewhat simplified version of the aforementioned arguments.

Proposition 2.12. Let k be a field, A be a k-algebra of finite type and p be a prime ideal of A.

(1) For any D ∈ Der k (A p ), there exists s ∉ p and D ∈ Der k (A) such that s • D is the extension of D .

(2) If p is r -differential over k, then p is locally r -differential over k.

(3) If p is locally r -differential over k, then p is formally r -differential over k.

Proof. Let ϕ : R := k[X 1 , . . . , X n ] → A be a presentation of the k-algebra A, x i := ϕ(X i ). Let n = Ker(A → A p ) = {a ∈ A, ∃s ∉ p, sa = 0}.
Let D ∈ Der k (A p ). Up to multiplying D by an element s ∉ p (a common denominator of all the D x i , i = 1, . . . , n), one may assume that D is the extension of a derivation

D ∈ Der k (A/n). Let n = ϕ -1 (n) and D ∈ Der k (R) such that ϕ( D(X i )) = D(x i ) (mod n).
In particular Dn ⊂ n . Now since n is finitely generated, one may find t ∉ p such that t

•n = 0. But then if T ∈ R is such that ϕ(T ) = t then Ker(ϕ) ⊂ n is stable under T D. Thus T • D induces D ∈ Der k (A) whose extension to A p is t • D
The second assertion is a consequence of the first: let (D 1 , . . . , D r ) be a regular family of k-derivation on A p and (z 1 , . . . , z r ) ∈ p • A p such that det(D i z j ) ∉ p • A p . Up to replacing z i by t i • z i for a suitable t i ∉ p one may assume that the z i 's are images of elements of A. And by the first assertion, up to replacing D i by s i • D i for a suitable s i ∉ p one may assume that D i is the extension of D i ∈ Der k (A). Thus (D 1 , . . . , D r ) is a regular family of Der k (A). Now let D 1 , . . . , D r ∈ Der k ( A p ) be a regular r -tuple of continuous derivations.

Let us show that there exists a regular r -tuple of elements of Der k ( A p ). Quotienting A by the kernel of the localization morphism, one may assume that the localization morphism is injective. By continuity of the D i 's and the fact that the closure of p is p (the maximal ideal of A p ), there exist z 1 , . . . , z r ∈ p such that det(D i z j ) 1 i , j r ∉ p. Therefore, up to changing the D i 's and the presentation morphism ϕ, one may assume that x 1 , . . . , x r ∈ p and (D i x j ) 1 i , j r is the identity matrix.

Let f 1 , . . . , f s be a finite family of generators of Ker(ϕ). Set y 1 = 1 and y 2 = • • • = y r = 0. Then any family (y j ) j =r +1,...,n of elements of A p such that

1 j n ∂ X j f i (x) • y j = 0, i = 1, . . . , s
yields an element of Der k (A p ). The above system has a solution in A p given by y j = D 1 x j for j r +1. Since A p → A p is faithfully flat, the system also has a solution in A p (see e.g., [START_REF] Bourbaki | Éléments de mathématique. Algèbre commutative[END_REF]I.3.7,Proposition 13]. This yields an element D 1 ∈ Der k (A p ) such that D 1 x 1 = 1, and D 1 x 2 = • • • = D r x r = 0. Similarly, for any 2 i r , one may construct D i such that D i x i = 1 and D i x j = 0 for j = i . Proposition 2.14. Let A be a ring, and let E 1 , . . . , E r and D 1 , . . . , D r be elements of Der(A). Assume that there exists a square matrix B = [b i , j ] 1 i , j r with coefficients in A such that

D i = r j =1 b i , j • E j .

Consider the following property, called property (P):

∀1 i , j , k r, D i b j ,k = D j b i ,k .
(1) Assume that the E i 's are pairwise commuting. Proof. For 1 i , j r , an elementary computation (akin to the one in the proof of [Now86, Lemma 4] ) shows the relation

[D i , D j ] = 1 k r (D i b j ,k -D j b i ,k ) • E k + 1 k, r b j ,k b i , [E k , E ]
This immediately shows 1(abc) and 2(b). Moreover if the D i 's are pairwise commuting and (P) holds, the above relations show that the matrix product For rings containing Q, the relation between r -differentiality and r -cylindricity is given by the Lipman-Nagata-Zariski simplification lemma, see e. (1) The ideal m is not r -differential if and only if A is r -cylindrical. More precisely, if D 1 , . . . , D r is a regular family of derivations on A and x 1 , . . . , x r ∈ m are such that det(D i x j ) 1 i , j r ∉ m, then there exists a complete local ring B and an isomor-

B 2 • ([E k , E ]) 1 k,
phism ϕ : B [[t 1 , . . . , t r ]] → A mapping t i to x i .
(2) Let D 1 , . . . , D r be a regular family of derivations on A. Then:

(a) The following are equivalent: (i) There exists a complete local ring B and an isomorphism ϕ :

B [[t 1 , . . . , t r ]] → A such that ϕ(B ) = {a ∈ A : D 1 a = • • • = D r a = 0}. (ii) For any i , j , [D i , D j ] ∈ r k=1 A • D k . (b)
The following are equivalent:

(i) There exists a complete local ring B and an isomorphism ϕ :

B [[t 1 , . . . , t r ]] → A such that ϕ • ∂ t i = D i • ϕ for any i . (ii) The D i 's are pairwise commuting.
Remark 2.20. Let (A, m) be as in the statement of Lemma 2.19 and assume that m is

not r -differential. Let B , x 1 , . . . , x r ∈ m, ϕ : B [[t 1 , . . . , t r ]] → A be as in the conclusion of Assertion 1. Then the quotient morphism A → A/ A • x i induces an isomorphism ϕ(B ) ∼ → A/ A • x i . Assume moreover that A is endowed with a structure of k-algebra,
where k is a field of characteristic 0. Then ϕ(B ) ∼ → A/ A • x i is a sub-k-algebra of A and ϕ is a k-algebra isomorphism. Therefore in this case the two equivalent statements of Assertion (1) of the lemma are also equivalent to "A is r -cylindrical over k" and "m is not r -differential over k".

Proof. (of Lemma 2.19). The "if" in Assertion (1) is a straightforward consequence of Example 2.8. Assume m is not r -differential and let x 1 , . . . , x r ∈ m such that det(D i x j ) 1 i , j r ∉ m. In particular the matrix (D i x j ) is invertible and up to changing (D 1 , . . . , D r ) by its image by the inverse of the matrix, one may assume that (D i x j ) is the identity matrix. By the case r = 1 there exists a complete local ring B 1 and an isomorphism ϕ : 

B 1 [[t 1 ]] ∼ → A mapping t 1 to x 1 . Identifying A with B 1 [[t 1 ]] via this isomorphism, for 2 i r , let D i ∈ Der(B 1 ) be defined by D i (b) = D i (b) t 1 =0 . Note that x 2 , . . . , x r ∈ B 1 = {a ∈ A : D 1 a = 0} and that ( D i x j ) 2 i , j
D i = r j =1 D i t j • ∂ t j . Let x 1 , . . . , x r ∈ m such that det(D i x j ) ∈ A × .
Then the equality of matrices

(D i x j ) = (D i t j ) • (∂ t i x j )
shows that det(D i t j ) ∈ A × , and one may apply Assertion 1(c) of Proposition 2.14 in order to conclude. Let us show Assertion 2(b). (i ) ⇒ (i i ) is straightforward. Now assume that the D i 's are pairwise commuting and take x 1 , . . . , x r ∈ m such that such that det(D i x j ) ∈ A × . As in the proof of Assertion 1, consider the derivations E 1 , . . . , E r determined by the relations

D i = r j =1 D i x j • E j
so that (E i x j ) is the identity matrix. Then by Assertion 2(a) of Proposition 2.14, the E i 's are pairwise commuting. Thus in the above proof of Assertion 1, since one may chose ϕ such that Corollary 2.23. Let k be a field and X be a k-scheme of finite type. Let x ∈ X be a (schematic) point. Then the following assertions are equivalent, and are also equivalent to the same assertions with "over k" removed:

B 1 = {a ∈ A, E 1 a = 0}, B 1 is then E i -stable for i > 1,
(B ) = {a ∈ A, E 1 a = • • • = E r a = 0}. Note that one also has ϕ(B ) = {a ∈ A, D 1 a = • • • = D r a = 0}.
(1) There exists an open affine subset U of X containing x such that the prime ideal

p x of O X (U ) corresponding to x is r -differential over k.
(2) For any open affine subset U of X containing x, the prime ideal p x of O X (U ) corresponding to x is r -differential over k.

(3) The maximal ideal of O X ,x is r -differential over k. (4) The maximal ideal of O X ,x is r -differential over k.

(5) (Requires char(k) = 0) The complete local k-algebra O X ,x is not r -cylindrical over k.

Definition 2.24. Let k be a field and X be a k-scheme of finite type. Let x ∈ X be a (schematic) point. One says that x is an r -differential point of X if one of the equivalent assertions of Corollary 2.23 holds for x. If char k = 0, a point that is not r -differential is called an r -cylindrical point.

Example 2.25. Let k be a field of characteristic zero and X be an algebraic k-variety. Then by [Sei67, Theorem 5], the generic point of any component of the singular locus of X is a 1-differential point of X .

Lemma 2.26. Let k be a field of characteristic zero, A be a complete local Noetherian k-algebra with residue field k-isomorphic to k and r be a positive integer. Assume that there exists an extension L/k such that A ⊗ k L is r -cylindrical. Then A is r -cylindrical.

Remark 2.27. In case k has positive characteristic and L/k is not separable, the statement does not hold (see Example 4.17). We do not know whether the statement holds in case k has positive characteristic and L/k is separable.

Proof. The case r = 1 directly follows from arguments contained in the proofs of [ 

L on k • 1. Then D k,i := π(D i ) |k[[t 1 ,...,t s ]] is a derivation of k[[t 1 , . . . , t s ]] such that D k,i t j = δ i , j , and for any F ∈ I , one has that D k,i F ∈ π(I • L[[t 1 , . . . , t s ]]) = I .
Here is another consequence of Lemma 2.19 (noted in [BS18, §5.6] in the case r = 1) Corollary 2.28. Let k be a field of characteristic zero and X be a k-scheme of finite type. Let x ∈ X be an r -cylindrical point. Then there exists an affine k-scheme of finite type Y and y ∈ Y such that κ(x) ∼ → κ(y) with the following property: if (y, 0) denotes the point of Y × k A r k corresponding to the prime ideal 〈p y , t 1 , . . . ,

t r 〉 of O(Y )[t 1 , . . . , t r ] = O(Y × k A r k ),
there exists an isomorphism of complete local k-algebras

O X ,x ∼ → O Y × k A r k ,(y,0) = O Y ,y [[t 1 , . . . , t r ]]. Proof.
Let D 1 , . . . , D r be a regular family of derivations on O X ,x . Since moreover the derivations are continuous (Remark 2.10), there exist elements x 1 , . . . , x r ∈ m := m X ,x such that det(D i (x j )) ∉ m. By lemma 2.19, there exists a complete local k-algebra B and

an isomorphism of k-algebras ϕ : B [[t 1 , . . . , t r ]] ∼ → O X ,x mapping t i to x i . Thus one has an isomorphism B ∼ → O X ,x /〈x 1 , . . . , x r 〉 and B is isomorphic to the completion of O X ,x
〈x 1 ,...,x r 〉 , hence the existence of (Y , y) as in the statement 2.29. Maximal differential ideals. Let A be a ring and T be a family of derivations of A. Recall that an ideal of A is said to be T -differential (or simply differential in case T = Der(A)) if it is stable under any element D ∈ T . Now let i be an ideal of A. The sum of all the T -differential ideals contained in i is a T -differential ideal contained in i and maximal for this property. We call this ideal the maximal T -differential ideal of A contained in i. In case A is a local ring and i is the maximal ideal, we simply say the maximal T -differential ideal of A.

Lemma 2.30. Keep the above notation and assume that A is a ring containing Q and i is a proper ideal. Then the maximal T -differential ideal of A contained in i is a prime ideal.

In case A is Noetherian, the above lemma follows from [Sei67, Theorem 1]), which shows that in this case the associated primes of a T -differential ideal are T -differential.

As explained in the proof below, a slight variation of the arguments of [START_REF] Seidenberg | Differential ideals in rings of finitely generated type[END_REF] allows to drop the Noetherianity hypothesis; this should be useful in the context of the extension of the present work to arc spaces (see Section 6).

Proof. Let D ∈ Der(A). Following [START_REF] Seidenberg | Differential ideals in rings of finitely generated type[END_REF], consider the morphism ϕ

D : A[[t ]] → A[[t ]]
mapping t to t and inducing the formal flow H D : a → i 0 

D (i ) a i ! •t i associated with D on A,
= i 0 a i • t i ∈ q, one has a 0 ∈ p e , thus t • i 1 a i • t i -1 ∈ q. Since q ⊂ p e [[t ]
], one has t ∉ q and since q is prime, one has i 1 a i • t i -1 ∈ q thus a 1 ∈ p e and so on.

Thus {p e [[t ]]} e∈E is the family of minimal prime ideals containing

I [[t ]]. Since I is D-stable, one has I [[t ]] = ϕ D (I [[t ]]) = ∩ e∈E ϕ D (p e [[t ]]). Thus for e ∈ E one must have ϕ D (p e [[t ]]) = p e [[t ]] for e ∈ E . Since for a ∈ A, ϕ D (a) = a (mod 〈t 〉), one infers that p e ⊂ p e thus p e [[t ]] = p e [[t ]] and p e is D-stable. Remark 2.31. If k is a field of characteristic p > 0, the maximal ∂ t 1 , . . . , ∂ t r -differential ideal of k[t 1 , . . . , t r ] (or k[[t 1 , . . . , t r ]]) contained in 〈t 1 , . . . , t r 〉 is 〈t p 1 , . . . , t p r 〉.
In particular the conclusion of Lemma 2.30 does not hold in this case, and the hypothesis that A contains Q is crucial. See Remark 4.13 below for a characteristic-free version of Lemma 2.30. Definition 2.32. Let X be a k-scheme of finite type and x ∈ X a schematic point. The maximal differential generization of X is the unique differential point x ∈ X (see Definition 2.24) whose closure contains x and such that any other differential point of X whose closure contains x also contains x in its closure.

Remark 2.33. If Spec(A) is an open affine subset of X containing x and p is the prime ideal of A corresponding to x, the prime ideal of A corresponding to the maximal differential generization of X is the maximal differential ideal of A contained in p.

The following lemma shows the functoriality of the notion of maximal T -differential ideal.

Lemma 2.34. Let A and B be a rings, T

A = {D i } i ∈I (resp. T B = {E i } i ∈I )

be a family of elements of Der(A), (resp. Der(B )), and ϕ : A → B be a ring morphism such that for any

i ∈ I , E i • ϕ = ϕ • D i . Let I be an ideal of B and J be the maximal T B -differential ideal of B contained in I . Then ϕ -1 J is the maximal T A -differential ideal of A contained in ϕ -1 I . Proof. Due to the relations E i • ϕ = ϕ • D i , it is clear that ϕ -1 J is a T A -differential ideal of A contained in ϕ -1 I . Let K be any T A -differential ideal of A contained in ϕ -1 I . Since J ∪ ϕ(K ) is T B -stable, the ideal 〈J , ϕ(K )〉 is T B -differential. Since it contains J and is contained in I , it coincides with J , in particular ϕ(K ) ⊂ J thus K ⊂ ϕ -1 J .
Corollary 2.35. Let (A, m) be a local ring, D 1 , . . . , D r ∈ Der k (A) be a family of derivations on A and n be the maximal D 1 , . . . , D r -differential ideal of A. Let D 1 , . . . , D r be the extensions of D 1 , . . . , D r to the completion A and n * be the maximal ( D 1 , . . . , D r )-differential ideal of A. Then we have the relation n = n * ∩ A.

2.36. Maximal differential ideals with respect to regular families, 1. We shall pay particular attention, now and later in Section 5, to the description and properties of Tmaximal differential ideals in case the family of derivations T is a finite regular family. Lemma 2.37 below is a basic instance of this situation.

Lemma 2.37. Let A be ring containing Q, p be a prime ideal of A and r be a positive integer. Then the maximal

(∂ t 1 , . . . , ∂ t r )-differential ideal of A[t 1 , . . . , t r ] (resp. A[[t 1 , . . . , t r ]]) contained in 〈p, t 1 , . . . , t r 〉 is p[t 1 , . . . , t r ] (resp. p[[t 1 , . . . , t r ]]). Proof. The prime ideal p[t 1 , . . . , t r ] of A[t 1 , . . . , t r ] is ∂ t 1 , . . . , ∂ t r -differential and contained in 〈p, t 1 , . . . , t r 〉. Now let α ∈ A[t 1 , . . . , t r ] be such that α ∉ p[t 1 , . . . , t r ]. Since α (mod p[t 1 , . . . , t r ])
is a non-zero element of (A/p)[t 1 , . . . , t r ] and the latter ring contains Q, there exist i 1 , . . . , i r 0 such that ∂

(i 1 ) t 1 . . . ∂ (i r ) t r α (mod p[t 1 , . . . , t r ]
) has a non-zero constant term.

Thus 

∂ (i 1 ) t 1 . . . ∂ (i r ) t r α does not belong to 〈p, t 1 , . . . , t r 〉. Thus the maximal (∂ t 1 , . . . , ∂ t r )-differential ideal of A[t 1 , . . . , t r ] contained in 〈p, t 1 , . . . , t r 〉 is p[t 1 , . . . ,
= k[[x 1 , x 2 , x 3 ]], D 1 = ∂ x 1 and D 2 = ∂ x 2 + x 1 • ∂ x 3 . Then the derivation D 2 (remember the notation in the proof of Lemma 2.19) on k[[x 2 , x 3 ]] is ∂ x 2 , and q = 〈x 3 〉. Yet D 2 x 3 = x 1 thus q is not stable under D 2 . This shows that p = q.
Lemma 2.39. Let A be a ring containing Q, p be a prime ideal of A, r be a positive integer, and D 1 , . . . , D r be a family of elements of Der(A) that is regular with respect to p. For 0 s r , denote by q s the maximal D 1 , . . . , D s -differential ideal of A contained in p.

Then:

(1) One has codim A/q r p r .

(2) If D 1 , . . . , D r is moreover normalizable (see Definition 2.2) and codim A/q r p = r , one has codim A/q s p = s for any 0 s r .

Proof. Localizing and using Lemma 2.34 and 2.9, one may assume that A is local and p is its maximal ideal. Let us show the first assertion. Let (x 1 , . . . , x r ) ∈ p such that det(D i (x j )) 1 i , j r ∉ p. Replacing the r -tuple of derivations D 1 , . . . , D r with its product by the inverse of the matrix (D i (x j )), one may assume that (D i (x j )) is the identity matrix.

Note that q r remains the same by this change of family (however, the q s 's for s < r may have been modified). Recall that q s is prime (Lemma 2.30). Moreover, one has q s+1 ⊂ q s and for 0 s r -1 one has x s+1 ∈ q s \ q s+1 since D s+1 x s+1 = 1 and (in case s 1)

D s x s+1 = 0. The conclusion follows.
As for the second assertion, note that under the given assumptions, the previous argument shows directly (without having to change the family of derivations) that we have a chain of proper inclusions of prime ideals q r q r +1 • • • q 0 = p. Remark 2.40. In case A is a complete local ring and D 1 , . . . , D r is a finite regular family of derivations that are pairwise commuting, the dimension of the maximal D 1 , . . . , D rdifferential ideal equals r . This follows from Lemmas 2.19 and 2.37. The equality holds even under the weaker assumption [D i , D j ] ∈ r k=1 A •D k . Indeed, in this case, by Lemma

2.19, one may assume that

A = B [[t 1 , . . . , t r ]] where (B, m B ) is a complete local ring such that B = {a ∈ A : D 1 a = • • • = D r a = 0}. But then D i = r j =1 D i t j • ∂ t j and
(see the proof of Assertion 2(a) of Lemma 2.19) (D i t j ) ∈ GL r (A). Thus the maximal D 1 , . . . , D r -differential ideal coincides with the maximal ∂ t 1 , . . . , ∂ t r -differential ideal, and one may conclude with Lemma 2.37 as before.

In general the inequality in the first assertion of the lemma is strict. Consider again the example

A = k[[x 1 , x 2 , x 3 ]], D 1 = ∂ x 1 and D 2 = ∂ x 2 + x 1 • ∂ x 3 . Then the maximal (D 1 , D 2 )- differential ideal q is zero. Indeed, by the lemma, its dimension is 2 or 3. If it is 2, then one must have q = 〈F 〉 with F ∈ k[[x 1 , x 2 , x 3 ]] such that ∂ x 1 F ∈ 〈F 〉 and ∂ x 2 F + x 1 ∂ x 3 F ∈ 〈F 〉.
The latter conditions are easily seen to imply F ∈ k, a contradiction. Thus q = {0}.

The latter example also shows that the second assertion fails in general. Indeed, in this case, setting D 3 = ∂ x 3 , the maximal (D 1 , D 2 )-differential ideal coincides with the maximal D 1 , D 2 , D 3 -differential, both having dimension 3. This shows in particular that D 1 , D 2 , D 3 is not normalizable (see remark 2.3).

ANALYTICALLY ISOSINGULAR SUBSETS AND ISOSINGULAR LOCI OF ALGEBRAIC VARIETIES

Motivated by our comparison theorems for formal neighborhoods in arc schemes ( [START_REF] Bourqui | On the behaviour of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem[END_REF][START_REF] Bourqui | Deformations of arcs and comparison of formal neighborhoods for a curve singularity[END_REF]) and Chiu and Hauser's study of isosingular loci of algebraic varieties over algebraically closed field ([CH22]), in this section, we first introduce the notion of strongly and weakly analytically isosingular (in short SAI and WAI) closed subsets of an algebraic variety defined over a perfect field. Then we extend the notion of isosingular loci, as well as some of their properties, to the case of perfect fields.

The definitions of SAI and WAI are such that any SAI subset is trivially WAI, but later we will be able to show that both notions coincide (see Corollary 5.20). We do not know whether a similar statement holds in the case of arc schemes (see Question 6.11).

3.1. Preliminaries : notation and technical lemmas. We will say that a finitely generated field extension K /k is separable if there exists a finite family {x i } of elements of K that are algebraically independent over k and such that any element of K is algebraic over k({x i }) with separable minimal polynomials. An arbitrary extension K /k is said to be separable if any finitely generated subextension L/k is.

Definition 3.2. Let k be a field and A be a local k-algebra with residue field κ(A). A k-section of (the local k-algebra) A is a section s : κ(A) → A of the quotient morphism which is a morphism of k-algebras.

Recall that if A is a complete local k-algebra and k is sub-k-extension of κ(A) such that k /k is algebraic separable, all the k-sections of A have the same restriction to k (see e.g., [Bou06, Chapitre 9, §3, Proposition 1]). In particular, if κ(A)/k is algebraic separable, there exists a unique k-section of A ; in this case, A will be tacitly assumed to be equipped with the resulting κ(A)-algebra structure. More generally, if A is endowed with a k -algebra structure, every k-section of A is automatically a k -section. Notation 3.3. If A is a ring, K is a field and ι : K → A is a morphism, we shall sometimes denote by A (ι) the ring A equipped with the induced K -algebra structure. This will be relevant in contexts where several K -algebra structures on A are involved.

Remark 3.4. For any extension K /k, two local K -algebras A and B with residue field K -isomorphic to K are isomorphic as k-algebras if and only if there exists a k-section s of B such that the K -algebras A and B (s) are isomorphic. Indeed, if ϕ :

A → B is a k-algebra isomorphism, one may take s = ϕ • ι A where ι A : K → A is the structural morphism.
For the next lemma, see [Sei73, Lemma, p.29].

Lemma 3.5. Let k be a field, A = k[X 1 , . . . , X N ]/I and m be a maximal ideal of A such that the residue field κ(m) of m is an algebraic separable extension of k. Let α i be the

image of X i in κ(m). Then the κ(m)-algebras A m and κ(m)[[X 1 , . . . , X N ]]/〈F (X i + α i )〉 F ∈I are isomorphic.
Corollary 3.6. Let k be a perfect field, k be an algebraic closure of k, X be an algebraic kvariety, x be a closed point of X , ι : κ(x) → k be a k-embedding and x be the point of X (k) lying over x induced by ι. Then the k-algebras O X k ,x and O X ,x ⊗ κ(x),ι k are isomorphic. Lemma 3.7. Let k be a field.

(1) Let A be a complete local Noetherian k-algebra with residue field k-isomorphic to k, K /k be an extension and

A K := A ⊗ k K . Let s : K → A K be a k-section of A K .
Then there exists a k-algebra automorphism ϕ of A K inducing s : K → s(K ).

(2) Let k /k be an algebraic separable extension of k, A be a complete local Noetherian k -algebra with residue field k -isomorphic to k , K /k be an extension and B a Kalgebra such that the K -algebras A K := A ⊗ k K and B are isomorphic as k-algebras. Then A K and B are isomorphic K -algebras.

Proof. One may write

A K = K [[X 1 , . . . , X n ]]/〈F 1 , . . . , F m 〉 with F j ∈ k[[X 1 , . . . , X n ]]. Denote by x i the image of X i in A K . Consider ϕ : K [[X 1 , . . . , X n ]] → A mapping a I •X I to s(a I )• x I . Since s is a morphism of k-algebras, any F ∈ k[[X 1 , . . . , X n ]] is mapped to F (x 1 , . . . , x n ).
In particular, for any 1 i m one has ϕ(F j ) = 0, and therefore ϕ factors through an endomorphism ϕ :

A → A, mapping a I • x I to s(a I ) • x I .
Since for any α ∈ K one has s(α) -α ∈ M, one sees that ϕ induces the identity on M n /M n+1 . Thus ϕ is a ring automorphism. This show the first assertion.

As for the second assertion, since A K and B are isomorphic k-algebras and k /k is algebraic separable, A K and B are isomorphic k -algebras. Thus one reduces to the case k = k. Denote by

ι A K : K → A K and ι B : K → B the structural morphisms. Let ϕ : A K → B be a k-algebra isomorphism. Since ϕ -1 • ι B is a k-section of A K
and by the first assertion, there exists a k-algebra automorphism ψ of A such that ψι

A K = ϕ -1 • ι B Then ϕψ : A K → B K is a ring isomorphism and (ϕψ)ι A,K = ι B . Thus ϕψ is a K -algebra isomorphism between A K and B .
3.8. Strongly and weakly analytically isosingular subsets of an algebraic variety. Notation 3.9. For any topological space X , one denotes by X (0) the set of its closed points. Note that in case X is an algebraic variety and Y is a locally closed subset of X , one has Y (0) = Y ∩ X (0) . Definition 3.10. Let k be a perfect field and X be a k-scheme of finite type.

Let x 1 , x 2 ∈ X (0) . One says that x 1 and x 2 are geometrically analytically equivalent if there exist an extension K /k and k-embeddings ι 1 : κ(x 1 ) → K and ι 2 :

κ(x 2 ) → K such that O X ,x 1 ⊗ κ(x 1 ) K (ι 1 ) and O X ,x 2 ⊗ κ(x 2 ) K (ι 2 ) are isomorphic K -algebras.
An irreducible closed subset F of X is said to be weakly analytically isosingular (in short WAI) if there exists a non-empty Zariski open subset U of F such that any x 1 , x 2 ∈ U (0) are geometrically analytically equivalent. Such an open subset of F is called an analytical isosingularity (in short AI) open subset of F .

A WAI closed subset F is said to be maximal (in short MWAI) if there does not exist a WAI closed subset G containing properly F and an AI open subset U of G such that

U ∩ F = ∅.
Remark 3.11. Let k/k be an algebraic closure of k. Let x 1 , x 2 ∈ X (0) . Then x 1 and x 2 are geometrically analytically equivalent if and only if there exist k-embeddings

ι 1 : κ(x 1 ) → k and ι 2 : κ(x 2 ) → k such that O X ,x 1 ⊗ κ(x 1 ) k (ι 1 ) and O X ,x 2 ⊗ κ(x 2 ) k (ι 2 )
are isomorphic kalgebras (see also remark 3.25 below). Indeed, the "if" is clear. Conversely, let K /k, ι 1 , and ι 2 be as in the definition. Upon extending K , one may assume that K /k factors through

k/k. For i = 1, 2, let ι i : κ(x i ) → k be the induced embedding and A i := O X ,x i ⊗ κ(x i ) k (ι i ) . Since A 1 ⊗ k K and A 2 ⊗ k K are isomorphic K -algebras, by [Sei69b, Theorem 5], A 1 and A 2 are isomorphic k-algebras.
In particular, if k = k, x 1 , x 2 ∈ X (0) are geometrically analytically equivalent if and only if O X ,x 1 and O X ,x 2 are isomorphic k-algebras.

Example 3.12. Assume that X is an algebraic k-variety. Then X itself is a MWAI closed subset of X (we call it the trivial MWAI closed subset) with maximal AI open subset the set of smooth points of X .

In case X is smooth, X is the only MWAI closed subset of X .

In case X has only isolated singularities, the non-trivial MWAI closed subsets are the subsets {x} where x is a singular point.

Example 3.13. Assume that char(k) = 0 and X = Spec(k[X 1 , X 2 , X 3 ]/〈X 2 1 -X 3 X 2 2 〉) (the Whitney umbrella), whose singular locus is the line L := {X 1 = X 2 = 0}. Then the nontrivial MWAI closed subsets are {(0, 0, 0)} and L (with maximal AI open subset the complement of the origin).

Indeed, for any x ∈ L (0) \ {(0, 0, 0)} and any embedding ι : κ(x) → k one has by Lemma 3.5

O X ,x ⊗ κ(x) k (ι) ∼ → k[[X 1 , X 2 , X 3 ]]/〈X 2 1 -X 2 2 (X 3 + α)〉 where α ∈ k, α = 0. Let β ∈ k such that β 2 = 0 and X 3 + α the unique element of k[[X 3 ]]
squaring to X 3 + α and with constant term β. Then the change of coordinates

X * 1 = X 1 β , X * 2 = X 2 X 3 + α , X * 3 = X 3 defines an isomorphism k[[X 1 , X 2 , X 3 ]] 〈X 2 2 -X 2 1 (X 3 + α)〉 ∼ → k[[X 1 , X 2 ]] 〈X 2 2 -β 2 • X 2 1 〉 [[X 3 ]]. Thus O X ,x ⊗ κ(x) k (ι) is isomorphic to k[[X 1 ,X 2 ]] 〈X 1 X 2 〉 [[X 3 ]] (in particular x is maximally 1-cylindrical). On the other hand, if x = (0, 0, 0), O X ,x ∼ → k[[X 1 , X 2 , X 3 ]]/〈X 2 1 -X 2 2 X 3 〉 is not cylindrical (see [BS18, Example 5.12]).
Example 3.14. Assume now that char(k) = p and consider the p-Whitney umbrella

X = Spec(k[X 1 , X 2 , X 3 ]/〈X p 1 -X 3 X p 2 〉).
Then the only non-trivial MWAI closed subset is the line L = {X 1 = X 2 = 0}. In fact, for any

x 1 , x 2 ∈ L (0) , it follows from [CH22, Example 2.6] that O X ,x 1 ⊗ κ(x 1 ) k (ι 1 ) ∼ → O X ,x 2 ⊗ κ(x 2 ) k (ι 2 )
for any choice of ι 1 , ι 2 . Definition 3.15. Let k be a perfect field and X be a k-scheme of finite type. Let F be an irreducible closed subset of X and η F be its generic point. Then F is said to be strongly analytically isosingular (in short SAI) if there exists a non-empty Zariski open subset U of F such that the following holds: there exists a k-section s F of O X ,η F such that for any x ∈ U (0) , there exists a common extension K of κ(x) and κ(η

F ) such that O X ,x ⊗ κ(x) K and ( O X ,η F (s F ) ⊗ κ(η F ) K )[[t 1 , . . . , t dim(F ) ]] are isomorphic K -algebras.
Remark 3.16. Since k is perfect, by lemma 3.7, one obtains an equivalent notion by

requiring that O X ,x ⊗ κ(x) K and ( O X ,η F (s F ) ⊗ κ(η F ) K )[[t 1 , . . . , t dim(F ) ]] be only isomorphic k-algebras.
The notion of a maximal SAI closed subset is defined similarly to the case of WAI subsets. The following lemma is a direct consequence of the definitions. Lemma 3.17. Keep the above notation. If F is SAI, then F is WAI.

Example 3.18. If X is an algebraic k-variety, any closed subset F meeting the smooth locus of X is SAI, and X itself is MSAI.

Example 3.19. Let us get back to Example 3.13 and show that L is S AI (thus MSAI). Since η L corresponds to the prime ideal

〈X 1 , X 2 〉, of k[X 1 ,X 2 ,X 3 ] 〈X 2 1 -X 3 X 2 2 〉 , the quotient morphism O X ,η L → κ(η L ) induces an isomorphism k(X 3 ) ∼ → κ(η L ), thus a natural k-section s of O X ,η L and one has a k(X 3 )-algebra isomorphism O X ,η L (s) ∼ → k(X 3 )[[X 1 , X 2 ]] 〈X 2 1 -X 3 X 2 2 〉 .
Thus for any extension K /k(X 3 ) such that X 3 is a square in K , one has

O X ,η L (s) ⊗ k(X 3 ) K ∼ → K [[t 1 , t 2 ]] 〈t 1 t 2 〉 . (3.1)
Therefore, for any x ∈ L (0) \ {(0, 0, 0)} and any extension K of k(X 3 )[v]/〈v 2 -X 3 〉, one has by Example 3.13 and for any ι :

κ(x) → k an isomorphism ( O X ,η L (s) ⊗ k(X 3 ) K )[[v]] ∼ → O X ,x ⊗ κ(x) K (ι) .
Isomorphism (3.1) also shows that η L is differential; this may also be seen as a consequence of [Sei67, Theorem 5], see Example 2.25). Thus for any x ∈ L (0) \ {(0, 0, 0)}, η L is the maximal differential generization of x.

Theorem 5.18 and corollary 5.20 below will in particular generalize the observations in Example 3.19. Namely, they will show that WAI and SAI turns out to be equivalent notions and give an interpretation of the maximal differential generization of a closed point x as the generic point of the component through x of its (geometric) isosingular locus (to be discussed in the next subsection), as well as the generic point of the unique MWAI closed subset containing x.

3.20. The geometric isosingular locus of a closed point. We want to use the notion of geometrically analytically equivalent closed points to extend Chiu and Hauser's notion of isosingular locus, defined in [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF] for closed points of an algebraic variety over an algebraically closed field, to the case where the base field is perfect, keeping in particular the property that such a locus is the set of closed points of a locally closed subset.

First we have to make some reminders on contact groups and their truncations, which play a pivotal role in Chiu and Hauser's argument. See [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF] for more details and relevant facts.

Let e be a nonnegative integer, N be a positive integer, and X = (X 1 , . . . , X N ) be a set of indeterminates. Let V N ,e be the affine k-space whose L-points, for any extension L/k, are in natural correspondence with the set of coefficients of elements of L[[X]] modulo 〈X〉 e .

For any positive integer n, let K N ,n,e be the associated (truncated) contact group of order e; this is a linear algebraic group over k, that naturally acts on V n N ,e , in such a way that for any extension L/k and any (F 1,1 , . . . ,

F 1,n ), (F 2,1 , . . . , F 2,n ) ∈ V n N ,e (L), the L-algebras L[[X]]/〈F 1,1 (X), . . . , F 1,n (X)〉 + 〈X〉 e and L[[X]]/〈F 2,1 (X), . . . , F 2,n (X)〉 + 〈X〉 e are isomorphic if and only if there exists g ∈ K N ,n,e (L) such that g • (F 1,1 , . . . , F 1,n ) = (F 2,1 , . . . , F 2,n ).
Let now V N be the affine k-space whose L-points, for any extension L/k, are in natural correspondence with the set of coefficients of elements of L

[[X]]. For any n-tuple f = ( f 1 , . . . , f n ) of elements of k[X],
for any k-algebra A and any a ∈ A n , set ev f (a) := ( f i (X + a)) 1 i n . This defines a morphism ev f : A n k → V n N . For fixed N and n, note that (V n N ,e ) e , (K N ,n,e ) e are inverse systems such that the action of K N ,n,e on V n N ,e is compatible with the transition morphisms. In particular the k-group scheme K N ,n := lim (1) Let K be an extension of k. Let f and g be n-tuples of elements of K

[[X]] = V N (K ). Then K [[X]] 〈 f 〉 and K [[X]]
〈g 〉 are isomorphic if and only if there exists

κ ∈ K N ,n (K ) such that κ • f = g . (2) Let f be an n-tuple of elements of k[[X]] and X := Spec(k[X]/〈 f 〉). Let x 1 , x 2 ∈ X (0)
such that κ(x 1 ) and κ(x 2 ) are separable extensions of k. Then for any common extension K of κ(x 1 ) and κ(x 2 ) (inducing elements of K n still denoted by x 1 and

x 2 ), O X ,x 1 ⊗ κ(x 1 ) K ∼ → O X ,x 2 ⊗ κ(x 1 ) K if and only if there exists κ ∈ K N ,n (K ) such that κ • ev f (x 1 ) = ev f (x 2 ).
Remark 3.22. Let t = (t 1 , . . . , t d ) be a set of indeterminates. Let

f 1 , f 2 ∈ V N (k[[t ]]). Assume that there exists κ ∈ K N (k[[t ]]) such that κ • f 1 = f 2 . Then the complete local k-algebras k[[X, t ]]/〈 f 1 〉 and k[[X, t ]]/〈 f 2 〉 are isomorphic.
A similar remark holds for K N ,n for any positive integer n.

As pointed out in [CH22, Remark 1.1], the strict extension of the notion of isosingular locus defined there to the case where the base field is not algebraically closed is not well-behaved. Here one adopts the following definition, that coincide with the one in [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF] in case k = k (see Remark 3.11). Definition 3.23. Let k be a perfect field, X be a k-scheme of finite type and x be a closed point of X . The (geometric) isosingular locus of x, denoted by Iso(X , x), is the set of elements x ∈ X (0) such that x and x are geometrically analytically equivalent.

Using a Galois descent argument, one obtains the following generalization of [CH22, Proposition 1.9]. Proposition 3.24. Let k be a perfect field, X be a k-scheme of finite type and x a closed point of X . Then there exists a locally closed subset Y of X such that Y (0) = Iso(X , x).

Proof. We may assume that X = Spec(k[X]/〈 f 〉) is affine, where X = (X 1 , . . . , X N ) and f is a n-tuple of elements of k[X]. Let {x i } i ∈I be the finite set of those elements of X (k) lying over x. By [CH22, Corollary 1.8], there exists a positive integer e such that for any y ∈ X (k) and any i ∈ I one has

O X k ,x i ∼ → O X k ,y if and only if ∃κ ∈ K N ,n,e (k), κ • ev f (x i ) = ev f (y ).
(3.2)

On the other hand, by the definition of Iso(X , x), for any y ∈ X (0) , one has y ∈ Iso(X , x) if and only if there exists y ∈ X (k) lying over y and i ∈ I such that (3.2) holds. Note that in this case, for any γ ∈ Gal(k/k), (3.2) also holds for γ • x i and γ • y . Thus the set Iso(X , x)(k) of elements of X (k) lying over an element of Iso(X , x) is the pullback by ev f of ∪ i ∈I K N ,n,e (k) • ev f (x i ). Since {ev f (x i )} i ∈I is the set of elements of V n N (k) lying over ev f (x), by lemma 3.26 below, the above union of orbits equals Z (k) where Z is a locally closed subset of V n N ,e . Setting Y := ev -1 f (Z ), one thus has Iso(X , x) = Y (0) .

Remark 3.25. The above argument also shows that x 1 and x 2 are geometrically analytically equivalent if and only if for any k-embedding ι 1 : κ(x 1 ) → k, one may find a

k-embedding ι 2 : κ(x 2 ) → k such that O X ,x 1 ⊗ κ(x 1 ) k (ι 1 )
and

O X ,x 2 ⊗ κ(x 2 ) k (ι 2 )
are isomorphic k-algebras (see Remark 3.11).

However, in general, such an isomorphism will not exist for any choice (ι 1 , ι 2 ) of such k-embeddings. Indeed, consider e.g., k = R and the celebrated Whitney exam-

ple X = Spec k[X 1 ,X 2 ,X 3 ] X 1 X 2 (X 1 +X 2 )(X 1 +X 3 X 2 )
) . For x 1 = x 2 the closed point given by the maximal ideal 〈X 1 , X 2 , X 2 3 + 1〉, the completions corresponding to the two different R-embeddings ) which are not isomorphic C-algebras by Whitney's cross-ratio argument.

κ(x 1 ) → C are C[[X 1 ,X 2 ,X 3 ]] X 1 X 2 (X 1 +X 2 )(X 1 +(X 3 +i )X 2 ) and C[[X 1 ,X 2 ,X 3 ]] X 1 X 2 (X 1 +X 2 )(X 1 +(X 3 -i )X 2
Lemma 3.26. Let k be a perfect field, G be a smooth connected algebraic group over k acting on an affine k-scheme of finite type X . Let x ∈ X (0) and {x i } i ∈I be the finite set of the points of X (k) lying over x.

Then there exists a locally closed subset Y of X such that

∪ i ∈I G(k) • x i = Y (k).
Proof. Let Γ = Gal(k/k) be the absolute Galois group of k. Take J ⊂ I such that the orbits {G(k).x i } i ∈J are pairwise disjoint. For i ∈ J , let F i be the closure of G(k).x i in X (k). In

particular U i =: G(k).x i is open in F i . Since Γ acts transitively on {U i } i ∈J , dim(F i ) is constant. Let i , j ∈ J , i = j . Since F i \ U i is a union of G(k)-orbit, if U j ∩ F i were non empty, one would have U j ⊂ F i \U i . Since dim(F i ) = dim(F j ) this is impossible. Thus U j ∩ F i = ∅.
It follows that U := ∪ i ∈I U i is open and dense in F = ∪ i ∈I F i . Thus since U is Γ-stable, F is also Γ-stable, as well as F \ U . This implies that there exist closed subsets F 1 and [START_REF] Milne | Topics in Algebraic Geometry[END_REF]Chapter 16]). Therefore Y := F 1 \ F 2 has the required properties.

F 2 of X such that F 1 (k) = F and F 2 (k) = F \ U (see e.g.,
Notation 3.27. Using a notation strictly similar to [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF], for x ∈ X (0) one denotes by X (x) the unique locally closed subset of X such that (X (x) ) (0) = Iso(X , x), and one endows it with its reduced subscheme structure.

Remark 3.28. The proof of Lemma 3.26 shows that for a suitable subset {x j } j ∈J of the set of elements of X (k) lying over x, the underlying topological space of X (x) ⊗ k k is the disjoint union of the locally closed subsets X Lemma 3.29. Let k be a perfect field and X be a k-scheme of finite type.

(1) Let Y be a k-scheme of finite type, f : X → Y be an étale morphism and x ∈ X

(0) . Then f -1 (Iso(Y , f (x))) = Iso(X , x). Moreover the induced morphism X (x) → Y ( f (x)) is étale. (2) Let x ∈ X (0) . If x is r -cylindrical, then dim x (X (x) ) r .
(3) X (x) is smooth over k. Remark 3.30. By Corollary 2.28 (in case char(k) = 0) and Remark 4.15 (in case char(k) > 0) the formulation of the second assertion is indeed equivalent to the one of [CH22, Lemma 2.5].

Proof. If f : X → Y be an étale morphism and x ∈ X (0) , then by Proposition 5.2, O X ,x and O Y , f (x) ⊗ κ( f (x)) κ(x) are isomorphic κ(x)-algebras. That being said, the first and the second assertions can now be proved exactly as the corresponding statements in [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF].

For the third assertion, one may reduce to the case k = k (and thus to [CH22, Proposition 1.14]) using Remark 3.28. Notation 3.31. For any x ∈ X (0) , by Assertion 3 of Lemma 3.29, the closure of X (x) in X has a unique component passing through x. We denote this component by G (X , x). Remark 3.32. By Assertion 2 of Lemma 3.29, if x is r -cylindrical, then dim(G (X , x)) r .

ISOSINGULARITY IMPLIES CYLINDRICITY

Our main goal in this section is to show the following result.

Theorem 4.1. Let k be a perfect field and X be a k-scheme of finite type. Let Z be a locally closed subset of X such that any x 1 , x 2 ∈ Z (0) are geometrically analytically equivalent.

In case char(k) > 0, assume moreover that k = k and there exist z ∈ Z (k) that is a smooth point of Z (endowed with its reduced scheme structure), an open affine subset U of X containing z and an isomorphism U ∼ → Spec(k[X 1 , . . . , X N ]/〈 f 1 , . . . , f n 〉) mapping z to the origin and such that the orbit map of K N ,n through f = ( f 1 , . . . , f n ) is separable (see Definition 4.4 below).

Then any x ∈ Z (0) is dim(Z )-cylindrical.

Remark 4.2. Taking Z = X (x) and using Lemma 3.29 as well as Corollary 2.28 (in case char(k) = 0) and Remark 4.15 (in case char(k) > 0), the result recovers Theorem B of [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF] in case k = k and char(k) = 0, and answers Question C of op.cit.. Remark 4.3. In case char(k) = 0, the proof reduces to the case k = k using Lemma 2.26. If Lemma 2.26 happened to also hold for separable extensions in positive characteristic (see Remark 2.27), one could drop the assumption k = k in Theorem 4.1 in case k is a perfect field of positive characteristic.

Definition 4.4. Let k be a field, N a positive integers, X = (X 1 , . . . , X N ) a set of N indeterminates. For any positive integer n and n-tuple f = ( f 1 , . . . , f n ) of elements of k[X], one says that the orbit map of the contact group K N ,n (see Subsection 3.20) through f is separable if for any e large enough the orbit map

K N ,n,e -→ V N ,e κ -→ κ • f is separable.
The proof of Theorem 4.1 follows the general line of arguments in [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF], but one uses a multivariate version of Hasse-Schmidt derivations instead of a mere family of regular derivations. In this framework, the basic idea is that, under the given assumptions, one may lift a formal parametrization of a smooth point z of Z along the action of the contact group, which in turn allows us to construct such a multivariate Hasse-Schmidt derivation locally at z, showing the claimed cylindricity by a generalization of the Lipman-Nagata-Zariski simplification lemma involving multivariate Hasse-Schmidt derivations. In the following, we first state the result allowing us to perform the aforementioned lifting. Then we state and prove an r -cylindricity criterion (Theorem 4.14) in terms of multivariate Hasse-Schmidt derivations, before proving Theorem 4.1. At the end of the section, we explain how very similar arguments allow us to recover a related result of Seidenberg in the context of algebroid geometry. 4.5. Wedge-transitivity of a limit of linear algebraic group actions. The following statement is an abstract version of a result used and proved in [START_REF] Chiu | Isosingular loci of algebraic varieties[END_REF] (see Lemma 2.2 & 2.3 and their proofs therein; the same arguments allow us to show Lemma 4.6).

Lemma 4.6. Let k be a field. Let ({G n } n∈N , {π n ,n } n,n ∈N,n n ) be an inverse system of linear algebraic groups over k and ({V n } n∈N , {τ n ,n } n,n ∈N,n n }) be an inverse system of affine algebraic k-varieties. Let G be the affine group scheme over k defined by G := lim ←-G n and V be the affine k-scheme defined by V := lim ←-V n . Assume that for any n ∈ N we are given an algebraic action a n : G n × V n → V n of G n over V n compatible with the transition morphisms, thus inducing an algebraic action a :

G × V → V Let x ∈ V (k)
and Y be the closure of the orbit G • x, endowed with its reduced subscheme structure. Let a x : G → Y be the morphism g → g • x. For n ∈ N, let x n = τ n (x), Y n be the closure of the orbit G n • x n , endowed with its reduced subscheme structure and a x n : G n → Y n be the morphism g → g • x n .

Assume that either:

(1) k is of characteristic zero;

(2) or for n large enough G n is smooth and the morphism a x n is separable.

Then the morphism O Y ,x → O G,1 G admits a retraction.

Remark 4.7. Let t = (t 1 , . . . , t r ) be a r -tuple of indeterminates. For any k-scheme of finite type X , an element w of X (k[[t ]]) is usually called an (r )-wedge (an arc in case r = 1; see also Subsection 6.1). Its origin is the element of X (k) obtained from w by the specialization In case (A, M A ) is a local ring, an element

t 1 = • • • = t r = 0.
D = Id A + 1 i r D i • t i + . . . of HS r (A) is said to be regular if there exist elements x 1 , . . . , x r ∈ M A such that det(D j x i ) ∉ M A . Remark 4.10. If D = Id A + 1 i r D i •t i +.
. . is an element of HS r (A) (resp. HS r,k (A)) then the D i 's are elements of Der(A) (resp. Der k (A)) and the Hasse-Schmidt r -derivation D is regular if and only if D 1 , . . . , D r is a regular tuple in the sense of Definition 2.2. Moreover, if x 1 , . . . , x r ∈ M A are such that det(D j x i ) ∉ M A , then there exists

D = Id A + 1 i r D i • t i +• • • ∈ HS r (A) such that ( D j x i ) is the identity matrix: just compose D on the target with the inverse of the A-automorphism of A[[t 1 , . . . , t r ]] mapping t i to D(x i ) -x i .
Example 4.11. In case A is a complete local ring, setting t = (t 1 , . . . , t r ) and u = (u 1 , . . . , u r ), the morphism

A[[u]] → A[[u, t ]] mapping F (u) to F (u + t ) is a regular Hasse-Schmidt r -derivation on A[[u]],
which is moreover an element of HS r,k (A) in case k is a field and A is a k-algebra. 

D (i r ) r )(ab) = D (i 1 ) 1 . . . D (i r -1 ) r -1 ( α r ,β r ∈N α r +β r =i r i r ! α r !β r ! D (α r ) r aD (β r ) r b)
thus by induction (D

(i 1 ) 1 . . . D (i r ) r )(ab) i 1 ! . . . i r ! = α,β∈N r α+β=i 1 α 1 ! . . . α r !β 1 ! . . . β r ! (D (α 1 ) 1 . . . D (α r ) r )(a)(D (β 1 ) 1 . . . D (β r ) r )(b)
which shows that D(ab) = D(a)D(b). Note that in case the derivations D 1 , . . . , D r do not pairwise commute, the associated formal flow will depend on the chosen ordering of the r derivations. Remark 4.13. Let A be a ring. An ideal I of A is said to be HS-differential if for any Hasse-Schmidt derivation D = j 0 D j • t j on A and any j , one has D j I ⊂ I . If this holds, then it also holds for I (see e.g., [Tra00, Corollary 2.3]). The version of Lemma 2.30 where differentiality is replaced by HS-differentiality holds in any characteristic. In the Noetherian case, this is a consequence of [BK72, Theorem 1], where it is observed that for any Hasse-Schmidt derivation D on A, the extension ϕ

D : A[[t ]] → A[[t ]] of D to A[[t ]]
mapping t to t is an automorphism. The same observation also allows to adapt the argument of the proof of Lemma 2.30 to this context.

Here is a generalization in arbitrary characteristic of the Lipman-Nagata-Zariski simplification lemma, using the notion of regular Hasse-Schmidt r -derivation. Such a generalization is well-known in the case r = 1 (see [START_REF] Brown | Ideals and higher derivations in commutative rings[END_REF][START_REF] Wei Eihn Kuan | A note on a lemma of Zariski and higher derivations[END_REF][START_REF] Ishibashi | On isomorphic power series rings[END_REF][START_REF] Bourqui | Cancellation and regular derivations[END_REF]).

Theorem 4.14. Let (A, m) be a complete local ring.

Then A is r -cylindrical if and only if there exists a regular Hasse-Schmidt r -derivation on A.

More precisely, assume that there exists a Hasse-Schmidt r -derivation

D = Id A + 1 i r D i • t i + . . . : A → A[[t 1 , . . . , t r ]] on A and x 1 , . . . , x r ∈ m such that det(D i x j ) ∈ A × .

Then there exists a complete local ring B and an isomorphism of complete local rings

ϕ : B [[u 1 , . . . , u r ]] → A mapping u i to x i .
Remark 4.15. By Example 4.11, if A is moreover a k-algebra which is r -cylindrical over k, then there exists a regular element of HS r,k (A).

On the other hand, in case there exists a regular element of HS r (A), and keeping the notation of the statement of the theorem, the quotient morphism

A → A/ A • x i induces an isomorphism B ∼ → A/ A • x i .
Therefore, going back to the case where A is a k-algebra, B is a sub k-algebra of A and ϕ is an isomorphism of k-algebras. 

Proof. By Example 4.11, we only have to show that if there exists a regular Hasse-Schmidt r -derivation on

A then A is r -cylindrical. Let D = Id A + 1 i r D i • t i + . . .
(F d ) ∈ ( A.x i ) d +1 ; then F d = 0. But since D(x i ) = x i + t i for 1 i r , one has in A[[t 1 , . . . , t r ]] the relation D[( A.x i ) d +1 ] ⊂ 〈t 1 , . . . , t r 〉 d +1 + 〈x 1 , . . . , x r 〉.
On the other hand, for any

F ∈ B [[u 1 , . . . , u r ]], one has 
Dϕ(F ) = F (t 1 , . . . , t r ) (mod 〈x 1 , . . . , x r 〉). Hence if ϕ(F d ) ∈ ( A.x i ) d +1 , one has F d (t 1 , . . . , t r ) ∈ 〈t 1 , . . . , t r 〉 d +1 + 〈x 1 , . . . , x r 〉.
In particular, all the coefficients of F d (t 1 , . . . , t r ) lie in B ∩ A.x i = {0}, and F d = 0.

Corollary 4.16. Corollay 2.28 also holds in case char(k) > 0.

Proof. If (A, m A ) is any Noetherian local k-algebra and D = Id A + 1 j r D j • t j + . . . is a regular element of HS r,k (A), by continuity of the derivations D i 's, there exist elements x 1 , . . . , x r ∈ m A that det(D i (x j )) ∉ m A . One may now conclude as in the proof of Corollary 2.28.

Example 4.17. Let k be a field of characteristic p > 0, s a transcendental element over

k and A = k(s)[[X 1 ,X 2 ]] 〈X p 1 -s•X p 2 〉
; note that A is isomorphic to the formal neighborhood of the generic point of the singular locus of the Witney p-umbrella (see Example 3.14). Then for any extension K /k containing a p-th root of s, a linear change of variables shows that

A ⊗ k(u) K is isomorphic to K [[X 1 , X 2 ]]/〈X p 1 〉 and is thus 1-cylindrical.
Yet A itself is not 1-cylindrical. In fact, denoting by m A the maximal ideal of A, let us show the stronger statement that for any Hasse-Schmidt derivation D : 

A → A[[t ]], one has Dm A ⊂ m A [[t ]]. Let x 1 , x 2 be the images of X 1 ,X 2 in A and π : A → k(s)[[t ]] be the composition of D with the morphism A[[t ]] → A/M A [[t ]] of coefficientwise reduction. Set x i (s, t ) = π(x i ). Since x 1 (s, t ) p = s • x 2 (s, t ) p , either x 1 (s, t ) = x 2 (s, t ) = 0 (
X = Spec(k[X 1 , . . . , X N ]/〈 f 1 , . . . , f n 〉).
Moreover, in case char(k) = 0, we shall reduce to the case where k = k. Let X := X ⊗ k k, Z := Z ⊗ k k, and x ∈ Z (k). Then x induces an element x K of X (K ) contained in Z (K ) (for a certain finite algebraic extension K /k) and an element x ∈ X (0) contained in Z .

Denote by α i the image of

X i in K by x # K : k[X]/〈 f 1 , . . . , f n 〉 → K . Then by [Sei73, Lemma, p.29], one has O X ,x ⊗ κ(x) k ∼ → k[[X]]/〈 f j ((X i + α i ))〉 1 j n ∼ → O X ,x .
Thus by Lemma 2.26, one may assume that k = k in case char(k) = 0.

We moreover may assume that the origin o of A N k lies on Z and is a smooth point of Z (equipped with its reduced scheme structure), and, in case char(k) > 0, that the orbit map of

K N ,n through f = ( f 1 , . . . , f n ) is separable. Let d = dim(Z ), t = (t 1 , . . . , t d ) a d -tuple of indeterminates and x(t ) = (x i (t )) 1 i N ∈ (〈t 〉 • k[[t ]]
) N be a formal parametrization of Z at the origin, corresponding to a choice of étale coordinates z 1 , . . . , z d of Z at the origin inducing an isomorphism k

[[t ]] ∼ → O Z ,o . In particular, denoting by p # : O X (X ) → k[[t ]] the corresponding morphism, one has det(∂ t i p # (z j )) ∈ k[[t ]] × . (4.1)
Let Y ⊂ (V N ) n be the closure of the orbit K N ,n • f . By assumption and Lemma 3.21, the set ev

f (Z (k)) is contained in Y , thus, since k is algebraically closed, ev f (Z ) is contained in Y . Therefore the element w ∈ (V N ) n (k[[t ]]) defined by the composition of ev f : O Z ,o → O (V N ) n , f with the chosen isomorphism k[[t ]] ∼ → O Z ,o is an element of Y (k[[t ]]). Note that w corresponds to the element of (V N ) n (k[[t ]]) defined by f (X + x(t )).
Thus, applying Lemma 4.6 (and Remark 4.7) one obtains the existence of

w ∈ K N ,n (k[[t ]])) such that the element of K N ,n (k) induced by mapping t to 0 is 1 K N ,n and f (X + x(t )) = w • f (X).

That means that there exists a n × n matrix A(t ) with coefficient in k[[X, t ]] and such that

A(t ) = I n (mod 〈t 〉 • k[[X, t ]]) and a N -tuple ϕ(t ) of elements of 〈X〉 • k[[X, t ]] such that ϕ(t ) = 0 (mod 〈t 〉 • k[[X, t ]]) satisfying A(t ) f (X + x(t ) + ϕ(t )) = f (X)
Multiplying by the adjugate matrix A(t ) ad of A(t ) yields

f (X + x(t ) + ϕ(t )) = det(A(t )) -1 • A(t ) ad • f (X) (4.2)
Now consider the following Hasse-Schmidt d -derivation on k[[X]]:

D : g → g (X + x(t ) + ϕ(t )).
By (4.2), for 1 i n, one has

D( f i ) ∈ 〈 f 〉 • k[[X, t ]]. Thus D defines a Hasse-Schmidt d -derivation on k[[X]]/〈 f 〉.
By the Taylor formula and since ϕ(t

) ∈ 〈X〉 • k[[X, t ]], one has D(g ) = p # (g ) (mod 〈X〉 • k[[X, t ]]).
Therefore (4.1) shows that

det(∂ t j D(z j )) ∈ k × + 〈X, t 〉 • k[[X, t ]].
Thus D is a regular Hasse-Schmidt d -derivation of k[[X]]/〈 f 〉. By Theorem 4.14, we are done.

Isosingularity and cylindricity in an algebroid context.

It is interesting to note that the wedge-transitivity of the action of the contact group allows to easily recover the main result of [START_REF] Seidenberg | Analytic products[END_REF], that is another instance of a situation where isosingularity implies cylindricity (see also [START_REF] Hauser | The trivial locus of an analytic map germ[END_REF]Remark (b), p. 834]). More precisely, Theorem 4.20 below for r = d recovers [Sei69a, Theorem 3]. Geometrically, it could be interpreted as follows: let X be an algebroid variety and π : X → W × W be a morphism to a product of formal disks of respective dimension r and dr , admitting a section ; if the generic fiber over W is geometrically analytically equivalent to the special fiber, then X is isomorphic to the product of the special fiber with W . For the sake of simplicity, we assume that the base field has characteristic zero but a suitable extra separability assumption on the action of the contact group would allow to also deal with the positive characteristic case. ∼ → κ n and a section s of κ n . Assume that there exists an extension K of k((t 1 , . . . , t d )) such that the K -algebras A/〈a 1 , . . . , a r 〉 ⊗ k K and A n /〈a 1s(a 1 ), . . . , a rs(a r )〉 ⊗ κ n K are isomorphic.

Then A is r -cylindrical, more precisely A is isomorphic to A 〈a 1 ,...,a r 〉 [[t 1 , . . . , t r ]].

Proof. One may write

A = k[[X, Y]]/I X = (X 1 , . . . , X N ), Y = (Y 1 , . . . , Y r
), in such a way that there exists an isomorphism A/n

∼ → k[[t 1 , . . . , t d ]
] mapping a i to t i and such that for 1 i r one has a i = Y i (mod I ). The assumption is then translated as: the complete local K -algebras

K [[X]] 〈 f (X, 0)〉 f ∈I and K [[X]] 〈 f (X + x(t ), t 1 , . . . , t r )〉 f ∈I
are isomorphic. One may now apply Proposition 4.21 below in order to conclude. Proposition 4.21. Let k be a field of characteristic zero. Let N , r , d be positive integers, X = (X 1 , . . . , X N ), Y = (Y 1 , . . . , Y r ) be indeterminates, and

I be a proper ideal of k[[X , Y ]]. Let t = (t 1 , . . . , t d ), x(t ) ∈ (〈t 〉 • k[[t ]]) N and y(t ) ∈ (〈t 〉 • k[[t ]]) r such that ∀ f ∈ I , f (x(t ), y(t )) = 0.

Assume that there exists an extension K of k((t )) such that the K -algebras

K [[X ]] 〈 f (X ,0)〉 f ∈I and K [[X ]] 〈 f (X +x(t ),y(t ))〉 f ∈I are isomorphic. Then: (1) The k-algebras k[[X ,t ]] 〈 f (X ,0)〉 f ∈I and k[[X ,t ]] 〈 f (X +x(t ),z(t ))〉 f ∈I are isomorphic.
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(2) Assuming moreover that det(∂

t i y i (t )) 1 i , j r ∈ k[[t ]] × , the k-algebra k[[X ,Y ]] I is isomorphic to k[[X ]] 〈 f (X ,0)〉 f ∈I [[t 1 , . . . , t r ]].
Proof. One uses in particular the notation introduced in Subsection 3.20.

Write I = 〈 f 1 , . . . , f n 〉 and let w = w(t ) be the element of

V N +r (k[[t ]])) n corresponding to ( f i (X + x(t ), y(t ))) 1 i n .
In particular w(0) ∈ (V N +r (k)) n corresponds to f i (X , 0)) 1 i n . Denote by Z the closure of the K N +r,n -orbit of w(0) in V n N +r . The assumptions imply that there exists g ∈ K N +r,n (K ) such that g • w(0) = w, where w is seen as an element of V N +r (k((t ))) n ⊂ V N +r (K ) n . Thus the generic point of w, that is to say, the schematic point defined by

w ∈ V N +r (k((t ))) n , lies in Z , hence w ∈ Z (k[[t ]]).
By Lemma 4.6 and Remark 4.7, there exists g

∈ K N +r (k[[t ]]
) such that g • γ(0) = γ. By Remark 3.22, this gives the first assertion.

As for the second assertion, the assumption implies that

X → X + x(t ), t i → z i (t ), (1 i r ), t i → t i (r + 1 i d ) is an automorphism of k[[X , t ]], hence the following isomorphism: k[[X , t ]] 〈 f (X + x(t ), y(t ))〉 f ∈I ∼ → k[[X , Y , t r +1 , . . . , t d ]] I = k[[X , Y ]] I [[t r +1 , . . . , t d ]].
By the first assertion and the cancellation Theorem for complete local Noetherian kalgebras ( [START_REF] Hamann | On power-invariance[END_REF]; see Remark 2.18), one gets the result.

CYLINDRICITY IMPLIES ISOSINGULARITY

In this section we show the different assertions of Theorem 1.1, using in particular the properties of the isosingular loci discussed in the two previous sections, as well as the results of Section 2. Key ingredients include Artin's characterization of isomorphic formal neighborhoods in terms of étale neighborhoods and a study of maximal differential ideals with respect to a regular tuple of derivations. A key step is to show that the closure of the associated schematic point is a SAI subset of the expected dimension (hence the name of the section). Choose a section σ : κ R → R of R and assume that σ extends to a section of Ŝ.

Then the following are equivalent:

(

1) S is R-flat and M R • S = M S .
(2

) the map R ⊗ κ R κ S → Ŝ sending r ⊗α to σ(α)• f (r ) is an isomorphism of κ S -algebras.
Remark 5.3. By [Bou06, Chapitre 9, §3, Proposition 1], the assumption that a section of R extends to a section of S holds as soon as κ S /κ R is separable.

Remark 5.4. In particular R → S is étale if and only if 2) holds and κ S /κ R is finite separable. The latter result is stated as an exercise in [Har77, III, exer. 10.4].

Proof. Note that for any n 1, one may use

σ to endow R M n R (resp. S M n S
) with a structure of κ R -algebra (resp. κ S -algebra). For n = 1, this structure is nothing but the canonical structure of κ R = R/M R -algebra on R/M R and ditto for S.

Also note that for any n 1, any r ∈ M n R and any

α = r (mod M R ) ∈ κ R , one has r r = σ(α)r (mod M n+1 R ). Thus the natural exact sequence 0 -→ M n R M n+1 R ι R,n -→ R M n+1 R π R,n -→ R M n R -→ 0
is an exact sequence of κ R -vector spaces, and ditto for S.

For any n 1, denote by q n the group morphism

M n R M n+1 R ⊗ κ R κ S → M n S M n+1 S such that q n (r (mod M n+1 R ) ⊗ s (mod M S )) = f (r )s (mod M n+1 S ) and by p n the group morphism R M n R ⊗ κ R κ S → S M n S such that p n (r (mod M n R ) ⊗ β) = f (r )σ(β) (mod M n S )
. Then q n (resp. p n ) is a morphism of κ S -vector spaces (resp. κ S -algebras) and one has a commutative diagram of κ S -vector spaces:

0 / / M n R M n+1 R ⊗ κ R κ S ι R,n ⊗ κ R κ S / / q n R M n+1 R ⊗ κ R κ S π R,n ⊗ κ R κ S / / p n+1 R M n R ⊗ κ R κ S / / p n 0 0 / / M n S M n+1 S ι S,n / / S M n+1 S π S,n / / S M n S / / 0 Now assume M R • S = M S and S is R-flat. Since M R • S = M S , p 1 is an isomorphism. Moreover, since M R • S = M S ,
S is R-flat and using [Mat86, Theorem 22.3], one gets that q n is an isomorphism for any n. Thus by induction p n is an isomorphism for any n. Therefore

R ⊗ κ R κ S = lim ←- R M n+1 R ⊗ κ R κ S = lim ←- S M n+1 S = S. Conversely, if R ⊗ κ R κ S → S is
an isomorphism, then p n is an isomorphism for any n 1, thus also q n . Since p 1 is an isomorphism, one has M R • S = M S . Now the fact that q n is an isomorphism for any n and [Mat86, Theorem 22.3] show that S is R-flat. Lemma 5.5. Let (R, M R , κ R ) be a Noetherian local ring, (S, M S , κ S ) be the localization of R[t 1 , . . . , t r ] at the ideal M R [t 1 , . . . , t r ], f : R → S be the composition of the canonical injection R → R[t 1 , . . . , t r ] with the localization, and f : R → S be the induced morphism. The following assertions are true:

(a) The natural morphism R[t 1 , . . . , t r ] → κ R [t 1 , . . . , t r ] induces an isomorphism κ S ∼ → κ R (t 1 , . . . , t r ). (b) Choose a section σ : κ R → R. Let σ : κ R (t 1 , . . . , t r ) → S be the section that extends σ canonically. Then the map R ⊗ κ R κ R (t 1 , . . . , t r ) ∼ → S sending r ⊗ α to σ (α) • f (r ) is an isomorphism of κ R (t 1 , . . . , t r )-algebras.
Proof. By the exactness of the localization functor, the morphism of the statement induces the following isomorphisms:

R[t 1 , . . . , t r ] M R [t 1 , . . . , t r ] 〈0〉 ∼ → (κ R [t 1 , . . . , t r ]) 〈0〉 ∼ → κ R (t 1 , . . . , t r ). We now prove part (b). Since R[t 1 , . . . , t r ] is a free R-module, R → R[t 1 , . . . , t r ] is flat.
Since any localization morphism is flat, f is also flat, and the result follows from Proposition 5.2. 5.6. Maximal differential ideals with respect to regular families, 2. Proposition 5.7. Let k be a field of characteristic 0 and X be a k-scheme of finite type. Let r be a positive integer and x ∈ X be an r -cylindrical point. Then, there exists a regular family of pairwise commuting derivations D 1 , . . . , D r ∈ Der k ( O X ,x ) such that, denoting by p * the maximal (D 1 , . . . , D r )-differential ideal of O X ,x , and setting p := p * ∩ O X ,x :

(1) One has dim(O X ,x /p) = r .

(2) Let η ∈ X be the schematic point corresponding to p. Then, there exist a k-section s x of O X ,x and a common extension K of κ(η) and κ(x) such that for any k-section s η of O X ,η , the complete local K -algebras O X ,x (s x ) ⊗ κ(x) K and ( O X ,η

(s η ) ⊗ κ(η) K )[[t 1 , . . . , t r ]]
are isomorphic as k-algebras.

Example 5.8. For an arbitrary regular family of pairwise commuting derivations D 1 , . . . , D r ∈ Der k ( O X ,x ), one always has dim( O X ,x /p * ) = r by Lemma 2.37. However, in general, one may have dim(O X ,x /p) > r , even in case r = 1 and D is the extension of an element of Der k (O X ,x ), as the following example (taken from [Sin83, Example 2.10], but with a different argument) shows. Consider the derivation D on k[[t 1 , t 2 ]] defined by D(t 1 ) = 1 and

D(t 2 ) = 1+ t 2 . Since D(t 1 -ln(1+ t 2 )) = 0, one has p * = 〈t 1 -ln(1+ t 2 )〉, whose intersection with k[t 1 , t 2 ] 〈t 1 ,t 2 〉 is the zero ideal.
Proof. Since x ∈ X is r -cylindrical, then corollary 2.28 ensures the existence of an affine k-scheme of finite type Y , a point y ∈ Y and an isomorphism of k-algebras

O X ,x ∼ → O Y × k A r k ,(y,0) = O Y ,y [[t 1 , . . . , t r ]]. Set (Z , z) := (Y × k A r k , (y, 0))
. By [Art69, Corollary 2.6], there exists a k-scheme of finite type W and w ∈ W and a diagram

O W,w O X ,x O Z ,z θ Z θ X
where θ Z and θ X are étale morphisms of local k-algebras, inducing isomorphisms of k-algebras

θ X : O X ,x ∼ → O W,w and θ Z : O Z ,z ∼ → O W,w .
For the sake of simplicity, we hereby identify O X ,x and O Z ,z = O Y ,y [[t 1 , . . . , t r ]] with O W,w := A via these isomorphisms, and view O X ,x , O Z ,z and O W,w as subrings of A.

For 1 i r , let D i ∈ Der k (A) be the extension of the the partial derivative ∂ t i on O Y ,y [t 1 , . . . , t r ]; note that the D i 's are pairwise commuting. Let p * be the maximal D 1 , . . . , D r -differential ideal of A, p := p * ∩ O X ,x , p Z := p * ∩ O Z ,z , and p W := p * ∩ O W,w . In particular, θ -1 and this proves that dim(O Z ,z /q Z ) equals r , the dimension of the latter ring.

X (p W ) = p and θ -1 Z (p W ) = p Z . We deduce that dim(O X ,x /p) = dim(O W,w /p W ) = dim(O Z ,z /p Z ),
Let us now prove the second assertion. We denote by η W , η X , η Z and κ(η W ), κ(η X ), κ(η Z ) respectively the points of W, X , Z corresponding to the prime ideals q W , q X , q Z and their residue fields. Note that η X = η.

Let s y : κ(y) → O Y ,y be an arbitrary k-section. Via the inclusion O Y ,y ⊂ O Y ,y [[t 1 . . . , t r ]] = O X ,x it may be extended to a k-section s x : κ(x) = κ(y) → O X ,x .

We identify κ(η Z ) with κ(y)(t 1 , . . . , t r ) via the isomorphism of Lemma 5.5 and consider the k-section s η Z : κ(y)(t 1 , . . . , t r ) → O Z ,η Z that extends s y canonically. The same lemma then provides an isomorphism of κ(y)(t 1 , . . . , t r )-algebras

O Z ,η Z (s η Z ) ∼ → O Y ,y
(s y ) ⊗ κ(y) κ(y)(t 1 , . . . , t r ).

(5.1)

We now choose an arbitrary k-section s η X of O X ,η X . The étale morphism θ X induces an étale morphism O X ,η X → O W,η W , thus the extension κ(η W )/κ(η X ) is finite separable. Then, by Remark 5.3, s η X extends to a section s 1 : κ(η W ) → O W,η W . An analogous reasoning with θ Z shows that s η Z extends to a section s 2 : κ(η W ) → O W,η W . Hence, Proposition 5.2 provides isomorphisms of complete local κ(η W )-algebras

O W,η W (s 1 ) ∼ → O X ,η X (s η X ) ⊗ κ(η X ) κ(η W ) and O W,η W (s 2 ) ∼ → O Z ,η Z (s η Z ) ⊗ κ(η Z ) κ(η W ). (5.2)
On the one hand, from (5.2) we deduce an isomorphism of κ(η W )-algebras

O W,η W [[t 1 . . . , t r ]] (s 1 ) ∼ → O X ,η X (s η X ) ⊗ κ(η X ) κ(η W ) [[t 1 . . . , t r ]].
(5.3)

On the other hand, combining (5.2) and (5.1) we obtain an isomorphism of κ(η W )algebras

O W,η W (s 2 ) ∼ → O Y ,y (s y ) ⊗ κ(y) κ(η W ), that induces an isomorphism of κ(η W )-algebras O W,η W [[t 1 . . . , t r ]] (s 2 ) ∼ → O Y ,y (s y ) ⊗ κ(y) κ(η W ) [[t 1 . . . , t r ]].
(5.4)

Via our previous identification O Y ,y [[t 1 , . . . , t r ]] = O X ,x and choice of section s x , the RHS of the previous isomorphism is nothing but O X ,x (s x ) ⊗ κ(x) κ(η W ). Finally, comparing with (5.3), we deduce that the complete local κ(η W )-algebras O X ,x (s x ) ⊗ κ(x) κ(η W ) and

O X ,η X (s η X ) ⊗ κ(η X ) κ(η W ) [[t 1 . . . , t r ]
] are isomorphic as k-algebras (see Remark 3.4), which proves the second assertion for any common extension K of κ(η W ) and κ(x).

Remark 5.9. In Proposition 5.7, if the point x is assumed to be closed, then the field extension κ(x)/k is finite. Since κ(η W )/κ(η) is also finite, we may choose K such that K /κ(η) is a finite field extension (take, e.g., , a compositum over k of κ(x) and κ(η W )). . Corollary 5.10. Let k be a field of characteristic zero, X be a k-scheme of finite type, and

x ∈ X be a maximally r -cylindrical point. Let p x be the maximal differential ideal of O X ,x and η x ∈ X be its corresponding schematic point. Then

(1) one has dim(O X ,x /p x ) = r ;

(2) for any regular r -tuple D 1 , . . . , D r of derivations on O X ,x , p x is the maximal D 1 , . . . , D r -differential ideal of O X ,x ; (3) There exist a k-section s x of O X ,x and a common extension K of κ(x) and κ(η x ), such that, for any k-section s

η x of O X ,η x , O X ,x (s x ) ⊗ κ(x) K and ( O X ,η x (s ηx ) ⊗ κ(η x ) K )[[t 1 , . . . , t r ]]
are isomorphic k-algebras.

Proof. Consider a family of derivations as in Proposition 5.7 and keep the notation of the statement of the proposition.

First, note that p is differential. If that were not the case, by the last assertion of Proposition 5.7, O X ,x (s x ) ⊗ κ(x) K would be (r + 1)-cylindrical. By Lemma 2.26, O X ,x would also be (r + 1)-cylindrical, a contradiction. Now consider a regular r -tuple D 1 , . . . , D r of derivations on O X ,x and p ∈ Spec(O X ,x ) the maximal D 1 , . . . , D r -differential ideal of O X ,x . Since p is differential, one has p ⊂ p .

On the other hand, by Lemma 2.39, one has dim(O X ,x /p ) r . Since dim(O X ,x /p) = r by the first assertion of Proposition 5.7, one has p = p. Finally, consider p x the maximal differential ideal of O X ,x . Since p is differential, one has p ⊂ p x . Since p x is D 1 , . . . , D r -differential, one has p x ⊂ p . Hence p = p x and Proposition 5.7 again allows to conclude.

Corollary 5.11. Let k be a field of characteristic zero, X be a k-scheme of finite type, and x ∈ X be a maximally r -cylindrical point. For any s r and any regular family D 1 , . . . , D s of derivations on O X ,x , if we denote by p x,s the maximal D 1 , . . . , D s -differential ideal of O X ,x , then one has s dim(O X ,x /p x,s ) r .

Proof. The first inequality is given by Lemma 2.39. As for the second one, let p x be the maximal differential ideal of O X ,x . In particular, it is D 1 , . . . , D s -differential, then p x ⊂ p x,s .

Thus dim(O X ,x /p x,s ) dim(O X ,x /p x ), and by Corollary 5.10 gives dim(O X ,x /p x ) = r. Lemma 5.12. Let k be a field of characteristic zero and X be a k-scheme of finite type. Then the set of r -cylindrical points of X (0) is open in X (0) . Notation 5.13. We shall denote by X cyl,r the unique open subset of X such that X cyl,r ∩ X (0) is the set of r -cylindrical points of X (0) .

Proof. Let x ∈ X (0) be an r -cylindrical point and D 1 , . . . , D r be a regular family of derivations on O X ,x . Up to replacing X by an open affine subset containing x, one may assume that D i is the extension of D i ∈ Der k (Γ(X )), for every 1 i r . Let m x be the maximal ideal of Γ(X ) corresponding to x, f 1 , . . . , f r ∈ m x such that det(D i f j ) ∉ m x and U x be the open subset of X defined by {det(D i ( f j )) = 0}. Let us show that any point in x ∈ U x ∩ X (0) is r -cylindrical.

Let K = κ(x ). Since x is a closed point and char(k) = 0, K is a finite separable extension of k. Let us choose K ⊂ O X ,x a coefficient field containing k. For any 1 i r , D i induces an element E i of Der k (K , O X ,x ). Since K /k is a finite separable extension and E i (k) = {0}, by [Mat86, Theorem 5.23], one also has E i (K ) = {0}. Thus D i ∈ Der K ( O X ,x ). Let π x : O X ,x → K be the canonical quotient morphism. Then, for any 1 i , j r , g j := f j -π x ( f j ) ∈ m X ,x and D i (g j ) = D i ( f j ). Since x ∈ U x , one has det( D i (g j )) ∉ m X ,x .

Thus x is r -cylindrical. We conclude by taking X cyl,r = x U x , where x ∈ X (0) is an r -cylindrical point.

Notation 5.14. If X is a scheme and x ∈ X is a schematic point, one denotes by dim X (x) the dimension of the closure of x in X .

Corollary 5.15. Let k be a field of characteristic zero, and X be a k-scheme of finite type. Let x ∈ X be a closed point that is maximally r -cylindrical, η be the maximal differential generization of x, and F be the Zariski closure of η in X . Let U := F ∩ X cyl,r (see Notation 5.13). For any x ∈ U , there exist a k-section s x of O X ,x and K /κ(η) a finite field extension that is a common extension of κ(x) and κ(x ), such that O X ,x ⊗ κ(x) K and

( O X ,x (s x ) ⊗ κ(x ) K )[[t 1 , . . . , t dim X (x ) ]] are isomorphic K -algebras.
In particular (taking x = η), F is SAI. Moreover, U is the maximal AI open subset of F .

Proof. Let x ∈ U . First assume that x is closed (in particular r -cylindrical). Since x ∈ F , η is a differential generization of x . On the other hand, since x is closed and by Corollary 5.10, one has dim X (η) = r . Let η be the maximal differential generization of x . Then η is a generization of η , but on the other hand, since x is r -cylindrical, by Lemma 2.39 one has dim X (η ) r = dim X (η) thus η = η and η is the maximal differential generization of x . By Corollary 5.10 and Lemma 3.7, x is maximally r -cylindrical, and there exists a common extension K of κ(η), κ(x) and κ(x ) such that K /κ(η) is finite (see Remark 5.9, that also applies when taking the compositum over k of K as in Corollary 5.10 and κ(x ), because κ(x )/k is finite) and, for any k-section s η of O X ,η , both the K -algebras

O X ,x ⊗ κ(x) K and O X ,x ⊗ κ(x ) K are isomorphic to ( O X ,η (s η ) ⊗ κ(η) K )[[t 1 , . . . , t r ]]
, hence the result follows.

Now take any x ∈ U . Pick a closed point x ∈ U that lies in the closure of x . By the previous argument, η is the maximal differential generization of x , hence also of x . Assume x is maximally s-cylindrical, then Corollary 5.10 ensures that dim(O X ,x /p η ) = s.

Then s = dim(O X ,x /p η ) = dim(O X ,x /p η ) -dim(x ) = dim(η) -dim(x )
. By Corollary 5.10, there exist a k-section s x of O X ,x and a common extension K of κ(η), κ(x ) and κ(x ) such that K /κ(η) is finite (Remark 5.9 applies again) and, for any k-section s η of O X ,η , there exist k-algebras isomorphisms

O X ,x ⊗ κ(x ) K ∼ → ( O X ,η (s η ) ⊗ κ(η) K )[[t 1 , . . . , t r ]] and O X ,x (s x ) ⊗ κ(x ) K ∼ → ( O X ,η (s η ) ⊗ κ(η) K )[[t 1 , . . . , t dim X (η)-dim X (x ) ]]. Therefore, since dim X (η) = r , O X ,x ⊗ κ(x ) K and ( O X ,x (s x ) ⊗ κ(x ) K )[[t 1 , . . . , t dim X (x ) ]
] are isomorphic k-algebras. By Lemma 3.7, they are also isomorphic K -algebras. The previously discussed particular case allows to conclude.

Let us show that U is the maximal AI open subset of F . By the very definition of U , any element x of (F \U ) ∩ X (0) is not r -cylindrical. In particular, by Lemma 2.26, for any

extension K /κ(x ), O X ,x ⊗ κ(x ) K is not r -cylindrical, thus not isomorphic to O X ,x ⊗ κ(x) K .
This shows that U is the maximal AI open subset of F . Corollary 5.16. We keep the hypotheses and notation in Corollary 5.15 and assume moreover that the field k is algebraically closed, in particular x ∈ X (k). Then for any x ∈ U (k), the k-algebras O X ,x and O X ,x are isomorphic.

Proof. Corollary 5.15 ensures that there exists an extension K of k such that O X ,x ⊗ k K and O X ,x ⊗ k K are isomorphic K -algebras. Since k is algebraically closed, by [START_REF] Seidenberg | On analytically equivalent ideals[END_REF], O X ,x and O X ,x are isomorphic k-algebras. 5.17. Application to the geometric isosingular locus. Theorem 5.18. Let k be a field of characteristic zero and X be a k-scheme of finite type. Let x ∈ X (0) be a maximally r -cylindrical point. Then dim(G (X , x)) = r (see Notation 3.31).

Moreover, for any irreducible closed subset F of X , the following are equivalent:

(i) There exists x ∈ X (0) such that F = G (X , x).

(ii) There exists x ∈ X (0) such that F is the closure of the maximal differential generization of x. (iii) F is a MWAI closed subset of X . Proof. For any x ∈ X (0) , by Theorem 4.1, x is dim(G (X , x))-cylindrical. Thus if x is maximally r -cylindrical, one has dim(G (X , x)) r and by Remark 3.32 one has dim(G (X , x)) = r .

Moreover, by the definition of G (X , x), any AI closed subset F whose AI open subset contains x is contained in G (X , x), and X 

(x) ∩ F = X (x) ∩ G (X , x) ∩ F is an AI open subset of F . In particular G (X , x) is MWAI,
(0) , one has G (X , x ) ⊂ F and dim(G (X , x )) = r thus G (X , x ) = F .
The equivalences in the statement are now clear.

Remark 5.19. In particular, the generic point of a MWAI closed subset is always differential. Yet in general the closure of a differential point need not be WAI: [Sei67, Example 3, p.32] is an example of an irreducible integral surface whose singular locus is irreducible of dimension 1 and contains exclusively non-cylindrical points. The generic point of the singular locus is differential by [Sei67, Theorem 5], yet the singular locus can not be a WAI closed subset. Indeed, since its dimension is positive, by Theorem 4.1, any sufficiently generic k-rational point of the singular locus would be cylindrical.

Corollary 5.20. Let k be a field of characteristic zero and X be a k-scheme of finite type. Then any WAI closed subset of X is SAI. More precisely, let F be a WAI closed subset of X with maximal AI open subset U and generic point η. Let x ∈ U and d = dim X (η)dim X (η ). Then there exist a common extension K of κ(η) and κ(x ), and a k-section s η (resp. s

x ) of O X ,η (resp. O X ,x ) such that O X ,x (s x ) ⊗ κ(x ) K and ( O X ,η (s η ) ⊗ κ(η) K )[[u 1 , . . . , u d ]] are isomorphic K -algebras.
Proof. In case F is a MWAI closed subset of X , this is a direct consequence of Theorem 5.18, Corollary 5.15 and Remark 2.18. In case F is WAI, let G be a MWAI closed subset containing F , η G be the generic point of G and U G be the maximal AI open subset of G.

In particular U G ∩ F = U and one may again conclude via Corollary 5.15 applied to G and Remark 2.18.

ANALYTIC ISOSINGULARITY FOR ARC SPACES

In this concluding section, we initiate a study of the extent to which the concepts and results discussed in the rest of the paper are amenable to generalize to the framework of arc spaces, which are one of the most natural example of so-to-speak infinitedimensional algebraic varieties. In the next three subsections, we provide brief reminders of the aspects of the topic that are relevant for the discussion to follow (refering the reader to the given references for more details) as well as some remarks and a useful lemma. 6.1. Reminder: arc spaces. (See e.g., [START_REF] Bourqui | Arc schemes in geometry and differential algebra[END_REF][START_REF] Chambert-Loir | Motivic integration[END_REF]) Let k be a field and X be an algebraic k-variety. The arc space associated with X , denoted by L ∞ (X ), is a k-scheme parameterizing the smooth formal germs of curves on X . One stresses that as soon as dim(X ) is positive, L ∞ (X ) is not a k-scheme of finite type. For any extension K /k, there is a functorial bijection between the set of K -points of L ∞ (X ) and the set of K

[[t ]]- points of X . If γ ∈ L ∞ (X ) is an arc, with residue field K = κ(γ), it induces a K -point of L ∞ (X ) thus a K [[t ]
]-points of X , which in turn defines a K ((t ))-point and a K -point (through the specialization t = 0) of X . The corresponding schematic points of X are called respectively the generic point and the center of the arc γ. One says that an arc is non-degenerate if its generic point belongs to the smooth locus of X . The set of nondegenerate arcs is a non-empty Zariski open subset of L ∞ (X ).

In case X = Spec(Γ(X )) is affine, L ∞ (X ) = Spec(Γ(X ) ∞ is also affine. Assuming moreover that char(k) = 0, one can givex an explicit differential description a presentation of Γ(X ) ∞ in terms of a presentation of Γ(X ): write Γ(X ) = k[x 1 ,...,x n ] I ; let k[x 1 , . . . , x n ] ∞ be the polynomial k-algebra over the countable set of variables {x i , j } 1 i n j ∈N , and identify

k[x 1 , . . . , x n ] with a subalgebra of k[x 1 , . . . , x n ] ∞ via x i → x i ,0 ; let ∆ be the k-derivation on k[x 1 , . . . , x n ] ∞ such that for any i , j one has ∆(x i , j ) = x i , j +1 ; then Γ(X ) ∞ is isomorphic to k[x 1 ,...,x n ] ∞ [I ]
where I is the ∆-differential ideal generated by I . Note that ∆ descends to a k-derivation on Γ(X ) ∞ and there is an inclusion Γ(X ) ⊂ Γ(X ) ∞ . Let now p be a prime ideal of Γ(X ) ∞ , γ p ∈ L ∞ (X ) be the corresponding arc, K be the residue field of p and θ ∈ Hom(Γ ∞ (X ), K ) the morphism of k-algebras. Then the induced morphism

γ * p : Γ(X ) → K [[t ]
] is given by the composition of the morphism Γ(X ) → Γ(X ) ∞ mappint ϕ to j 0 ∆ ( j ) ϕ j ! t j with ϕ j • t j → θ(ϕ j ) • t j . The center of γ p corresponds to the kernel of (t = 0) • γ * p , thus to the prime ideal p ∩ Γ(X ), whereas its generic center corresponds to the kernel of γ * p . That being said, one easily obtains the following lemma, which will be useful below. Lemma 6.2. Keep the previous notation. If ∆(p) ⊂ p, then the arc γ p is pseudo-constant, i.e., its center and generic point coincide.

Proof. For any ϕ ∈ p ∩ Γ(X ) and any j 0, one has ∆ ( j ) ϕ ∈ p, thus p ∩ Γ(X ) ⊂ Ker(γ * p ). Gabber's cancellation theorem, a minimal formal model of γ is uniquely determined (up to isomorphism). 6.4. Reminder: maximal divisorial sets on arc spaces. (See [START_REF] Ishii | Maximal divisorial sets in arc spaces[END_REF][START_REF] Tommaso De Fernex | Divisorial valuations via arcs[END_REF][START_REF] De | The space of arcs of an algebraic variety[END_REF]). We continue our short reminders by discussing the notion of maximal divisorial sets, which form an important class of irreducible closed sets of the arc space of an algebraic variety, closely related to the well-known Nash problem and birational geometry. We assume that k is a field of characteristic zero. Let ν be a divisorial valuation on an algebraic k-variety X . We associate with it a closed subset N X (ν) of L ∞ (X ) as follows: let W → X be a resolution of the singularities of X (inducing a morphism L ∞ (W ) → L ∞ (X ) such that there is a prime divisor E on W and a positive integer q such that ν = q • ord E . Let L ∞ (W ) E ,q be the set of arcs on W with contact order q along E . Then N X (ν) is the closure of the image of L ∞ (W ) E ,q in L ∞ (X ). It does not depend on the choice of W and E , and is irreducible. The arc corresponding to the generic point of N X (ν) is a non-degenerate arc, in fact its generic point is the generic point of X (it is a fat arc in the sense of [START_REF] Ishii | Arcs, valuations and the Nash map[END_REF]). Moreover its center is the center of the valuation ν on X . Remark 6.5. By the latter result, the generic point η ν of N X (ν) is not a pseudo-constant arc, thus by Lemma 6.2 is not a differential point. In particular L ∞ (X ), η ν (which is Noe- therian by [START_REF] Reguera | A curve selection lemma in spaces of arcs and the image of the Nash map[END_REF], see also [START_REF] De | Differentials on the arc space[END_REF]) is 1-cylindrical. This gives a general explanation of a phenomenon observed in [BMCS] for toric valuations of toric varieties and in [BMCn23, Theorem 1.7] for valuations on curves. Remark 6.6. Assuming that k is moreover algebraically closed, it is worth remarking that the set of k-rational points of N X (ν) is in N X (ν). Let us roughly explain why (A very similar argument is used to show that N X (ν) is irreducible.). Using suitable étale coordinates and the compatibility of the formation of arc spaces with étale morphism, one reduces to show that L ∞ (W ) E ,q (k) is dense in L ∞ (W ) E ,q for W = A n k and E = {x 1 = 0}; But then L ∞ (W ) E ,q is the closed subscheme of L ∞ (A n k ) = Spec(k[(x i , j )] 1 i n j ∈N . defined by the ideal 〈x 1, j 〉 0 j q-1 On the other hand, for any non-zero f ∈ k[(x r )] r ∈N , one has f ∈ k[(x r )] 0 r s for a suitable s, hence the existence of (x r ) ∈ k N such that f ((x r )) = 0, and the result.

It is the occasion to recall that in case the algebraically closed field k is countable, there exist closed points of Spec(k[(x r )] r ∈N ) that are not k-rational points: write k = {α r } r ∈N\{0} and consider e.g., the kernel of the morphism k[(x r )] r ∈N → k(t ) mapping x 0 to t and x r (r 1) to 1 t -α r , which is surjective (see also [Ish04, Proposition 2.11]) 6.7. SAI and WAI subsets of arc spaces. From now on one assumes that the basefield k is algebraically closed and of characteristic zero The following result, which is a concatenation of [START_REF] Bourqui | On the behaviour of formal neighborhoods in the Nash sets associated with toric valuations: a comparison theorem[END_REF]Theorem 6.18] and [BMCn23, Theorem 1.7] was the initial motivation of the present paper.

Theorem 6.8. Let X be a k-curve or a normal toric k-variety Let ν be divisorial valuation on X , assumed to be toric in case X is toric. Then there exists a non-empty Zariski open set U of N X (ν) such that the following holds:

(1) such that for any γ 1 , γ 2 in U (k), the formal neighborhoods O L ∞ (X ),γ 1 and O L ∞ (X ),γ 2 are isomorphic.

(2) Let η ν be the generic point of N X (ν). Then there exists a k-section s of O L ∞ (X ),η ν such that for any γ ∈ U (k), the topological κ(η ν )-algebras O L ∞ (X ),γ ⊗ k κ(η ν ) and O L ∞ (X ),η ν (s)

[[u r ]] r ∈N (where u r are indeterminates) are isomorphic.

This motivates the following definition, that features evident analogies with the concepts introduced in Subsection 3.8: Definition 6.9. Let X be an arbitrary algebraic k-variety and ν be an arbitrary divisorial valuation. One says that ν is weakly analytically isosingular (WAI), resp. strongly analytically isosingular (SAI), if there exists a non-empty Zariski open set U of N X (ν) such that assertion (1) of Theorem 6.8 holds for ν, resp. assertion (2) of Theorem 6.8 holds for ν, possibly only over a suitable extension of K of κ(η ν ), that is to say, after applying -⊗ κ(η ν ) K to the involved topological κ(η ν )-algebras.

The following proposition supports the chosen terminology. Proposition 6.10. If ν is SAI, then ν is WAI.

Proof. By the very definition, if ν is SAI, there exists an extension K of k such that for any γ 1 , γ 2 in U (k), the topological K -algebras O L ∞ (X ),γ 1 ⊗ k K and O L ∞ (X ),γ 2 ⊗ k K are isomorphic. Since η ν lies in the open set of non-degenerate arcs, one may assume that any arc in U is non-degenerate. For i = 1, 2, let A i be a minimal finite formal model of γ i (see 6. The following question has a positive answer in the cases considered in Theorem 6.8. Recall that the analogous question for subsets of algebraic varieties also has a positive answer, as shown in the present paper (See Corollary 5.20). Question 6.11. Let ν be a divisorial valuation on an algebraic variety. If ν is WAI, then is ν SAI?

The following question is equivalent to one already raised in [BMCS]. Question 6.12. Is any divisorial valuation SAI (resp. WAI)?

In case it turns out that there exist in general divisorial valuations that are not SAI (resp. WAI), it would then be interesting to try to characterize them geometrically. 6.13. Concluding observations. It might be possible that a line of thought analogous to the one used in the present paper to show that any WAI closed subset of an algebraic variety is SAI could lead to a positive answer to Question 6.11. This would in particular provide a new a unified proof of the main results of [BMCS] and [START_REF] Bourqui | Deformations of arcs and comparison of formal neighborhoods for a curve singularity[END_REF]. It is worth noting that regarding this kind of issues the context of arc spaces may present a priori notorious differences with that of algebraic varieties, as illustrated by the following proposition and Remark 6.15 below. Proposition 6.14. Let k be an algebraically closed field of characteristic zero. Let C be an affine algebraic affine k-curve. We assume that C is singular. For the sake of simplicity, we moreover assume that C has only one singular point c ∈ C (k), and that c is analytically irreducible, i. As a last observation, let us point out that as a consequence of Corollary 5.15 and Theorem 5.18, in the case X is an algebraic variety and x ∈ X (k) is a k-rational point, the dimension of the minimal formal model of O X ,x exactly corresponds to the dimension of the formal neighborhood of the generic point η x of the component through x of its isosingular locus. In case ν is a SAI divisorial valuation, it should be sensible that for a generic k-rational arc γ of N X (ν), a suitable analog of η x is given by the generic point η ν of N X (ν) (Proposition 6.14 is a supporting fact in this direction). Both the dimension of the minimal formal model of γ and the dimension of O L ∞ (X ),η ν seem to carry subtle yet interesting informations on the nature of the singularities of X (see e.g., [START_REF] Bourqui | The minimal formal model of a curve singularity is zerodimensional[END_REF][START_REF] Mourtada | Mather discrepancy as an embedding dimension in the space of arcs[END_REF][START_REF] Chiu | On arc fibers of morphisms of schemes[END_REF]). Yet they differ in general, and it would be interesting to understand the exact discrepancy between them.

2. 13 .

 13 Interlude on families of pairwise commuting derivations. The following will be used to give a more precise version of the Lipman-Nagata-Zariski simplification lemma as stated in [Mat86, Theorem 30.1].

  (a) If (P) holds, then the D i 's are pairwise commuting. (b) If the D i 's are pairwise commuting and the E i 's form a free family over A, then (P) holds. (c) If B ∈ GL r (A), then [D i , D j ] ∈ r k=1 A • D k . (2) Assume that the D i 's are pairwise commuting. (a) If (P) holds and B ∈ GL r (A), then the E i 's are pairwise commuting. (b) If E i 's are pairwise commuting and form a free family over A, then (P) holds.

  g., [Lip65, Theorem 2] or [Mat86, Theorem 30.1]. Here is a more precise version of [Mat86, Theorem 30.1]. Lemma 2.19. Let (A, m) be a complete local ring containing Q, and let r be a positive integer.

  r is the identity matrix. Thus one obtains the result by induction. Let us show Assertion 2(a). (i i ) ⇒ (i ) is part of [Mat86, Theorem 30.1]. Now assume A = B [[t 1 , . . . , t r ]] and (D 1 , . . . , D r ) is a regular family of derivations on A such that B = {a ∈ A, D 1 a = • • • = D r a = 0}. In particular, for any i one has

  = V N . By [CH22, Lemma 1.5] and Lemma 3.5, this action enjoys the following properties. Lemma 3.21.

(x j ) k .

 k One has the following extensions of [CH22, Lemmas 1.13 & 2.5 & Proposition 1.14].

  Example 4.12. Let A be a ring containing Q and D 1 , . . . , D r be a tuple of derivations on A. Then the map D = D D 1 ,...,D r : A → A[[t 1 , . . . , t r ]] defined by D(a) = (i 1 ,...,i r )∈N r -Schmidt r -derivation on A, called the formal flow associated with the tuple D 1 , . . . , D r . Indeed, additivity is clear and for i ∈ N r and a, b ∈ A, one has by the Leibniz rule

  be a regular Hasse-Schmidt r -derivation on A and let x 1 , . . . , x r ∈ m such that the matrix (D j x i ) is the identity matrix (see Remark 4.10) Consider the ring morphism θ : A → A obtained by composing D with the evaluations t 1 = -x 1 , . . . , t r = -x r . Clearly x 1 , . . . , x r ∈ Ker(θ). On the other hand, by the very definition of θ, for any a, one has θ(a)a ∈ A • x i . One infers that Ker(θ) = A • x i and A = Ker(θ) + Im(θ). Morevoer, since θ(a)a ∈ Ker(θ) for any a, one has Ker(θ) ∩ Im(θ) = {0}.Thus, setting B = Im(θ), the quotient map A → A/ A • x i induces an isomorphism B ∼ → A/ A • x i and one has A = B + A • x i . Thus the morphism of complete local rings ϕ : B [[u 1 , . . . , u r ]] → A inducing the identity on B and mapping u i to x i is onto.Moreover, for any homogeneous element F d ∈ B [u 1 , . . . , u r ] of degree d , one has ϕ(F d ) ∈ ( A.x i ) d . Therefore, in order to show that ϕ is injective, it suffices to show the following: let F d ∈ B [u 1 , . . . , u r ] be an homogeneous element of degree d such that ϕ

5. 1 .

 1 Étaleness and completions. Proposition 5.2. Let f : (R, M R ) → (S, M S ) be a local morphism of Noetherian local rings.

  and is the only MWAI closed subset of X containing x in its maximal AI open subset. Now let F be the closure of the maximal differential generization of a maximally rcylindrical closed point x. Then by Corollary 5.15 F is SAI thus WAI and by Corollary 5.10, one has dim(F ) = r . Let U be the maximal AI open subset of F . Thus for any x ∈ U

6. 3 .

 3 Reminder: the Drinfeld-Grinberg-Kazhdan theorem and the minimal formal model of a rational non-denegerate arc. (See [Dri20, BS20, BS17]) Let X be an algebraic kvariety of positive dimension and γ ∈ L ∞ (X )(k) be a non-degenerate k-rational arc. The Drinfeld-Grinberg-Kazhdan theorem states that there exists a k-scheme of finite type Y and y ∈ Y (k) such that the formal neigborhood O L ∞ (X ),γ is isomorphic (as a topological k-algebra) to O Y ,y [[(u r ) r ∈N ]] where u r are indeterminates. A minimal formal model of γ is such a O Y ,y with the additional property that it is non-cylindrical. By

  3). Thus the topological K -algebras (A 1 ⊗ k K )[[u n ]] n∈N and (A 2 ⊗ k K )[[u n ]] n∈N are isomorphic. By Gabber's cancellation theorem ([BS17, Theorem 7.1]), the complete local K -algebras A 1 ⊗ k K and A 2 ⊗ k K are isomorphic. Since k is algebraically closed, by [Sei69b, Theorem 5], the complete local k-algebras A 1 and A 2 are isomorphic. Thus the topological k-algebras O L ∞ (X ),γ 1 ∼ → A 1 [[u n ]] n∈N and O L ∞ (X ),γ 2 ∼ → A 2 [[u n ]] n∈N are isomorphic. Thus ν is WAI.

  e., O C ,c is a domain. Choose an isomorphism between the normalization of O C ,c and k[[t ]]. Let ν be the valuation on C induced by ord t and U be a non-empty Zariski open subset of N C (ν) such as in the statement of Theorem 6.8. Then for any γ ∈ L ∞ (C )(k) \ N C (ν) and any γ ∈ U (k), the formal neighborhoods O L ∞ (C ),γ and O L ∞ (C ),γ are not isomorphic.Remark 6.15. In particular, N C (ν) is in some sense a maximal WAI subset, yet, by Remark 6.5, its generic point is not differential, contrarily to what happens in the case of algebraic varieties (See Remark 5.19).Proof. Under the given assumptions, L ∞ (C ) \ N C (ν) is exactly the set of arcs on C whose center is smooth (see e.g., [BMCn23, Remark 3.14]). In particular, for any γ ∈L ∞ (C )(k) \ N C (ν), O L ∞ (C ),γ is isomorphic to k[[u n ]] n∈N (as easily follows from the compatibility of the formation of arc spaces with étale morphisms) and the minimal formal model of γ is k. On the other hand, by [Bou23, Theorem 1.3], for any γ ∈ U (k), the minimal formal model of γ has embedding dimension the multiplicity of the singularity c minus one. This shows that O L ∞ (C ),γ and O L ∞ (C ),γ are not isomorphic.

  [[t 1 , . . . , t r ]] (the formal power series ring in r variables with coefficients in B ). It is said to be maximally r -cylindrical if it is r -cylindrical and not (r +1)-cylindrical.Remark 2.17. If A and B are complete local rings (resp. complete local k-algebras) then any ring (resp. k-algebra) isomorphism between A and B isomorphism is automatically an isomorphism of complete local rings (resp. k-algebras).

	r is
	zero, allowing to conclude for 2(a).
	2.15. Connection with cylindricity.

Definition 2.16. Let k be a field, A be a complete local ring (resp. k-algebra). Let r be a positive integer. Then A is said to be r -cylindrical (resp. r -cylindrical over k) if there exists a complete local ring (resp. k-algebra) B and a ring (resp. k-algebra) isomorphism between A and B Remark 2.18. If A is an r -cylindrical complete local ring (resp. k-algebra), and B 1 , B 2 are complete local rings (resp. k-algebras) such that A and B 1 [[t 1 , . . . , t r ]] on one hand, A and B 2 [[t 1 , . . . , t r ]] on the other hand, are isomorphic rings (resp. k-algebras) then, by [Ham75, Theorem 4] (and its proof in the case of k-algebras), B 1 and B 2 are isomorphic rings (resp. k-algebras).

  and E i is simply the restriction of E i to B 1 . By induction one thus may construct an isomorphism ϕ : B [[t 1 , . . . , t r ]] → A mapping t i to x i and such that ϕ•∂ t i = E i •ϕ for any i and ϕ

  In order to conclude, it suffices to find y 1 , . . . , y r ∈ m such that (D i y j ) is the identity matrix. Identifying A with

	B [[t 1 , . . . , t r ]] and thus R i with ∂ t i , the existence of such y i 's is a consequence of [Now86,
	Theorem 2].
	Remark 2.21. One may also recover Assertion (1) by applying Theorem 4.14 below to the
	formal flow associated with D 1 , . . . , D r (see Example 4.12).
	Example 2.22. As an illustration of Assertion 2(a), consider A = k[[x 1 , x 2 , x 3 ]], and (D 1 , D 2 )
	the regular family given by D 1 = ∂ x 1 and D 2 = ∂ x 2 + x 1 • ∂ x 3 . One easily sees that {a ∈ A : D 1 a = D 2 a = 0} = k; on the other hand, for any isomorphism ϕ : B [[t 1 , t 2 ]] ∼ → A, one must
	have dim(ϕ(B )) = 1.
	From Propositions 2.11 and 2.12, Lemma 2.19 and Remark 2.20, one deduces the
	following corollary, that we state in geometric terms.

  Write A = k[[t 1 , . . . , t s ]]/I . Let (D 1 , . . . , D r ) be a regular family of derivations onA ⊗ k L = L[[t 1 , . . . , t s ]]/I • L[[t 1 , . . . , t s ]]. By Remark 2.4 up to permuting the t i 's and changing the D i 's, one may assume that (D i t j ) 1 i , j r is the identity matrix, where ti is the image of t i in A ⊗ k L.For 1 i r , one may lift D i to a derivation D i on L[[t 1 , . . . , t s ]] such that D i t j = δ i , j for 1 j r and for anyF ∈ I , D i F ∈ I • L[[t 1 , . . . , t s ]]. Now let {e α } be a k-basis of L containing 1,and consider the k[[t 1 , . . . , t s ]]-linear map π : L[[t 1 , . . . , t s ]] → k[[t 1 , . . . , t s ]] induced by the linear projection of

	Sei69a,
	Theorems 2 and 3]. The general case may then be deduced by induction, using Remark
	2.18
	Alternatively, one can use Lemma 2.19 and the following extension of the aforemen-
	tioned arguments.

  which is easily seen to be an automorphism, with inverse the morphism ψ D mapping t to t and inducing a → H D (a)(-t ) on A. Moreover, for any ideal I of A, I is D-stable if and only if I [[t ]] is ϕ D -stable. Now it suffices to show that for any D ∈ Der(A) and any proper D-stable ideal I of A, any minimal prime ideal containing I is again D-stable. Since A contains Q and I is D-stable, the radical I is again D-stable (see e.g., [Bui94, Chapter 2, (1.3)]). Thus we may assume that I is radical. Let {p e } e∈E be the family of minimal prime ideals containing I . In particular, I = ∩ e∈E p e . Thus I [[t ]] = ∩ e∈E p e [[t ]]. We claim that for any e ∈ E , the prime ideal p e [[t ]] is a minimal prime ideal containing I [[t ]]. Indeed, if q is a prime ideal of A[[t ]] such that I [[t ]] ⊂ q ⊂ p e [[t ]], one must have q ∩ A = p e ; now for a

Schmidt multivariate derivations and cylindricity in arbitrary character- istic.

  As already pointed out, the proof of Theorem 4.1 relies in particular on a version of Lemma 2.19 valid in any characteristic and involving a multivariate version of the notion of Hasse-Schmidt derivation. The latter (which corresponds to the case r = 1 in the definition below) is by now very classical, whereas as far as we know, the multivariate version has not been much studied so far in the literature (see[START_REF] Hoffmann | Existentially closed fields with Gderivations[END_REF][START_REF] Narváez | On Hasse-Schmidt derivations: the action of substitution maps[END_REF]). Let A be a ring and r be a positive integer. A Hasse-Schmidt r -derivation on A is a morphism D : A → A[[t 1 , . . . , t r ]] (where t 1 , . . . , t r are indeterminates) such that for any a ∈ A, D(a) t 1 =•••=t r =0 = a. We denote by HS r (A) the set of Hasse-Schmidt rderivations on A. If k is a field and A is a k-algebra, we denote by HS r,k (A) the set of Hasse-Schmidt r -derivations on A that are morphisms of k-algebras.

	Definition 4.9.

Thus a straightforward consequence of the above lemma may be stated as follows: any r -wedge γ ∈ Y (k[[t ]]) with origin x may be lifted to a wedge γ ∈ G(k[[t ]]) with origin 1 G ; hence the title of the section.

4.8. Hasse-

  and then our statement is proved) or ord t (x 1 (s, t )) = ord t (x 2 (s, t )) =: n. In the latter case, write x i (s, t ) = x i ,n (s)• t n +. . . where x i ,n (s) ∈ k(s) × . Then in k(s) one has the relation x 1,n (s) p = s • x 2,n (s) p which is impossible.

4.18. Proof of Theorem 4.1. One may assume that X is affine, say

  because θ X and θ Z are étale morphisms. Then, for the first part, we only have to show that dim(O Z ,z /p Z ) = r . Recall that (Z , z) = (Y × k A r k , (y, 0)). Let p y be the maximal ideal of O Y ,y . Then O Z ,z is the localization of O Y ,y [t 1 , . . . , tr ] at the maximal ideal p y + 〈t 1 , . . . , t r 〉. From Lemma 2.37, we deduce that the maximal (∂ t 1 , . . . , ∂ t r )-differential ideal of O Z ,z , namely p Z by Corollary 2.35, coincides with p y [t 1 , . . . , t r ]. Thus ,y [t 1 , . . . , t r ] p y +〈t 1 ,...,t r 〉 p y [t 1 , . . . , t r ] ∼ = κ(y)[t 1 , . . . , t r ] 〈t 1 ,...,t r 〉 ,

	O Z ,z q Z	=	O Y