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Key Points:6
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• Energy budgets and mass-flux hypotheses motivates the consistent formulation11

of TKE equation, boundary conditions and transport of TKE12

Corresponding author: Manolis Perrot, manolis.perrot@univ-grenoble-alpes.fr

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract13

This paper provides a self-contained derivation from first principles of a convective ver-14

tical mixing scheme rooted in the Eddy-Diffusivity Mass-Flux (EDMF) approach. This15

type of closure involves separating vertical turbulent fluxes into two components: an eddy-16

diffusivity (ED) term that addresses local small-scale mixing in a near isotropic environ-17

ment, and a mass-flux (MF) transport term that accounts for the non-local transport18

performed by vertically coherent plumes within the environment. Using the multi-fluid19

averaging underlying the MF concept, we review consistent energy budgets between re-20

solved and subgrid scales for seawater and dry atmosphere, in anelastic and Boussinesq21

settings. We show that when using an EDMF scheme, closed energy budgets can be re-22

covered if: (i) bulk production terms of turbulent kinetic energy (TKE) by shear, buoy-23

ancy and transport include MF contributions; (ii) boundary conditions are consistent24

with EDMF, to avoid spurious energy fluxes at the boundary. Moreover we show that25

lateral mixing due to either entrainment or detrainment induces a net production of TKE26

via the shear term, and such production is enhanced when horizontal drag increases. Through-27

out the theoretical development of the scheme, we maintain transparency regarding un-28

derlying assumptions. In a companion paper (Perrot and Lemarié (2024); hereafter Part29

II) we assess the validity of such hypotheses and the sensitivity of the scheme to mod-30

elling choices against Large Eddy Simulations (LES) and observational data of oceanic31

convection, detail an energy-conserving discretization, and quantify energy biases of in-32

consistent formulations.33

Plain Language Summary34

In Earth system models, various important processes occur on scales that are too35

fine to be resolved with usual grid resolutions. Parameterizations have to be used to ap-36

proximate the average effect of such processes on the scales resolved by a numerical model.37

The general objective of the proposed work is to approach the parameterization prob-38

lem for boundary-layer turbulence and convective plumes in a “consistent” manner. Here39

the notion of consistency integrates various aspects: global energetic consistency, con-40

sistency with a particular averaging technique for the scale-separation, and the rigorous41

reduction of a physical system to a scale-aware parametric representation based on well-42

identified and justifiable approximations and hypotheses. An originality is to jointly con-43

sider energy budgets including a subgrid energy reservoir on top of the resolved ener-44

gies allowing the proper coupling between the parameterization and the resolved fluid45

dynamics. This research is fundamental to reduce energy biases in models, and to pave46

the way toward an alternative methodology to parameterize oceanic convection across47

scales. In a companion paper, numerical simulations demonstrate the adequacy of the48

proposed parameterization.49

1 Introduction50

1.1 Convection in the ocean and atmosphere and its parameterization51

in numerical models52

Boundary layer convection occurs in the atmosphere and the ocean due to buoy-53

ancy fluxes at the surface, which trigger gravitational instabilities. Buoyant plumes then54

tend to overturn and mix the fluid. When looking at the mean properties of the fluid,55

it leads to the formation of a well-mixed layer. The accurate representation of such bound-56

ary layers is of paramount importance for short-term forecasts as well as for climate pro-57

jections in the atmosphere (Bony et al., 2015; Schneider et al., 2017) and the ocean (Martin58

et al., 2013; Piron et al., 2016; Moore et al., 2015; Fox-Kemper et al., 2019). Regarding59

current computational capacities, plumes are still unresolved in regional and global nu-60

merical models, and thus their effects require parameterization. Moreover in ocean mod-61

eling, beyond the requirement in terms of grid resolution, hydrostatic equations used in62
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the overwhelming majority of regional and global studies are not suitable for resolving63

convective phenomena explicitly (Marshall et al., 1997).64

For any quantity X, standard turbulent mixing models are based on the closure65

of vertical turbulent fluxes w′X ′ proportional to the local (in height) mean gradient in66

the form −KX∂zX which corresponds to the so-called Eddy-Diffusivity (ED) closure (where67

w is vertical velocity, z is the vertical height and (.) is a Reynolds average). Such a clo-68

sure leads to a diffusion of X, which is often justified by considering that turbulent fluc-69

tuations resemble Brownian motion (Vallis, 2017; Resseguier et al., 2017). Although the70

ED closure has been widely used in many industrial and geophysical applications, it is71

known to potentially predict incorrectly higher order moments and even mean fields for72

complex flows (e.g. Schmitt, 2007). For instance, the inadequacy of ED closures for at-73

mospheric convection has long been highlighted (Deardorff, 1966). Indeed fluctuations74

are carried by non-local structures, the buoyant plumes, that can be coherent over the75

whole mixed layer. In particular, in such a layer, mean gradients are close to zero (∂zX ≃76

0) while transport is ensured at leading order by non-zero vertical fluxes w′X ′ which may77

even be up-gradient. Indeed, using the assumption of a mixed-layer ∂zX ≃ 0 into a tur-78

bulent transport equation of the type ∂tX + ∂zw′X ′ = 0 implies that w′X ′ varies lin-79

early with z. Such linear variation of fluxes in the mixed layer is well-supported by ob-80

servations and numerical experiments (Garratt, 1994; Denbo & Skyllingstad, 1996).81

To circumvent ED hypothesis, Deardorff (1966) proposed to introduce a constant82

non-local term γX in the form w′X ′ = −KX(∂zX − γX). Later on, such a formula-83

tion has been refined, where both KX and γX were prescribed by a self-similar profile84

function depending on external characteristics of the boundary layer such as surface forc-85

ing, stratification at the atmospheric top (or oceanic base) of the mixed layer and im-86

plicitly defined mixed layer height (see Troen and Mahrt (1986); Holtslag and Moeng87

(1991) for atmospheric models, Large et al. (1994) for oceanic models). This approach88

is still in use in some present-day ocean models (e.g. via the CVMIX library, Van Roekel89

et al., 2018). Furthermore two other types of convective parameterization are sometimes90

used: (i) a buoyancy sorting scheme (a.k.a. adjustment scheme or non-penetrative scheme),91

in which static instabilities are eliminated in one time-step by mixing downward neigh-92

boring vertical levels until a neutral buoyancy profile is attained (e.g. Madec et al., 1991)93

(ii) an enhanced eddy-viscosity scheme in which the vertical diffusivity coefficient is ar-94

tificially increased to a high value as soon as static instabilities are found on the den-95

sity profiles (Madec et al., 2019). These two approaches are ad-hoc and cannot be de-96

rived from first principles.97

The present work builds on the combined Eddy-Diffusivity and Mass-Flux (EDMF)98

parameterization schemes (Hourdin et al., 2002; Soares et al., 2004). The ED compo-99

nent aims to represent turbulent transport in a nearly isotropic environment, in which100

convective plumes -modeled by MF terms- support a non-local advective transport. The101

MF concept was originally introduced in the atmospheric context to represent deep con-102

vective clouds (Arakawa & Schubert, 1974), then it has been adapted to represent shal-103

low and dry boundary layer convection in combination with ED schemes. It is intrin-104

sically based on a multi-fluid averaging (Yano, 2014; Thuburn et al., 2018) of the fluid105

equations. In ocean models the EDMF concept has been first introduced by Giordani106

et al. (2020), and has been gaining increasing attention (e.g. Garanaik et al. (2024), or107

a recent implementation in the code Oceananigans, Ramadhan et al. (2020)).108

1.2 Parameterization development and physics dynamics coupling109

The general objective of the proposed work is to approach the parameterization110

problem in a “consistent” manner. Here the notion of consistency integrates various as-111

pects: consistent dynamical and thermodynamical approximations between resolved and112

subgrid models, energetic consistency at both continuous (e.g. Eden, 2016; Jansen et al.,113
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2019; Eden & Olbers, 2014) and discrete (e.g. Burchard, 2002) levels, consistency with114

a particular choice of scale-separation operator (Higgins et al., 2013; Lauritzen et al., 2022),115

and the rigorous reduction of a physical system to a scale-aware parametric represen-116

tation based on well-identified approximations and hypotheses (Honnert et al., 2016; Tan117

et al., 2018).118

Regarding boundary layer parameterizations, turbulent kinetic energy (TKE) or119

its budget can serve to compute viscous dissipation, which is key to close the total en-120

ergy budget. Moreover some schemes use prognostic TKE to scale the intensity of eddy-121

diffusivity. By using energy arguments, we aim to remove ambiguity around three prac-122

tical topics: how to interpret TKE in the model; whether to use ED or EDMF fluxes in123

the source terms of TKE; what are consistent boundary conditions? The question of the124

fluxes appears ambiguous in the litterature. Some studies use ED fluxes (Giordani et al.,125

2020; Hourdin et al., 2019; Han et al., 2016). Other studies use explicitly the full EDMF126

fluxes (Han & Bretherton, 2019; Witek et al., 2011). However the majority of studies127

and documentations are ambiguous or not explicit about this point, and modelling choices128

are often motivated by simulation outputs rather than consistency. In this paper, we ar-129

gue that energy conservation constraints can guide without ambiguity such choices. TKE130

represents a subgrid kinetic energy that exchanges energy with the resolved reservoirs.131

The use of mass-flux terms leads to energy transfers and redistributions that must be132

taken into account in the TKE equation to ensure energetic consistency between resolved133

and subgrid scales. In addition, the boundary conditions of the mass-flux equations must134

be consistent between ED and MF to avoid double-counting and subsequent artificial en-135

ergy fluxes at the fluid boundary.136

The aim of this paper is two-fold. First, we intend to provide an introductory, self-137

contained, and pedagogical derivation of EDMF schemes starting from first principles,138

to guide consistency considerations. Second, we derive theoretical energy budgets and139

provide guidelines to obtain energetically consistent EDMF models. Consequently, this140

paper is intended to both the oceanographic community as a comprehensive introduc-141

tion to EDMF, and the atmospheric community seeking to reduce energy biases in EDMF142

models.143

1.3 Organization of the paper144

The paper is organized as follows. In section 2, we expose the derivation of an EDMF145

scheme from first principle, systematically discuss the successive assumptions at stake,146

provide closures according to state-of-the-art practice, and discuss consistent boundary147

conditions. In section 3, we recall the theoretical closure-agnostic resolved and subgrid148

energy budgets of a horizontally averaged anelastic (or Boussinesq) fluid, including ra-149

diative heating. In section 4, we expose analogous energy budgets when using an EDMF150

closure, including consistent TKE equation, and propose a new formulation for TKE trans-151

port. Furthermore, we derive vertically averaged energy budgets to reveal the net con-152

tribution of shear and the role of boundary conditions on the energy fluxes. In a com-153

panion paper (Perrot and Lemarié (2024); hereafter Part II) we assess the validity of hy-154

potheses and the sensitivity of the scheme to modelling choices against Large Eddy Sim-155

ulations (LES) and observational data of oceanic convection, detail an energy-conserving156

discretization, and quantify energy biases of inconsistent formulations.157

2 Derivation of EDMF scheme158

2.1 Formal derivation159

We start from the unaveraged anelastic non-hydrostatic system in conservative form160

(e.g. eq. (76-80) of Tailleux & Dubos, 2024) in a cubic domain Lx×Ly×H, describ-161
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ing either a dry atmosphere or a salty ocean:162

∂tu = − 1

ρR
∇ · (ρRu⊗ u)−∇

(
p†

ρR(z)

)
+ bez +

1

ρR
∇ · (ρRτ ) (1)

∇ · (ρR(z)u) = 0 (2)

∂tθ = − 1

ρR
∇ · (ρRuθ) + Pθ (3)

∂tS = − 1

ρR
∇ · (ρRuS) (4)

b = −g
ρEOS − ρR(z)

ρEOS
(5)

ρEOS = ρEOS(θ, S, pR(z)) (6)

where u = (u, v, w) denotes the velocity field in a local Cartesian frame of reference (ex, ey, ez),163

z ranges from 0 to H in the atmosphere and −H to 0 in the ocean, ρR(z) is a reference164

density profile, the pressure has been decomposed as p = pR(z)+p†(x, y, z, t) with ∂zpR =165

−ρRg, b is the buoyancy acceleration, θ is potential temperature, S is the mass concen-166

tration of an additional component of the fluid (in kg/kg; typically salt in the ocean or167

any passive tracer in the atmosphere), Pθ is an additional source of potential temper-168

ature that will be specified in E3 via energy constraints, τ = ν1/2(∇u+∇uT ) is the169

viscous stress tensor.170

Remark that by specifiying ρR(z) = ρ0 = cst, we obtain a Boussinesq system171

with buoyancy given by (5) instead of the more traditional form −g(ρEOS−ρ0)/ρ0 (Tailleux172

& Dubos, 2024; Eldred & Gay-Balmaz, 2021). This so-called Boussinesq-anelastic for-173

mulation has the advantage to possess ”potential energy and thermodynamic potentials174

that are nearly identical to their exact counterparts so that their energetics is more eas-175

ily comparable to that of the fully compressible equations and do not require the intro-176

duction of artificial and ad-hoc thermodynamic potentials” (Tailleux & Dubos, 2024).177

For simplicity, we restrict to the case of a dry atmosphere and of seawater with a lin-178

earized equation of state1. Moreover we do not include the Coriolis term in the present179

study. Since the Coriolis force is energetically-neutral it does not interfere with the deriva-180

tions made throughout this paper.181

Next, we detail the framework in which vertical mixing parameterizations are usu-182

ally developed. We adopt a semi-discrete description, where the horizontal fluid domain183

is discretized into a Nx×Ny mesh whereas time and vertical coordinates z are kept as184

continuous variables. Each horizontal grid cell has length ∆xi and width ∆yj (i = 1, . . . , Nx;185

j = 1, . . . , Ny), and we denote (xi, yj) its center. The spatial domain can be thought186

of Nx×Ny vertical columns stacked together. In a numerical model discretized on such187

a mesh, the computed variables would be interpreted in a finite volume approach (LeVeque,188

2002): for any field X = u, θ, S... one can define the following horizontal average and189

fluctuation190

X(xi, yj , z, t) :=
1

∆xi∆yj

∫
∆xi×∆yj

X(x, y, z, t) dxdy, X ′ = X −X

If we recast (1)–(6) in the generic form ∂tX + 1
ρR

∇ · (ρRuX) = PX , and then apply191

such a horizontal average, we obtain192

∂tX +
1

ρR
∂z
(
ρRwX + ρRw′X ′

)
+

1

∆xi∆yj

∮
∂(∆xi×∆yj)

Xuh · dn = PX (7)

1 In both oceanic and atmospheric context, we use simple thermodynamic descriptions allowing convec-

tion. Although these descriptions are inaccurate for real-world applications, they are sufficient to expose

how to build energetically consistent EDMF parameterizations.
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where uh = (u, v, 0) denotes the horizontal velocity vector and dn is an outward point-193

ing line integral element, i.e. uh ·dn = udy−vdx. In a numerical model, X would be194

interpreted as the resolved variable, X ′ would be an unresolved fluctuation, the bound-195

ary integral in (7) would be interpreted as the divergence of the total (resolved and sub-196

grid) horizontal flux of X (precise form of the horizontal flux would depend on the nu-197

merical scheme and possibly on parameterizations), and the vertical subgrid flux w′X ′
198

has to be closed via a parameterization.199

When focusing on the parameterization of vertical mixing processes, it is common200

to conceptually isolate one vertical column of fluid to work with a one-dimensional Single-201

Column Model (SCM) (e.g. Zhang et al., 2016). Any quantity is assumed statistically202

invariant along the horizontal direction, meaning that in practice the horizontal fluxes203

and pressure gradients are neglected. We further simplify the problem with two addi-204

tional assumptions: First, the bottom (or top for the ocean) of the column is considered205

flat. Along with a non-penetration condition, this leads to w(z = 0) = 0. Now the hor-206

izontal homogeneity assumption implies that ∂x(ρRu) + ∂y(ρRv) = 0, thus mass con-207

servation reads ∂z(ρRw) = 0. Along with the non penetration condition it implies w(z) =208

0 at any level z. Second, in the vertical momentum budget, the momentum flux diver-209

gence ∂zw′w′ is neglected, leading to the hydrostatic approximation ∂zp
† = b. The re-210

sulting SCM equations are then211

∂tuh = − 1

ρR
∂z(ρRw′u′

h) (8)

∂tθ = − 1

ρR
∂z(ρRw′θ′) + P θ (9)

∂tS = − 1

ρR
∂z(ρRw′S′) (10)

where the molecular viscosity can be safely neglected in the mean momentum budget.212

The remainder of this article will use these SCM assumptions, and indices i, j will be dropped.213

For readers interested in the inclusion of horizontal fluxes, we refer them to Yano (2014)214

and Tan et al. (2018). As an alternative to the semi-discrete description presented above,215

a fully continuous description can be carried out by replacing the horizontal average by216

smoothing kernels on the scale of the grid size (see for example Thuburn et al. (2018)217

in the context of mass-flux schemes).218

We now assume a formal decomposition of the horizontal column area ∆x×∆y219

into two horizontal subdomains of areas Ae(z, t) and Ap(z, t) which also depend on depth220

and time (see fig. 1). Such decomposition is meant to isolate the coherent convective struc-221

tures usually referred to as plumes (occupying the subdomain of area Ap(z, t)) from the222

rest of the flow, referred to as the environment (occupying the subdomain of area Ae(z, t)).223

We introduce the following notations to characterize the subdomain averaged fields, fluc-224

tuations and fractional area (i = e for environmental variables and i = p for plume225

variables):226

Xi =
1

Ai(z, t)

∫
Ai(z,t)

X(x, y, z, t) dxdy, X ′
i = X −Xi

ai = Ai(z, t)/(∆x×∆y)

Any mean field can then be decomposed as227

X = aeXe + apXp

In particular, when X ≡ 1 we get the constraint ae = 1−ap. After some algebra, any228

turbulent flux can be recast as229

w′X ′ = aew′
eX

′
e + apw′

pX
′
p + ae(we − w)(Xe −X) + ap(wp − w)(Xp −X) (11)

–6–
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Figure 1: Schematic of representation of: (a) a 3D plume (blue volume) embedded into
the environment. At a given level z, horizontal grid cell ∆x × ∆y is decomposed into
plume area Ap (blue shading) and environment area Ae (orange shading). Fluxes of fluid
and tracers across the boundary ∂Ap are due to horizontal velocity across the boundary
uh, to (apparent) horizontal velocity of the boundary ∂trb and to vertical velocity if the
boundary of the 3D plume is vertically tilted (∂zrb ̸= 0). (b) Horizontal and vertical
fluxes of tracer X into the equivalent ”single” plume, within the upstream approximation.
See text for details.

where230

w′
iX

′
i =

1

Ai(z, t)

∫
Ai(z,t)

(X −Xi)(w − wi) dxdy

Here we kept w for generality, however as explained above the horizontal homogeneity231

assumption implies w = 0. For each subdomain, the ai(wi−w)(Xi−X) terms in (11)232

account for the ”mass-flux” (i.e. the contribution of coherent structures to the flux), whereas233

the aiw′
iX

′
i terms are a contribution from internal variability within subdomain i. Ap-234

plying the subdomain average to any conservation law of the form ∂tX+ 1
ρR

∇·(ρRuX) =235

PX and using Reynolds transport theorem leads to (see appendix A of Tan et al. (2018)236

and Yano (2014) for full derivation)237

∂t(aiXi) +
1

ρR
∂z

(
ρRaiwiXi + ρRaiw′

iX
′
i

)
+

1

Ai

∮
∂Ai

Xur · dn = aiPX,i (12)

where the relative horizontal boundary velocity is ur = uh − ∂trb − w∂zrb and rb =238

(xb(z, t), yb(z, t)) is the position vector of boundary elements. The three terms that con-239

stitute ur indicate that boundary fluxes can arise respectively due to horizontal veloc-240

ity across the boundary, to (apparent) horizontal velocity of the boundary, or to verti-241

cal velocity if the boundary of the 3D plume is vertically tilted (i.e. ∂zrb ̸= 0; see fig.242

1(a)).243

2.2 Standard assumptions244

2.2.1 Plume-Environment decomposition245

The first standard assumption we have already made is to consider only two sub-246

domains, the convective plume and the environment. This is justified since in convec-247

tive situations the main contribution to the fluxes comes from the plumes. However, the248

framework is flexible enough to incorporate an arbitrary number of components, such249
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as multiple updrafts or downdrafts. In particular, several studies of the atmospheric con-250

vective boundary layer (CBL) underline the importance of returning coherent structures251

around the plumes, often referred to as CBL downdrafts (Schmidt & Schumann, 1989;252

Couvreux et al., 2007; Brient et al., 2023).253

2.2.2 Entrainment/Detrainment and Upstream approximation254

Net fluid exchange at the horizontal boundary of the plume domain can be further255

decomposed into fluid entrained into the plume from the environment, and fluid detrained256

out of the plume into the environment, namely257

1

Ap

∮
∂Ap

ur · dn =
1

Ap

∮
∂Ap,ur>0

ur · dn+
1

Ap

∮
∂Ap,ur<0

ur · dn

= D − E

where E(> 0) is called entrainment rate and D(> 0) is called detrainment rate. We fur-258

ther assume that the value of X at the boundary is either equal to the mean value in259

the environment when entrainment is occurring, or the mean value in the plume when260

detrainment is occurring. This is the so-called upstream approximation, formulated as2261

1

Ap

∮
∂Ap

Xur · dn = XeE −XpD (13)

As a result of this approximation, the plume equation reads (fig. 1(b))262

∂t(apXp) +
1

ρR
∂z(ρRapwpXp) = − 1

ρR
∂z(ρRapw′

pX
′
p) + EXe −DXp + apPX,p (14)

In particular when X ≡ 1, we get the plume area conservation equation:263

∂tap +
1

ρR
∂z(ρRapwp) = E −D (15)

from which we can rewrite the plume equation in advective form,264

ap∂tXp + apwp∂zXp = − 1

ρR
∂z(ρRapw′

pX
′
p) + E(Xe −Xp) + apPX,p (16)

2.2.3 Steady plume hypothesis265

A common hypothesis is that the plume domain is in a quasi-steady regime, thus266

neglecting the temporal tendency compared to vertical advection. The relevance of this267

hypothesis is numerically tested in idealized LES cases in Part II. An a priori scaling268

estimation can also be performed. Let h be the boundary layer depth, which can also269

serve as a length scale for the mean plume. A characteristic time scale for the mean plume270

is τp = h/W where W is a plume vertical velocity scale. A time scale associated to the271

boundary layer growth and mean fields evolution is τBL = h/went where went = dh/dt272

is the boundary layer vertical entrainment velocity. In the limit of free convection trig-273

gered by a surface buoyancy loss B0 < 0 into a fluid of constant stratification N2
0 , the274

classical convective scalings h ∝
√
(−B0/N2

0 )t and W = w∗ = (−B0h)
1/3 (Turner,275

1979; Deardorff, 1970) leads to276

τp
τBL

=
went

W
∝ 1

(N0t)2/3
(17)

2 In the context of 3D models, the plume boundary ∂Ap can cross the horizontal boundary of the grid

cell. The corresponding contribution to the integral can be interpreted as a resolved flux divergence across

the grid cell, namely ∇h · (apuh,pXp + apu′
h,pX

′
p) (see section 5.1 of Yano (2014)).
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In a different context, that of the development of a shear-driven mixed layer forced by277

surface wind stress ρ0u
2
∗, Kato and Phillips (1969) showed that went/u∗ ∝ u2

∗/N
2
0h. In278

such a layer W ≃ u∗, leading to a scaling similar to (17). These scalings suggest that279

as long as the surface forcings (represented here by u∗ and B0) are evolving slowly com-280

pared to 1/N0, the steady plume hypothesis remains valid. Under such a hypothesis, the281

plume equation for any field X and the plume area conservation now read282

1

ρR
∂z(ρRapwpXp) = − 1

ρR
∂z(ρRapw′

pX
′
p) + EXe −DXp + apPX,p (18)

∂z(ρRapwpXp) = E −D (19)

As a summary, we rewrite the coupled resolved/plume system in an advective form us-283

ing area conservation and X = (1−ap)Xe+apXp and the identity (Xe−X) =
−ap

1−ap
(Xp−284

X) (a summary of useful identities can be found in Appendix A):285

∂tX = − 1

ρR
∂z(ρRw′X ′) + PX (20)

w′X ′ =
1

1− ap
apwp(Xp −X) + (1− ap)w′

eX
′
e + apw′

pX
′
p (21)

apwp∂zXp = − 1

1− ap
E(Xp −X)− 1

ρR
∂z(ρRapw′

pX
′
p) + apPX,p (22)

Several authors have recently proposed to relax the steady plume hypothesis (Tan et al.,286

2018; Thuburn et al., 2018). However, the overwhelming majority of mass flux schemes287

implemented in realistic models considers a plume domain in a quasi-steady regime.288

2.2.4 Small area limit289

A last standard hypothesis is that the fractional area of the plume is small com-290

pared to that of the environment (see Part II for a direct evaluation against LES). This291

generally means considering the formal limit ap → 0 and ae → 1 in the previous equa-292

tions while keeping non-zero mass-flux apwp and source terms. Yano (2014) proposes to293

assume apwp = O(we) and apPX,p = O(SX,e) to retain an order one contribution of294

apwp(Xp−X) in (21), to neglect subplume fluxes w′
pX

′
p and to keep an order one con-295

tribution of advection and forcings in (22). In the small area limit, any environmental296

field Xe (except we) can be approximated by the mean field, the vertical turbulent flux297

(21) becomes298

w′X ′ = apwp(Xp −X) + w′
eX

′
e (23)

and the plume equation (22) now reads299

apwp∂zXp = −E(Xp −X) + apPX,p (24)

In the remainder of this study, we will adopt such a small area limit. Noteworthy is the300

effort by some authors to relax this hypothesis to explore the ”grey zone” of atmospheric301

turbulence or to devise scale-aware parameterization schemes when the grid is refined302

to the point where ap is no longer small (Honnert et al., 2016; Tan et al., 2018). For the303

sake of completeness, we include in Appendix B the system of plume equations obtained304

when relaxing the small area limit while still neglecting subplume fluxes w′
pX

′
p (in line305

with Tan et al. (2018)). This system only deviates by factors 1/(1−ap) from the ”small-306

area” system, making it simple to implement in practice.307

2.3 Standard Closures308

Thanks to the assumptions made so far, we have arrived at equations of the gen-309

eral form (24) for the plume, and (23) for vertical turbulent fluxes. At this stage, addi-310

tional closure assumptions are required to express the entrainment and detrainment rates,311

the flux w′
eX

′
e, and the pressure gradients appearing in the Pw,p and Puh,p terms.312
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2.3.1 Plume vertical pressure gradient313

Plume vertical pressure gradients are usually parameterized as the combination of314

a virtual mass term (e.g. Bretherton et al., 2004) – representing the reduction of plume315

buoyancy due to pushing and pulling on the environment –, a reduced entrainment term316

and a quadratic drag term (Simpson & Wiggert, 1969; Romps & Charn, 2015). Several317

formulations have been proposed (see Roode et al. (2012) for an intercomparison in the318

context of shallow cumulus convection). Alternatively several authors point out the im-319

portance of non-local (in height) effects (Peters, 2016; Kuo & Neelin, 2022), leading to320

recent formulations on e.g. velocity divergence (Weller et al., 2020), or adaptive updraft321

radius (He et al., 2021; Peters et al., 2021). A detailed intercomparison of these differ-322

ent closures is out of the scope of this paper. Here we adapt some usual practices in the323

atmospheric context (e.g. Pergaud et al., 2009; Rio et al., 2010) and consider324

−ap
(
∂z(p

†/ρR)
)
p

= (a− 1)apBp + (b− 1)(−Ewp) + b′
1

h
apw

2
p (25)

leading to the plume vertical momentum budget325

apwp∂zwp = aapBp − bEwp − σa
ob

′ 1

h
apw

2
p (26)

where a, b and b′ are positive non-dimensional parameters, σa
o = +1 in the atmosphere326

and −1 in the ocean, and Bp = bp − b. The plume vertical extent h = h(t) is com-327

puted as the height (or depth) at which the plume vertical velocity wp goes to zero. Since328

plumes are structures of aspect ratio close to 1, h provides an acceptable scale to sub-329

stitute the constant plume radius classically used in the drag term (Simpson & Wiggert,330

1969; Romps & Charn, 2015; Tan et al., 2018; Weller et al., 2020). The main advantage331

of our formulation is to avoid the introduction of a constant dimensional radius coeffi-332

cient which would restrict parameterization universality. Note that in the case of dry at-333

mosphere or seawater with a linearized equation of state, we have bp−b = beos(θp, Sp, pR(z))−334

beos(θ, S, pR(z)).335

2.3.2 Horizontal momentum budget336

Based on the work of Rotunno and Klemp (1982) and Wu and Yanai (1994), Gregory337

et al. (1997) proposed a parameterization of the plume horizontal pressure gradient as338

an advective correction of the form339

−ap

(
∇h

p†

ρR

)
p

= apwpCu∂zuh (27)

where Cu is a parameter. It imposes a relaxation of the plume shear towards the grid-340

scale shear. We show in Section 4.4 that energy constraints impose 0 ≤ Cu < 1.341

2.3.3 Eddy-Diffusivity closure342

The environment is thought of as a subdomain where only small-scale turbulence343

occurs, thus supporting the hypothesis of a closure of the vertical flux with an eddy-diffusivity,344

w′
eX

′
e =

ED
−KX∂zXe ≃

ap≪1
−KX∂zX. This leads to the eddy-diffusivity mass-flux clo-345

sure of subgrid fluxes346

w′X ′ = −KX∂zX︸ ︷︷ ︸
ED

+ apwp(Xp −X)︸ ︷︷ ︸
MF

(28)

In order to compute the eddy-diffusivity coefficient KX , various approaches relying ei-347

ther on self-similar empirical profiles (e.g. Siebesma et al., 2007; Han et al., 2016) or on348

prognostic turbulent kinetic energy (e.g. Hourdin et al., 2019) can be found in the lit-349

terature. However the practical choice of a closure do not directly affect energy budgets350

of the SCM.351
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w′θ′ = apwp(θp − θ)−Kθ∂zθ Vertical turbulent flux of temperature
w′S′ = apwp(Sp − S)−KS∂zS Vertical turbulent flux of component S

w′u′
h = apwp(uh,p − uh)−Ku∂zuh Vertical turbulent momentum flux

∂z(apwp) = E −D Plume area conservation equation

apwp∂zϕp = E(ϕ− ϕp) + Pϕ,p Plume equation for component ϕ = θ, S
apwp∂zuh,p = E(uh − uh,p) + apwpCu∂zuh Plume horizontal momentum equation
apwp∂zwp = −bEwp + ap

{
aBp − σa

ob
′(wp)

2
}

Plume vertical velocity equation

Bp = beos(ϕp)− beos(ϕ) Buoyancy forcing term

Ku = cmlm
√
k Eddy-viscosity

KS = Kθ = Ku (Prt)
−1

Eddy-diffusivity

Table 1: Summary of the vertical turbulent flux formulation and plume equations in the
small area limit under the steady plume hypothesis detailed in sections 2.1, 2.2 and 2.3.

2.3.4 Entrainment and detrainment closures352

Entrainment and detrainment closures are still a topic of extensive research in the353

atmospheric modeling community. One difficulty is that a given closure can only be spe-354

cific to a certain type of convection (de Rooy et al., 2013). To close entrainment and de-355

trainment rates3, we adapt the formulation proposed by Rio et al. (2010), namely356

E = apβ1 max(0, ∂zwp) (29)

D = −apβ2 min(0, ∂zwp) + σa
oapwp

δ0
h

(30)

where the two parameters β1 and β2 are positive, δ0/h is a positive minimum detrain-357

ment (some authors also include a minimum ”turbulent” entrainment, e.g. Cohen et al.358

(2020)).359

To summarize the formal derivation made so far, the closure of fluxes and associ-360

ated plume equations of the resulting EDMF scheme are provided in Tab. 1.361

2.4 Consistent boundary conditions for mean and plume equations362

2.4.1 General concepts363

Under the aforementioned assumptions, the budget equations governing plume quan-364

tities simplify into a system of non-linear first-order ordinary differential equations with365

respect to the variable z. Accordingly, a single boundary condition at z = 0 (i.e., the366

top of the water column or the bottom of the air column depending on the fluid under367

consideration) is sufficient for the computation of plume variables. At the boundary z =368

0, consistent boundary conditions for the plume variable Xp and the mean variable X369

must comply with the EDMF flux decomposition (28)370

w′X ′(0) = −KX∂zX(0) + ap(0)wp(0)(Xp(0)−X(0)) (31)

3 In the literature, closures are usually provided for fractional entrainment and detrainment rates, re-

spectively ϵ = E/(σa
oapwp) and δ = D/(σa

oapwp), where −apwp is the oceanic mass-flux for downdrafts

and +apwp is the atmospheric mass-flux for updrafts.
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Such a constraint should guide modeling choices concerning boundary conditions. In-371

deed, it systematically guarantees the correct partition of surface fluxes, and thus avoids372

double-counting biases linked to non-physical energy sources/sinks at the boundary (see373

Sec. 4.2). For instance, suppose the values of w′X ′(0), ap(0), wp(0) and Xp(0) are jointly374

specified. Then (31) would turn into a Robin (a.k.a type 3) boundary condition for the375

X equation which arises naturally in advection-diffusion equations (e.g. Hahn and Özişik376

(2012), chapter 1-5). At the boundary z = σa
oH, a no-flux condition is imposed for the377

mean equation. For the specific case of oceanic convection reaching the ocean bottom,378

a possibility is to add a penalization term nudging the solution towards the condition379

wp(z = −H) = 0.380

2.4.2 Oceanic context381

For oceanographic applications, we consider that a surface flux w′X ′(0) is prescribed.382

The mass flux component becomes non-zero close to the surface as soon as the plume383

is accelerating and entrainment rate (29) is itself non-zero. For simplicity we consider384

here δ0 = 0. In this case the conservation of volume reads385

∂z(apwp) = apwp

(
β1

1

wp
∂zwp

)
which can be easily integrated vertically to obtain386

ap(z)wp(z) = (ap(0)wp(0))

((
wp(z)

wp(0)

)β1
)

Except fot singular case β1 = 1, non-trivial solutions are obtained if and only if non-387

zero boundary values for ap and wp are chosen. In the remainder, we adopt the follow-388

ing simple choice,389

Xp(0) = X(0), ap(0) = a0p, wp(0) = w0
p

where a0p and w0
p are parameters. According to (31), it implies that all the surface flux390

is allocated in the ED component, as advocated by Tan et al. (2018). This particular choice391

of boundary condition is also motivated by the fact that it implies that convection is trig-392

gered as soon as the surface Brünt-Väisälä frequency ∂zb(0) is negative (see Appendix393

C for further details). As a result, (31) turns into the Neumann boundary condition −KX∂zX(0) =394

w′X ′(0), which is standard practice for ED-only closures.395

Alternatively, Soares et al. (2004) proposed that close to the surface, the plume/mean396

temperature difference should depend on the surface heat flux, leading to397

θp(z) = θ(z) + β
w′θ′(0)√

k(z)
(32)

where β is a constant. We show in Appendix C that our formulation is in fact equiva-398

lent to (32) for if β = z/(cblb(0)) and k(z) ≃ k(0) (where cb is a constant and lb a mix-399

ing length associated to buoyancy). Thus our simple choice is equivalent to a forcing of400

the plume by surface buoyancy loss. However, when using this type of boundary con-401

dition exactly at the surface (as in Pergaud et al., 2009), the boundary condition for θ402

must be modified in order to avoid double-counting of heat flux at the surface (see sec-403

tion 4.5).404

2.4.3 Atmospheric context: consistency with Monin-Obukhov theory405

For atmospheric applications, boundary conditions for the mean variables are com-406

monly imposed using Monin-Obukhov similarity theory (MOST), which assumes that407

in a surface layer located between z = 0 and z = z1 fluxes are constant, and mean vari-408

ables obey a quasi-logarithmic profile. To properly include a surface layer obeying MOST,409
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then the EDMF flux decomposition must be imposed at the new model boundary z =410

z1, namely411

w′X ′(z1) = −KX(z1)∂zX(z1) + ap(z1)wp(z1)(Xp(z1)−X(z1)) (33)

At this stage, we can point the following ambiguity. When the MF term is non-zero, it412

is not clear whether the flux arising from MOST – which is an ED flux – should be al-413

located to the ED term −KX(z1)∂zX(z1), or to the total flux w′X ′(z1) using the con-414

stant flux assumption. Although not discussed transparently, it seems that the second415

option is a common practice. However, in such a case, special attention would be required416

to compute the total flux entering in energy budget computations.417

Although beyond the scope of this article, we would like to point out that MOST is known418

to fail in strongly unstable conditions (Johansson et al., 2001; Li et al., 2018). Recently,419

Li et al. (2021) proposed corrections to formulate departure from MOST in the form of420

an EDMF closure including updraft and downdraft contributions. This approach could421

potentially help provide physically consistent boundary conditions to EDMF models.422

At this stage, we have provided all the elements and underlying assumptions re-423

quired to formulate an EDMF-type scheme (see Part II for the discretization aspects).424

Before studying the energetic impacts of using MF components, we derive theoretical425

horizontally averaged energy budgets.426

3 Horizontally Averaged Energy Budgets427

In this section, we derive horizontally averaged energy budgets regardless of flux428

parameterizations. As a starting point, we recall the closed energy budgets of the un-429

averaged anelastic system (or Boussinesq system if ρR(z) = ρ0) derived for reference430

in Appendix E:431 
∂t(ρREk) +∇ ·

[
u
(
ρREk + p†

)
+ ρRνu · τ

]
= ρRwb− ρRϵ

∂t(ρREi) +∇ · [u (ρREi + pR)] +∇ · [ρRFh ] = −ρRgw − ρRbw + ρR(ϵ+ q̇rad)

∂t(ρREp) +∇ · [uρREp] = ρRgw

(34)

where the (unaveraged) total material energy has been divided into kinetic energy ρR(z)Ek =432

ρR(z)
1
2u · u, internal energy ρREi = ρR(h(η, S, pR(z)) − pR(z)/ρR(z)) –whith h the433

specific enthalpy–, and potential energy ρREp = ρRgz (see e.g. Tailleux and Dubos (2024),434

where these authors referred to Ei + Ep as ”potential energy”). Moreover, the viscous435

stress tensor and viscous dissipation of kinetic energy have been written τ and ϵ := −∇u :436

τ = ν∥∇u∥2. Fh is the (molecular) diffusive flux of enthalpy. The radiative heating q̇rad437

is treated as an external energy source; consequently one would need to include the ra-438

diative energy Er to the material energy in order to close the energy budget (see Appendix439

E for details).440

Now, we will focus on the horizontal averages of these energies. First let us recall441

that the SCM assumptions (sec. 2.1) implies w = 0. Then the averaged kinetic energy442

Ek can be advantageously split into the kinetic energy of the horizontal resolved flow Ek =443

(uh ·uh)/2 (usually referred as mean or resolved kinetic energy) and the residual tur-444

bulent (or subgrid) kinetic energy k = (u′ · u′)/2. We will denote also by Ei+p = Ei + Ep445

the sum of averaged internal energy and potential energy. Upon averaging and apply-446

ing the SCM assumptions, the budgets of the horizontally averaged energies Ek, k and447

Ei+p read448 
∂t(ρREk) + ∂z(ρRTEk

) = ρRw′u′
h · ∂zuh

∂t(ρRk) + ∂z(ρRTk) = −ρRw′u′
h · ∂zuh + ρRw′b′ − ρRϵ

∂t(ρREi+p) + ∂z(ρRTEi+p
) = −ρRw′b′ + ρR(ϵ+ q̇rad)

(35)
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and the transport terms that redistribute energy on the vertical are449 
TEk

= w′u′
h · uh

Tk = w′ u′·u′

2 + 1
ρR

w′p†′ − ν∂zk

TEi+p = w′h ′

(36)

where we made the classical approximations that dissipation of mean KE is negligible,450

i.e. ν∥∇u∥2 ≃ 0, ν∥∇u′∥2 ≃ ϵ and neglected the (molecular) diffusive flux of enthalpy.451

Now we are going to specify temperature equation, heat flux w′h ′ and buoyancy452

flux w′b′ for two fluids with simplified thermodynamics.453

3.1 Dry atmosphere454

For dry air in the anelastic approximation, specific enthalpy and buoyancy reads455

h(θ, pR(z)) = cpT = cpθ

(
pR(z)

p0

)κ

(37)

b = −∂z(h + gz) = g
θ − θR(z)

θR(z)
(38)

where cp is a constant specific heat capacity of dry air, p0 is a constant pressure refer-456

ence, θ is the potential temperature, θR(z) = pR

(
pR(z)
p0

)−κ

/(ρRRd) is the reference457

potential temperature profile, Rd is the specific dry air ideal constant, κ = Rd/cp. We458

straightforwardly obtain an equation for the unaveraged potential temperature using the459

enthalpy budget (E13):460

cp

(
pR
p0

)κ

∂tθ +
1

ρR
∇ ·
(
ρRcp

(
pR
p0

)κ

θu+ ρRFh

)
= −gw − g

θ − θR(z)

θR(z)
w + ϵ+ q̇rad (39)

which can be rewritten after some algebra as461

∂tθ +
1

ρR
∇ · (ρRθu) +

1

cp

(
pR
p0

)−κ

∇ · (ρRFh) =
1

cp

(
pR
p0

)−κ

(ϵ+ q̇rad) (40)

unveiling the advantage of working with potential temperature. The linearity of enthalpy462

with respect to θ allow to easily derive the following heat flux, buoyancy flux, internal463

and potential energy and mean temperature equation (again neglecting (molecular) dif-464

fusive fluxes),465

w′h ′ = cp

(
pR
p0

)κ

w′θ′, w′b′ =
g

θR
w′θ′, Ei+p = cpθ

(
pR
p0

)κ

− pR
ρR

+ gz (41)

∂tθ +
1

ρR
∂z(ρRw′θ′) =

1

cp

(
pR
p0

)−κ

(ϵ+ q̇rad) (42)

3.2 Boussinesq seawater with a linearized EOS466

For seawater with a linearized EOS in Boussinesq approximation (ρR(z) = ρ0)467

buoyancy reads468

b = −∂z(h + gz) = gα(θ − θ0)− β(S − S0) (43)

and a corresponding enthalpy can be formed as469

h(θ, S, pR(z)) = cpθ +

−gz︷ ︸︸ ︷
pR(z)− p0

ρ0
(1 + α(θ − θ0)− β(S − S0)) (44)
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where cp is a constant specific heat capacity of seawater, p0 and ρ0 are constant pres-470

sure and density references, α is the thermal expansion coefficient and β is the haline471

contracion coefficient. For a linearized equation of state potential and conservative tem-472

perature coincide, and they are denoted by θ. We show in appendix E32 that the un-473

averaged energetically consistent temperature equation is474

D

Dt
θ =

ϵ+ q̇rad
cp − αgz

+
−∇ · Fh + zgβ∇ · FS

cp − αgz
(45)

where FS is the (molecular) diffusive salt flux. The energy increase due to viscous dis-475

sipation is small and usually neglected in the ocean (e.g. McDougall, 2003; Olbers et al.,476

2012). In appendix E32 we show that by doing so it leads to unclosed energy budgets477

but justifies the ”standard” usage of −zb as a Boussinesq potential energy by the oceano-478

graphic community (e.g. sec. 2.4.3 of Vallis, 2017), because Ei+p = cpθ − zb + gz.479

However since viscous dissipation is an important quantity for turbulence modelling, we480

retain this dissipative heating in the temperature budget (45) to work with a properly481

closed energy budget.482

We are now able to specify heat flux, buoyancy flux and mean temperature equa-483

tion (again neglecting (molecular) diffusive fluxes),484

w′h ′ = cpw′θ′ − gz(αw′θ′ − βw′S′) = cpw′θ′ − zw′b′ (46)

w′b′ = αw′θ′ − βw′S′ (47)

∂tθ + ∂zw′θ′ =
ϵ+ q̇rad
cp − αgz

(48)

Remark that even with very simple thermodynamic modelling such as linearized EOS,485

the consistent inclusion of salinity as an active tracer lead to non-trivial expression of486

heat flux.487

4 Energy budgets of the SCM488

4.1 Consistency of TKE equation with EDMF closures489

In this section, we discuss the energetic consistency of a parameterized TKE equa-490

tion based on the horizontally averaged TKE equation:491

∂tk +
1

ρR
∂z(ρRTk) = −w′u′

h · ∂zuh + w′b′ − ϵ (49)

By using energy arguments, we aim to remove ambiguity around three practical492

topics: how to interpret TKE in the model; whether to use ED or EDMF fluxes in the493

source terms of TKE; what boundary conditions should be used? Regarding the fluxes,494

some studies use ED fluxes (Giordani et al., 2020; Hourdin et al., 2019; Han et al., 2016).495

Other studies use explicitely the full EDMF fluxes (Han & Bretherton, 2019; Witek et496

al., 2011). However the majority of studies and documentations are ambiguous or not497

explicit about this point, and modelling choices are often motivated by realism of sim-498

ulation results based on few test cases. Here, we argue that energy conservation constraints499

can guide without ambiguity such choices.500

If we aim to mimmick the energy budgets of the averaged system (35), then k rep-501

resents the turbulent kinetic of the whole grid cell, i.e. 1/2u′ · u′. We keep this choice502

to stay in line with previous practices. However note that Tan et al. (2018) made a dif-503

ferent choice by considering a budget for the environmental TKE, ke = 1/2u′
e · u′

e.504

In (49) sources of TKE arise from the mean kinetic energy via mean shear −w′u′
h·505

∂zuh, or from internal and potential energies via buoyancy production w′b′. When the506

EDMF approach is used to close fluxes in the diagnostic equations of uh, θ and S, then507
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the same closures must be used in the TKE budget to ensure energetic consistency. As508

a consequence, the shear term must be closed as509

−w′u′
h · ∂zuh =

EDMF
− [−Ku∂zuh + apwp(uh,p − uh)] · ∂zuh (50)

In the case of dry atmosphere, the buoyancy production term is510

w′b′ =
EDMF

g

θR

[
−Kθ∂zθ + apwp(θp − θ)

]
(51)

whereas in the case of seawater with linearized equation of state and Kb = Kθ = KS ,511

w′b′ =
EDMF

gα
[
−Kθ∂zθ + apwp(θp − θ)

]
− gβ

[
−KS∂zS + apwp(Sp − S)

]
= −Kb∂zb+ apwp(bp − b)

The flux of TKE Tk is of great importance in convective conditions where non-local trans-512

port dominates (Witek et al., 2011). Within the framework exposed in section 2.1, we513

can apply the two-domain decomposition of the horizontal average to get the exact re-514

lation515

w′u
′ · u′

2
=

∑
i=e,p

ai
1

2
u′
i · u′

iw
′
i︸ ︷︷ ︸

Ii

+ ai(ui − u) · u′
iw

′
i︸ ︷︷ ︸

IIi

(52)

+ ai(wi − w)
1

2
u′
i · u′

i︸ ︷︷ ︸
IIIi

+ ai
1

2
∥ui − u∥2(wi − w)︸ ︷︷ ︸

IVi

Based on a conditional sampling of plumes on LES, we derive in Part II a simplified EDMF516

parameterization of Tk encompassing previous approaches existing in the literature, namely517

w′u
′ · u′

2
= −Kk∂zk︸ ︷︷ ︸

ED

+

Han & Bretherton 2019︷ ︸︸ ︷
apwp(kp − k) +

Witek et al. 2011︷ ︸︸ ︷
apw

3
p +

apwp

2
∥uh,p − uh∥2︸ ︷︷ ︸

new EDMF

(53)

4.2 EDMF-parameterized budgets518

Within the anelastic approximation, the budget of resolved kinetic energy, subgrid519

kinetic energy, and resolved internal+potential energy for a dry atmosphere with EDMF520

closure is521 
∂tEk + 1

ρR
∂z(ρRTEk

) = −Ku(∂zuh)
2 + apwp(uh,p − uh) · ∂zuh

∂tk + 1
ρR

∂z(ρRTk) = g
θR

[
−Kθ∂zθ + apwp(θp − θ)

]
+Ku(∂zuh)

2 − apwp(uh,p − uh) · ∂zuh − ϵ

∂tEi+p +
1
ρR

∂z(ρRTEi+p) = − g
θR

[
−Kθ∂zθ + apwp(θp − θ)

]
+ ϵ+ q̇rad

(54)
where the flux terms are522

TEk
= (−Ku∂zuh + apwp(uh,p − uh)) · uh (55)

TEi+p = −cpKθ∂zθ + cpapwp(θp − θ) (56)

and the associated consistent potential temperature equation is523

∂tθ +
1

ρR
∂z
[
ρR(−Kθ∂zθ + apwp(θp − θ))

]
=

1

cp

(
pR
p0

)−κ

(ϵ+ q̇rad) (57)

Equivalently, in the case of seawater with linearized equation of state within the Boussi-524

nesq approximation (ρR(z) = ρ0),525 
∂tEk + ∂zTEk

= −Ku(∂zuh)
2 + apwp(uh,p − uh) · ∂zuh

∂tk + ∂zTk = −Kb∂zb+ apwp(bp − b) +Ku(∂zuh)
2 − apwp(uh,p − uh) · ∂zuh − ϵ

∂tEi+p + ∂zTEi+p
= −

(
−Kb∂zb+ apwp(bp − b)

)
+ ϵ+ q̇rad

(58)
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Figure 2: Schematic representation of bulk and boundary energy fluxes within EDMF
closure (KE: kinetic energy, TKE: turbulent kinetic energy).

where the flux of internal and potential energy is526

TEi+p
= −∂z

(
cp
(
−Kθ∂zθ + apwp(θp − θ)

)
− z

(
−Kb∂zb+ apwp(bp − b)

))
(59)

and the conservative temperature equation is527

∂tθ =
ϵ+ q̇rad
cp − αgz

− ∂z
(
−Kθ∂zθ + apwp(θp − θ)

)
A schematic of EDMF energy budgets is provided in Fig. 2.528

4.3 Viscous dissipation and eddy-diffusivity529

In order to conserve energy we have seen in the previous section that viscous dis-530

sipation must be converted into heating. It can be computed in two manners. Either by531

implementing in the SCM the TKE equation of (54) and using the closure532

ϵ =
cϵ
lϵ
k3/2

where cϵ is a numerical constant and lϵ an appropriate length scale. This approach is usu-533

ally used when eddy-diffusivity is computed as KX = cX lX
√
k (with cX a constant and534

lX a mixing length). Alternatively dissipation can be computed by assuming a station-535

ary TKE equation and neglecting the transport term, leading to536

ϵ = w′b′ − w′u′
h · ∂zuh (60)

which is commonly done in SCM using empirical K-profiles (e.g. Han et al., 2016).537

4.4 Vertically integrated energy budgets538

In this section, we provide global energy budgets to highlight the role of mass-flux539

terms in bulk energy exchange as well as sinks/sources at boundaries. Let us introduce540
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the vertical average ⟨X⟩z = 1/(σa
oH)

∫ σa
oH

0
X dz, and the boundary operator [X]

σa
oH

0 =541

1/(σa
oH)(X(z = σa

oH) − X(z = 0)) (with σa
o = 1 in the atmosphere and −1 in the542

ocean). Then for any advected field X with source term PX , we have (see Appendix D543

for a detailed derivation):544

1

2
∂t

〈
ρRX

2
〉
z

=

<0︷ ︸︸ ︷
−
〈
ρRKX(∂zX)2

〉
z

<0︷ ︸︸ ︷
−
〈
ρR

E +D

2
(Xp −X)2

〉
z

(61)

+
〈
ρRX PX

〉
z
+
〈
ρRap(SX)p(Xp −X)

〉
z

−
[
ρRX w′X ′ + ρRapwp

(Xp −X)2

2

]σa
oH

0

Consequently, the entrainment and detrainment processes contribute on average to de-545

creasing the mean variance, similar to eddy-diffusivity terms. Although not sufficient in546

the context of nonlinear equations, monotonically decreasing variance is usually a nec-547

essary property to ensure analytical well-posedness of transport partial differential equa-548

tions (e.g. Evans, 2010). Interestingly, the last term of the budget implies that a non-549

zero MF flux at the boundary leads to an additional sink of resolved variance (which is550

exactly compensated by an equal and opposite boundary source for X ′2).551

We use (61) and the specific source of plume momentum budget (see Appendix D)552

to get the vertically integrated mean kinetic energy budget,553

∂t ⟨ρREk⟩z = −
〈
ρRKu(∂zuh)

2
〉
z
−
〈
ρR

E +D

2(1− Cu)
∥uh,p − uh∥2

〉
z

−
[
ρRuh · w′u′

h

]σa
oH

0
−
[
ρR

apwp

2(1− Cu)
∥uh,p − uh∥2

]σa
oH

0

Vertically integrating the TKE equation (58) leads to554

∂t ⟨ρRk⟩z = −
〈
ρRKb∂zb

〉
z
+
〈
ρRapwp(bp − b)

〉
z

+
〈
ρRKu(∂zuh)

2
〉
z
+

〈
ρR

E +D

2(1− Cu)
∥uh,p − uh∥2

〉
z

−⟨ρRϵ⟩z − [ρRTk]
σa
oH

0 +

[
ρR

apwp

2(1− Cu)
∥uh,p − uh∥2

]σa
oH

0

where again the MF contribution to shear has been reformulated into a sign-definite bulk555

production and a boundary term (Appendix D). It allows a clear interpretation: lateral556

mixing due to either entrainment or detrainment induces a net production of TKE via557

the shear term, and this production is hyperbolically enhanced if the horizontal drag co-558

efficient Cu is increased. Moreover this provides an energy constraint on Cu, namely 0 ≤559

Cu < 1. Additionally, the vertically integrated potential energy and resolved internal560

energy budget reads561

∂t ⟨ρREi+p⟩z =
〈
ρRKb∂zb

〉
z
−
〈
ρRapwp(bp − b)

〉
z
+
〈
ρR(ϵ+ q̇)rad

〉
z
−
[
TEi+Ep

]σa
oH

0
(62)

In the three budgets presented above, two different types of source terms appear. The562

terms in angle bracket ⟨·⟩z corresponds to bulk conversions of different type of energy563

and must compensate within each other (excepted for radiative transfer), since no to-564

tal energy can be created inside the fluid. The terms in square brackets [·]σ
a
oH

0 are in-565

puts of energy at the boundaries of the fluid which are a net source/sink of total energy566

(e.g. bottom heating of the atmosphere of surface wind work in the ocean).567

4.5 Inconsistent boundary conditions and spurious energy fluxes568

In this section, based on the choices made in Pergaud et al. (2009) we provide an569

example of inconsistent boundary conditions for the plume temperature and the mean570

temperature resulting in spurious surface heat fluxes in the system.571
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If we assume that the boundary condition for the mean temperature equation is572

−Kθ∂zθ(0) = w′θ′sfc (where w′θ′sfc is a prescribed surface flux), and that the plume573

boundary condition is prescribed following Soares et al. (2004)574

θp(0) = θ(0) + β
w′θ′sfc√
k(0)

(63)

then using (56) the resulting surface flux of Ei+p is575

TEi+p
(0) = −cpKθ∂zθ(0) + cpap(0)wp(0)(θp(0)− θ(0))

= cpw′θ′sfc + cpw′θ′sfc
ap(0)wp(0)β√

k(0)

where the second term of the r.h.s. is an unphysical source of energy. This bias is due576

to an inconsistent partioning of the physical boundary flux cpw′θ′sfc into ED and MF577

fluxes. In Pergaud et al. (2009), wp(0) =
√
2/3k(0) and β = 0.3 leading to biases from578

a few percents up to 25 % depending on the surface value of ap. In order to correct this579

bias, on can start from imposing the physical energy flux TEi+p(0) = cpw′θ′sfc, then580

by using its EDMF decomposition (56) and Soares-type plume boundary condition we581

obtain the consistent Neumann boundary condition for mean temperature582

−Kb(0)∂zθ(0) = w′θ′sfc − ap(0)wp(0)(θp(0)− θ(0))

=

(
1− ap(0)wp(0)β√

k(0)

)
w′θ′sfc

5 Discussion and conclusion583

In this work, we have presented the theoretical derivation of an EDMF scheme with584

special attention paid to energetic aspects for both dry atmosphere and seawater with585

linearized equation of state in the anelastic and modernized Boussinesq approximations586

(Tailleux & Dubos, 2024). Moreover, we provide energy budgets of the scheme, includ-587

ing radiative processes. The derivation systematically reviews approximations used and588

provides a priori scaling estimations. We also documented all necessary subsequent clo-589

sures necessary to obtain a mass-flux scheme, in order to propose a self-contained intro-590

duction to EDMF for oceanographers. Closed energetics at the SCM level is a necessary591

step to obtain energetically consistent 3D models and thus reduce spurious energy bi-592

ases. Theoretical horizontally averaged energy budgets are guiding the derivation of con-593

sistent energy budgets for SCM with EDMF closure. Besides taking into account MF594

terms in shear and buoyancy terms, we propose a new MF parameterization of TKE trans-595

port. It generalizes previous formulations and implies the consideration of a subplume596

TKE (Han & Bretherton, 2019). We also show that boundary conditions on both mean597

and plume variables should be consistent with the EDMF decomposition to avoid spu-598

rious energy fluxes at the boundary. Finally we provide a clear interpretation of MF con-599

tribution to shear: lateral mixing due to either entrainment or detrainment induces a600

net production of TKE via the shear term, and such production is enhanced when hor-601

izontal drag increases. In a companion paper (Part II, Perrot & Lemarié, 2024), we eval-602

uate EDMF hypotheses in the light of LES of oceanic convection, detail an energy-conserving603

discretization of the SCM, quantify energy biases of inconsistent formulations.604

The development of energetically consistent EDMF schemes can be continued in605

several ways. First, for real-world applications, the present work has to be extended to606

more complex thermodynamics models (i.e. moist atmosphere, Pauluis (2008), and sea-607

water with a non-linear equation of state). The proposed framework is flexible enough608

to be readily extended to other coherent structures of the boundary layer contributing609

to transport, such as atmospheric downdraft (Han & Bretherton, 2019; Brient et al., 2023).610

–19–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

σ =
1

1− ap
Rescaling coefficient

w′ϕ′ = σapwp(ϕp − ϕ)−Kϕ∂zϕ, ϕ = θ, S Vertical turbulent flux for component ϕ

w′u′
h = σapwp(uh,p − uh)−Km∂zuh Vertical turbulent momentum flux

∂z(apwp) = E −D Plume area conservation equation

apwp∂zϕp = σE(ϕ− ϕp) Plume equation for component ϕ
apwp∂zuh,p = σE(uh − uh,p) + apwpCu∂zuh Plume horizontal momentum equation
apwp∂zwp = −(σb)Ewp + ap

{
aBp − σa

o (σb
′)w2

p

}
Plume vertical velocity equation

Bp = beos(ϕp)− beos(ϕ) Buoyancy forcing term

∂tk − ∂z (Kk∂zk) = Km(∂zuh)
2 −Kb∂zb ED related TKE production terms

−σapwp

(
(uh,p − uh) · ∂zuh − (bp − b)

)
MF related TKE production terms

−∂z

(
σapwp

[
kp − k +

1

2
∥up − u∥2

])
MF related TKE transport term

−ϵ TKE dissipation

apwp∂zkp = σE

(
(k − kp) + (1 + a2pσ̃)

1

2
∥up − u∥2

)
−

ap(ϵν)p

Plume related TKE

Table B1: Same as table 1, but with a relaxation of the small area limit. The small area
limit is recovered if σ ≡ 1 and σ̃ ≡ 0.

For atmospheric models, the ED-based Monin-Obukhov similarity theory should be rec-611

onciled with the EDMF representation of fluxes (Li et al., 2021) to provide unambigu-612

ous and consistent boundary conditions and thus avoid potential spurious boundary en-613

ergy fluxes.614

Appendix A Useful identities615

apwp = −aewe (A1)

Xp −Xe =
1

1− ap
(Xp −X) (A2)

=
1

−ap
(Xe −X) (A3)

ap(wp − w)(Xp −X) + ae(we − w)(Xe −X) = ap(1− ap)(wp − we)(Xp −Xe)(A4)

=
ap

1− ap
(wp − w)(Xp −X) (A5)

Appendix B Relaxing the small-area assumption616

The small-area assumption can be relaxed with no additional complexity if the sub-617

plume fluxes w′
pX

′
p (X = θ, S, u, v) are still neglected. A summary of the EDMF-Energy618

parameterization in such a regime is presented in Tab. B1.619
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Appendix C Boundary condition for plume equations620

Near the surface, we linearize the plume and mean buoyancy in the form bp ≃ b0p+621

b′pz, b ≃ b
0
+N2

0 z. Then the plume equation for bp reads at order O(z0):622

a0pw
0
pb

′
p = −E0(b

0
p − b

0
)

The boundary condition b0p = b
0
implies that b′p = 0. Thus close to the surface we have623

bp(z) ≃ b
0
, b ≃ b

0
+N2

0 z

Then near the surface, the buoyancy force - which is a source of plume momentum and624

kinetic energy 1/2w2
p - is at first order bp−b ≃ −N2

0 z. Consequently, any static insta-625

bility at the surface will result in the absolute growth of the plume vertical momentum626

(−N2
0 z > 0 in the atmosphere and −N2

0 z < 0 in the ocean).627

The boundary condition bp(0) = b(0) implies that at z = 0, all the surface flux is al-628

located in the ED component. Consequently, N2
0 = w′b′(0)/(−Kb(0)) = w′b′(0)/(cblb(0)

√
k(0)).629

The boundary condition bp(0) = b(0) thus implies that close to the surface630

bp(z) ≃ b(z) +
w′b′(0)

cblb(0)
√
k0

z

which has the same form as the Soares-type boundary condition (63).631

Appendix D EDMF Mean Variance Equation632

Start from the mean and plume equations, and the turbulent flux decomposition633

∂t(ρRX) = −ρR∂zw′X ′ + ρRPX (D1)

w′X ′ = −KX∂zX + apwp(Xp −X) (D2)

apwp∂zXp = −E(Xp −X) + apPX,p (D3)

Multiplying the mean equation (D1) by X leads to634

1

2
∂tX

2
= − 1

ρR
∂z(X w′X ′) + w′X ′∂zX +X PX

= − 1

ρR
∂z(X w′X ′)−KX(∂zX)2 + apwp(Xp −X)∂zX +X PX (D4)

To rewrite the second term of the right-hand side, we use the plume equation (D2):635

apwp(Xp −X)∂z

=Xp+(X−Xp)︷︸︸︷
X = −E(Xp −X)2 + (Xp −X)apPX,p

−apwp
1

2
∂z(Xp −X)2

= −E(Xp −X)2 + (Xp −X)apPX,p

− 1

ρR
∂z(ρRapwp

1

2
(Xp −X)2)

+(E −D)
1

2
(Xp −X)2

= −(E +D)
1

2
(Xp −X)2 + (Xp −X)apPX,p

− 1

ρR
∂z(ρRapwp

1

2
(Xp −X)2)
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Using this expression into equation (D4), then vertically integrating the variance bud-636

get leads to the desired equation (61).637

We can adapt these computations to deduce the MF contribution to shear produc-638

tion of TKE, knowing that Puh,p = Cuwp∂zu. Thus the first equality of the compu-639

tation is640

apwp(uh,p − uh)∂zuh = −E(uh,p − uh)
2 + Cuapwp(uh,p − uh)∂zuh

−apwp
1

2
∂z(uh,p − uh)

2

=⇒ (1− Cu)apwp(uh,p − uh)∂zuh = −E(uh,p − uh)
2

−apwp
1

2
∂z(uh,p − uh)

2

and the rest of the computation follows similarly, justifying the factor 1/(1−Cu) in (62).641

Appendix E Anelastic energy budgets642

In this section, we recall how to derive energy budgets of the anelastic system, fol-643

lowing the derivation for compressible fluids of Tailleux (2010) (sec. 2.2), including ra-644

diative heating (Weiss, 1994). We then derive temperature equations from the energet-645

ically consistent enthalpy budget. Let us start again from the anelastic non-hydrostatic646

system in advective form coupled to a budget for the specific energy of radiation Er:647

D

Dt
u = −∇

(
p†

ρR(z)

)
+ bez +

1

ρR
∇ · (ρRτ ) (E1)

∇ · (ρR(z)u) = 0 (E2)
D

Dt
η = η̇irr −

1

ρR
∇ · (ρRFη) (E3)

D

Dt
S = − 1

ρR
∇ · (ρRFS) (E4)

b = −g
ρEOS − ρR(z)

ρEOS
(E5)

ρEOS = ρEOS(η, S, pR(z)) (E6)
D

Dt
Er = − 1

ρR
∇ · (ρRFr)− q̇rad (E7)

where τ is the viscous stress, η is the specific entropy of the fluid (not including entropy648

of radiation), η̇irr is the irreversible production of entropy, Fη is the (molecular) diffu-649

sive flux of entropy, S is the concentration of an additional component in the fluid (typ-650

ically salt in the ocean), FS is the (molecular) diffusive flux of S, ρR(z) is a reference651

density profile, pR(z) is an associated hydrostatic pressure, i.e. dpR/dz = −ρRg, Fr652

is a non-advective radiative flux and q̇rad is an energy transfer term due emission and653

absorption of radiation, D/Dt = ∂t + u · ∇ is the Lagrangian derivative.654

In contrast with section 2.1 we use specific entropy η instead of potential temperature655

θ as a state variable. This is motivated by the fact that thermodynamic relationship are656

written more naturally using η; a consistent equation for θ will be further derived.657

The total energy of this system can be advantageously divided into kinetic energy658

ρREk = ρR
1
2u·u, internal energy ρREi = ρR(h(η, S, pR(z))−pR(z)/ρR(z)) –with h the659

specific enthalpy–, and potential energy ρREp = ρRgz (in Tailleux and Dubos (2024)660

the sum Ei+Ep is referred as potential energy), and radiation energy ρREr. Kinetic en-661

ergy budget can be derived straightforwardly by taking the scalar product of (E1) with662

ρRu, namely663

ρR
D

Dt
Ek = −∇ · (up†) + ρRwb+∇ · (ρRu · τ )− ρRτ : ∇u︸ ︷︷ ︸

ρRϵ

(E8)

where ϵ is the viscous dissipation.664
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E1 Enthalpy budget665

Let Fh(xη, xS , xp) be the mathematical function defining the enthalpy of a fluid,666

i.e. if xη, xS , xp are respectively equal to the parcel’s entropy, mass of component S and667

pressure then Fh(xη, xS , xp) is the parcel’s entropy. Since enthalpy, entropy and mass668

of component S are extensive variables, we have by definition that for any scalar λ,669

Fh(λxη, λxS , xp) = λFh(xη, xS , xp) (E9)

which in turn implies that by virtue of Euler’s homogeneous function theorem,670

Fh(xη, xS , xp) = xη
∂Fh

xη
+ xS

∂Fh

∂xS
(E10)

Now let ηV and SV be respectively entropy and mass of component S per unit volume671

of the fluid, i.e. hV = ρR(z)h , ηV = ρR(z)η, S
V = ρR(z)S. Previous properties on672

Fh allow to define the enthalpy per unit volume,673

hV = Fh(η
V , SV , p) = ρRh = ηV

∂Fh

xη
(ηV , SV , p) + SV ∂Fh

∂xS
(ηV , SV , p) (E11)

Finally, equating the gradient of hV = Fh(η
V , SV , p) and of hV = ηV ∂Fh

xη
(ηV , SV , p)+674

SV ∂Fh

∂xS
(ηV , SV , p), we derive the useful relation:675

∂Fh

xp
(ηV , SV , p)∇p = ηV ∇∂Fh

xη
(ηV , SV , p) + SV ∇∂Fh

∂xS
(ηV , SV , p) (E12)

Now, on can compute the evolution of hV ,676

∂thV +∇ · (hV u) =
∂Fh

∂xη
∂tη

V +
∂Fh

∂xS
∂tS

V +
∂Fh

∂xp
∂tp

+∇ · ((ηV ∂Fh

xη
+ SV ∂Fh

∂xS
)u)

=
∂Fh

∂xη
(∂tη

V +∇ · (ηV u))

+
∂Fh

∂xS
(∂tS

V +∇ · (SV u))

+
∂Fh

∂xp
(∂tp+ u · ∇p)

+ ηV u · (∂Fh

∂xη
) + SV u · (∂Fh

∂xS
)− ∂Fh

∂xp
u · ∇p︸ ︷︷ ︸

=0,(E12)

Now using dhV = ρRV dp + TdηV + µdSV (where µ is the chemical potential of S)677

and V = 1/ρEOS, we obtain ∂Fh

∂xη
(ηV , SV , p) = T, ∂Fh

∂xp
(ηV , SV , p) = ρR/ρEOS = 1 +678

b/g, ∂Fh

∂xS
(ηV , SV , p). Evaluating the enthalpy equation at p = pR, using η and S bud-679

gets and integrating by part leads to680

∂t(ρRh) +∇ · (ρRhu) = (1 + b/g)(−ρRgw) (E13)

+ρR (T η̇irr + Fη · ∇T + FS · ∇µ)

−∇ · (ρR [TFη + µFS ])

where the first source on the right-hand side corresponds to the work of pressure forces,681

the second one is a production of enthalpy due to irreversible production of entropy and682

diffusion of entropy and S, and the last term is the divergence of a diffusive flux of en-683

thalpy. In the remainder of this section, we will denote it Fh = TFη + µFS .684
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E2 Total energy conservation and entropy production685

Using relation Ei = h − pR/ρR, we can combine the previous expression to ob-686

tain the total energy budget in advective form687

ρR
D

Dt
(Ek + Ei + Ep + Er) = ∇ · (ρRFtot) + ρRĖtot (E14)

where the non-advective flux of total energy and the net production of total energy are688

ρRFtot = −u(p† + pR) + ρR [u · τ − TFη − µFS − Fr] (E15)

ρRĖtot = ρR (T η̇irr + Fη · ∇T + FS · ∇µ− ϵ− q̇rad) (E16)

Thus total energy is conserved if and only if Ėtot vanishes, leading to the constraint689

η̇irr =
ϵ− Fη · ∇T − FS · ∇µ

T︸ ︷︷ ︸
material prod.

+
q̇rad
T︸︷︷︸

radiative prod.

(E17)

In order to illustrate the energy conversion between the different energy reservoirs,690

one can write691 
ρR

D
DtEk = ∇ · (−up† + ρRu · τ ) + ρRwb− ρRϵ

ρR
D
DtEi = ∇ · (−upR + ρR [−TFη − µFS ])− ρRgw − ρRwb+ ρRϵ+ ρRq̇rad

ρR
D
DtEp = ρRgw

ρR
D
DtEr = −∇ · (ρRFr)− ρRq̇rad

(E18)

E3 Temperature equation692

The constraint on entropy production derived above ensures that the enthalpy bud-693

get (E13) is energetically consistent. It is more convenient to work with temperature than694

enthalpy, since enthalpy is not observable. In this section, we will derive temperature equa-695

tions from enthalpy budgets, which ensures that temperature budgets remain energet-696

ically consistent.697

E31 Anelastic dry air698

For dry air in the anelastic approximation, specific enthalpy and buoyancy reads699

h(θ, pR(z)) = cpT = cpθ

(
pR(z)

p0

)κ

(E19)

b = −∂z(h + gz) = g
θ − θR(z)

θR(z)
(E20)

where cp is a constant specific heat capacity of dry air, p0 is a constant pressure refer-700

ence, θ is the potential temperature, θR(z) = pR

(
pR(z)
p0

)−κ

/(ρRRd) is the reference701

potential temperature profile, Rd is the specific dry air ideal constant, κ = Rd/cp. We702

straightforwardly obtain an equation for potential temperature using the enthalpy bud-703

get (E13):704

cp

(
pR
p0

)κ

∂tθ +
1

ρR
∇ ·
(
ρRcp

(
pR
p0

)κ

θu+ ρRFh

)
= −gw − g

θ − θR(z)

θR(z)
w + ϵ+ q̇rad(E21)

which can be rewritten after some algebra as705

∂tθ +
1

ρR
∇ · (ρRθu) +

1

cp

(
pR
p0

)−κ

∇ · (ρRFh) =
1

cp

(
pR
p0

)−κ

(ϵ+ q̇rad) (E22)

The elimination of the buoyancy flux −wb on the r.h.s of the budget unveils the advan-706

tage of working with potential temperature instead of in situ temperature.707
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E32 Boussinesq seawater with a linearized EOS708

For seawater with a linearized EOS in Boussinesq approximation (ρR(z) = ρ0)709

buoyancy reads710

b = −∂z(h + gz) = gα(θ − θ0)− β(S − S0) (E23)

and the corresponding enthalpy can be formed as711

h(θ, S, pR(z)) = cpθ +

−gz︷ ︸︸ ︷
pR(z)− p0

ρ0
(1 + α(θ − θ0)− β(S − S0)) (E24)

where cp is a constant specific heat capacity of seawater, p0 and ρ0 are constant pres-712

sure and density references, α is the thermal expansion coefficient and β is the haline713

contraction coefficient. For a linearized equation of state potential and conservative tem-714

perature coincide, and they are denoted by θ. They are related to in-situ temperature715

T by the formula716

T =

(
1 + α

pR − p0
ρ0cp

)
θ (E25)

Inserting the enthalpy expression (E24) into the enthalpy budget (E13) leads to717

cp
D

Dt
θ +

D

Dt
(−zg) +

D

Dt
(−zb) = −wg − wb+ ϵ+ q̇rad −∇ · Fh (E26)

=⇒ cp
D

Dt
θ − z

D

Dt
b = ϵ+ q̇rad −∇ · Fh (E27)

Since D
DtS = −∇·FS , we have D

Dtb = gα D
Dtθ+ gβ∇·FS . Thus using (E27) we obtain718

the energetically consistent conservative temperature equation719

D

Dt
θ =

ϵ+ q̇rad −∇ · Fh + zgβ∇ · FS

cp − αgz
(E28)

Again the elimination of the buoyancy flux in the r.h.s of the budget unveils the advan-720

tage of using conservative temperature. It can be use to compute the budget of the ”pseudo”-721

potential energy −zb,722

D

Dt
(−zb) = −wb− zαg

ϵ+ q̇rad −∇ · Fh + zgβ∇ · FS

cp − αgz
+ zβg∇ · FS (E29)

Let us remark that the sum of potential and internal energy is Ei+Ep = h −pR/ρR+723

gz = cpθ − zb + gz. Neglecting molecular diffusion, viscous dissipation and radiative724

heating, this splitting justifies the common use of −zb as a proxy for ”potential” energy725

in oceanography (e.g. Olbers et al., 2012). We nevertheless retain these terms in the tem-726

perature budget (E28) to work with a properly closed energy budget.727
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C., . . . Samson, G. (2019). NEMO ocean engine. Retrieved from883

https://zenodo.org/record/1464816 doi: 10.5281/ZENODO.1464816884

Madec, G., Delecluse, P., Crepon, M., & Chartier, M. (1991). A Three-885

Dimensional Numerical Study of Deep-Water Formation in the North-886

western Mediterranean Sea. J. Phys. Oceanogr., 21 (9), 1349–1371. doi:887

10.1175/1520-0485(1991)021⟨1349:ATDNSO⟩2.0.CO;2888

Marshall, J., Hill, C., Perelman, L., & Adcroft, A. (1997). Hydrostatic, quasi-889

hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102 (C3),890

5733–5752. doi: 10.1029/96JC02776891

Martin, T., Park, W., & Latif, M. (2013). Multi-centennial variability controlled by892

Southern Ocean convection in the Kiel Climate Model. Clim. Dynam., 40 (7),893

2005–2022. doi: 10.1007/s00382-012-1586-7894

McDougall, T. J. (2003). Potential Enthalpy: A Conservative Oceanic Variable for895

Evaluating Heat Content and Heat Fluxes. J. Phys. Oceanogr., 33 (5), 945–963.896

doi: 10.1175/1520-0485(2003)033⟨0945:PEACOV⟩2.0.CO;2897

Moore, G. W. K., V̊age, K., Pickart, R. S., & Renfrew, I. A. (2015). Decreasing in-898

tensity of open-ocean convection in the Greenland and Iceland seas. Nat. Clim.899

Change, 5 (9), 877–882. doi: 10.1038/nclimate2688900

Olbers, D., Willebrand, J., & Eden, C. (2012). Ocean Dynamics. Berlin, Heidelberg:901

Springer Berlin Heidelberg. doi: 10.1007/978-3-642-23450-7902

Pauluis, O. (2008). Thermodynamic Consistency of the Anelastic Approx-903

imation for a Moist Atmosphere. J. Atmos. Sci., 65 , 2719–2729. doi:904

–28–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

10.1175/2007JAS2475.1905

Pergaud, J., Masson, V., Malardel, S., & Couvreux, F. (2009). A Parameterization906

of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Pre-907

diction. Bound.-Lay. Meteorol., 132 , 83–106. doi: 10.1007/s10546-009-9388-0908
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