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Abstract12

This study aims to introduce a new convective vertical mixing scheme rooted in the Eddy-13

Diffusivity Mass-Flux (EDMF) approach, itself derived from first principles. The inte-14

gration of the mass-flux (MF) concept with the Eddy-Diffusivity (ED) approach has long15

been studied and applied in global and regional atmospheric models for parameterizing16

convection, both dry and cloudy, and sees a growing interest in ocean models. This type17

of closure involves separating vertical turbulent fluxes into two components: a diffusion18

term that addresses local small-scale mixing in a near isotropic environment and a mass-19

flux transport term that accounts for the non-local transport due to vertically coherent20

plumes within the environment. Here, we exploit the multi-fluid averaging technique un-21

derlying the MF concept to propose an original formulation of a scheme that possesses22

properties not satisfied by most existing EDMF formulations. Consistent energy bud-23

gets between resolved and subgrid scales are derived for different multi-component flu-24

ids including seawater and dry atmosphere (in Boussinesq and anelastic cases). This guar-25

antees that all mean kinetic, potential, and internal energy sinks and sources as long as26

turbulent kinetic energy (TKE) transport associated with EDMF terms are exactly added27

or subtracted to the TKE budget, effectively rectifying energy biases existing in prior28

EDMF schemes. Notably, this analysis facilitates a clear separation of convective and29

turbulent small-scale energy reservoirs. In addition to bulk energy transfers, we provide30

guidelines to avoid spurious energy fluxes at the fluid’s boundary when using EDMF.31

We illustrate the performance of the proposed energetically consistent EDMF scheme32

in the context of oceanic convection. When compared with Large Eddy Simulations (LES)33

of oceanic convection, our scheme can reproduce mean fields as well as higher-order mo-34

ments such as TKE, vertical fluxes, and turbulent transport of TKE. The energetic con-35

sistency is key to obtaining realistic TKE and turbulent transport of TKE profiles. To36

further illustrate that the MF concept is a credible alternative to the traditional approaches37

used in the oceanic context (using an enhanced vertical diffusion or a counter gradient38

term à la KPP) the proposed scheme is validated in a single-column configuration against39

observational data of oceanic convection from the LION buoy. Last but not least, dur-40

ing the theoretical development of the scheme, we maintain transparency regarding un-41

derlying assumptions and systematically assess their validity in the light of LES data.42

Plain Language Summary43

In Earth system models, various important processes occur on scales that are too44

fine to be resolved with usual grid resolutions. Parameterizations have to be used to ap-45

proximate the average effect of such processes on the scales resolved by a numerical model.46

The general objective of the proposed work is to approach the parameterization prob-47

lem for boundary-layer turbulence and convective plumes in a “consistent” manner. Here48

the notion of consistency integrates various aspects: global energetic consistency, con-49

sistency with a particular averaging technique for the scale-separation, and the rigorous50

reduction of a physical system to a scale-aware parametric representation based on well-51

identified and justifiable approximations and hypotheses. An originality is to jointly con-52

sider energy budgets including a subgrid energy reservoir on top of the resolved ener-53

gies allowing the proper coupling between the parameterization and the resolved fluid54

dynamics. This research is fundamental to obtain an apt representation of mean fields55

and higher-order turbulent moments and to pave the way toward an alternative method-56

ology to parameterize oceanic convection across scales. Numerical simulations demon-57

strate the adequacy of the proposed parameterization.58
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1 Introduction59

1.1 Convection in the ocean and atmosphere and its parameterization60

in numerical models61

Boundary layer convection occurs in the atmosphere and the ocean due to buoy-62

ancy fluxes at the surface, which trigger gravitational instabilities. Buoyant plumes then63

tend to overturn and mix the fluid. When looking at the mean properties of the fluid,64

it leads to the formation of a well-mixed layer. The accurate representation of such bound-65

ary layers is of paramount importance for short-term forecasts as well as for climate pro-66

jections in the atmosphere (Bony et al., 2015; Schneider et al., 2017) and the ocean (Martin67

et al., 2013; Piron et al., 2016; Moore et al., 2015; Fox-Kemper et al., 2019). Regarding68

current computational capacities, plumes are still unresolved in regional and global nu-69

merical models, and thus their effects require parameterization. Moreover in ocean mod-70

eling, beyond the requirement in terms of grid resolution, hydrostatic equations used in71

the overwhelming majority of regional and global studies are not suitable for resolving72

convective phenomena explicitly (Marshall et al., 1997).73

For any quantity X, standard turbulent mixing models are based on the closure74

of vertical turbulent fluxes w′X ′ proportional to the local mean gradient in the form −KX∂zX75

(which corresponds to the so-called Eddy-Diffusivity (ED) closure). Such a closure leads76

to a diffusion of X, which is often justified by considering that turbulent fluctuations re-77

semble Brownian motion (Vallis, 2017; Resseguier et al., 2017). Although the ED clo-78

sure has been widely used in many industrial and geophysical applications, it is known79

to potentially predict incorrectly higher order moments and even mean fields for com-80

plex flows (e.g. Schmitt, 2007). For instance, the inadequacy of ED closures for atmo-81

spheric convection has long been highlighted (Deardorff, 1966). Indeed fluctuations are82

carried by non-local structures, the buoyant plumes, that can be coherent over the whole83

mixed layer. In particular, in such a layer, mean gradients are close to zero (∂zX ≃ 0)84

while transport is ensured at leading order by non-zero vertical fluxes w′X ′ which may85

even be up-gradient. Indeed, using the assumption of a mixed-layer ∂zX ≃ 0 into a tur-86

bulent transport equation of the type ∂tX + ∂zw′X ′ = 0 implies that w′X ′ varies lin-87

early with z. Such linear variation of fluxes in the mixed layer is well-supported by ob-88

servations and numerical experiments (Garratt, 1994b; Denbo & Skyllingstad, 1996).89

To circumvent ED hypothesis, Deardorff (1966) proposed to introduce a constant90

non-local term γX in the form w′X ′ = −KX(∂zX − γX). Later on, such a formula-91

tion has been refined, where both KX and γX were prescribed by a self-similar profile92

function depending on external characteristics of the boundary layer such as surface forc-93

ing, stratification at the atmospheric top (or oceanic base) of the mixed layer and im-94

plicitly defined mixed layer height (see Troen and Mahrt (1986); Holtslag and Moeng95

(1991) for atmospheric models, Large et al. (1994) for oceanic models). This approach96

is still in use in some present-day ocean models (e.g. via the CVMIX library, Van Roekel97

et al., 2018). Furthermore, in the context of ocean models, two other types of convec-98

tive parameterization are sometimes used: (i) a buoyancy sorting scheme (a.k.a. adjust-99

ment scheme or non-penetrative scheme), in which static instabilities are eliminated in100

one time-step by mixing downward neighboring vertical levels until a neutral buoyancy101

profile is attained (e.g. Madec et al., 1991) (ii) an enhanced eddy-viscosity scheme in102

which the vertical diffusivity coefficient is artificially increased to a high value as soon103

as static instabilities are found on the density profiles. These two approaches are not grounded104

on a physical derivation.105

The present work builds on the combined Eddy-Diffusivity and Mass-Flux (EDMF)106

parameterization schemes (Hourdin et al., 2002; Soares et al., 2004). The ED compo-107

nent aims to represent turbulent transport in a nearly isotropic environment, in which108

convective plumes -modeled by MF terms- support a non-local advective transport. The109

MF concept was originally introduced in the atmospheric context to represent deep con-110
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vective clouds (Arakawa & Schubert, 1974), then it has been adapted to represent shal-111

low and dry boundary layer convection in combination with ED schemes. It is intrin-112

sically based on a multi-fluid averaging (Yano, 2014; Thuburn et al., 2018) of the fluid113

equations. In ocean models the EDMF concept has been first introduced by Giordani114

et al. (2020), and has been gaining increasing attention (e.g. Garanaik et al. (2024), or115

a recent implementation in Oceananigans, Ramadhan et al. (2020)).116

1.2 Parameterization development and physics dynamics coupling117

The general objective of the proposed work is to approach the parameterization118

problem in a “consistent” manner. Here the notion of consistency integrates various as-119

pects: consistency with the laws of physics, energetic consistency at both continuous (e.g.120

Eden, 2016; Jansen et al., 2019; Eden & Olbers, 2014) and discrete (e.g. Burchard, 2002)121

levels, consistency with a particular choice of scale-separation operator (Higgins et al.,122

2013; Lauritzen et al., 2022), and the rigorous reduction of a physical system to a scale-123

aware parametric representation based on well-identified approximations and hypothe-124

ses (Honnert et al., 2016; Tan et al., 2018).125

Regarding boundary layer parameterizations, eddy-diffusivity intensity often scales126

with the turbulent kinetic energy (TKE) which is computed via a parameterized prog-127

nostic equation. TKE represents a subgrid kinetic energy that exchanges energy with128

the resolved reservoirs. The use of mass-flux terms leads to energy transfers and redis-129

tributions that must be taken into account in the TKE equation to ensure energetic con-130

sistency between resolved and subgrid scales. In addition, the boundary conditions of131

the mass-flux equations must be consistent between ED and MF to avoid double-counting132

and artificial energy fluxes at the fluid boundary. Apart from a brief discussion in Tan133

et al. (2018) for unsteady plume models, the energetically consistent coupling of TKE134

and standard EDMF schemes has not been, to our knowledge, discussed in the litera-135

ture. Some modifications of the TKE equation when using a mass-flux model have been136

proposed for the buoyancy production term (Witek et al., 2011b) and the vertical tur-137

bulent transport of TKE (Witek et al., 2011a; Han & Bretherton, 2019). However, these138

studies are not motivated by considerations of energetic consistency.139

1.3 Goals and organisation of the paper140

The aim of this paper is two-fold. First, we intend to provide an introductory, self-141

contained, and pedagogical derivation of EDMF schemes starting from first principles,142

to guide consistency considerations. Second, we derive theoretical energy budgets and143

provide guidelines to obtain energetically consistent EDMF models. Consequently, this144

paper is intended to both the oceanographic community as a pedagogical introduction145

to EDMF, and the atmospheric community seeking to reduce energy biases in EDMF146

models. The paper is organized as follows. In section 2, we expose the derivation of an147

EDMF scheme from first principle, systematically discuss the successive assumptions at148

stake, provide closures according to state-of-the-art practice, and discuss consistent bound-149

ary conditions. In section 3, we recall the theoretical resolved and subgrid energy bud-150

gets of a horizontally averaged Boussinesq fluid without closures. In section 4, we ex-151

pose the necessary modification of the parameterized turbulent kinetic energy (TKE)152

equation to obtain closed energy budgets when using EDMF. Furthermore, we derive ver-153

tically averaged energy budgets to reveal the role of boundary conditions on the energy154

fluxes. In section 5, we analyze the assumptions used in the derivation of the scheme in155

light of data from Large Eddy Simulation (LES) of idealized oceanic deep convection.156

Then we evaluate the energetically consistent EDMF scheme against such data, and against157

realistic data of oceanic deep convection events in the Mediterranean Sea. In appendices,158

we provide discretization details for interested model developers and energy budgets in159

the anelastic setting which are more commonly used by the atmospheric community.160
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2 Derivation of EDMF scheme161

2.1 Formal derivation162

We start from the unaveraged Navier-Stokes equations under the Boussinesq as-163

sumption in a cubic domain Lx × Ly ×H:164

∇ · u = 0 (1)

∂tu = −∇ · (u⊗ u)− 1

ρ0
∇p† + bez + ν∇2u (2)

∂tϕ = −∇ · (ϕu) + Sϕ (3)

b = beos(ϕ) (4)

where u = (u, v, w) denotes the velocity field in a local Cartesian frame of reference (ex, ey, ez),165

z ranges from 0 to H in the atmosphere and −H to 0 in the ocean, ρ0 is a constant ref-166

erence density, the pressure has been decomposed as p = pref(z) + p†(x, y, z, t) with167

∂zpref = −ρ0g, b is the buoyancy acceleration, ϕ is any entropic variable describing each168

component of the fluid, Sϕ is an additional source term (typically molecular diffusion).169

For instance, in the context of a dry atmosphere modeled as an ideal gas, a simple choice1170

would be ϕ = θ, where θ is the potential temperature, and beos(θ) = g(θ − θ0)/θ0. In171

the context of ocean dynamics, one would choose conservative temperature and salin-172

ity (ϕ = θ, S) and a linear equation of state, beos(θ, S) = gα(θ−θ0)−gβ(S−S0) where173

α and β are thermal expansion and haline contraction coefficients, respectively, and θ0174

and S0 are reference temperature and salinity. Details on source terms Sϕ are given in175

section 3. For the sake of simplicity, we do not include the Coriolis term in the present176

study. Since the Coriolis force is energetically-neutral it does not interfere with the deriva-177

tions made throughout this paper. Next, we explicit the framework in which vertical mix-178

ing parameterizations are usually developed. We adopt a semi-discrete approach, where179

the horizontal fluid domain is divided into a Nx×Ny mesh. Each horizontal grid cell180

has length ∆xi and width ∆yj , and we denote (xi, yj) its center. Note that the time and181

vertical coordinates z are kept continuous. The spatial domain can be thought of Nx×182

Ny vertical columns stacked together. In a numerical model discretized on such a mesh,183

the computed variables would be interpreted in a finite volume approach (LeVeque, 2002).184

For any field X = u, ϕ... one can define the following horizontal average and fluctua-185

tion186

X(xi, yj , z, t) :=
1

∆xi∆yj

∫
∆xi×∆yj

X(x, y, z, t) dxdy, X ′ = X −X

If we recast (1)–(3) in the generic form ∂tX +∇ · (uX) = SX , and then apply such a187

horizontal average, we obtain188

∂tX + ∂z
(
wX + w′X ′)+ 1

∆xi∆yj

∮
∂(∆xi×∆yj)

Xuh · dn = SX (5)

where uh = (u, v, 0) denotes the horizontal velocity vector and dn is an outward point-189

ing line integral element, i.e. uh ·dn = udy−vdx. The boundary integral in (5) is the190

total (resolved and subgrid) horizontal flux of X. In a numerical model, X would be in-191

terpreted as the resolved variable, X ′ would be an unresolved fluctuation, the precise form192

of the horizontal flux would depend on the numerical scheme (and possibly on param-193

eterizations), and the vertical subgrid flux w′X ′ has to be closed by a parameterization.194

When focusing on the parameterization of vertical mixing processes, it is common to con-195

ceptually isolate one vertical column of fluid to work with a one-dimensional Single-Column196

1 In both oceanic and atmospheric context, we use simple thermodynamic descriptions allowing convec-

tion. Although these descriptions are inaccurate for real-world applications, they are sufficient to expose

how to build energetically consistent EDMF parameterizations. Energy budgets for the anelastic approxi-

mation can be found in Appendix E
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Model (SCM) (e.g. Zhang et al., 2016). Any quantity is assumed statistically invariant197

along the horizontal direction, meaning that in practice the horizontal fluxes and pres-198

sure gradients are neglected. We further simplify the problem with two additional as-199

sumptions: First, the bottom of the column is considered flat. Along with a non-penetration200

condition, this leads to w(z = 0) = 0. Now the averaged volume conservation under201

the horizontal homogeneity ∂zw = 0 implies that w(z) = 0 at any level z. Second, in202

the vertical momentum budget, the momentum flux divergence ∂zw′w′ is neglected, lead-203

ing to the hydrostatic approximation ∂zp
† = b. The SCM equations are then204

∂tuh = −∂zw′u′
h (6)

∂tϕ = −∂zw′ϕ′ + Sϕ (7)

where the molecular viscosity can be safely neglected in the mean momentum budget.205

The remainder of this article will use these SCM assumptions, and indices i, j will be dropped.206

For readers interested in the inclusion of horizontal fluxes, we refer them to Yano (2014)207

and Tan et al. (2018). As an alternative to the semi-discrete description presented above,208

a fully continuous description can be carried out by replacing the horizontal average by209

smoothing kernels on the scale of the grid size (see for example Thuburn et al. (2018)210

in the context of mass-flux schemes).211

We now assume a formal decomposition of the horizontal column area ∆x×∆y212

into two horizontal subdomains of areas Ae(z, t) and Ap(z, t) which also depend on depth213

and time. Such decomposition is meant to isolate the coherent convective structures usu-214

ally referred to as plumes (occupying the subdomain of area Ap(z, t)) from the rest of215

the flow, referred to as the environment (occupying the subdomain of area Ae(z, t)). We216

introduce the following notations to characterize the subdomain averaged field and frac-217

tional area (for i = e, p):218

Xi =
1

Ai(z, t)

∫
Ai(z,t)

X(x, y, z, t) dxdy

ai = Ai(z, t)/(∆x×∆y)

Any mean field can then be decomposed as219

X = aeXe + apXp

In particular, when X ≡ 1 we get the constraint ae = 1−ap. After some algebra, any220

turbulent flux can be recast as221

w′X ′ = aew′
eX

′
e + apw′

pX
′
p + ae(we − w)(Xe −X) + ap(wp − w)(Xp −X) (8)

where222

w′
iX

′
i =

1

Ai(z, t)

∫
Ai(z,t)

(X −Xi)(w − wi) dxdy

For each subdomain, the ai(wi−w)(Xi−X) terms in (8) account for the ”mass-flux”223

(i.e. the contribution of coherent structures to the flux), whereas the aiw′
iX

′
i terms are224

a contribution from internal variability. Applying the subdomain average to any conser-225

vation law of the form ∂tX + ∇ · (uX) = SX and using Reynolds transport theorem226

leads to (see appendix A of Tan et al. (2018) and Yano (2014) for full derivation)227

∂t(aiXi) + ∂z

(
aiwiXi + aiw′

iX
′
i

)
+

1

Ai

∮
∂Ai

Xur · dn = aiSX,i (9)

where the relative horizontal boundary velocity is ur = uh − ∂trb − w∂zrb and rb =228

(xb(z, t), yb(z, t)) is the position vector of boundary elements. The three terms that con-229

situte ur indicate that boundary fluxes can arise respectively due to horizontal veloc-230

ity across the boundary, to (apparent) horizontal velocity of the boundary, or to verti-231

cal velocity if the boundary of the 3D plume is vertically tilted (i.e. ∂zrb ̸= 0).232
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2.2 Standard assumptions233

2.2.1 Plume-Environment decomposition234

The first standard assumption we have already made is to consider only two sub-235

domains, the convective plume and the environment. This is justified since in convec-236

tive situations the main contribution to the fluxes comes from the plumes. However, the237

framework is flexible enough to incorporate an arbitrary number of components. In par-238

ticular, several studies of the atmospheric convective boundary layer (CBL) underline239

the importance of returning coherent structures around the plumes, often referred to as240

CBL downdrafts (Schmidt & Schumann, 1989; Couvreux et al., 2007; Brient et al., 2023).241

2.2.2 Entrainment/Detrainment and Upstream approximation242

Net fluid exchange at the horizontal boundary of the plume domain can be further243

decomposed into fluid entrained into the plume from the environment, and fluid detrained244

out of the plume into the environment, namely245

1

Ap

∮
∂Ap

ur · dn =
1

Ap

∮
∂Ap,ur>0

ur · dn+
1

Ap

∮
∂Ap,ur<0

ur · dn

= D − E

where E(> 0) is called entrainment rate and D(> 0) is called detrainment rate. We fur-246

ther assume that the value of X at the boundary is either equal to the mean value in247

the environment when entrainment is occurring, or the mean value in the plume when248

detrainment is occurring. This is the so-called upstream approximation, formulated as2249

1

Ap

∮
∂Ap

Xur · dn = XeE −XpD (10)

As a result of this approximation, the plume equation reads250

∂t(apXp) + ∂z(apwpXp) = −∂z(apw′
pX

′
p) + EXe −DXp + apSX,p (11)

In particular when X ≡ 1, we get the plume area conservation equation:251

∂tap + ∂z(apwp) = E −D (12)

2.2.3 Steady plume hypothesis252

A common hypothesis is that the plume domain is in a quasi-steady regime, thus253

neglecting the temporal tendency compared to vertical advection. The relevance of this254

hypothesis is numerically tested using idealized cases in section 5.3. An a priori scal-255

ing estimation can also be performed. Introducing τ , h, and W the characteristic time,256

depth, and vertical velocity scales of the plume, the order of magnitude of the ratio be-257

tween the temporal tendency and vertical advection can be estimated as follows258

O

(
∂t(apXp)

∂z(apwpXp)

)
=

h/τ

W
≃ went

W
(13)

where went = d
dth is the boundary layer vertical entrainment velocity. In the limit of259

free convection triggered by a surface buoyancy loss B0 < 0 into a fluid of constant strat-260

ification N2
0 , the classical convective scalings h ∝

√
−B0/N2

0 t and W = (−B0h)
1/3

261

(Turner, 1979; Deardorff, 1970) lead to262

went

W
∝ 1

(N0t)2/3
(14)

2 In the context of 3D models, the plume boundary ∂Ap can cross the horizontal boundary of the grid

cell. The corresponding contribution to the integral can be interpreted as a resolved flux divergence across

the grid cell, namely ∇h · (apuh,pXp + apu′
h,pX

′
p) (see section 5.1 of Yano (2014)).
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In a different context, that of the development of a shear-driven mixed layer forced by263

surface wind stress ρ0u
2
∗, Kato and Phillips (1969) showed that went/u∗ ∝ u2

∗/N
2
0h. In264

such a layer W ≃ u∗, leading to a scaling similar to (14). These scalings suggest that265

as long as the surface forcings (represented here by u∗ and B0) are evolving slowly com-266

pared to 1/N0, the steady plume hypothesis remains valid. Under such a hypothesis, the267

plume equation for any field X now reads268

∂z(apwpXp) = −∂z(apw′
pX

′
p) + EXe −DXp + apSX,p (15)

As a summary, we rewrite the coupled resolved/plume system in an advective form us-269

ing area conservation and X = (1− ap)Xe + apXp:270

∂tX = −∂zw′X ′ + SX (16)

w′X ′ =
1

1− ap
apwp(Xp −X) + (1− ap)w′

eX
′
e + apw′

pX
′
p (17)

apwp∂zXp = − 1

1− ap
E(Xp −X)− ∂z(apw′

pX
′
p) + apSX,p (18)

Several authors have recently proposed to relax the steady plume hypothesis (Tan et al.,271

2018; Thuburn et al., 2018). However, the overwhelming majority of mass flux schemes272

implemented in realistic models considers a plume domain in a quasi-steady regime.273

2.2.4 Small area limit274

A last standard hypothesis is that the fractional area of the plume is small com-275

pared to that of the environment (see section 5.3 for a direct evaluation against LES).276

This generally means considering the formal limit ap → 0 and ae → 1 in the previous277

equations while keeping non-zero mass-flux apwp and source terms. Yano (2014) proposes278

to assume apwp = O(we) and apSX,p = O(SX,e) to retain an order one contribution279

of apwp(Xp−X) in (17), and to keep an order one contribution of advection and forc-280

ings in (18). In the small area limit, any environmental field Xe (except we) can be ap-281

proximated by the mean field, the vertical turbulent flux (17) becomes282

w′X ′ = apwp(Xp −X) + w′
eX

′
e (19)

and the plume equation (18) now reads283

apwp∂zXp = −E(Xp −X) + apSX,p (20)

In the remainder of this study, we will adopt such a small area limit. Noteworthy is the284

effort by some authors to relax this hypothesis to explore the ”grey zone” of atmospheric285

turbulence or to devise scale-aware parameterization schemes when the grid is refined286

to the point where ap is no longer small (Honnert et al., 2016; Tan et al., 2018). For the287

sake of completeness, we include in Appendix A the system of plume equations obtained288

when relaxing the small area limit while still neglecting subplume fluxes w′
pX

′
p (in line289

with Tan et al. (2018)). This system only deviates by factors 1/(1−ap) from the ”small-290

area” system, making it simple to implement in practice.291

Remark: To our knowledge, the interplay between the small area limit and the steady292

plume hypothesis has been only discussed in Yano (2014) where the author argues that293

the formal limit ap → 0 implies ∂t(aeXe) → ∂tX, and thus recovers the steady-plume294

hypothesis ∂t(apXp) → 0 using (8). Using such formal limit and apwp = O(we) im-295

plies that wp → ∞. Since plume properties are advected by wp, such infinite velocity296

assumption is interpreted as an instantaneous adjustment to any surface perturbation,297

consistently with the steady-plume hypothesis. Using Yano’s scaling, an estimate of the298

ratio between temporal tendency and vertical advection is now299

O

(
∂t(apXp)

∂z(apwpXp)

)
=

O(ap)/τ

we/h
→ 0 if ap → 0
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which shows that such scaling indeed implies stationarity. However, the alternative scal-300

ing we proposed in (13) decouples the small area limit from the stationarity assumption301

and is found to be validated in numerical simulations (see 5.3). Moreover, our scaling302

analysis seems more general since it merely takes into account scales for each field, with-303

out further assumptions, and thus justifies the potential use of stationary equations while304

relaxing the small area assumption.305

2.3 Standard Closures306

Thanks to the assumptions made so far, we have arrived at equations of the gen-307

eral form (20) for the plume, and (19) for vertical turbulent fluxes. At this stage, addi-308

tional closure assumptions are required to express the entrainment and detrainment rates,309

the flux w′
eX

′
e, and the pressure gradients appearing in the Sw,p and Suh,p terms.310

2.3.1 Plume vertical pressure gradient311

Plume vertical pressure gradients are usually parameterized as the combination of312

a virtual mass term (e.g. Bretherton et al., 2004) – representing the reduction of plume313

buoyancy due to pushing and pulling on the environment –, a reduced entrainment term314

and a quadratic drag term. Several formulations have been proposed (see Roode et al.315

(2012) for an intercomparison in the context of shallow cumulus convection). In line with316

usual practices in the atmospheric context (e.g. Pergaud et al., 2009; Rio et al., 2010)317

we consider318

ap

(
1

ρ0
∂zp

†
)

p

= (a− 1)apBp + (b− 1)(−Ewp) + b′apw
2
p (21)

leading to the plume vertical momentum budget319

apwp∂zwp = aapBp − bEwp − σa
ob

′apw
2
p (22)

where a, b and b′ are positive parameters, σa
o = +1 in the atmosphere and −1 in the320

ocean, and Bp = bp − b. Note that in the case of dry atmosphere or seawater with a321

linearized equation of state, we have bp − b = beos(ϕp)− beos(ϕ).322

2.3.2 Horizontal momentum budget323

Based on the work of Rotunno and Klemp (1982) and Wu and Yanai (1994), Gregory324

et al. (1997) proposed a parameterization of the plume horizontal pressure gradient as325

an advective correction of the form326

ap

(
1

ρ0
∇hp

†
)

p

= apwpCu∂zuh (23)

where Cu is a parameter. We show in Section 4.5 that energy cosntraints impose 0 ≤327

Cu < 1.328

2.3.3 Eddy-Diffusivity closure329

The environment is thought of as a subdomain where only small-scale turbulence330

occurs, thus supporting the hypothesis of a closure of the vertical flux with an eddy-diffusivity,331

w′
eX

′
e =

ED
−KX∂zXe ≃

ap≪1
−KX∂zX. This leads to the eddy-diffusivity mass-flux clo-332

sure of subgrid fluxes333

w′X ′ = −KX∂zX︸ ︷︷ ︸
ED

+ apwp(Xp −X)︸ ︷︷ ︸
MF

(24)

In the present study, the eddy viscosity Ku and diffusivity Kϕ in turbulent vertical fluxes334

are computed from a turbulence closure model based on a prognostic equation for the335
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turbulent kinetic energy (TKE) k = u′ · u′/2 and a diagnostic computation of appro-336

priate length scales (a.k.a. 1.5-order turbulence closure). For the numerical tests in the337

oceanic context presented in Sec. 5, we use a formulation close to that of the Nucleus338

for European Modelling of the Ocean model (NEMO, Madec et al., 2019). The eddy-339

viscosity and diffusivity are classically assumed to be related to TKE by340

Ku = cmlm
√
k

Kϕ = Ku(Prt)
−1

with lm a mixing length scale, Prt the non-dimensional turbulent Prandtl number, and341

cm is a constant (further details on the computations of these quantities are given in Ap-342

pendix B). Details of the prognostic equation for k, in connection with energetic con-343

sistency requirements, are given in Sec. 3. We acknowledge that since ED represents tur-344

bulence in the environment, one should use the environmental TKE 1/2u′
e · u′

e instead345

as it is done in Tan et al. (2018). Although no significant effect could be seen in prelim-346

inary idealized numerical tests, this point should be further explored.347

2.3.4 Entrainment and detrainment closures348

Entrainment and detrainment closures are still a topic of extensive research in the349

atmospheric modeling community. One difficulty is that a given closure can only be spe-350

cific to a certain type of convection (de Rooy et al., 2013). To close entrainment and de-351

trainment rates3, we adapt the formulation proposed by Rio et al. (2010), namely352

E = apβ1 max(0, ∂zwp) (25)

D = −apβ2 min(0, ∂zwp) + σa
oapwpδ0 (26)

where the two parameters β1 and β2 are positive, δ0 is a positive minimum detrainment.353

In order to guarantee 0 ≤ ap ≤ 1, it is sufficient to impose 0 ≤ β1 ≤ 1 and 1 ≤ β2 <354

2 (see Appendix F).355

To summarize the formal derivation made so far, the closure of fluxes and associ-356

ated plume equations of the resulting EDMF scheme are provided in Tab. 1.357

2.4 Consistent boundary conditions for mean and plume equations358

2.4.1 General concepts359

Under the aforementioned assumptions, the budget equations governing plume quan-360

tities simplify into a system of non-linear first-order ordinary differential equations with361

respect to the variable z. Accordingly, a single boundary condition at z = 0 (i.e., the362

top of the water column or the bottom of the air column depending on the fluid under363

consideration) is sufficient for the computation of plume variables. At the boundary z =364

0, consistent boundary conditions for the plume variable Xp and the mean variable X365

must comply with the EDMF flux decomposition (24)366

w′X ′(0) = −KX∂zX(0) + ap(0)wp(0)(Xp(0)−X(0)) (27)

Such a constraint should guide modeling choices concerning boundary conditions. In-367

deed, it systematically guarantees the correct partition of surface fluxes, and thus avoids368

double-counting biases linked to non-physical energy sources/sinks at the boundary (see369

Sec. 4.5). For instance, suppose the values of w′X ′(0), ap(0), wp(0) and Xp(0) are jointly370

3 In the literature, closures are usually provided for fractional entrainment and detrainment rates, re-

spectively ϵ = E/(σa
oapwp) and δ = D/(σa

oapwp), where −apwp is the oceanic mass-flux and +apwp is the

atmospheric mass-flux.
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w′ϕ′ = apwp(ϕp − ϕ)−Kϕ∂zϕ Vertical turbulent flux for component ϕ

w′u′
h = apwp(uh,p − uh)−Ku∂zuh Vertical turbulent momentum flux

∂z(apwp) = E −D Plume area conservation equation

apwp∂zϕp = E(ϕ− ϕp) Plume equation for component ϕ
apwp∂zuh,p = E(uh − uh,p) + apwpCu∂zuh Plume horizontal momentum equation
apwp∂zwp = −bEwp + ap

{
aBp − σa

ob
′(wp)

2
}

Plume vertical velocity equation

Bp = beos(ϕp)− beos(ϕ) Buoyancy forcing term

Ku = cmlm
√
k Eddy-viscosity

Kϕ = Ku (Prt)
−1

Eddy-diffusivity

Table 1: Summary of the vertical turbulent flux formulation and plume equations in the
small area limit under the steady plume hypothesis detailed in sections 2.1, 2.2 and 2.3.
The mean terms quantities uh and ϕ are the prognostic variables of the model and the
equation for k is given in Sec. 4 and in Tab. 2.

specified. Then (27) would turn into a Robin (a.k.a type 3) boundary condition for the371

X equation which arises naturally in advection-diffusion equations (e.g. Hahn and Özişik372

(2012), chapter 1-5). At the boundary z = σa
oH, a no-flux condition is imposed for the373

mean equation. For the specific case of oceanic convection reaching the ocean bottom,374

a possibility is to add a penalization term to ensure the condition wp(z = −H) = 0.375

2.4.2 Oceanic context376

For oceanographic applications, we consider that a surface flux w′X ′(0) is prescribed.377

The mass flux component becomes non-zero close to the surface as soon as the entrain-378

ment rate (25) is itself non-zero. In this case the conservation of volume reads379

∂z(apwp) = apwp

(
β1

1

wp
∂zwp + δ0

)
which can be easily integrated vertically to obtain380

ap(z)wp(z) = (ap(0)wp(0))

(
eδ0z

(
wp(z)

wp(0)

)β1
)

As β1 < 1, non-trivial solutions are obtained if and only if non-zero boundary values381

for ap and wp are chosen. In the remainder, we adopt the following simple choice,382

Xp(0) = X(0), ap(0) = a0p, wp(0) = w0
p

where a0p and w0
p are parameters. According to (27), it implies that all the surface flux383

is allocated in the ED component, as advocated by Tan et al. (2018). This particular choice384

of boundary condition is also motivated by the fact that it implies at the discrete level385

that convection is triggered as soon as the surface Brünt-Väisälä frequency ∂zb(0) is neg-386

ative (see Appendix F for further details). As a result, (27) turns into the Neumann bound-387

ary condition −KX∂zX(0) = w′X ′(0), which is standard practice for ED-only closures.388

Alternatively, Soares et al. (2004) proposed that close to the surface, the plume/mean389

buoyancy difference Bp should depend on the surface buoyancy flux, leading to390

bp(z) = b(z) + β
w′b′(0)√

k(z)
(28)
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where β is a constant. We show in Appendix C that our formulation is in fact equiva-391

lent to (28) for if β = z/(cblb(0)) and k(z) ≃ k(0). However, when using this type of392

boundary condition exactly at the surface (as in Pergaud et al., 2009), special attention393

must be paid when providing the ED flux, since the EDMF decomposition (27) imposes394

−Kb(0)∂zb(0) =

(
1− ap(0)wp(0)β√

k(0)

)
w′b′(0)

which is different from the standard Neumann condition used for ED-only closures.395

2.4.3 Atmospheric context: consistency with Monin-Obukhov theory396

For atmospheric applications, boundary conditions for the mean variables are com-397

monly imposed using Monin-Obukhov similarity theory (MOST), which assumes that398

in a surface layer located between z = 0 and z = z1 fluxes are constant, and mean vari-399

ables obey a quasi-logarithmic profile. To properly include a surface layer obeying MOST,400

then the EDMF flux decomposition must be imposed at the new model boundary z =401

z1, namely402

w′X ′(z1) = −KX(z1)∂zX(z1) + ap(z1)wp(z1)(Xp(z1)−X(z1)) (29)

At this stage, we can point the following ambiguity. When the MF term is non-zero, it403

is not clear whether the flux arising from MOST – which is an ED flux – should be al-404

located to the ED term −KX(z1)∂zX(z1), or to the total flux w′X ′(z1) using the con-405

stant flux assumption. Although not discussed transparently, it seems that the second406

option is a common practice. However, in such a case, special attention would be required407

to compute the total flux entering in energy budget computations.408

Although beyond the scope of this article, we would like to point out that MOST is known409

to fail in strongly unstable conditions (Johansson et al., 2001; Li et al., 2018). Recently,410

Li et al. (2021) proposed corrections to formulate departure from MOST in the form of411

an EDMF closure including updraft and downdraft contributions. This approach could412

potentially help provide physically consistent boundary conditions to EDMF models.413

At this stage, we have provided all the elements and underlying assumptions re-414

quired to formulate an EDMF-type scheme (see Appendix F for the discretization as-415

pects). Before studying the energetic impacts of using MF components, we derive the-416

oretical horizontally averaged energy budgets.417

3 Horizontally Averaged Energy budgets418

The total specific energy Etot of the fluid is the sum of the mean kinetic energy Ek =419

(uh ·uh)/2, the turbulent kinetic energy k = (u′ · u′)/2, the potential energy Ep = gz420

and the mean internal energy Ei. In the following sections, we recall the expression of421

these energy reservoirs under the Boussinesq approximation, and we derive budgets for422

each of these reservoirs, regarless of flux parameterization. For completeness, energy bud-423

gets for anelastic models of dry atmosphere are derived in Appendix E.424

3.1 Kinetic energies425

Under the SCM assumptions exposed in Sec. 2.1, we can derive budgets for the re-426

solved kinetic energy Ek and the turbulent kinetic energy k:427

∂tEk + ∂zTEk
= w′u′

h · ∂zuh (30)

∂tk + ∂zTk = −w′u′
h · ∂zuh + w′b′ − ϵν (31)

where ϵν = ν∂zu′ · ∂zu′ is the viscous dissipation of energy, whereas TEk
= w′u′

h · uh428

and Tk = w′ u′·u′

2 + 1
ρ0
w′p†′−ν∂zk resdistribute energy on the vertical. Exchanges be-429

tween the resolved and subgrid reservoirs of kinetic energy are done via the mechanical430
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shear term w′u′
h·∂zuh. To close the budgets, we provide in the following sections a bud-431

get for internal and potential energy.432

3.2 Internal and Potential energies433

For a generic fluid, the unaveraged specific internal energy can be written as434

Ei = h(p, ϕ)− p

ρ
(32)

where h is the specific enthalpy and ϕ is any entropic variable describing components435

of the fluid. Under the Boussinesq approximation, internal energy is (Tailleux & Dubos,436

2023)437

Ei = h(p0, ϕ) + (pref − p0)∂ph(p0, ϕ)−
pref
ρ0

(33)

where we recall that pref(z) = −ρ0gz+p0, and the specific volume is by definition 1/ρ :=438

∂ph . In particular, this implies that under the Boussinesq approximation b(ϕ) := −g(ρ(p0, ϕ)−439

ρ0)/ρ(p0, ϕ) (e.g. sec. 3.4 of Eldred & Gay-Balmaz, 2021). The sum of unaveraged in-440

ternal and potential energies can then be written as441

Ei + Ep = z(g − b) + h(p0, ϕ)−
p0
ρ0

(34)

which leads to the unaveraged budget (Young, 2010; Tailleux, 2012)442

∂t(Ei + Ep) +∇ · ([(h(p0, ϕ) + gz]u) = ϵν − wb (35)

Upon averaging and using the SCM assumptions, the budget of mean internal energy443

Ei = E i and potential energy reads444

∂t(Ei + Ep) + ∂z(∂ϕh0 w′ϕ′) = ϵν − ∂z(ϕw′∂ϕh ′
0 + ϕ′w′∂ϕh ′

0)− w′b′ (36)

where we introduced the notation h0(ϕ) := h(p0, ϕ). Remark that if h(p0, ϕ) is linear445

in ϕ, we have closed relations h(p0, ϕ) = h(p0, ϕ) and b(ϕ) = b(ϕ).446

As a summary, the budgets of mean kinetic energy, turbulent kinetic energy and447

the sum of mean internal and potential energy are448 
∂tEk + ∂zTEk

= w′u′
h · ∂zuh

∂tk + ∂zTk = −w′u′
h · ∂zuh + w′b′ − ϵν

∂t(Ei + Ep) + ∂z(∂ϕh0 w′ϕ′) = −∂z(ϕw′∂ϕh ′
0 + ϕ′w′∂ϕh ′

0)− w′b′ + ϵν

(37)

where conversion of Ek into k occurs via mean shear, conversion of k into Ei occurs via449

viscous dissipation, and conversion of k into Ei + Ep occurs via buoyancy fluxes.450

In the following, we illustrate these budgets for dry atmosphere and seawater.451

3.2.1 Dry atmosphere452

The specific enthalpy for a dry atmosphere modeled as an ideal gas p = ρRdT is453

h(p, θ) = cp

(
p

p0

)Rd/cp

θ (38)

which is linear in the potential temperature θ = T (p/p0)
−Rd/cp . Using (33) the sum454

of mean internal and potential energy within the Boussinesq approximation is455

Ei + Ep =

(
cp −

gz

θ0

)
θ + 2gz − p0

ρ0
(39)
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and buoyancy is b(θ) = g(θ − θ0)/θ0. The budget of Ei + Ep is456

∂t(Ei + Ep) =

(
cp −

gz

θ0

)
∂tθ = ϵν − ∂z

(
cp

θ0
g
w′b′

)
− w′b′ (40)

where w′b′ = g
θ0
w′θ′. As a summary, the budgets of mean kinetic energy, turbulent ki-457

netic energy and the sum of mean internal and potential energy for a dry atmosphere within458

the Boussinesq approximation are459 
∂tEk + ∂zTEk

= w′u′
h · ∂zuh

∂tk + ∂zTk = −w′u′
h · ∂zuh + g

θ0
w′θ′ − ϵν(

cp − gz
θ0

)
∂tθ +−∂z

(
cpw′θ′

)
= − g

θ0
w′θ′ + ϵν

(41)

3.2.2 Seawater with linearized equation of state460

For an ocean with a linearized equation of state, Boussinesq buoyancy is461

b(θ, S) = gα(θ − θ0)− gβ(θ − S0) (42)

and specific enthalpy is462

h(p0, θ, S) = cpθ − gz(1 + α(θ − θ0)− β(θ − S0)) (43)

Using (33), the budget of mean internal and potential energy is463

∂t
(
cpθ − zb

)
= ϵν − ∂z

(
cpw′θ′ − zw′b′

)
− w′b′ (44)

The budgets of mean kinetic energy, turbulent kinetic energy, and the sum of mean in-464

ternal and potential energy for seawater with a linearized equation of state are465 
∂tEk + ∂zTEk

= w′u′
h · ∂zuh

∂tk + ∂zTk = −w′u′
h · ∂zuh + w′b′ − ϵν

∂t
(
cpθ − zb

)
+ ∂zTEi+Ep = −w′b′ + ϵν

(45)

Using the salt budget ∂tS = −∂zw′S′, we can split this last equation as466

∂tθ =
ϵν

cp − αgz
− ∂zw′θ′ (46)

∂t(−zb) = −zgα
ϵν

cp − αgz
+ ∂z(zw′b′)− w′b′ (47)

Since the energy increase due to viscous dissipation is negligible in the ocean, −zb is of-467

ten used as a proxy for ”potential” energy (e.g. McDougall, 2003; Olbers et al., 2012).468

We nevertheless retain this dissipative heating in (46) to work with a properly closed en-469

ergy budget in theoretical descriptions.470

4 Consistency of TKE equation with EDMF closures471

Based on the energy budgets described in the previous section, we provide a new472

parameterization of the TKE budget to obtain an energetically consistent model mim-473

icking (37). Indeed, the following TKE equation is commonly used in TKE-based nu-474

merical models regardless of whether ED or EDMF closure is used,475

∂tk + ∂z(−Kk∂zk) = Ku∂zuh · ∂zuh −Kϕ∂zb− ϵν (48)

where k represents the turbulent kinetic of the whole grid cell, i.e. 1/2u′ · u′. In (48),476

turbulent fluxes have been closed using ED. However, we argue that if an EDMF clo-477

sure is used in the mean equations (for momentum, temperature, and salinity or humid-478

ity), the TKE equation should be modified by MF terms to ensure energetic consistency479

as shown below. Note that Tan et al. (2018) made a different choice by considering a bud-480

get for the environmental TKE, ke = 1/2u′
e · u′

e.481
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4.1 Shear and Buoyancy terms482

We have seen in (37) that sources of turbulent kinetic energy could arise from the483

mean kinetic energy via mean shear −w′u′
h · ∂zuh, or from internal and potential en-484

ergies via buoyancy production w′b′.485

When the EDMF approach is used to close fluxes in the diagnostic equations of uh486

and ϕ, then the same closures must be used in turbulent kinetic energy budget to en-487

sure energetic consistency. As a consequence, the shear term must be closed as488

−w′u′
h · ∂zuh =

EDMF
− [−Ku∂zuh + apwp(uh,p − uh)] · ∂zuh (49)

In the case of dry atmosphere, the buoyancy production term is489

w′b′ =
EDMF

g

θ0

[
−Kθ∂zθ + apwp(θp − θ)

]
(50)

whereas in the case of seawater with linearized equation of state and Kϕ = Kθ = KS ,490

w′b′ =
EDMF

gα
[
−Kθ∂zθ + apwp(θp − θ)

]
− gβ

[
−KS∂zS + apwp(Sp − S)

]
= −Kϕ∂zb+ apwp(bp − b)

4.2 Fluxes of TKE491

The redistribution terms of TKE are often little discussed in turbulence parame-492

terization since they do not contribute directly to the vertically integrated energy bud-493

gets. However, they are of great importance in convective conditions where non-local trans-494

port dominates (Witek et al., 2011a). For instance, in the atmosphere, the TKE produced495

close to the surface due to destabilizing buoyancy fluxes is then transported by coher-496

ent plumes in the mixed layer. Taking into account MF transport of TKE is thus essen-497

tial to achieve local energetic consistency, and model accurately TKE at any level z.498

Turbulent fluxes of TKE arise from the contribution of a TKE transport term, a499

pressure redistribution term and a viscous flux,500

Tk =
1

2
w′u′ · u′ +

1

ρ0
w′p′ − ν∂zk (51)

For atmospheric and oceanic flow, the viscous flux is negligibly small and will be omit-501

ted. We will assume the pressure redistribution term to be small compared to the trans-502

port of TKE, as it is usually done in CBL schemes (e.g. Mellor, 1973). In numerical mod-503

els, TKE transport is usually parameterized via K-diffusion, namely504

∂z

(
w′u

′ · u′

2

)
≃ −∂z(Kk∂zk) (52)

However, within the framework exposed in section 2.1, we can apply the two-domain de-505

composition of the horizontal average to get the exact relation506

w′u
′ · u′

2
=

∑
i=e,p

ai
1

2
u′
i · u′

iw
′
i︸ ︷︷ ︸

Ii

+ ai(ui − u) · u′
iw

′
i︸ ︷︷ ︸

IIi

(53)

+ ai(wi − w)
1

2
u′
i · u′

i︸ ︷︷ ︸
IIIi

+ ai
1

2
(ui − u)2(wi − w)︸ ︷︷ ︸

IVi

where: Ii is an intra-subdomain turbulent TKE transport; IIi is a transport of Reynolds507

stress by the coherent velocities; IIIi is a transport of subdomain TKE by the coherent508

velocities (i.e. transport of TKE by mass-flux); IVi is a transport of convective kinetic509
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energy by coherent velocities. Based on LES simulations (see Sec. 5.3), we found that:510

(i) Ip can be neglected, consistently with the small area limit; (ii) IIe and IIp are almost511

compensating, thus the sum IIe + IIp can be neglected. Using apwp = −aewe, we can512

conveniently reformulate the remaining terms:513

IIIe + IIIp + IVe + IVp = apwp
1

1− ap

(
kp +

1

2
∥up − u∥2 − k

)
(54)

where we have used the following exact decomposition of TKE:514

k =
1

2
ae∥ue − u∥2 + aeke +

1

2
ap∥up − u∥2 + apkp (55)

and ki := 1/2u′
i · u′

i (i = e, p). In EDMF closures, turbulence is assumed isotropic in515

the environment, thus we close 1
2u

′
e · u′

ew
′
e with K-diffusion, similar to the standard prac-516

tice for TKE-only schemes. Then assuming 1
1−ap

≃ 1 (i.e. the small area limit) we have517

w′u
′ · u′

2
≃ −Kk∂zk︸ ︷︷ ︸

ED

+ apwp

(
kp − k +

1

2
∥up − u∥2

)
︸ ︷︷ ︸

MF

(56)

It is interesting to note that we can recover existing formulations from the proposed clo-518

sure (56): if apwp = 0 it boils down to the classical eddy-diffusivity closure; if kp = k519

and uh,p = uh the term 1/2w3
p proposed by Witek et al. (2011a) is recovered; if up =520

u then the formulation proposed by Han and Bretherton (2019) is recovered. However,521

we should mention that the latter authors treat TKE as a tracer to include the term apwp(kp−522

k). This justification is incorrect because w′u′ · u′/2 is not a second-order moment, but523

a third-order moment which requires a proper treatment as seen in (53).524

Finally, one still needs to provide a value for kp. Without any assumption, its prog-525

nostic equation reads (Tan et al., 2018, eq. (11))526

∂t(apkp) + ∂z(apwpkp) = −apw′
pu

′
h,p · ∂zuh,p + apw′

pb
′
p

+E

(
ke +

1

2
∥ue − up∥2

)
−Dkp

−∂z

(
apw′

p

u′
p · u′

p

2
+ apu′

p ·
1

ρ0
(∇p†)′p

)
−ap(ϵν)p

As a first attempt, we propose to retain advection, entrainment, detrainment and dis-527

sipation terms, which lead to the simplified form of the previous equation:528

∂z(apwpkp) = E

(
ke +

1

2
∥ue − up∥2

)
−Dkp − ap(ϵν)p (57)

= E

(
1

1− ap
k − ap

1− ap
kp +

1

1− ap

1

2
(up − u)2

)
−Dkp − ap(ϵν)p (58)

where we have used the identity (ue−up)
2 = 1

(1−ap)2
(up−u)2 and substituted ke us-529

ing (55). Using area conservation, we get the advective form530

apwp∂zkp = E
1

1− ap

(
k − kp +

1

2
(up − u)2

)
− ap(ϵν)p (59)

Finally assuming 1
1−ap

≃ 1 (i.e. the small area limit) we have531

apwp∂zkp = E

(
k − kp +

1

2
(up − u)2

)
− ap(ϵν)p (60)
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As a summary, the proposed closure of TKE transport is given by532

w′u
′ · u′

2
= −Kk∂zk + apwp

(
kp − k +

1

2
∥up − u∥2

)
(61)

apwp∂zkp = E

(
k − kp +

1

2
(up − u)2

)
− ap(ϵν)p (62)

4.3 Viscous dissipation533

The total viscous dissipation rate is often parameterized as ϵν = cϵ
lϵ
k3/2 in stan-534

dard ED schemes, we do the same for the plume viscous dissipation rate535

(ϵν)p =
cϵ
lϵ
k3/2p

where cϵ =
√
2/2 is a numerical constant and the dissipation length is lϵ =

√
lupldwn536

(e.g. Gaspar et al., 1990) with lup and ldwn defined in Appendix B.537

4.4 Boundary conditions538

In general, providing physically relevant boundary conditions for the TKE equa-539

tion is a complex question that we do not intend to answer in this study. However, once540

modelling choices are made, we can provide guidelines to utilize such boundary condi-541

tion consistently within an EDMF scheme.542

4.4.1 Generic constraint543

According to (61), the boundary condition should verify at z = 0544

w′u
′ · u′

2
= −Kk∂zk + apwp

(
kp − k +

1

2
∥up − u∥2

)
(63)

In general if plume variables are specified at z = 0, then (63) is again a Robin bound-545

ary condition for the TKE equation.546

4.4.2 Oceanic context547

In the ocean, we will assume the following boundary conditions,548

w′u
′ · u′

2
= 0, kp(0) = k(0)

along with up(0) = (u(0), v(0), w0
p). In this case, (63) implies the following Neumann549

condition for TKE,550

Kk∂zk(0) =
1

2
a0p(w

0
p)

3 (64)

Our formulation could handily include non-zero TKE flux at the surface, as proposed551

in the presence of wave-breaking (Craig & Banner, 1994; Mellor & Blumberg, 2004).552

4.4.3 Atmospheric context553

In atmospheric models, a value of TKE depending on friction and convective ve-554

locities is usually imposed at or near the surface, following field measurements of Wyngaard555

and Coté (1971). As long as the plume contribution to the surface TKE flux is imposed556

to be zero, the previous approach can be still used. If not, special care would have to be557

taken to enforce (63) and avoid spurious energy fluxes.558
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4.5 EDMF-parameterized budgets559

Within the Boussinesq approximation, the budget of resolved kinetic energy, sub-560

grid kinetic energy, and resolved internal+potential energy for a dry atmosphere with561

EDMF closure is562 
∂tEk + ∂zTEk

= −Ku(∂zuh)
2 + apwp(uh,p − uh) · ∂zuh

∂tk + ∂zTk = g
θ0

[
−Kθ∂zθ + apwp(θp − θ)

]
+Ku(∂zuh)

2 − apwp(uh,p − uh) · ∂zuh − ϵν

∂t

[(
cp − gz

θ0

)
θ
]
+ ∂zTEi+Ep

= − g
θ0

[
−Kθ∂zθ + apwp(θp − θ)

]
+ ϵν

(65)
where the flux terms are563

TEk
= (−Ku∂zuh + apwp(uh,p − uh)) · uh (66)

Tk = −Kk∂zk + apwp

(
kp − k +

1

2
∥up − u∥2

)
(67)

TEi+Ep
= −cpKθ∂zθ + cpapwp(θp − θ) (68)

Equivalently, in the case of seawater with linearized equation of state564 
∂tEk + ∂zTEk

= −Ku(∂zuh)
2 + apwp(uh,p − uh) · ∂zuh

∂tk + ∂zTk = −Kϕ∂zb+ apwp(bp − b) +Ku(∂zuh)
2 − apwp(uh,p − uh) · ∂zuh − ϵν

∂t
(
cpθ − zb

)
+ ∂zTEi+Ep = −

(
−Kϕ∂zb+ apwp(bp − b)

)
+ ϵν

(69)
where the flux of internal and potential energy is565

TEi+Ep
= −∂z

(
cp
(
−Kϕ∂zθ + apwp(θp − θ)

)
− z

(
−Kϕ∂zb+ apwp(bp − b)

))
(70)

and the conservative temperature equation is566

∂tθ =
ϵν

cp − αgz
− ∂z

(
−Kϕ∂zθ + apwp(θp − θ)

)
A summary of EDMF energy budgets is provided in Fig. 1 and in Tab. 2.567

4.6 Vertically integrated energy budgets568

In this section, we provide global energy budgets to highlight the role of mass-flux569

terms in bulk energy exchange as well as sinks/sources at boundaries. Let us introduce570

the vertical average ⟨X⟩z = 1/(σa
oH)

∫ σa
oH

0
X dz, and the boundary operator [X]

σa
oH

0 =571

1/(σa
oH)(X(z = σa

oH) −X(z = 0)). Then for any advected field X with source term572

SX , we have (see Appendix D for a detailed derivation):573

1

2
∂t

〈
X

2
〉
z

=

<0︷ ︸︸ ︷
−
〈
KX(∂zX)2

〉
z

<0︷ ︸︸ ︷
−
〈
E +D

2
(Xp −X)2

〉
z

+
〈
X SX

〉
z
+
〈
ap(SX)p(Xp −X)

〉
z

−
[
X w′X ′ + apwp

(Xp −X)2

2

]σa
oH

0

Consequently, the entrainment and detrainment processes contribute on average to de-574

creasing the mean variance, similar to eddy-diffusivity terms. Although not sufficient in575

the context of nonlinear equations, monotonically decreasing variance is usually a nec-576

essary property to ensure analytical well-posedness of transport partial differential equa-577

tions (e.g. Evans, 2010). Interestingly, the last term of the budget implies that a non-578

zero MF flux at the boundary leads to an additional sink of resolved variance (which is579

exactly compensated by an equal and opposite boundary source for X ′2).580
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Figure 1: Schematic representation of bulk and boundary energy fluxes within EDMF
closure (KE: kinetic energy, TKE: turbulent kinetic energy).

We use (71) to get the vertically integrated mean kinetic energy budget,581

∂t ⟨Ek⟩z = −
〈
Ku(∂zuh)

2
〉
z
−
〈

E +D

2(1− Cu)
(uh,p − uh)

2

〉
z

−
[
uh · w′u′

h

]σa
oH

0
−
[

apwp

2(1− Cu)
(uh,p − uh)

2

]σa
oH

0

and the vertically integrated TKE budget582

∂t ⟨k⟩z = −
〈
Kϕ∂zb

〉
z
+
〈
apwp(bp − b)

〉
z

+
〈
Ku(∂zuh)

2
〉
z
+

〈
E +D

2(1− Cu)
(uh,p − uh)

2

〉
z

−⟨ϵν⟩z − [Tk]
σa
oH

0 +

[
apwp

2(1− Cu)
(uh,p − uh)

2

]σa
oH

0

It is interesting to note that the parameterization of the plume horizontal pressure gra-583

dient introduced in 2.3.2 and characterized by the parameter Cu induces a hyperbolic584

enhancement of the transfer from Ek to k due to entrainment/detrainment processes.585

Additionally, the vertically integrated potential energy and resolved internal energy bud-586

get reads587

∂t ⟨Ei + Ep⟩z =
〈
Kϕ∂zb

〉
z
−
〈
apwp(bp − b)

〉
z
+ ⟨ϵν⟩z −

[
TEi+Ep

]σa
oHH

0
(71)

To illustrate potential biases, let us examine the atmospheric surface flux at z = 0588

TEi+Ep(0) = −cpKθ∂zθ(0) + cpap(0)wp(0)(θp(0)− θ(0))

and assume that the boundary condition is −Kθ∂zθ(0) = w′θ′(0) (for instance using589

MOST), along with a plume initialization of the form (28). Then we would have590

TEi+Ep
(0) = cpw′θ′(0) + cpw′θ′(0)

ap(0)wp(0)β√
k(0)
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∂tEk + ∂zTEk
= −Ku(∂zuh)

2 + apwp(uh,p − uh) · ∂zuh Resolved kinetic energy budget

∂t (Ei + Ep) + ∂zTEi+Ep
= −

(
−Kϕ∂zb+ apwp(bp − b)

)
+ ϵν Internal and potential energy budget

∂tk − ∂z (Kk∂zk) = Ku(∂zuh)
2 −Kϕ∂zb ED related TKE production terms

−apwp(uh,p − uh) · ∂zuh+apwp(bp − b) MF related TKE production terms

−∂z

(
apwp

[
kp − k +

1

2
∥up − u∥2

])
MF related TKE transport term

−ϵν TKE dissipation

apwp∂zkp = E

(
k − kp +

1

2
∥up − u∥2

)
− ap(ϵν)p Plume related TKE

Kk = cklm
√
k TKE eddy-diffusivity

Table 2: Complementary equations to those presented in Tab. 1, derived from energy con-
sistency constraints in Sec. 4.

where the second term leads to an unphysical source of energy for ap(0)wp(0) ̸= 0. This591

bias is due to an inconsistent partioning of the physical boundary flux cpw′θ′(0)into ED592

and MF fluxes.593

5 Evaluation of the EDMF-Energy scheme using a single column model594

In this section, we numerically evaluate the proposed EDMF formulation on three595

cases of oceanic deep convection. The first two cases are performed in an idealized set-596

ting and compared to Large Eddy Simulation (LES) data, whereas the last case is ini-597

tialized and forced with realistic data and compared to in situ measurements at the LION598

buoy in the Mediterranean Sea.599

5.1 Description of idealized cases600

The two idealized cases considered are reminiscent of typical deep convective con-601

ditions in the ocean (e.g. Marshall & Schott, 1999), where convection into a initially rest-602

ing ocean of constant stratification ∆θ = 1K/1000m (corresponding N2
0 = 1.962 ×603

10−6 s−2) is triggered by a surface cooling of Q0 = −500Wm−2 (corresponding to a604

surface buoyancy loss of B0 = −2.456 × 10−7 m2s−3). In both cases, salinity is kept605

uniform at S = 32.6 psu. The first case (FC500) consists of free convection, where no606

wind stress is applied. In the second idealized case (W005 C500) a uniform wind stress607

along the meridional direction, of magnitude (ua
∗)

2 = 0.05m2 s−2, is applied. A sum-608

mary of the parameters for each case can be found in table 3. To characterize wind-shear609

effects, we introduce the Froude number (Haghshenas & Mellado, 2019)610

Fr∗ =
uo
∗

N0L0
(72)

where the length scale L0 = (B0/N
3
0 )

1/2 can be interpreted as an Ozmidov scale (ϵν/N
3)1/2611

(Garcia & Mellado, 2014) which is a measure of the smallest eddy size affected by a back-612

ground stratification N2
0 in a turbulent field characterized by a viscous dissipation rate613

ϵν . After tf = 72h of simulation leading to a mixed layer depth h (defined as the depth614

at which the buoyancy flux is minimum) of several hundred meters, various non-dimensional615

numbers can be used to characterize the flow. Their values can be found in Tab. 4. The616

ratio of the mixed layer depth to the Obukhov length (Obukhov (1971) and Zheng et617
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Table 3: Idealized cases parameters

Case Q0 (Wm−2) (ua
∗)

2 (m2 s−2) N2
0 (s−2) tf (h) Fr∗

FC500 −500 0 1.962× 10−6 72 0
W005 C500 −500 0.05 1.962× 10−6 72 0.56

Table 4: Idealized cases non-dimensional parameters after 72 h of simulation

Case h/LOb Rih Ri∗
FC500 ∞ ∞ 97
W05 C500 5.7 310 97

al. (2021) in the oceanic context) h/LOb, where618

LOb =
(uo

∗)
3

−B0

is an estimate of the depth at which the production of TKE by turbulent shear is of the619

same order of magnitude as the production of TKE by buoyancy fluxes. Noting w∗ =620

(−B0h)
1/3 the convective velocity scale (Deardorff, 1970), we get621

h

LOb
=

(
w∗
u∗

)3

(73)

We also recall that the oceanic friction velocity uo
∗ satisfies ρo(u

o
∗)

2 = ρa(u
a
∗)

2. The Richard-622

son number at the mixed layer base,623

Rih =
N2

0(
uo
∗
h

)2
measures the destabilization by surface shear stresses of a stably stratified water column.624

At tf = 72h, the case W005 C500 can be described by h/LOb ≃ 5.7 and Rih ≃ 310,625

which corresponds to a regime of strong deepening of the MLD according to Legay et626

al. (2023). Finally, for free convection cases (no wind) a convective Richardson number627

can be built as628

Ri∗ =
N2

0

(w∗/h)2
=

N2
0h

4/3

(−B0)2/3
= Rih

(
LOb

h

)2/3

It can be interpreted as follows. The time evolution of the mixed layer depth can be ac-629

curately described by the scaling (Turner, 1979; Van Roekel et al., 2018)630

h ∝ henc (74)

where the encroachment depth is henc(t) :=
√

2 (−B0)
N2

0
t. Then the ratio of the entrain-631

ment velocity we =
d
dth to the convective velocity w∗ = (−B0h)

1/3 reads632

we

w∗
∝ Ri−1

∗ (75)

5.2 LES model description and conditional sampling633

The LES data have been generated by the Ocean-LES version of the non-hydrostatic634

model Méso-NH (Lac et al., 2018). It is solving an anelastic Lipps-Hemler system adapted635
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Figure 2: Temporal evolution of the normalized plume tendency ∂t(apXp) and plume
advection ∂z(apwpXp) terms, for the case FC500.

to the ocean, along with a linearized equation of state. The model uses a second-order636

Runge-Kutta time stepping and spatial discretization of advection operators is performed637

with a fourth-order centered scheme. Explicit subgrid scale closures are computed via638

a 3-D turbulence scheme based on a prognostic equation of the subgrid turbulent kinetic639

energy using a mixing-length scale, computed from the volume of a grid cell (Cuxart et640

al., 2000). The domain size is 1000m on the vertical and 7.5 km×7.5 km on the horizon-641

tal, where doubly periodic conditions are applied. A resolution of 10m on the vertical642

and 15m on the horizontal is used. Each configuration is run for 72 h with a time-step643

of 10 s. To assess the quality of the simulations, we checked that the subgrid TKE was644

never exceeding 20% of the TKE explicitly resolved by the LES (Pope, 2004). Via anal-645

ysis of the total TKE budget, we checked that a quasi-steady regime is reached after a646

few hours of simulation (e.g. Garcia & Mellado, 2014). Moreover, at the end of the sim-647

ulations, the typical size of coherent structures, which can be quantified by the horizon-648

tal integral length scale in the bulk of the mixed layer, is of the order O(500m) ≪ 7.5 km.649

This suggests that the horizontal domain is large enough to provide a satisfactory sam-650

pling of turbulent structures.651

To identify plumes, we use a velocity-based conditional sampling adapted from Pergaud652

et al. (2009), namely the plume area is defined as653

Ap(z, t) =
{
(x, y, z, t) such that w(z, t)− w(x, y, z, t) > m×max(

√
w2′(z, t), σmin(z, t))

}
(76)

where the minimum standard deviation is chosen as σmin(z, t) = 0.05/(−z)
∫ 0

z

√
w2′(z′, t) dz′.654

We checked that the qualitative results were not sensitive to m, and used m = 1 for655

the remainder. We do not use the tracer-based sampling of Couvreux et al. (2010) since656

it is valid only for small variations of the mixed layer depth. We neither utilize the ”strong657

updraft” sampling of (Siebesma et al., 2007) since it assumes that ap is a given constant.658

However, we checked that similar conclusions could be drawn from such samplings (not659

shown).660

5.3 Validity of the steady plume hypothesis and small area limit661

In this section, we directly evaluate the validity of the assumptions made in Sec.662

2.2 during the derivation of the proposed EDMF scheme against LES data. Fig. 2 shows663

that the plume temporal tendency terms are O(10−2) smaller than plume advective terms664

which is consistent with the scaling in 1/(N0t) derived in 2.2.3. This justifies the use of665

the steady plume hypothesis. Fig. 3 shows vertical profiles of temperature, vertical ve-666

locity, plume fractional area, and temperature flux for the FC500 case. The small area667

assumption is roughly validated, with values of ap(z) between 10% and 20% of the to-668

tal area, as exposed in previous studies (e.g. Couvreux et al., 2010). This justifies ques-669
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Figure 3: LES vertical profiles of (a) temperature, (b) vertical velocities, (c) plume frac-
tional area, (d) temperature flux and (e) TKE flux for the FC500 case after 72 h of simu-
lation. For each field, the black lines represent an horizontal average over the whole grid
cell, the blue lines represent an average over the plume area and the orange lines represent
an average over the environment area. In panel (b) the blue dotted line represents apwp,
and the gray dashed line represents the value of the free convective velocity scale w∗. In
panel (d), total flux is in black, plume fluxes in blue (MF is dashed and subplume is dot-
ted), and environment fluxes in orange (same linestyles). In panel (e) are represented the
total flux (black) and the contributions from the combined terms Ie + IIIe + IIIp + IVp

(blue), IIe + IIp (dashed gray), Ip (dash-dotted gray) and IIIp (dotted gray) (see 4.2 for
details).

tioning the relevance of this assumption and considering the system described in Appendix670

A. The convective velocity w∗ is found to be a good estimate of the plume vertical ve-671

locity wp. The contribution of the mass-flux term apwp(θp − θ) to the total tempera-672

ture flux is increasing with depth, until reaching a quasi-perfect match in the entrain-673

ment layer. The rough validity of assumption apwp(θp − θ) ≫ apw′
pθ

′
p, aewe(θe − θ) is674

consistent with the rough validity of ap ≪ 1. The plume/environment decomposition675

of the vertical transport of TKE 1/2w′u′ · u′ is presented in Fig. 3(e). The dominant676

terms exposed in (54) explain well the total flux.677

All the previous findings are also verified for the W005 C500 case (not shown).678

5.4 SCM evaluation679

In this section, we evaluate three different configurations of the SCM against LES680

data. First, a setup where only an eddy-diffusivity closure is used (refered as ”ED”), and681
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where the TKE equation (48) does not contain MF terms, which is equivalent to setting682

apwp = 0. Second, an EDMF scheme in which an ED closure of the TKE equation (48)683

is used (referred as ”EDMF”). This configuration is not energetically consistent as ex-684

plained in Sec. 4. It would be the result of a naive independent coupling of TKE and685

MF schemes. Finally, the third configuration consists of the previously detailed EDMF686

scheme in which the TKE equation is modified as in (69) to include the contribution of687

MF terms to energy transfers (referred to as ”EDMF-Energy”). Since the small area hy-688

pothesis is approximately valid in LES, we also tested the relaxed version of table 1. How-689

ever, we could not identify significant impacts on such an idealized setup (not shown).690

For the three configurations, the constants cm, cϵ, ck used in the ED terms are the same691

as the constants used in the TKE equation of the LES model. The parameters used for692

the plume equations closures have been chosen as β1 = 0.99, β2 = 1.99, a = 1.0, b =693

1.25, b′ = 0.003m−1, Cu = 0.5, a0p = 0.2, δ0 = 0.005m−1. A careful tuning and uncer-694

tainty quantification of the parameters, using for instance statistical method (e.g. Souza695

et al., 2020; Couvreux et al., 2021), is left for future studies.696

The examination of mean temperature and flux of temperature profiles shows that697

ED fails to reproduce the so-called vertical entrainment zone (e.g. Garcia & Mellado,698

2014), in which penetrative convection generates negative temperature flux and sharp-699

ens the temperature gradients at the base of the mixed layer. The lack of penetrative700

convection is known to reduce the deepening rate (e.g. chap. 6, Garratt, 1994a), thus701

producing an important bias of a hundred meters regarding the mixed layer depth com-702

pared to LES. On the other hand, EDMF and EDMF-energy equally perform in repre-703

senting these profiles. The absence of a noticeable effect of the energetic consistency on704

the temperature mean and flux profiles is a consequence of the small value of the ED fluxes705

(dashed lines) in the mixed layer. When considering the TKE profile, ED can model the706

correct order of magnitude, however, the TKE does not penetrate enough. EDMF fails707

to reproduce TKE due to energetic inconsistency. Indeed, looking at temperature and708

velocity fluxes allows us to infer that the losses of resolved energy due to buoyancy and709

shear are dominated by the MF contributions. However, such contributions are not in-710

cluded as sources of TKE for the EDMF scheme, leading to the very low levels of TKE711

observed in the simulation. EDMF-energy can reproduce accurate profiles of TKE. The712

main discrepancies arise close to the surface and at the base of the mixed layer. Neither713

ED nor EDMF can reproduce the vertical transport of TKE, whereas EDMF-energy re-714

produces well the profile. Similar conclusions are drawn from the WC005 C500 case (see715

Fig. 5).716

In Fig. 6, we represent the vertically integrated energy budget of the SCM for the717

case W005 C500 (FC500 is similar), namely the quantity718 ∫ 0

−H

∂t (Ek + k + Ei + Ep) dz +
[
TEk

+ Tk + TEi+Ep

]0
−H

(77)

As expected, EDMF-energy conserves energy, whereas EDMF does not. The energy loss719

due to inconsistent energetics is equal to720 ∫ 0

−H

(
−apwp(bp − b) + apwp(uh,p − uh) · ∂zuh

)
dz (78)

and scales with B0h.721

5.5 Realistic case: Hymex/ASICS-MED campaign722

We now move to more realistic situations corresponding to a sequence of strong con-723

vective events which were documented in the Northwestern Mediterranean during the724

winter 2013 of the HyMeX/ASICS-MED experiment at the LION buoy. This experiment725

was also carried out by Giordani et al. (2020) and we use a similar setup here (similar726

vertical grid as well as similar initial and surface boundary conditions). The experiments727
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Figure 4: Vertical profiles of (a) temperature, (b) temperature flux, (c) turbulent kinetic
energy and (d) turbulent transport of TKE for the FC500 case after 72h of simulation.
LES data (black dots), ED-only scheme (grey line), standard EDMF scheme (blue line)
and energetically consistent EDMF (orange line) are represented, along with the ED con-
tribution to the temperature fluxes (dashed lines).

are performed with a SCM similar to (6) and (7) but including additional Coriolis and728

solar penetration (using a standard Jerlov law) terms. We consider conservative tem-729

perature and salinity as entropic variables which are related to buoyancy via a nonlin-730

ear equation of state. We also include penalization terms in the SCM to account for the731

effect of the bottom (which is at a depth of 2400 m at the LION buoy). Thanks to the732

penalization term a no-slip boundary condition is imposed at the bottom and a no-gradient733

condition is imposed for tracers. The vertical grid resolution ranges from 1 m near the734

surface to 150 m near the bottom located at z = −2400 m. Parameters of the TKE735

scheme are set to the standard NEMO values, c = (cm, cϵ, ck) = (0.1,
√
2
2 , 0.1).736

A series of 30-days numerical simulations were carried out starting from January737

15, 2013. The surface boundary conditions are shown in Fig. 7. In particular, very strong738

cooling events occurred during the period of interest. Two simulations were made sys-739

tematically with an eddy-diffusivity term activated. A first simulation was done with En-740

hanced Vertical Diffusion (referred to as ED+EVD) which is the standard practice for741

climate simulations using NEMO, a second one using a mass flux scheme on tracers, dy-742

namics, and with the additional terms for energetic consistency in the TKE equation (re-743

ferred to as EDMF-energy). To get a more concrete idea of the improvements brought744

about by the mass flux scheme over the usual practice for NEMO applications (ED+EVD),745

we show in Fig. 7 (bottom panel) the temporal evolution of the mixed layer depth hmxl746

computed from mooring data and single-column numerical simulations. hmxl is defined747

as the depth where the following criterion is met748 ∫ zref

hmxl

∂zbeos(θ, S = 38.5 psu) dz =
g

ρ0
ρc

with zref = 300 m and ρc = 0.01 kg m−3. We had to consider a constant salinity in749

the buoyancy calculation because the salinity data from the LION buoy are noisy in the750

vertical and did not allow for a robust diagnostics.The bottom panel in Fig. 7 illustrates751

the fact that the penetration depth of convective plumes is significantly better represented752

by the EDMF-Energy scheme than by the ED+EVD approach. Moreover, a direct com-753

parison with temperature and salinity from mooring data is shown in Fig. 8 at differ-754

ent times. In particular several phases can be identified during the experiment (e.g. Cop-755

pola et al., 2017; Waldman et al., 2017): (i) in the period 15-25 January 2013 winter con-756

vection starts to deepen the mixed layer down to around −800 m to the point of erod-757
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Figure 5: Vertical profiles of (a) mean temperature, (b) mean zonal current, (c) turbulent
kinetic energy, (d) temperature flux, (e) zonal momentum flux, (d) turbulent transport of
TKE for the FC500 case after 72h of simulation. LES data (black dots), ED-only scheme
(grey line), standard EDMF scheme (blue line) and energetically-consistent EDMF (or-
ange line) are represented, along with the ED contribution to the temperature and mo-
mentum fluxes (dashed lines).

Figure 6: Time series of the vertically integrated energy budget (77) for the case
W005 C500 (see text for details).
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Figure 7: Time series of the friction velocity u⋆ (m s−1, top panel) and surface buoyancy
flux B0 (m2 s−3, middle panel) computed from atmospheric forcings. Time series of mixed
layer depth hmxl (m, bottom panel) obtained from observations at the LION buoy (red
line) and from single column numerical experiments using ED+EVD (solid gray line) and
EDMF-Energy (solid black line). The vertical blue lines correspond to the dates at which
the vertical temperature and salinity profiles derived from observations and numerical
simulations are compared in Fig. 8.

ing the Levantine intermediate waters. (ii) in the period 26–29 January 2013 the mixed758

layer keeps thickening to the depth of the western Mediterranean deep water (≈ −1250 m)759

(iii) in the period 4-9 February 2013 a new intense convective event associated with a760

strong Mistral event contributes to deepen the mixed layer down to the bottom (reached761

in 9 February). This is followed by a restratification phase involving horizontal processes762

that cannot be represented in our SCM formalism which explains why we do not ana-763

lyze solutions beyond February 9.764

6 Discussion and conclusion765

In this work, we have presented the theoretical derivation of an EDMF scheme with766

special attention paid to energetic aspects in a simple thermodynamic setting, for both767

dry atmosphere and seawater with linearized equation of state. During the derivation,768

we systematically reviewed the approximations used and provided both a priori scaling769

estimations, and direct evaluations of their validity on two idealized LES of oceanic con-770

vection. Closed energetics at the SCM level is a necessary step to obtain energetically771

consistent 3D models and thus reduce spurious energy biases. Theoretical horizontally772

averaged energy budgets are guiding the derivation of consistent energy budgets for SCM773

with EDMF closure. In particular, we have exposed the necessary modification of the774

standard TKE equation that incorporates EDMF terms to obtain closed energy budgets.775

Besides taking into account MF terms in shear and buoyancy terms, we propose an MF776

parameterization of TKE transport based on LES diagnostics. It generalizes previous777

formulations and implies the consideration of a subplume TKE (Han & Bretherton, 2019).778
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Figure 8: Temperature (oC, top panels) and salinity (psu, bottom panels) profiles
obtained from single column experiments at the location of the LION buoy using an
eddy-diffusivity closure with enhanced vertical diffusion (ED-EVD, solid gray lines) and
energetically-consistent EDMF (EDMF-Energy, solid black lines). Results from numerical
experiments are compared to observations from the LION buoy (dashed red lines) for 4
dates represented on the Fig. 7 by vertical blue lines.
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We also show that boundary conditions on both mean and plume variables should be779

consistent with the EDMF decomposition to avoid spurious energy fluxes at the bound-780

ary and subsequent inconsistent energetics. We evaluate the performance of the proposed781

energetically consistent EDMF scheme in the context of idealized oceanic convection. When782

compared with LES of idealized oceanic convection, our scheme can reproduce mean fields783

and vertical fluxes of temperature and momentum as well as a non-energetically closed784

EDMF scheme. However energetic consistency is key to obtaining realistic TKE and tur-785

bulent transport of TKE profiles. To further illustrate that the MF concept is a cred-786

ible alternative to the traditional approaches used in the oceanic context (using an en-787

hanced vertical diffusion or a counter gradient term à la KPP (Large et al., 1994)) the788

proposed scheme is validated in a single-column configuration against observational data789

of oceanic convection from the LION buoy.790

Even if the proposed derivation may seem tedious, the energetically consistent pa-791

rameterization obtained is rather simple to implement, whether in a code with an ex-792

isting ”non-energetically consistent” EDMF scheme or, more generally, in any code re-793

lying on a prognostic TKE equation. The MF terms are obtained by solving a straight-794

forward system of ODEs and take the form of vertical advection terms in the mean equa-795

tions (see Appendix F for practical details). The proposed approach can also be applied796

in the case where the ED closure does not use TKE. In this case, it would require to add797

a prognostic or diagnostic TKE equation (even if it does not interact with the ED term)798

to enforce energetic consistency.799

This paper was intentionally oriented toward the theoretical description of ener-800

getically consistent EDMF schemes. The first idealized test cases were not conclusive on801

several new aspects which should be further assessed using more realistic SCM/LES in-802

tercomparisons in future studies. Among these aspects, we can mention: the impact of803

choosing the total TKE k instead of the environmental TKE ke to compute eddy-diffusivities804

(sec. 2.3.3); the impact of relaxing the small-area assumption presented in Appendix A;805

the impact of energetic consistency on the accuracy of the mean fields.806

The development of energetically consistent EDMF schemes can be continued in807

several ways. First, for real-world applications, the present work has to be extended to808

more complex thermodynamics models (i.e. moist atmosphere, Pauluis (2008), and sea-809

water with a non-linear equation of state, Tailleux and Dubos (2023)). As a starting point,810

we provided in Appendix E a derivation of EDMF energy budgets in the anelastic set-811

ting from a dry atmosphere. The proposed framework is flexible enough to be readily812

extended to other coherent structures of the boundary layer contributing to transport,813

such as atmospheric downdraft (Han & Bretherton, 2019; Brient et al., 2023). For at-814

mospheric models, the ED-based Monin-Obukhov similarity theory should be reconciled815

with the EDMF representation of fluxes (Li et al., 2021) to provide unambiguous and816

consistent boundary conditions and thus avoid potential spurious boundary energy fluxes.817

To implement and then assess the impact of this energetically consistent param-818

eterization on realistic 3D oceanic simulations a calibration of the remaining ”free” pa-819

rameters must be achieved (Hourdin et al., 2017; Couvreux et al., 2021). It should be820

performed on parameters whose universality can sometimes be statistically assessed (Souza821

et al., 2020), and should be mathematically and physically constrained as much as pos-822

sible (see e.g. section 4.6). We believe that designing energetically consistent parame-823

terization is a way to achieve more realistic models before their tuning.824

Appendix A Relaxing the small area limit825

The small-area assumption can be relaxed with no additional complexity if the sub-826

plume fluxes w′
pϕ

′
p are still neglected. A summary of the EDMF-Energy parameteriza-827

tion in such a regime is presented in Tab. A1.828
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α̃ =
1

1− ap
Rescaling coefficient

w′ϕ′ = α̃apwp(ϕp − ϕ)−Kϕ∂zϕ Vertical turbulent flux for component ϕ

w′u′
h = α̃apwp(uh,p − uh)−Km∂zuh Vertical turbulent momentum flux

∂z(apwp) = E −D Plume area conservation equation

apwp∂zϕp = α̃E(ϕ− ϕp) Plume equation for component ϕ
apwp∂zuh,p = α̃E(uh − uh,p) + apwpCu∂zuh Plume horizontal momentum equation
apwp∂zwp = −(α̃b)Ewp + ap

{
aBp − σa

o (α̃b
′)w2

p

}
Plume vertical velocity equation

Bp = beos(ϕp)− beos(ϕ) Buoyancy forcing term

∂tk − ∂z (Kk∂zk) = Km(∂zuh)
2 −Kϕ∂zb ED related TKE production terms

−α̃apwp

(
(uh,p − uh) · ∂zuh − (bp − b)

)
MF related TKE production terms

−∂z

(
α̃apwp

[
kp − k +

1

2
∥up − u∥2

])
MF related TKE transport term

−ϵν TKE dissipation

apwp∂zkp = α̃E

(
(k − kp) +

1

2
∥up − u∥2

)
− ap(ϵν)p Plume related TKE

Table A1: Same as table 1, but with a relaxation of the small area limit. Note that under
the small area limit we would have α̃ ≡ 1.

Appendix B Mixing length computations829

For the oceanic applications detailed in this article, we have chosen a formulation830

of eddy-diffusivity and viscosity close to that used in the NEMO ocean model (Madec831

et al., 2019). The eddy-viscosity and diffusivity are classically assumed to be related to832

TKE by833

Ku = cmlm
√
k

Kϕ = Ku(Prt)
−1

with lm a mixing length scale, Prt the non-dimensional turbulent Prandtl number, and834

cm is a constant (cm = 0.1 in NEMO). The mixing length lm is calculated in two steps835

by considering separately the length scales lup and ldwn associated respectively to up-836

ward and downward movements : (1) lup and ldwn are initialized assuming lup = ldwn =837 √
2kτed with τed a characteristic time equal to 1/N = (∂zb)

−1 (2) a physical limitation838

is used to guarantee that lup and ldwn do not exceed the distance to the top and the bot-839

tom, this limitation amounts to controlling the vertical gradients of lup and ldwn such840

that they are not larger that the variations of depth (e.g. Madec et al., 2019). Once lup841

and ldwn are computed the mixing length is taken as lm = min (lup, ldwn). The turbu-842

lent Prandtl number is modelled by Prt = min (Prmax
t ,max (Ri/Ric, 1)) with Ri = N2/∥∂zuh∥2,843

Prmax
t = 10 and Ric = 0.2.844

Appendix C Boundary condition for plume equations845

Near the surface, we linearize the plume and mean buoyancy in the form b ≃ b0+846

b′z. Then the plume equation for bp reads at order O(z0):847

a0pw
0
pb

′
p = −E0(b

0
p − b

0
)
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The boundary condition b0p = b
0
implies that b′p = 0. Thus we get848

bp(z) ≃ b
0
, b ≃ b

0
+N2

0 z

Then near the surface, the buoyancy force - which is a source of plume momentum and849

kinetic energy 1/2w2
p - is at first order bp−b ≃ −N2

0 z. Consequently, any static insta-850

bility at the surface will result in the absolute growth of the plume vertical momentum851

(−N2
0 z > 0 in the atmosphere and −N2

0 z < 0 in the ocean).852

The boundary condition bp(0) = b(0) implies that at z = 0, all the surface flux is al-853

located in the ED component. Consequently, N2
0 = w′b′(0)/(−Kb(0)) = w′b′(0)/(cblb(0)

√
k(0)).854

The boundary condition bp(0) = b(0) thus implies that close to the surface855

bp(z) ≃ b(z) +
w′b′(0)

cblb(0)
√
k0

z

Appendix D EDMF Mean Variance Equation856

Start from the mean and plume equations, and the turbulent flux decomposition857

∂tX = −∂zw′X ′ + SX (D1)

w′X ′ = −KX∂zX + apwp(Xp −X) (D2)

apwp∂zXp = −E(Xp −X) + apSX,p (D3)

Multiplying the mean equation (D1) by X leads to858

1

2
∂tX

2
= −∂z(X w′X ′) + w′X ′∂zX +X SX

= −∂z(X w′X ′)−KX(∂zX)2 + apwp(Xp −X)∂zX +X SX (D4)

To rewrite the second term of the right-hand side, we use the plume equation (D2):859

apwp(Xp −X)∂z

=Xp+(X−Xp)︷︸︸︷
X = −E(Xp −X)2 + (Xp −X)apSX,p

−apwp
1

2
∂z(Xp −X)2

= −E(Xp −X)2 + (Xp −X)apSX,p

−∂z(apwp
1

2
(Xp −X)2)

+(E −D)
1

2
(Xp −X)2

= −(E +D)
1

2
(Xp −X)2 + (Xp −X)apSX,p

−∂z(apwp
1

2
(Xp −X)2)

Using this expression into equation (D4), then vertically integrating the variance bud-860

get leads to the desired equation (71).861

Appendix E Anelastic energy budgets862

In this appendix, we derive energy budgets for a general anelastic model commonly863

used in atmospheric models. We start with the unaveraged anelastic mass and momen-864

tum budgets:865

∇ · (ρrefu) = 0 (E1)

∂tu = −∇ · (u⊗ u)− f × u−∇
(

p†

ρref

)
+ bez + ν∇2u (E2)
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where ρref = ρref(z) is a reference density profile, and the total pressure is p(x, y, z, t) =866

pref(z) + p†(x, y, z, t) where by definition ∂zpref(z) = −ρrefg.867

As in section 3, we keep the same notations for the specific mean kinetic energy868

Ek = (uh · uh)/2, the turbulent kinetic energy k = (u′ · u′)/2, the potential energy869

Ep = gz and the mean internal energy Ei. Note however that these specific energies870

have to be multiplied by ρref to get corresponding energies.871

E1 Kinetic energies872

By using the SCM assumptions exposed in Sec. 2.1, we can derive budgets for the873

resolved kinetic energy Ek and the turbulent kinetic energy k:874

∂tEk +
1

ρref
∂zTEk

= w′u′
h · ∂zuh (E3)

∂tk +
1

ρref
∂zTk = −w′u′

h · ∂zuh + w′b′ − ϵν (E4)

where ϵν = ν∂zu′ · ∂zu′ is the viscous dissipation of energy, TEk
= ρrefw′u′

h · uh and875

Tk = ρrefw′ u′·u′

2 +w′p†′ . Exchanges between the resolved and subgrid reservoirs of ki-876

netic energy are done via the mechanical shear term w′u′
h·∂zuh. To close the budgets,877

we will provide in the following sections a budget of internal and potential energy.878

E2 Internal and Potential energies879

For a generic fluid, the unaveraged specific internal energy can be written as880

Ei = h(p, ϕ)− p

ρ
(E5)

where h is the specific enthalpy and ϕ is any entropic variable describing each compo-881

nent of the fluid. Within the context of anelastic approximation, internal energy becomes882

Ei = h(pref , ϕ)−
pref
ρref

(E6)

In particular, it implies within the anelastic approximation that b(ϕ) := −g(ρ(pref , ϕ)−883

ρref)/ρ(pref , ϕ), where the specific volume can be defined as 1/ρ(pref , ϕ) = ∂ph(pref , ϕ).884

The unaveraged budget of internal and potential energy then reads885

∂t(Ei + Ep) +
1

ρref
∇ · [ρref(h(pref , ϕ) + gz)u] = ϵν − wb (E7)

Upon averaging and using the SCM assumptions, the budget of mean internal energy886

Ei = E i and potential energy reads887

∂t(Ei + Ep) +
1

ρref
∂z(ρref∂ϕhref w′ϕ′) = ϵν − 1

ρref
∂z(ρref(ϕw′∂ϕh ′

ref + ϕ′w′∂ϕh ′
ref))− w′b′(E8)

where we introduced the notation href(ϕ) = h(pref , ϕ). Remark that if h(pref , ϕ) is lin-888

ear in ϕ, we have closed relations h(pref , ϕ) = h(pref , ϕ) and b(ϕ) = b(ϕ).889

As a summary, the budgets of mean kinetic energy, turbulent kinetic energy and890

the sum of mean internal and potential energy are891 
∂tEk + ∂zTEk

= w′u′
h · ∂zuh

∂tk + ∂zTk = −w′u′
h · ∂zuh + w′b′ − ϵν

∂t(Ei + Ep) +
1

ρref
∂z(ρref∂ϕhref w′ϕ′) = ϵν − 1

ρref
∂z(ρrefϕw′∂ϕh ′

ref + ϕ′w′∂ϕh ′
ref)− w′b′

(E9)

where conversion of Ek into k occurs via mean shear, conversion of k into Ei occurs via892

viscous dissipation, and conversion of k into Ei + Ep occurs via buoyancy fluxes.893
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For a dry atmosphere modeled as an ideal gas p = ρRdT , the specific enthalpy894

reads895

h(pref , θ) = cp

(
pref
p0

)Rd/cp

θ (E10)

which is linear in the potential temperature θ = T (p/p0)
−Rd/cp . and buoyancy is b(θ) =896

g(θ − θref)/θref . The budget of Ei + Ep is897

∂t(Ei + Ep) = cp

(
pref
p0

)Rd/cp

∂tθ = ϵν − 1

ρref
∂z

(
ρrefcp

(
pref
p0

)Rd/cp

w′θ′

)
− g

θref
w′θ′(E11)

where θref =
(

pref

p0

)−Rd/cp
pref

ρrefRd
. As a summary, the budgets of mean kinetic energy,898

turbulent kinetic energy and the sum of mean internal and potential energy for a dry at-899

mosphere within the anelastic approximation are900 
∂tEk + ∂zTEk

= w′u′
h · ∂zuh

∂tk + ∂zTk = −w′u′
h · ∂zuh + g

θref
w′θ′ − ϵν

cp

(
pref

p0

)Rd/cp
∂tθ = ϵν − 1

ρref
∂z

(
ρrefcp

(
pref

p0

)Rd/cp
w′θ′

)
− g

θref
w′θ′

(E12)

E3 EDMF-parameterized budget901

Within the anelastic approximation, the budget of resolved kinetic energy, subgrid902

kinetic energy and resolved internal+potential energy for a dry atmosphere with EDMF903

closures is904 
∂tEk + 1

ρref
∂zTEk

= −Ku(∂zuh)
2 + apwp(uh,p − uh) · ∂zuh

∂tk + 1
ρref

∂zTk = g
θref

[
−Kθ∂zθ + apwp(θp − θ)

]
+Ku(∂zuh)

2 − apwp(uh,p − uh) · ∂zuh − ϵν

∂t

[
cp

(
pref

p0

)Rd/cp
θ

]
= − 1

ρref
∂zTEi+Ep

+ ϵν − g
θref

[
−Kθ∂zθ + apwp(θp − θ)

]
(E13)

where the flux terms are905

TEk
= ρref

(
−Ku∂zuh + apwp(uh,p − uh)

)
· uh (E14)

Tk = −ρrefKk∂zk + ρrefapwp

(
kp − k +

1

2
∥up − u∥2

)
(E15)

TEi+Ep = ρrefcp

(
pref
p0

)Rd/cp (
−Kθ∂zθ + apwp(θp − θ)

)
(E16)

Appendix F Discretization of energetically consistent EDMF equa-906

tions907

We start from the standard grid arrangement used in oceanic models which are usu-908

ally discretized on a Lorenz grid in the vertical (density is located in the center of the909

cells on the vertical). We consider N grid cells in the vertical with thickness ∆zj = zj+1/2−910

zj−1/2 (z1/2 = −H and zN+1/2 = 0 the surface) such that
∑N

j=1 ∆zj = −H. Tradi-911

tionally, the turbulent quantities like turbulent kinetic energy k and eddy diffusivities912

KX are naturally located on the interfaces at zj+1/2 to avoid interpolations when com-913

puting the vertical gradients of the turbulent fluxes (Burchard, 2002). For the discrete914

values, not to interfere with the grid indices, the subscript p for the plume quantities is915

now a superscript such that plume quantities are now noted Xp
j+1/2 = Xp(z = zj+1/2).916

In the following, we consider that the plume quantities and k are discretized at cell in-917

terfaces and the mean quantities X are discretized at cell centers and are interpreted in918

a finite-volume sense (i.e. Xj =
1

∆zj

∫ zj+1/2

zj−1/2

X(z) dz). In the remainder, we consider919

the oceanic case with σa
o = −1.920
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F1 Discretization of mass-flux equations921

We consider here the mass-flux equations given in Tab. 1 but in conservative form922

(except for the vertical velocity and TKE plume equations) :923

∂z(apwp) = E −D (F1)

∂z(apwpϕp) = Eϕ−Dϕp (F2)

∂z(apwpUp) = EU −DUp (F3)

wp∂zwp = −(E/ap)(bwp) + aBp + b′w2
p (F4)

apwp∂zkp = E

(
k − kp +

1

2
(up − u)2

)
− ap(ϵν)p (F5)

where the equation for horizontal momentum has been manipulated to have the same924

form as the ϕp equation by taking Up = uh,p − Cuuh and U = (1 − Cu)uh. The ad-925

vective form is used for the wp equation to make the computation of wp independent of926

ap (with the closure hypothesis (25) for E, E/ap is independent of ap); the motivations927

for this will become clearer later. The mass-flux equations correspond to a first-order928

nonlinear set of ODEs. There are a whole lot of methods for solving such initial value929

problems. We present here a simple method combining explicit (Euler) and semi-implicit930

(Crank-Nicolson) steps as the use of more advanced methods did not produce significantly931

different results. In the following, we describe the different steps for the resolution start-932

ing from known initial values Xp
N+1/2 at the surface and advancing downward.933

F11 Initial conditions934

The discrete form of the initial conditions given in 2.4 are obtained by a linear ex-935

trapolation of ϕN and (uh)N toward the surface.936

wp
N+1/2 = −wp

min

ϕp
N+1/2 =

(2∆zN +∆zN−1)ϕN −∆zNϕN−1

∆zN +∆zN−1
(F6)

Up
N+1/2 = (1− Cu)

(2∆zN +∆zN−1)(uh)N −∆zN (uh)N−1

∆zN +∆zN−1

Since the TKE k is already discretized at cell interfaces the boundary condition for kp937

does not require an extrapolation. In particular the condition on ϕp leads to the follow-938

ing value of the Bp term in the topmost grid cell :939

Bp
N = ∆zN

(
bN − bN−1

∆zN +∆zN−1

)
=

∆zN
2

(
N2
)
N−1/2

meaning that using the condition (F6) allows to trigger convection as soon as the Brunt-940

Väisälä frequency is negative. Indeed a negative value of Bp
N in the RHS of the wp-equation941

(F4) leads to a positive value of (∂zwp)N and thus larger negative values of wp when go-942

ing downward.943

F12 wp-equation944

The wp-equation (F4) using the entrainment E given in (25) can be formulated as945

∂zw
2
p + bβ1 min(∂zw

2
p, 0) = 2aBp + 2b′w2

p

which can be discretized in a straightforward way as946

β̃
[
(wp)2j+1/2 − (wp)2j−1/2

]
= 2a∆zjB

p
j − σa

o (b
′∆zj)

[
(wp)2j+1/2 + (wp)2j−1/2

]
Bp

j = beos(ϕ
p
j+1/2)− beos(ϕj) (F7)
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where β̃ = 1 + bβ1 if aBp
j − σa

ob
′(wp)2j+1/2 is negative and β̃ = 1 otherwise. Knowing947

wp
j+1/2, it is easily found that948

(wp)2j−1/2 =
(β̃ − b′∆zj)(w

p)2j+1/2 − 2a∆zjB
p
j

β̃ + b′∆zj

Once this quantity falls below a certain threshold (wp
min)

2, the plume is considered evanes-949

cent. In the oceanic context we consider wp
j−1/2 = −

√
(wp)2j−1/2 for the rest of the cal-950

culations to guarantee that wp
j−1/2 is strictly negative. The upwinding used to compute951

Bp in (F7) in addition to the fact that the wp-equation does not depend on ap avoid the952

need for an iterative process to solve the mass-flux equations.953

F13 Continuity and tracer equations954

The entrainment Ej and detrainment Dj rates given in (25) and (26) discretized955

on a grid cell j correspond to956

∆zjEj =
1

2

(
apj+1/2 + apj−1/2

)
β1(δzw

p)+j

∆zjDj =
1

2

(
apj+1/2 + apj−1/2

)[
−β2(δzw

p)−j − δ0∆zj
2

(wp
j+1/2 + wp

j−1/2)

]

where (δzw
p)+j = max

(
wp

j+1/2 − wp
j−1/2, 0

)
and (δzw

p)−j = min
(
wp

j+1/2 − wp
j−1/2, 0

)
.957

Integrating from zj−1/2 to zj+1/2 the continuity equation and ϕp equations we obtain958

(apwp)j+1/2 − (apwp)j−1/2 = ∆zj(Ej −Dj)

(apwpϕp)j+1/2 − (apwpϕp)j−1/2 = ∆zjEjϕj − (∆zjDj/2)
(
ϕp
j+1/2 + ϕp

j−1/2

)
which can also be extended to the horizontal momentum equation formulated using Up.959

Since at this stage wp
j+1/2 and wp

j−1/2 are known, the continuity equation is used to com-960

pute apj−1/2 through961

apj−1/2 = apj+1/2

{
2wp

j+1/2 − EmDj

2wp
j−1/2 + EmDj

}

EmDj = β1(δzw
p)+j + β2(δzw

p)−j +min

{
δ0∆zj

2
(wp

j+1/2 + wp
j−1/2),−2(wp

min)

}
(F8)

Note that ap is subject to a boundedness requirement as 0 ≤ ap ≤ 1. Assuming 0 ≤962

apj+1/2 ≤ 1, sufficient conditions to guarantee that apj−1/2 ≤ 1 are β1 ≤ 1 and β2 ≥963

1 and a sufficient condition to guarantee that apj−1/2 ≥ 0 is β2 < 2. Moreover a con-964

straint is added on the background detrainment δ0 in (F8) to guarantee that apj−1/2 =965

0 as soon as wp
j+1/2 = wp

j−1/2 = −wp
min which occurs once outside the plume.966

Once apj−1/2 is known, it is possible to compute ϕp
j−1/2 (as well as Up

j−1/2). The967

proposed discretization ensures that the compatibility between the continuity and the968

tracer equations is maintained at the discrete level (i.e. we recover the continuity equa-969

tion for ϕp
j+1/2 = ϕp

j−1/2 = 1 and ϕj = 1).970

The same reasoning can be applied to solve the kp equation, which presents no ad-971

ditional difficulties as all necessary quantities wp
j±1/2, a

p
j±1/2 and up

j±1/2 are known.972

In summary, the proposed discretization guarantees that wp is strictly negative, that973

ap is bounded between 0 and 1, and that the continuity and tracer equations are com-974

patible, without the need for an iterative solution procedure.975
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F2 Energy consistent discretization of turbulent kinetic energy976

In Burchard (2002) an energetically consistent discretization of the turbulent shear977

and buoyancy production terms for the TKE equation in the ED case is derived. Such978

methodology can be extended in the EDMF case to discretize the MF-related TKE pro-979

duction terms given in magenta and cyan in Tab. 2. Starting from a simple Euler-upwind980

discretization of mass-flux terms in the uh and ϕ equations which can be written gener-981

ically for a variable X982

X
n+1

j −X
n

j

∆t
=

FMF
j+1/2 − FMF

j−1/2

∆zj

FMF
j+1/2 = (apwp)j+1/2

(
X

p

j+1/2 −X
n

j

)
the kinetic and potential energy budgets can be derived by multiplying the velocity equa-983

tions (i.e. X = u) by (un+1
j + un

j )/2 and the buoyancy equation by −zj . After some984

simple algebra, we obtain that985

(apwp(uh,p − uh) · ∂zuh)j+1/2 = (apwp)j+1/2

(
(uh)

p
j+1/2 − (uh)

n
j

)
·
(
(uh)

n+1
j+1 + (uh)

n
j+1 − (uh)

n+1
j − (uh)

n
j

2∆zj+1/2

)
(
apwp(bp − b)

)
j+1/2

= (apwp)j+1/2B
p
j

where Bp
j is given in (F7). Using these discrete forms for the MF-related TKE produc-986

tion terms combined with the discretization of the turbulent shear and buoyancy pro-987

duction terms derived in Burchard (2002) ensure the proper energy flux between resolved988

and subgrid energies.989

F3 Coupling ED and MF schemes990

In the EDMF approach, the usual vertical diffusion/viscous subgrid terms are com-991

pleted by an advective term so that the following equation must be advanced in time:992

∂tX = ∂z
(
KX∂zX

)
− ∂z

(
apwp(X

p −X)
)

(F9)

This amounts to couple a boundary layer scheme which provides KX and a convection993

scheme which provides apwp and Xp. The numerical treatment of such coupling is rarely994

discussed in the literature. This problem can be approached in 2 ways: either by inte-995

grating the 2 schemes sequentially or in parallel. For the numerical experiments discussed996

in Sec. 5 we chose a boundary layer-then-convection strategy corresponding to the fol-997

lowing temporal integration for the single-column model (leaving aside the Coriolis and998

solar penetration terms)999

ED step

ϕn+1,⋆ = ϕn +∆t∂z
(
Kϕ(k

n, bn)∂zϕ
n+1,⋆

)
un+1,⋆
h = un

h +∆t∂z

(
Ku(k

n, bn)∂zu
n+1,⋆
h

)
bn+1,⋆ = beos(ϕ

n+1,⋆)

MF step

[ap, wp, ϕp,uh,p, kp, Bp] = MF(bn+1,⋆,un+1,⋆
h )

ϕn+1 = ϕn+1,⋆ −∆t∂z
(
apwp(ϕp − ϕn+1,⋆)

)
un+1
h = un+1,⋆

h −∆t∂z

(
apwp(uh,p − un+1,⋆

h )
)

TKE update

kn+1 = kn +∆t∂z
(
Kk(k

n, bn)∂zk
n+1
)
+ Fk(b

n+1,un+1
h ,un

h, ap, wp,uh,p, kp, Bp)

where the MF(.) function represents the computation of mass-flux quantities as described1000

previously and Fk contains the TKE transport and forcing terms. The ”ED step” is clas-1001
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sically computed using an Euler backward scheme. With the proposed approach, the con-1002

vection scheme sees a state already updated by the boundary layer scheme (and by the1003

solar penetration and non-solar surface heat flux which are applied during the ”ED step”)1004

The convection scheme thus sees a state whose static stability is representative of the1005

current time-step and external forcing.1006

Ultimately, with the proposed approach, the various stages can be expressed di-1007

rectly as follows1008

ϕn+1 = ϕn +∆t∂z
(
Kϕ∂zϕ

n+1,⋆ − apwp(ϕp − ϕn+1,⋆)
)

[ap, wp, ϕp] = MF(ϕn+1,⋆)

which reflects the fact that we have good synchronization between the ED part and the1009

MF part, which see the same mean fields. On the other hand, the approach of simulta-1010

neously considering the ED and MF parts in a single tridiagonal problem would lead to1011

ϕn+1 = ϕn +∆t
(
Kϕ∂zϕ

n+1 − apwp(ϕp − ϕn+1)
)

[ap, wp, ϕp] = MF(ϕn)

In this case, the mass flux is applied to the mean fields at time n thus breaking the syn-1012

chronization between the ED and MF parts. Indeed ϕp has been computed using ϕn while1013

it is applied at time n+ 1.1014
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