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FINITE VOLUMES FOR THE GROSS-PITAEVSKII EQUATION

QUENTIN CHAULEUR

Abstract. We study the approximation by a Voronoi finite-volume scheme of the Gross-Pitaevskii
equation with time-dependent potential in two and three dimensions. We perform an explicit split-
ting scheme for the time integration alongside a two-point flux approximation scheme in space.
We rigorously analyze the error bounds relying on discrete uniform Sobolev inequalities. We also
prove the convergence of the pseudo-vorticity of the wave function. We finally perform some
numerical simulations to illustrate our theoretical results.

1. Introduction

Let Ω be an open bounded connected polygonal or polyhedral subset of Rd with d = 2 or 3 and
with Lipchitz boundary ∂Ω. For T > 0, we consider the Gross-Pitaevskii equation

(GP) i∂tψ +∆ψ = |ψ|2ψ + V (t, x)ψ

in (0, T ) × Ω with homogeneous Dirichlet boundary conditions ψ(t, x) = 0 for (t, x) ∈ (0, T ) × ∂Ω
and initial condition ψ(0) = ψ0. Equation (GP) appears as a fundamental model to describe the
evolution of Bose-Einstein condensates, a state of matter near absolute zero temperature whose dy-
namics can be described by a single wave function ψ. The time-dependent potential V = V (t, x) ∈ R
then both act as a magnetic confining potential and a stirring perturbation induced by laser beams.
When set to rotation in a strong confinement regime, Bose-Einstein condensates exhibit complex
nonlinear phenomena such as quantum turbulence, which have drawn more and more attention
from the scientific community over the last decades. In particular, the nucleation of vortices with a
quantized circulation, which are related to superfluid properties, as well as their interactions, played
an important role for irreversible energy transfer mechanisms in quantum turbulent fluids [26].

The recent developments of laser trapping and cooling has made BEC experiments very precise
in a number of complex configurations with various geometries. On the other hand, numerical
simulations are usually made on periodic fields to allow the use of the Fast Fourier Transform in
order to retain spectral accuracy, or with finite differences [4] on square or cubic lattices. This
motivates the development of new methods in order to efficiently simulate the Gross-Pitaevskii
equation on more general geometries. Here we will only assume that Ω is an open bounded connected
polygonal set, and we analyze a numerical scheme based on a finite volume approximation in space.
We perform a Two-Point Flux Approximation (TFPA) finite volume scheme, which stands as a very
popular method in numerous applications, as it is both straightforward to implement and robust.
Note that to the best of the author’s knowledge, this is the first contribution to the numerical
analysis of a finite volume scheme in the context of nonlinear dispersive PDEs. Even in the case of
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linear Schrödinger equations, the only work we are aware of is the recent paper of Bradji [6], in the
context of hybrid finite volume scheme on general nonconforming meshes.

Finite elements methods has also recently been developed for the simulation of quantum fluids, in
particular with the works of Henning and Målqvist [17] on convex domains, with GPElab developed
by Antoine and Duboscq [2, 3] or the toolbox developed by Vergez, Danaila, Auliac and Hecht [24] on
the FreeFEM++ software. Finite element methods are based on variational formulas, and usually
require an adequate functional framework that we avoid here with our finite volume approach.

For the time integration of equation (GP), we will perform a standard Lie-Trotter splitting
scheme. Alongside Runge-Kutta methods, splitting schemes are fairly popular for the explicit
numerical integration of nonlinear Schrödinger equation as pointed out in the review paper [1], and
we refer to the seminal works of Lubich [18] and Gauckler [14]. In the context of geometric numerical
integration [16], splitting methods has the advantage of being easy to implement and efficient
in terms of memory cost, while naturally preserving some important invariant of the continuous
equation, such as the mass conservation of the Gross-Pitaevskii equation

∥ψ(t)∥L2(Ω) = ∥ψ0∥L2(Ω)

for all t ∈ R. Note that equation (GP) also satisfies the energy balance law
d

dt
E(t) =

∫
Ω

∂tV (t, x)|ψ(t, x)|2dx

where
E(t) =

1

2
∥∇ψ∥2L2(Ω) +

1

2
∥ψ(t)∥4L4(Ω) +

∫
Ω

V (t, x)|ψ(t, x)|2dx.

In particular, if V = 0, the energy E is also conserved over time, and it is now a common feature
that splitting methods nearly conserved such energy over long times, see for instance [12].

From the theoretical point of view, the only work dealing with the Cauchy problem of nonlinear
Schrödinger with time dependent potential seems to be [7]. In particular this paper ensures the
existence of a unique global solution of equation (GP) on the whole space Rd for d ≤ 3, under
the condition that V (t, x) is real-valued, locally bounded in time and subquadratic in space. A
particular emphasises is also made on the growth of Sobolev norms of the solution over time.

Throughout all this paper we make the following assumption on the potential:

V ∈ C([0, T ] , H5(Ω)).

We also suppose that this assumption would reasonably induce global existence and unicity of a
smooth solution ψ ∈ C([0, T ] , H5(Ω)) with initial condition ψ0 ∈ H5(Ω) on the open bounded
subset Ω of Rd. Note that this H5-regularity assumption is already reguired for splitting schemes
with finite differences [4, Theorem 4.3.]. Following the notations from [18], we write

mk := sup
t∈[0,T ]

∥ψ(t)∥Hk(Ω) for k = 1, . . . , 5.

This paper is organized as follows. In section 2, we will recall some notations about finite volume
schemes in order to state our main result Theorem 1. Section 3 introduces some useful discrete
functional properties for the Hilbert space H1

h. In section 4 we prove an error estimate for the
semi-discretization in space of the linear free Schrödinger equation. Section 5 and section 6 are
then both devoted to the proof of Theorem 1, with respectively the convergence analysis of the
semi-discrete in time and the fully-discrete schemes. In section 7, we show the L1-convergence of
the pseudo-vorticity of the wave function, a quantity which is of interest for efficient detection of
vortices. Finally, in section 8 we perform some numerical simulations to illustrate our results.
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2. Discrete framework and main result

2.1. Finite volume notations. In order to perform a finite volume scheme on Voronoï meshes
for the Gross-Pitaevskii equation (GP), we first need to set a choice of spatial discretization. To
this end, we consider finite-volumes admissible meshes in the sense of the following definition, as
introduced in the seminal book of Eymard, Gallouët and Herbin [10].

Definition 1. (Admissible finite volume mesh).
An admissible finite-volume mesh T of Ω (see Figure 1) is given by a family of open polygonal (if
d = 2) or polyhedral (if d = 3) and convex subsets K of Ω, called control volumes of T , satisfying
the following properties:

• Ω =
⋃
K∈T K.

• If K,L ∈ T with K ̸= L then intK ∩ intL = ∅.
• If K,L ∈ T , with K ̸= L then either the (d− 1)-dimensional Lebesgue measure of K ∩L is
0 or K ∩L is the edge (if d = 2) or face (if d = 3) of the mesh denoted σ = K|L separating
the control volumes K and L.

• To each control volume K ∈ T , we associate a point xK ∈ K (called the center of K) such
that if K,L ∈ T are two neighboring control volumes, the straight line between the centers
xK and xL is orthogonal to σ = K|L.

xK xL

σ =K|L

dK|L

νK,σ

Figure 1. Notations of the mesh T associated with Ω.

In the case of Voronoï meshes, each control volume K ∈ T associated to a center xK of the is
defined by

K = {x ∈ Ω | |x− xK | < |x− xL|, ∀xL ∈ T , xL ̸= xK} .
We denote by hK = diam(K) for K ∈ T , and

h := sup
K∈T

hK

the mesh size of T , as well as dh ∈ N the number of control volumes K ∈ T of the finite-volume
mesh. We also denote by E the set of edges/faces of the mesh T , and we denote by eh the number
of edges in the mesh T . We respectively define

Eint := {σ ∈ E | σ /∈ ∂Ω} and Eext := {σ ∈ E | σ ∈ ∂Ω}
the subsets of interior and exterior edges of E . In the same vein, we denote by EK the set of edges
of any K ∈ T , as well as |K| := λd(K) the area of the control volume K, where λd stands for the
d-dimensional Lebesgue measure. In fact, regular Voronoï meshes often satisfy

(boundary) EK ∩ Eext ̸= ∅ ⇒ xK ∈ ∂Ω,
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a property that we will always assume in the following. Moreover, for K and L two neighboring
control volumes of T , we denote by σ = K|L ∈ Eint their common edge, and by |σ| = λd−1(σ) the
length (for d = 2) or area (for d = 3) of σ. We also denote by dK|L the distance between xK and
xL, and by dK,σ the length of the segment between xK and σ, orthogonal to σ, if σ ∈ Eint. Once
again, we refer to Figure 1 for an illustration of these notations in dimension d = 2. Note that in
the case of (isotropic) Voronoï meshes, we have

(iso) dK,σ =
dK|L

2
, for σ = K|L ∈ Eint,

a property which will be useful in our upcoming analysis.
The use of the Voronoï method to produce admissible finite volume meshes goes back to the work

of Mishev [20] and has now proven being powerful in a number of applications [13]. As pointed in [10,
Example 9.2], an advantage of the Voronoï method is that it easily leads to meshes on non polygonal
domain Ω, which might be of interest for physical applications. Note also that a relationship can be
established between TPFA scheme on Voronoi meshes and generalized mixed-hybrid mimetic finite
difference method, and super-convergence can occur [9].

In two dimension, a usual way to construct meshes satisfying the orthogonality property (xK , xL) ⊥
σ is to partition Ω into a conforming triangulation with acute triangles called Delaunay triangula-
tion, and to take each xK as the circumcenter of K. This method is one of the most popular in
computational mesh generation, and the dual mesh then corresponds to a Voronoï admissible finite
volume mesh, leading to the use of discrete duality finite volume (DDFV) schemes [21]. Note that
we will not exploit this duality property in the forthcoming analysis.

We will also assume the following regularity constraint on the mesh T : there exists 0 < ξ < 1
independent of h such that

(reg) hKξ ≤ dK,σ ≤ hK and hd−1
K ξ ≤ |σ| ≤ hd−1

K

for any K ∈ T and σ ∈ EK . We define the following discrete norms:

Definition 2. (Discrete spaces).
Let U = (UK)K ∈ Cdh and 1 ≤ p <∞. We define the Lph and L∞

h norms of U by

∥U∥p
Lp

h
=
∑
K∈T

|K||UK |p and ∥U∥L∞
h

= max
K∈T

|UK |,

as well as the H1
h semi-norm by

∥U∥2H1
h
=
∑
σ∈Eint

|σ|
dK|L

|UL − UK |2.

Note that the discrete Poincaré inequality (see [10, Lemma 9.1]) gives that

∥U∥L2
h
≤ diam(Ω)∥U∥H1

h
,

so that the semi-norm ∥·∥H1
h

is in fact a norm. Finally we define the pointwise evaluation operator Ph
of any continuous function f ∈ C(Ω) by

(Phf)K = f(xK) ∀K ∈ T .
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2.2. Splitting, finite volume scheme and main result. Let 0 < τ ≤ 1 be the time step size
and tn = nτ for n ∈ {0, . . . , N} such that T = Nτ . We denote by U0 = Ph(ψ0) the projection
of the initial state ψ0. We denote by A the matrix of the discrete Laplace operator defined for all
K ∈ T by

(AU)K =
1

|K|
∑

σ∈EK∩Eint

|σ|
dK|L

(UL − UK).

We also denote by

Gn(τ, x) =

∫ τ

0

V (tn + s, x)ds

the time antiderivative of V for all x ∈ Ω, and we will assume that Gn can be evaluated exactly.
We then define recursively our numerical scheme by a classical Lie-Trotter split-step

(LT) Un = eiτAe−iPhGn(τ)e−iτ |Un−1|2Un−1, U0 = Ph(ψ0),

for 0 ≤ n ≤ N , where multiplication between vectors of Cdh has to be taken pointwise. We now
state the main result of this work:

Theorem 1. Let T be an admissible finite-volume Voronoï mesh of Ω satisfying the regularity
properties (boundary)-(iso)-(reg). Let ψ0 ∈ H5(Ω) and T > 0. We assume that there exists a
unique solution ψ ∈ C([0, T ] ;H5(Ω)) of the Gross-Pitaevskii equation (GP) with ψ(0) = ψ0. Let
U0 = Phψ0, and we denote by (Un)0≤n≤N the sequence defined via the splitting method (LT). Then
there exists τ0 > 0 and h0 > 0 such that for 0 ≤ n ≤ N = T/τ , for all 0 < τ ≤ τ0 and 0 < h ≤ h0
satisfying the CFL-condition τ | log h|2 ≤ 1 for d = 2 or τ ≤ h for d = 3, we have

∥Phψ(tn)− Un∥H1
h
≤ C(h+ τ),

where C = C(m5, T, ∥V ∥L∞
T H5 , ε) and recalling that m5 = supt∈[0,T ] ∥ψ(t)∥H5(Ω).

We make the following comments:
• As mentionned in the introduction, this splitting scheme naturally preserves the L2-norm

of the solution
∥Un∥L2

h
= ∥U0∥L2

h
∀0 ≤ n ≤ N,

making the scheme (LT) unconditionnaly stable in L2.
• One may also consider the Strang splitting scheme recursively defined by

Un = e−i
τ
2 |Un−1|2e

−iPhGn+1
2
( τ
2 )eiτAe−iPhGn(

τ
2 )e−i

τ
2 |Un−1|2Un−1,

with tn+ 1
2
= tn+tn+1

2 , taking advantage of computing once the Laplace operator part at each
step (which will be the most costly from the finite volume perspective) along theoretically
recovering a second order method in time which still preserves the L2-norm of the initial
state. Note however that the proof is more tedious so we omit it here. Higher order methods
for the time discretization can thoroughly be considered, and we refer the interested reader
to the book of Hairer, Lubich and Wanner [16].

• On the contrary, higher order methods for space discretization is generally a challenging
task in the finite volume framework, and might be an interesting topic of research for future
works.

We end this section with some notations. The Lp(Ω) and Hk(Ω) spaces will be written with the
compact notation Lp and Hk in equation mode for conciseness purposes, as there is no ambiguity
with the finite-dimensional spaces Lph and H1

h. The same way, the uniform norm on a time interval
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[0, T ] will be denoted ∥ · ∥L∞
T

. We also refer to polygonal control volumes K and edges σ as in
the two-dimensional case d = 2, even if it means polyhedral and faces for d = 3. If not mention
otherwise, an edge σ ∈ Eint is systematically associated to control volumes K and L ∈ T such that
σ = K|L in summations.

3. Discrete functional analysis

3.1. Discrete gradients.

Definition 3. (Discrete gradient).
We denote by ∇h

E the discrete gradient operator mapping scalar fields U ∈ Cdh into vector fields
of (C2)eh (where we recall that eh denotes the number of edges in the mesh T ), where ∇h

EU =
(∇h

E,σ)σ∈E is defined by

∇h
E,σU :=


d
UL − UK
dK|L

νK,σ if σ = K|L ∈ Eint,

− d
UK
dK|L

νK,σ if σ ∈ Eext.

Note that ∇h
EU is considered as a piecewise constant function on the diamond cells Dσ for any

edge σ ∈ E , which are defined (see Figure 2) as the open quadrangle whose diagonals are the edge σ
and the segment [xK , xL] for σ = K|L ∈ Eint.

xK xL
Dσ

σ

Figure 2. Diamond cell Dσ for σ ∈ Eint

We also state the discrete equivalent of the usual integration by parts formula in the context of
finite-volume schemes: for U , Ũ ∈ Cdh , we have∑

K∈T

∑
σ∈EK∩Eint

|σ|
dK|L

(Uk − UL)ŨK =
∑
σ∈Eint

|σ|
dK|L

(Uk − UL)(ŨK − ŨL)

rearranging the sum on the left-hand side.

3.2. Discrete Gagliardo-Nirenberg inequalities. From classical Sobolev embeddings, we know
that ∥f∥L∞(Ω) ≤ CΩ,ε∥f∥H1+ε(Ω) with d = 2 or ∥f∥L∞(Ω) ≤ CΩ,ε∥f∥

H
3
2
+ε(Ω)

with d = 3 for
any ε > 0, however these estimates do not hold for ε = 0. However, taking advantage of the
discrete structures of the space H1

h, and relying on inverse estimate for discrete Lebesgue space as
well as discrete Sobolev embeddings [5] for Lph norms, one can show non-uniform discrete Sobolev
embeddings for L∞

h norm.
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Lemma 1. Let Ω ⊂ Rd be a connected bounded open polygonal or polyhedral set, and T an admis-
sible finite-volume mesh with mesh size h > 0 satisfying the regularity property (reg). Then there
exists a constant C = CΩ,ξ > 0 such that

∥U∥L∞
h

≤ CΩ,ξ

{| log h|∥U∥H1
h

if d = 2,

h−
1
2 ∥U∥H1

h
if d = 3.

Proof. We only sketch the proof for d = 2, which can also be found in [8, Corollary 1] for d = 2, 3.
There exists K0 ∈ T such that ∥U∥L∞

h
= |U(K0)|, so

∥U∥L∞
h

≤ Ch−
2
p ∥U∥Lp

h

where C = C(ξ) depends on the regularity of the mesh. From [5], we then have the discrete
Gagliardo-Nirenberg inequality

∥U∥Lp
h
≤ CΩ,ξp∥U∥H1

h
.

as the constant C(p) depends linearly on p ≥ 1 in the proof of [5, Theorem 4.3]. We then infer that

∥U∥L∞
h

≤ Ch−
2
p p∥U∥H1

h

so taking p = | log h| gives the result. □

Lemma 2. Let Ω ⊂ Rd be a connected bounded open polygonal or polyhedral set, and T an admis-
sible finite-volume mesh with mesh size h > 0 satisfying the regularity property (reg). Then there
exists a constant C = CΩ,ξ > 0 such that

∥UW∥H1
h
≤ CΩ,ξ

{| log h|∥U∥H1
h
∥W∥H1

h
if d = 2,

h−
1
2 ∥U∥H1

h
∥W∥H1

h
if d = 3.

Proof. We write

∥UW∥2H1
h
=
∑
σ∈Eint

mσ

dσ
|ULWL − UKWK |2 ≲

∑
σ∈Eint

mσ

dσ
|uL|2|vL − vK |2 +

∑
σ∈Eint

mσ

dσ
|WK |2|UL − UK |2

so that
∥UW∥H1

h
≲
(
∥U∥L∞

h
∥W∥H1

h
+ ∥U∥H1

h
∥W∥L∞

h

)
and we conclude using Lemma 1. □

We finally state an estimate which will be useful in the analysis of the stability of the nonlinear
discrete flow of our splitting method.

Lemma 3. Let t ∈ R and U , W ∈ Cdh , then there exists a constant C = Cd,ξ,Ω > 0 independent
of h such that

∥eit|U |2U − eit|W |2∥H1
h

≤ 1 + C|t|
(
∥∇h

EU∥L∞
h

(
∥U∥L∞

h
+ ∥W∥L∞

h

)
(1 + |t|∥U∥L∞

h
) + ∥W∥2L∞

h

)
∥U −W∥H1

h
.

Proof. Let’s first recall that

∥eit|U |2U − eit|W |2W∥2
Ḣ1

h

=
∑
σ∈Eint

|σ|
dK|L

∣∣∣eit|UK |2UK − eit|WK |2WK − eit|UL|2UL + eit|WL|2WL

∣∣∣2 .
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We can write that∣∣∣eit|UK |2UK − eit|WK |2WK − eit|UL|2UL + eit|WL|2WL

∣∣∣
=
∣∣∣eit|UL|2(UK − UL)− eit|WL|2(WK −WL) +

(
eit(|UL|2−|UK |2) − 1

)
eit|UK |2UK

−
(
eit(|WL|2−|WK |2) − 1

)
eit|WK |2WK

∣∣∣
=
∣∣∣(UK − UL)− (WK −WL) + (UK − UL)

(
eit(|UL|2−|WL|2) − 1

)
(
eit(|UL|2−|UK |2) − 1

)
UK −

(
eit(|WL|2−|WK |2) − 1

)
WK

+
(
eit(|UL|2−|UK |2) − 1

)(
eit(|UL|2−|WL|2) − 1

)
UK

∣∣∣
≤ |(UK − UL)− (WK −WL)|+ |t||UK − UL| (|UL|+ |WL|) |UL −WL|

+
∣∣∣(eit(|UL|2−|UK |2) − 1

)
UK −

(
eit(|WL|2−|WK |2) − 1

)
WK

∣∣∣︸ ︷︷ ︸
=: AK,L

+ t2 (|UL|+ |UK |) |UL − UK ||UK | (|UL|+ |WL|) |UL −WL|,
and we can bound the third term AK,L by

AK,L =
∣∣∣(eit(|UL|2−|UK |2) − 1

)
(UK −WK) +

(
eit(|UL|2−|UK |2) − eit(|WL|2−|WK |2)

)
WK

∣∣∣
≤ |t| (|UL|+ |UK |) |UL − UK ||UK −WK |+ |t|

∣∣|UL|2 − |UK |2 − |WK |2 + |WL|2
∣∣ |WK |

≤ |t| (|UL|+ |UK |) |UL − UK ||UK −WK |+ |t||WK ||UL − UK | (|UL −WL|+ |UK −WK |)
+ |t||WK | (|WL|+ |WK |) |UL −WL − UK +WK |

after elementary computations and using that ||a| − |b|| ≤ |a − b| for any a, b ∈ C. In order to get
the final estimate, we first remark that for σ = K|L ∈ Eint, we have

|σ|
dK|L

|UK − UL|2|WK − UK |2 = |σ|dK|L

∣∣∣∣UK − UL
dK|L

∣∣∣∣2 |WK − UK |2

≤
∥∇h

EU∥2L∞
h

d2ξ
|σ|dK,σ|WK − UK |2

≤
∥∇h

EU∥2L∞
h

d2ξ

(
|σ|dK,σ|WK − UK |2 + |σ|dL,σ|WL − UL|2

)
using the regularity assumption of the mesh T , so summing over σ ∈ Eint, we infer that∑

σ∈Eint

|σ|
dK|L

|UK − UL|2|WK − UK |2 ≤ ∥∇h
EU∥2L∞

d2ξ

∑
K∈T

|K||WK − UK |2.

Estimating each term in the given order, we then infer that

∥eit|U |2U − eit|W |2W∥H1
h
≤ ∥U −W∥H1

h
+ |t|Cd,ξ∥∇h

EU∥L∞
h

(
∥U∥L∞

h
+ ∥W∥L∞

h

)
∥U −W∥L2

h

+ 2|t|∥W∥2L∞
h
∥U −W∥H1

h
+ 2t2∥∇h

EU∥L∞
h
∥U∥L∞

h

(
∥U∥L∞

h
+ ∥W∥L∞

h

)
∥U −W∥L2

h
,

and we get the result using the discrete Poincaré inequality. □
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3.3. Interpolants. In this section we compare the pointwise interpolant Ph with the mean inter-
polant πh defined by

(πhφ)K = φK :=
1

|K|

∫
K

φ(x)dx

for all K ∈ T and φ ∈ L1(Ω).

Lemma 4. There exists a constant Cξ > 0 depending only on the regularity ξ of the mesh T such
that for all φ ∈ H1(Ω), we have

∥πhφ∥H1
h
≤ Cξ∥φ∥H1 .

Proof. We recall that

(1) ∥πhφ∥2H1
h
=
∑
σ∈Eint

|σ|
dK|L

|φK − φL|2.

For σ ∈ Eint, we denote

φσ =
1

|σ|

∫
σ

φ(x)dγ(x).

From [9, Lemma B.6.] we infer that there exists Cξ > 0 such that

|φK − φL|2 ≤ 2
(
|φK − φσ|2 + |φσ − φL|2

)
≤ Cξ

|σ|

(
hK

∫
K

|∇φ(x)|2dx+ hL

∫
L

|∇φ(x)|2dx
)
.

Multiplying this inequality by |σ|/dK|L and summing over the edges σ ∈ Eint, we get that∑
σ∈Eint

|σ|
dK|L

|φK − φL|2 ≤ 2C̃ξ

∫
Ω

|∇φ(x)|2dx

where C̃ξ > 0, recalling that

hK
dK|L

=
hK

dK,σ + dL,σ
≤ hK
dK,σ

≤ ξ−1,

which gives the result by Poincaré inequality. □

Lemma 5. Let φ ∈ H3(Ω), then

∥Phφ− πhφ∥H1
h
≤ Ch∥φ∥H3 .

In particular, we infer that

∥Phφ∥H1
h
≤ C (∥φ∥H1 + h∥φ∥H3) ≤ C∥φ∥H3

as soon as h ≤ 1.

Proof. The second inequality of this lemma is direct in view of Lemma 4, so we focus on the first
one. First we write that

∥Phφ− πhφ∥2H1
h
=
∑
σ∈Eint

|σ|
dK|L

|φ(xK)− φK − φ(xL) + φL|2.

For K ∈ T and for a.e. x ∈ K, we have by Taylor expansion that

φ(x)− φ(xK) =

∫ 1

0

∇φ(txK + (1− t)x) · (x− xK)dt.
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Integrating this expression over x ∈ K and dividing by |K|, we get that

φK − φ(xK) =
1

|K|

∫
K

∫ 1

0

∇φ(txK + (1− t)x) · (x− xK)dtdx.

As |x− xK |2 ≤ h2K , this implies that

|σ|
dK,σ

|φK − φ(xK)|2 =
|σ|
dK,σ

h2K sup
y∈K

|∇φ(y)|2.

We conclude remarking that

|σ|
dK|L

|φ(xK)− φK − φ(xL) + φL|2 ≤ 2|σ|
(
|φK − φ(xK)|2

dK,σ
+

|φL − φ(xL)|2

dL,σ

)
,

so summing over σ ∈ Eint gives that

∥Phφ− πhφ∥2H1
h
≲ h2∥∇φ∥2L∞ ≲ h2∥φ∥2H3 .

□

4. The linear case

We first state a useful isometry property concerning the linear flow of the discrete Schrödinger
operator with respect to discrete Hilbert Sobolev spaces, which plays a fundamental role in the
study of dispersive equations:

Lemma 6. For all t ∈ R and U ∈ Cdh , we have

∥eitAU∥H1
h
= ∥U∥H1

h
.

Proof. We denote by ⟨·, ·⟩T the L2-inner product induced by the mesh T , defined by

⟨U,W ⟩T =
∑
K∈K

|K|UKWK

for all U , W ∈ Cdh . From the definition (2.2) of the discrete laplace operator A and by discrete
integration by parts, we have

⟨AU,U⟩T =
∑
K∈T

|K|UK

(
1

|K|
∑

σ∈EK∩Eint

|σ|
dK|L

(UL − UK)

)
=
∑
σ∈Eint

|σ|
dK,L

|UK − UL|2 = ∥U∥2H1
h
.

In particular, as A is a real and symmetric matrix with respect to the inner product ⟨·, ·⟩T , so eitA
is unitary for all t ∈ R and we get that

∥eitAU∥H1
h
= ⟨AeitAU, eitAU⟩T = ⟨eitAAU, eitAU⟩T = ⟨AU, e−itAeitAU⟩T = ∥U∥H1

h
.

□

We now focus on the error performed by the TPFA scheme (2.2) on the semi-discretization of
the linear flow on our Voronoï mesh:

Proposition 1. Let φ ∈ H5(Ω) and t ≥ 0, then

∥Pheit∆φ− eitAPhφ∥H1
h
≤ Cht∥φ∥H5(Ω)

where C = C(d,Ω, ξ) > 0.
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Proof. By the isometry property of Lemma 6 we define ϕ such that

∥Pheiτ∆φ− eiτAPhφ∥H1
h
= ∥ e−itAPheit∆φ︸ ︷︷ ︸

=:ϕ(t)

− Phφ︸︷︷︸
=ϕ(0)

∥H1
h
,

so differentiating with respect to time we get that ϕ satisfies the equation

∂tϕ = −iAϕ+ ie−itAPh∆e
it∆φ

= −iAϕ+ ie−itAAPh∆e
it∆φ+ ie−itA(Ph∆−APh)e

it∆φ

= ie−itA(Ph∆−APh)e
it∆φ

= ie−itA(Ph∆− πh∆)eit∆φ+ ie−itA(πh∆−APh)e
it∆φ

Integrating and by isometry, we infer

(2) ∥ϕ(t)− ϕ(0)∥H1
h
≤
∫ t

0

∥(Ph∆− πh∆)eit∆φ∥H1
h
+

∫ τ

0

∥(πh∆−APh)e
iτ∆φ∥H1

h

From Lemma 5 we know that∫ t

0

∥(Ph∆− πh∆)eit∆φ∥H1
h
≤ Ch∥∆eit∆φ∥H3 ≤ Cht∥φ∥H5 ,

We now focus on the estimate for the second term on the right hand side of (2), and we denote by
u = eit∆φ ∈ H5(Ω), so that ∆u ∈ H3(Ω) ⊂ C(Ω) as d = 2, 3. We write that for any K ∈ Tint,

(APhu− πh∆u)K =
1

|K|
∑
σ∈EK

|σ|
(
u(xL)− u(xK)

dK|L
− 1

|σ|

∫
σ

∇u · νK,σdγ(x)
)

=
1

|K|
∑
σ∈EK

|σ|Rk,σ,

where RK,σ denotes the consistency error of the flux approximation. By Taylor expansions

u(xL)− u(xK) = (xL − xK) · ∇u(xK) +
1

2
(xL − xK) ·H(xK)(xL − xK)

+
1

6

∫ 1

0

d∑
j=1

d∑
k=1

d∑
ℓ=1

∂xj∂xk
∂xℓ

u(txk + (1− t)xL)(xL,j − xK,j)(xL,k − xK,k)(xL,ℓ − xK,ℓ)t
2dt

and

∇u(x) = ∇u(xK)+H(xK)(x−xK)+
1

2

∫ 1

0

d∑
j=1

d∑
k=1

(xj−xK,j)(xk−xK,k)∂xj
∂xk

∇u(txK+(1−t)x)tdt,

so integrating the last equation on σ and recalling that νK,σ = xK−xL

dK|L
, we infer∫

σ

∇u(x) · νK,σdγ(x) = |σ|∇u(xK) · xL − xK
dK|L

+H(xK)

∫
σ

(x− xK) · νK,σdγ(x)

+
1

2

∫
σ

∫ 1

0

d∑
j=1

d∑
k=1

(xj − xK,j)(xk − xK,k)∂xj
∂xk

∇u(txK + (1− t)x) · νK,σdγ(x)tdt.

As |xL − xk|, |x− xK | ≤ 2h for all x ∈ σ, we have
1

dK|L
|∂xj

∂xk
∂xℓ

u(txk + (1− t)xL)||xL − xK |3 ≤ Cξh
2∥∂xj

∂xk
∂xℓ

u∥L∞
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and
1

|σ|

∫
σ

|x− xK |2
∣∣∂xj

∂xk
∇u(txK + (1− t)x) · νK,σdγ(x)

∣∣ ≤ h2∥∂xj
∂xk

∇u∥L∞

for all 1 ≤ j, k, ℓ ≤ d and 0 ≤ t ≤ 1 by regularity assumption on the mesh (reg) and as u ∈ H5(Ω),
similarly to the proof of [10, Theorem 9.3] we then get that

RK,σ =
1

2

xL − xK
dK|L

·H(xK)(xL − xK)− 1

|σ|
H(xK)

∫
σ

(x− xK) · νK,σdγ(x) +O(h2).

We now decompose our vector x ∈ σ as

x = xK + dK,σ
xL − xK
dK|L

+ s(x)(xL − xK)⊥

where s is a parametrization parameter, which allows to write that∫
σ

(x− xK) · νK,σdγ(x) =
dK,σ
dK|L

∫
σ

(xL − xK) · νK,σdγ(x) +
∫
σ

s(x)(xL − xK)⊥ · νK,σdγ(x)

=
dK,σ
dK|L

(xL − xK) · xL − xK
dK|L

|σ|

as we know that the segments [xK , xL] and σ are orthogonal. Now we exploit the fact that on
Voronoï meshes satisfying assumption (iso), we have 2dK,σ = dK|L so RK,σ = O(h2). Note that if
K ∈ Text, a similar proof holds taking u(xK) = 0 as xK ∈ ∂Ω. Summing over σ ∈ Eint, we get that

∥APhu− πh∆u∥2H1
h
=

∑
σ=K|L

|σ|
dK|L

∣∣∣∣∣∣ 1

|K|
∑

σ∈Eint∩EK

|σ|RK,σ − 1

|L|
∑

σ̃∈Eint∩EL

|σ̃|RK,σ̃

∣∣∣∣∣∣
2

≲
∑

σ=K|L

|σ|
dK|L

∣∣∣∣∣ 1

|K|
∑

σ∈Eint∩EK

|σ|RK,σ

∣∣∣∣∣
2

+

∣∣∣∣∣∣ 1|L|
∑

σ̃∈Eint∩EL

|σ̃|RK,σ̃

∣∣∣∣∣∣
2


≲
∑

σ=K|L

|σ|
dK|L

∣∣∣∣∣ 1

|K|
∑

σ∈Eint∩EK

hd+1

∣∣∣∣∣
2

+

∣∣∣∣∣∣ 1|L|
∑

σ̃∈Eint∩EL

hd+1

∣∣∣∣∣∣
2


≲
∑

σ=K|L

|σ|
dK|L

h2 ≲ Ch2,

where we have used the fact that there is a uniformly bounded number of edges (or faces) by control
volume K, as

hdK ≥ |K| =
∑

σ∈EK∩Eint

|σ|dK,σ
d

≥
∑

σ∈EK∩Eint

hdK
dξ2

=
|EK |
dξ2

hdK ,

which ends the proof. □

5. Semi-discretization in time and splitting integration

5.1. Scheme, notations and first properties. We now describe the semi-discretization in time
of the Gross-Pitaevskii equation using a Lie-Trotter scheme. The analysis of such splitting methods
for nonlinear Schrödinger equations are now well understood (in particular we refer to the recent
work [23]), and we briefly give its proof here mainly for clearness and completeness purposes.
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The operator splitting methods for the time integration of equation (GP) are based on the
following splitting

∂tψ = A(ψ) +B(ψ),

where
A(ψ) = i∆ψ, B(ψ) = −i|ψ|2ψ − iV ψ,

and the solutions of the subproblems{
i∂tv(t, x) = −∆v(t, x), v(0, x) = v0(x),

i∂tw(t, x) = |w(t, x)|2w(t, x) + V (t, x)w(t, x), w(0, x) = w0(x),

for all x ∈ Ω and t > 0. The associated operators are explicitly given for t > 0 by the flows

v(τ) = ΦτA(v0) := eiτ∆v0

and
w(τ) = Φt,τB (w0) := e−i

∫ τ
0
V (t+s)ds−iτ |w0|2w0.

We denote by u0 = ψ0 the initial state. The Lie-Trotter splitting scheme then recursively reads as

(LTSP) un = Φtn−1,τ (un−1), n ≥ 1, Φt,τ := ΦτA ◦ Φt,τB
for t ≥ 0. The analysis of such splitting method relies on two main ingredients. We will extensively
use the algebra property of Sobolev spaces in dimension d = 2 or 3, namely

∥fg∥H3 ≤ Cd∥f∥H3∥g∥H3

where Cd = C(d,Ω) > 0, as well as other classical Sobolev estimates for products. We also
emphasize that the flows ΦτA and Φt,τB enjoy the following isometric properties: for all k ∈ N,

∥ΦtA(u)∥Hk = ∥u∥Hk and ∥Φt,τB (u)∥L2 = ∥u∥L2

for any t ≥ 0. It then naturally follows that the (LTSP) scheme preserves the L2-norm of the initial
state, namely for all t ≥ 0,

∥un∥L2 = ∥Φtn−1,τ (un−1)∥L2 = ∥un−1∥L2 = · · · = ∥u0∥L2 = ∥ψ0∥L2 ,

which makes it particularly appealing from the numerical point of view.

5.2. Error estimate. We denote by

Bm3 =
{
v ∈ H3(Ω)

∣∣ ∥v∥H3 ≤ m3

}
the ball of radius m3 = ∥ψ∥L∞

T H3 . We rely on two properties of the flow Φt,τ in order to show its
first order convergence, the stability property and the local error in H3(Ω), that we now state and
prove:

Lemma 7. (Stability).
Let f, g ∈ Bm3

and 0 ≤ t ≤ T − τ , then

∥Φt,τf − Φt,τg∥H3 ≤ eMτ∥f − g∥H3

where M =M(d,m3, ∥V ∥L∞
T H3) > 0.
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Proof. Let’s first note that for any u ∈ H3(Ω), we have ∇(e−iτ |u|
2

) = −2iτ Re(u∇u)e−iτ |u|2 ,

∆(e−iτ |u|
2

) = −2iτ (∇u · ∇u+ u∆u− 2iτ Re(u∇u) · Re(u∇u)) e−iτ |u|
2

,

and

∇∆(e−iτ |u|
2

) = −2iτ (∇(∇u · ∇u) + u∇∆u+∇u∆u− 2iτ∇(Re(u∇u) · Re(u∇u))

−2iτ Re(u∇u) (∇u · ∇u+ u∆u− 2iτ Re(u∇u) · Re(u∇u))) e−iτ |u|
2

so taking L2-norms of the above expressions, we infer by Hölder’s inequality and Sobolev embedding
H1(Ω) ⊂ L6(Ω) and H2(Ω) ⊂ L∞(Ω) that

∥e−iτ |u|
2

∥H3 ≤ C(1 + ∥u∥6H3).

The same way, we get that

∥e−i
∫ τ
0
V (t+s)ds∥H3 ≤ C(1 + ∥V ∥2L∞

T H3),

so taking now u ∈ Bm3 , we have

∥Φt,τB u∥H3 ≤ C2
d∥e−i

∫ τ
0
V (t+s)ds∥H3∥e−iτ |u|

2

∥H3∥u∥H3 ≤M0∥u∥H3

where M0 =M0(d, t,m3, ∥V ∥L∞
T H3) > 0. By Duhamel’s formula, we can write that

Φt,τB f = f +

∫ τ

0

V (t+ s)Φs,τB f(s)ds+

∫ τ

0

|Φs,τB f(s)|2Φs,τB f(s)ds,

and the same formula holds for Φt,τB g, so applying ΦτA and by isometry we infer

∥Φt,τf − Φt,τg∥H3 ≤ ∥f − g∥H3 + Cd∥V ∥L∞
T H3

∫ τ

0

∥Φt,sf − Φt,sg∥H3ds

+
3

2
C2
d

(
∥Φt,τf∥2H3 + ∥Φt,τg∥2H3

)︸ ︷︷ ︸
≤2M2

0m
2
3

∫ τ

0

∥Φt,sf − Φt,sg∥H3ds

and we get the result by Gronwall lemma. □

Lemma 8. (Local error).
For any 0 ≤ n < N , we have

∥ψ(tn+1)− Φt,τ (ψ(tn))∥H3 ≤ Cτ2,

where C = C(d,m5, ∥V ∥L∞
T H5) > 0.
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Proof. The idea is to compare Taylor expansions in Duhamel’s formula

ψ(tn+1) = eiτ∆ψ(tn)− i

∫ τ

0

ei(τ−s)∆
(
V (tn + s) + |ψ(tn + s)|2

)
ψ(tn + s)ds

= eiτ∆ψ(tn)− ieiτ∆
(∫ τ

0

V (tn + s)ds

)
ψ(tn)− iτeiτ∆|ψ(tn)|2ψ(tn)

− eiτ∆
∫ τ

0

∫ 1

0

e−isθ(s∆)
(
V (tn + s) + |ψ(tn + s)|2

)
ψ(tn + s)dθ︸ ︷︷ ︸

=:I1(s)

ds

− ieiτ∆
∫ τ

0

[
V (tn + s)(ψ(tn + s)− ψ(tn)) + |ψ(tn + s)|2ψ(tn + s)− |ψ(tn)|2ψ(tn)

]︸ ︷︷ ︸
=:I2(s)

ds

and

Φt,τ (ψ(tn)) = eiτ∆e−i
∫ τ
0
V (tn+s)ds−iτ |ψ(tn)|2ψ(tn)

= eiτ∆ψ(tn)− ieiτ∆
(∫ τ

0

V (tn + s)ds

)
ψ(tn)− iτeiτ∆|ψ(tn)|2ψ(tn)

− eiτ∆
∫ 1

0

(1− θ)e−iθ(
∫ τ
0
V (tn+s)ds+τ |ψ(tn)|2)dθ

(∫ τ

0

V (tn + s)ds+ τ |ψ(tn)|2
)2

ψ(tn)︸ ︷︷ ︸
=:I3

so that

∥ψ(tn+1)− Φt,τ (ψ(tn))∥H3 ≤
∫ τ

0

(∥I1(s)∥H3 + ∥I2(s)∥H3) ds+ I3

by isometry. Using Sobolev estimates we readily bound the first term∫ τ

0

∥I1(s)∥H3ds ≤ τ2C3
d

(
∥V ∥L∞

T H5 +m3
5

)
as well as the third term

∥I3∥H3 ≤ τ2C3
dm3

(
∥V ∥2L∞

T H3 +m4
3

)
sup

0≤θ≤1

∥∥∥e−iθ(∫ τ
0
V (tn+s)+τ |ψ(tn)|2)

∥∥∥
H3

recalling from the proof of Lemma 7 that∥∥∥e−iθ(∫ τ
0
V (tn+s)+τ |ψ(tn)|2)

∥∥∥
H3

≤ C(d,m3, ∥V ∥L∞
T H3)

as 0 ≤ θ ≤ 1. Finally,∫ τ

0

∥I2(s)∥H3ds ≤ Cd
(
∥V ∥L∞

T H3 +m2
2

) ∫ τ

0

∥ψ(tn + s)− ψ(tn)∥H3ds

≤ τ2C(d,m3, ∥V ∥L∞
T H3)∥∂tψ∥L∞

T H3 ,

so we just need to show that ∥∂tψ∥L∞
T H3 <∞. In fact, we directly read from equation (GP) that

∥∂tψ∥L∞
T H3 ≤ ∥∆ψ∥L∞

T H3 + ∥|ψ|2ψ∥L∞
T H3 + ∥V ψ∥L∞

T H3 ≤ m4 + C2
dm

3
3 + Cdm3∥V ∥L∞

T H3 ,

which ends the proof. □

We now give the main result of this section, which states the first order time convergence of the
(LTSP) scheme:
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Proposition 2. Let ψ0 ∈ H5(Ω). We denote by ψ the solution of equation (GP) with initial
data ψ(0) = ψ0, and by (un)0≤n≤N the numerical solution defined by the Lie-Trotter splitting
scheme (LTSP) with initial data u0 = ψ0. Then, there exists τ0 > 0 such that for all 0 < τ ≤ τ0
and all 0 ≤ n ≤ N ,

∥ψ(tn)− un∥H3 ≤ Cτ,

where C = C(d,m5, ∥V ∥L∞
T H5) is independent of N = T/τ .

Proof. We will prove by induction that the numerical solution (un)0≤n≤N is uniformly bounded
in H3(Ω), which will induce the convergence result. More precisely, we will show that for all
0 ≤ n ≤ N , un ∈ Bm3+1. The case n = 0 stands as u0 = ψ0. We now assume that uk ∈ Bm3+1 for
all 0 ≤ k ≤ n < T/τ , so we need to prove the result on un+1. Using both Lemma 7 and Lemma 8,
we infer that

∥ψ(tn+1)− un+1∥H3 ≤ ∥ψ(tn+1)− Φt,τ (ψ(tn))∥H3 + ∥Φt,τ (ψ(tn))− Φt,τ (un)∥H3

≤ Cτ2 + eMτ∥ψ(tn)− un∥H3

≤ Cτ2
n∑
k=0

eMkτ

where the last inequality is obtained by a recursive procedure. As a sum of terms of a geometric
sequence we get that

(3) ∥ψ(tn+1)− un+1∥H3 ≤ Cτ
eMT − 1

M
,

so for 0 < τ ≤ τ0 := M
C(eMT−1)

we have that

∥un+1∥H3 ≤ ∥ψ(tn+1)∥H3 + 1 ≤ m3 + 1

so un+1 ∈ Bm3+1, which ends the induction proof. The convergence result then follows from
equation (3). □

5.3. Boundedness of higher Sobolev norms. We end up this section with a last property
which will be useful afterwards, stating that the semi-discrete numerical solution (un)0≤n≤N is in
fact uniformly bounded in H5(Ω).

Lemma 9. Let 0 < τ ≤ τ0 and M2 > 0 independent of N and τ such that

sup
0≤n≤N

∥un∥H2 ≤M2.

Then there exists M5 > 0 independent of N and τ such that

sup
n

∥un∥H5 ≤M5.

Proof. We note that Φt,τB φ is solution of the ODE

iη̇ = |φ|2η + V (t)η, η(0) = φ,

so by Sobolev estimates we get that

∥η̇(t)∥H5 ≲ ∥φ∥2H2∥η(t)∥H5 + ∥φ∥H2∥η(t)∥H2∥φ∥H5 + ∥V (t)∥H5∥η(t)∥H5 .

Integrating in time and recalling that un+1 = Φtn,τ (un) we infer that

∥Φtn,τ (un)∥H5 ≤ ∥un∥H5(1 + τM2
2 ) + (2M2

2 + ∥V ∥L∞
T H2)

∫ tn+1

tn

∥Φs,τ (un)∥H5ds
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by isometry, so from Gronwall lemma we get that

∥un+1∥H5 ≤ (1 +M2
2 τ)e

τ
(
2M2

2+∥V ∥L∞
T

H5

)
∥un∥H5 ,

which in turns recursively gives that

∥un∥H5 ≤ e
T
(
3M2

2+∥V ∥L∞
T

H5

)
∥u0∥H5

for all 0 ≤ n ≤ N , which gives the result as u0 = ψ0. □

6. Convergence of the fully discrete scheme

Having now all the tools at hand, we turn to the proof of Theorem 1. First of all we write for
0 ≤ n < T/τ that

∥Ph(ψ(tn+1))− Un+1∥H1
h
≤ ∥Ph(ψ(tn+1))− Ph(u

n+1)∥H1
h
+ ∥Ph(un+1)− Un+1∥H1

h
.

From Lemma 5 and Proposition 2 we can easily bound the first term by

∥Ph(ψ(tn+1))− Ph(u
n+1)∥H1

h
≤ Cξ∥ψ(tn+1)− un+1∥H3 ≤ Cτ,

where C = C(ξ, d,m5, ∥V ∥L∞
T H5). For the other term, by isometry and definition of Un+1 we have

∥Ph(un+1)− Un+1∥H1
h
≤ ∥Pheiτ∆un − eiτAPhu

n∥H1
h

+ ∥Ph(e−iGn(τ)−iτ |un|2un−1)− e−iPhGn(τ)Ph(e
−iτ |un|2un)∥H1

h

+ ∥e−iPhGn(τ)
(
Ph(e

−iτ |un|2un)− e−iτ |U
n|2Un

)
∥H1

h
.

As the pointwise interpolant Ph satisfies Ph(fg) = Ph(f)Ph(g) for any f, g ∈ C(Ω) (and so Phef =
ePhf ), by regularity of V and un the second term in the above estimate vanishes. A direct bound
on the first term comes as a consequence of Proposition 1, so that

∥Pheiτ∆un − eiτAPhu
n∥H1

h
≤ Chτ,

where C = C(m5, d, ξ,M5) > 0. Finally, by discrete Sobolev inequality Lemma 2 and stability of
the interpolant Ph Lemma 5 we get that

∥e−iPhGn(τ)
(
e−iτ |Phu

n|2Phu
n − e−iτ |U

n|2Un
)
∥H1

h
≤ C| log h|τ∥Ph(e−iτ |u

n|2un)− e−iτ |U
n|2Un∥H1

h

where C = C(d, ξ, ∥V ∥L∞
T H4) in the case d = 2 (the same hold in dimension d = 3 with h−

1
2 instead

of | log h| in the previous estimate). From the CFL condition
√
τ | log h| ≤ 1 if d = 2 or τ ≤ h

if d = 3, we infer the existence of a τ̃0 > 0 independent of τ and h such that C| log h|τ ≤ 1 or
Ch−

1
2h ≤ 1, so gathering the bounds we have

(4) ∥Ph(un+1)− Un+1∥H1
h
≤ Chτ + ∥e−iτ |Phu

n|2Phu
n − e−iτ |U

n|2Un∥H1
h
.

In the same vein of the proof of Proposition 2, we will now prove that the numerical solution (Un)n
is uniformly bounded in L∞

h . We recall that M5 := sup0≤n≤N ∥un∥H5(Ω) is independent of N in
view of Lemma 9, and we define

BhR =
{
U ∈ L∞

h (Ω)
∣∣ ∥U∥L∞

h
≤ R

}
be the ball of radius R in L∞

h (Ω) with R = CdM5, where Cd > 0 denotes the constant appearing
in the continuous Sobolev embedding

∥u∥L∞ ≤ Cd∥u∥H5 .
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We will show by induction that for all 0 ≤ n ≤ N , Un ∈ BhR+1. The case n = 0 is direct from
properties of Ph and Sobolev embedding, namely

∥U0∥L∞
h

≤ ∥Phu0∥L∞
h

≤ ∥ψ0∥L∞ ≤ Cd∥ψ0∥H2 ≤ R.

We now assume that Un ∈ BhR+1 for all 0 ≤ k ≤ n. Going back to estimate (4), in view of Lemma 3
taking U = Phu

n and W = Un , we write that

∥Phun+1 − Un+1∥H1
h
≤ Chτ + ∥e−iτ |Phu

n|2Phu
n − e−iτ |U

n|2Un∥H1
h

≤ Chτ + (1 + Cd,ξ,Ωτ(M
2
5 +R2))∥Phun − Un∥H1

h

as ∥∇h
EPhu

n∥L∞
h

≤ d∥∇un∥L∞ ≤ CM5, so by a recursive argument as in the proof of Proposition 2
we infer that

(5) ∥Phun+1 − Un+1∥H1
h
≤ Ch

eCd,ξ,ΩT (M2
5+R

2) − 1

Cd,ξ,Ω(M2
5 +R2)

as U0 = Phu
0. In view of equation (5), we now compute (for the case d = 2) that

∥Un+1∥L∞
h

≤ ∥Phun+1∥L∞
h

+ ∥Phun+1 − Un+1∥L∞
h

≤ ∥un+1∥L∞ + Cd| log h|∥Phun+1 − Un+1∥H1
h

≤ R+ Cd| log h|h
eCd,ξ,ΩT (M2

4+R
2) − 1

Cd,ξ,Ω(M2
4 +R2)

,

so as | log h|h→ 0 as h→ 0, for 0 < h ≤ h0 small enough we have

∥Un+1∥L∞
h

≤ R+ 1

and the induction proof is completed (the same holds in dimension 3 as h−
1
2h → 0 as h → 0). In

particular, R is independent of τ and h, and we infer the first order convergence of Phun+1 −Un+1

in H1
h-norm from equation (5), which ends the proof.

7. Pseudo-vorticity

In quantum fluid mechanics, the vorticity of the fluid is equal to an identically zero field except
at the vortex points where it corresponds to a Dirac δ-function, making it difficult to use in order
to numerically identify vortices. On the other hand, the pseudo-vorticity field of the wave function
ψ constitutes a very accurate, efficient and robust numerical method to track vortex points in 2D or
vortex lines in 3D [22, 25]. This quantity can be defined as ω(ψ) = 1

2∇× J , where J = Im
(
ψ∇ψ

)
denotes the density current of the quantum fluid. A simple calculation shows that the pseudo-
vorticity can be expressed as

ω(ψ) =
1

4i

(
∇ψ ×∇ψ −∇ψ ×∇ψ

)
= ∇

(
ψ + ψ

2

)
×∇

(
ψ − ψ

2i

)
= Re∇ψ × Im∇ψ,

where the latter expression has the numerical advantage of only requiring the computation of one
derivative of the wave function ψ. Also note that for a regular ψ, the pseudo-vorticity field ω remains
regular even at the axis of the vortices. One can also remark that the pseudo-vorticity corresponds
to a finite positive or negative field at the vortex core, depending on the winding number ±1 of the
vortex, and vanishes outside.
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In order to reconstruct a discrete gradient ∇h
T of a vector U ∈ Cdh on each control volume

K ∈ T , following [11, Definition 2.3] we define

(∇h
T U)K =

1

|K|
∑

σ∈Eint∩EK

|σ|
dK|L

(UL − UK)(xσ − xK),

where xσ denotes the intersection point between the line (xK , xL) and the edge σ. We now state a
property showing that our numerical scheme can also be used to accurately compute the pseudo-
vorticity field:

Proposition 3. We assume that ψ and (Un)0≤n≤N are given by Theorem 1. We denote by

ωh(U
n) = Re∇h

T U
n × Im∇h

T U
n,

then
∥Phω(ψ(tn))− ωh(U

n)∥L1
h
≤ C(τ + h).

Proof. First of all, we emphasize that for ψ(t) ∈ H5(Ω), ω(ψ) ∈ W 1,4(Ω) which is continuous
by Sobolev embeddings, so Phω(ψ(tn)) is well defined. We focus on the two-dimensional case, as
the three-dimensional case can be proven analogously. For d = 2, the field ω(ψ) corresponds to
a scalar, and we will decompose our analysis between the semi-discrete error and the full-discrete
error, namely

(6) ∥Phω(ψ(tn))− ωh(U
n)∥L1

h
= ∥Ph (ω(ψ(tn))− ω(un)) ∥L1

h
+ ∥Ph(ω(un))− ωh(U

n)∥L1
h
.

To estimate the first term, we get by Taylor expansion that

∥Phφ− πhφ∥L1
h
≤ Ch∥φ∥W 1,1(Ω)

for any φ ∈W 1,1(Ω), and that

∥πhφ∥L1
h
=
∑
K∈T

|K|(πhφ)K =
∑
K∈T

∫
K

|φ(x)|dx = ∥φ∥L1 ,

so we infer

∥Ph (ω(ψ(tn))− ω(un)) ∥L1
h
≤ Ch

(
∥ω(ψ(tn))∥W 1,1(Ω) + ∥ω(un)∥W 1,1(Ω)

)
+ ∥ω(ψ(tn))− ωnh∥L1 .

As ψ ∈ C([0, T ] , H5(Ω)) and from the Sobolev embbeding H2(Ω) ⊂W 1,1(ω) (as Ω is bounded), we
get that ∥ω(ψ(tn))∥W 1,1(Ω) and ∥ω(un)∥W 1,1(Ω) are uniformly bounded with respect to τ thanks to
Lemma 9. On the other hand, writing that

ω(ψ(tn))− ω(un) = Re∇ψ(tn)× (Im∇ψ(tn)− Im∇un) + (Re∇ψ(tn)× Re∇un)× Im∇un,

by Cauchy-Schwarz we have

∥ω(ψ(tn))− ωnh∥L1 ≤ (∥∇ψ(tn)∥L2 + ∥∇un∥L2) ∥∇ψ(tn)−∇un∥L2

so gathering these bounds and thanks to Proposition 2, we get that

∥Ph (ω(ψ(tn))− ω(un)) ∥L1
h
≤ C(h+ τ).

We now bound the second term in the right hand side of equation (6). As Phω(un) = Ph(∇Reun)×
Ph(∇ Imun), we again get by Cauchy-Schwarz that

(7) ∥Ph(ω(un))− ωh(U
n)∥L1

h
≤
(
∥Ph∇un∥L2

h
+ ∥∇h

T U
n∥L2

h

)
∥Ph∇un −∇h

T U
n∥L2

h
.
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We directly infer

∥πhφ∥2L2
h
=
∑
K∈T

|K|
(

1

|K|

∫
K

φ(x)dx

)2

≤
∑
K∈T

∫
K

|φ(x)|2dx = ∥φ∥L2

by Jensen inequality, and ∥(Ph − πh)φ∥L2
h

≤ Ch∥φ∥H3 by Taylor expansion, so ∥Ph∇un∥L2
h

is
uniformly bounded with respect to τ and h. On the other hand, from [11, Lemma 2.2] we know
that

∥∇h
T U

n∥L2
h
≤ Cξ∥Un∥H1

h
≲ ∥Phun∥H1

h
+ ∥Phun − Un∥H1

h
≤ C(1 + h)

applying Theorem 1. We then bound the remaining term of equation (7) using the results from
Section 6, so

∥Ph∇un −∇h
T U

n∥L2
h
≤ ∥Ph∇un −∇h

T Phu
n∥L2

h
+ ∥∇h

T Phu
n −∇h

T U
n∥L2

h︸ ︷︷ ︸
≤Cξ∥Phun−Un∥

H1
h
≤Ch

.

In order to estimate the strong convergence of the discrete gradient ∇h
T Phu

n towards the pointwise
interpolant of the gradient Ph∇un, we rely on [11, Lemma 2.5] which states that

∥πh∇un −∇h
T Phu

n∥L2
h
≤ Cξ,Ωh∥un∥H4 ,

so we write that

∥Ph∇un −∇h
T Phu

n∥L2
h
≤ ∥Ph∇un − πh∇un∥L2

h︸ ︷︷ ︸
≤Ch∥u∥H3

+∥πh∇un −∇h
T Phu

n∥L2
h
,

which ends the proof. □

8. Numerical simulations

In this section, we report numerical results in dimension d = 2 of the proposed numerical method.
We take Ω as a polygonal approximation of the open disk D(0, 2) of center (0, 0) ∈ R2 and of
radius 2. To generate an admissible finite volume mesh, we use the GMSH software [15] with the
"Frontal-Delaunay" option. Although not stricly giving a Voronoï mesh, this procedure provides a
Delaunay triangulation with equilateral triangles on most of the inner part of the disk (which locally
stands as a Voronoï mesh), and acute triangles on the boundary. This triangulation is composed
of dh = 57048 triangles with a stepsize control parameter h = 0.04.

The initial condition is taken as a radial centered Gaussian ψ0(x) = e−2|x|2 , and the time-
dependent potential is an harmonic trap of size V0 perturbed by a rotating sinusoidal stirrer of size
ε and frequency ω, which writes

V (t, x) = V0r
2 (1 + ε cos(2θ − ωt)) , x = (r, θ),

in polar coordinates. In the upcoming simulations we will take V0 = 100 and ε = 0.2. We also put
a positive constant λ = 100 in front of the cubic nonlinearity |ψ|2ψ in equation (GP) in order to
enhance vortex nucleation. The linear flow ΦτA is computed using a two-order Padé approximant

eiτA ≃
(
Iddh − i

τ

2
A
)−1 (

Iddh + i
τ

2
A
)

which also preserves the L2-norm of the numerical solution. We emphasize that the matrix A is a
sparse matrix, so that the resolution of the linear system AX = B can be efficiently precomputed
using its sparse LU decomposition. All codes are available on the Gitlab page https://plmlab.
math.cnrs.fr/chauleur/codes/-/tree/main/FVGP_codes.

https://plmlab.math.cnrs.fr/chauleur/codes/-/tree/main/FVGP_codes
https://plmlab.math.cnrs.fr/chauleur/codes/-/tree/main/FVGP_codes
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8.1. Accuracy test. Let ∆t > 0. We denote by UT∆t, U
T
2∆t and UT∆t

2

the numerical solutions ob-
tained at time t = T with the scheme (LT) applied to initial condition U0 = Phψ0 with respectively
τ = ∆t, τ = 2∆t and τ = ∆t

2 . A classical estimate for the time order mLT of the scheme (LT) is
then given by the extrapolation formula

mLT = log

(
∥U2∆t − U∆t∥H1

h

∥U∆t − U∆t
2
∥H1

h

)
log(2)−1 +O (∆t) .

We perform several simulations of (GP) with T = 0.1, ω = 1 and N = 2k time discretization
points for varying k ∈ N∗, which we report in the following table, corroborating the first order time
convergence proven in Theorem 1.

k 5 6 7 8 9 10
mLT 1.0923 1.0438 1.022 1.011 1.0055 1.0028

8.2. Vortex detection. We now perform our simulation with T = 5 and time step size τ =
0.001 so that N = T/τ , denoting by (Un)0≤n≤N the numerical solution obtained by the numerical
scheme (LT) with U0 = Phψ0, and ω = 30. We observe vortex nucleation in a similar way as
[19]. In order to numerically track these vortices, we compute the approximation of the pseudo-
vorticity ωh(U

n) as described in Proposition 3 and we numerically detect the local extrema of
the fiel |ωh(Un)|. We plot the results obtained at final time T = 5 in Figure 3. More numerical
experiments will be performed in a forthcoming work in various settings of physical relevance.

Figure 3. Plots of the density |UN |, of the phase arg(UN ) ∈ [−π, π[ and of the
vortex detection algorithm results (from left to right).

Acknowledgements. The author is supported by the Labex CEMPI (ANR-11-LABX-0007-01).
The author is grateful to Claire Chainais-Hillairet, Clément Cancès, Guillaume Dujardin, Guillaume
Ferrière, Simon Lemaire and Julien Moatti for helpful discussions about this work.

References

[1] X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of the nonlinear
Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), pp. 2621–2633.

[2] X. Antoine and R. Duboscq, GPELab, a Matlab toolbox to solve Gross–Pitaevskii equations I: Computation
of stationary solutions, Computer Physics Communications, 185 (2014), pp. 2969–2991.

[3] , GPELab, a Matlab toolbox to solve Gross–Pitaevskii equations II: Dynamics and stochastic simulations,
Computer Physics Communications, 193 (2015), pp. 95–117.



FINITE VOLUMES FOR THE GROSS-PITAEVSKII EQUATION 22

[4] W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet.
Relat. Models, 6 (2013), pp. 1–135.

[5] M. Bessemoulin-Chatard, C. Chainais-Hillairet, and F. Filbet, On discrete functional inequalities for
some finite volume schemes, IMA J. Numer. Anal., 35 (2015), pp. 1125–1149.

[6] A. Bradji, A theoretical analysis for a new finite volume scheme for a linear Schrödinger evolution equation
on general nonconforming spatial meshes, Numer. Funct. Anal. Optim., 36 (2015), pp. 590–623.

[7] R. Carles, Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., 9 (2011),
pp. 937–964.

[8] Y. Coudière, T. Gallouët, and R. Herbin, Discrete Sobolev inequalities and Lp error estimates for finite
volume solutions of convection diffusion equations, M2AN Math. Model. Numer. Anal., 35 (2001), pp. 767–778.

[9] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin, The gradient discretisation method,
vol. 82 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer, Cham, 2018.

[10] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Vol.
VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020.

[11] R. Eymard, T. Gallouët, and R. Herbin, A cell-centered finite-volume approximation for anisotropic
diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., 26 (2006), pp. 326–
353.

[12] E. Faou, Geometric numerical integration and Schrödinger equations, Zurich Lectures in Advanced Mathemat-
ics, European Mathematical Society (EMS), Zürich, 2012.

[13] K. Gärtner and L. Kamenski, Why do we need Voronoi cells and Delaunay meshes? Essential properties of
the Voronoi finite volume method, Comput. Math. Math. Phys., 59 (2019), pp. 1930–1944.

[14] L. Gauckler, Convergence of a split-step Hermite method for the Gross-Pitaevskii equation, IMA J. Numer.
Anal., 31 (2011), pp. 396–415.

[15] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-
processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), pp. 1309–1331.

[16] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, vol. 31 of Springer Series in
Computational Mathematics, Springer-Verlag, Berlin, second ed., 2006. Structure-preserving algorithms for
ordinary differential equations.

[17] P. Henning and A. Målqvist, The finite element method for the time-dependent Gross-Pitaevskii equation
with angular momentum rotation, SIAM J. Numer. Anal., 55 (2017), pp. 923–952.

[18] C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math.
Comp., 77 (2008), pp. 2141–2153.

[19] E. Lundh, J.-P. Martikainen, and K.-A. Suominen, Vortex nucleation in Bose-Einstein condensates in
time-dependent traps, Phys. Rev. A, 67 (2003), p. 063604.

[20] I. D. Mishev, Finite volume methods on Voronoi meshes, Numer. Methods Partial Differential Equations, 14
(1998), pp. 193–212.

[21] P. Omnes, On the second-order convergence of a function reconstructed from finite volume approximations of
the Laplace equation on Delaunay-Voronoi meshes, ESAIM Math. Model. Numer. Anal., 45 (2011), pp. 627–650.

[22] C. Rorai, J. Skipper, R. M. Kerr, and K. R. Sreenivasan, Approach and separation of quantised vortices
with balanced cores, Journal of Fluid Mechanics, 808 (2016), p. 641–667.

[23] C. Su and X. Zhao, On time-splitting methods for nonlinear Schrödinger equation with highly oscillatory
potential, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 1491–1508.

[24] G. Vergez, I. Danaila, S. Auliac, and F. Hecht, A finite-element toolbox for the stationary
Gross–Pitaevskii equation with rotation, Computer Physics Communications, 209 (2016), pp. 144–162.

[25] A. Villois, G. Krstulovic, D. Proment, and H. Salman, A vortex filament tracking method for the
Gross-Pitaevskii model of a superfluid, J. Phys. A, 49 (2016), pp. 415502, 21.

[26] A. Villois, D. Proment, and G. Krstulovic, Irreversible dynamics of vortex reconnections in quantum
fluids, Phys. Rev. Lett., 125 (2020), pp. 164501, 5.

INRIA Lille, Univ Lille & Laboratoire Paul Painlevé, CNRS UMR 8524 Lille, Cité Scientifique,
59655 Villeneuve-d’Ascq, France.

Email address: Quentin.Chauleur@math.cnrs.fr


	1. Introduction
	2. Discrete framework and main result
	2.1. Finite volume notations
	2.2. Splitting, finite volume scheme and main result

	3. Discrete functional analysis
	3.1. Discrete gradients
	3.2. Discrete Gagliardo-Nirenberg inequalities
	3.3. Interpolants

	4. The linear case
	5. Semi-discretization in time and splitting integration
	5.1. Scheme, notations and first properties
	5.2. Error estimate
	5.3. Boundedness of higher Sobolev norms

	6. Convergence of the fully discrete scheme
	7. Pseudo-vorticity
	8. Numerical simulations
	8.1. Accuracy test
	8.2. Vortex detection
	Acknowledgements

	References

