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Buckling of a rod penetrating into granular media

A. Seguin & P. Gondret
Laboratoire FAST, Univ. Paris-Sud, CNRS, Université Paris-Saclay, F-91405, Orsay, France

We investigate experimentally the possible buckling of a thin rod when penetrating downwards
into a granular packing. When its bottom end reaches a speci�c depth, the rod may start buckling
provided that the embrace is not enough to stop that phenomenon. The critical rod depth zc at
buckling is observed to scale with the rod length L either as 1/L or 1/L2. These two scalings are
shown to arise from the two resistant force terms that come into play during the rod penetration : a
pressure force at the bottom of the rod that increases linearly with depth and a frictional force on
the rod side that increases quadratically with depth. At the buckling point, the destabilizing force
corresponds to the expected value given from conventional Euler's critical load for a rod bottom end
considered as �xed in the granular clutch. Finally, we draw a buckling/non-buckling phase diagram
in a parameter space given by the rod aspect ratio and a rod/grain stress ratio.

I. INTRODUCTION

The complex physics of granular matter has been
adressed in numerous studies in recent years with some
important progress in the modeling of its puzzling rheo-
logy, even if its liquid-solid transition remains still unclear
[1]. In this context, the motion of objects into granular
matter has received much attention with some geologi-
cal or biological interest like impact cratering [2] on pla-
nets and asteroids or animal locomotion on or through
sand [3]. In most of studies, these objects are of di�erent
shapes such as spheres [4, 5] or cylinders [6�12], disks or
plates [13] or even more complex shape [14], but non de-
formable. As in hydrodynamics, both drag and lift forces
have been measured [11, 15]. In most cases, these forces
do not depend signi�cantly on velocity [6, 9, 10, 16] but
increase with depth [9�13]. Depending on the shape of ob-
jects, the force variation with depth may be linear or not
[17�19]. More recently, some possible deformation of ob-
jects moving into granular matter have been considered
for addressing the problem of the root growth in soil [20].
A thin lamella fully embedded in a two-dimensional and
horizontal disk assembly is pushed at one end whereas
the other end is free and the deformation is observed and
analysed in terms of �exion [21]. Numerical simulations
with discrete element methods have been also recently
developed to mimic root growth and deformation within
a granular assembly [22].

In this paper, we look at the possible buckling of a
thin rod when pushed downward into a granular bed. As
the vertical drag force exerted by the grains on the rod
increases with depth the critical force for buckling may
be reached, but as the radial stress also increases with
depth [23] the rod may not buckle. Rod buckling should
be governed thus by the complex interplay between the
destabilizing increasing resistive force with depth and the
increasing stabilizing lateral pressure forces. Contrary to
conventional buckling where the destabilizing force is at
the rod tips only, the friction force acting on the lateral
surface of the �granular immersed� rod is shown to exist
in addition of the resulting pressure force at the bottom
of the rod. As these two force terms do not have the
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Figure 1. (a-c) Images of the rod when penetrating into a
granular packing (a) before and (c) after its buckling. (b) Ex-
perimental penetration force F as a function of the penetra-
tion depth z for a thin PVC rod of diameter D = 4 mm and
length L = 600 mm into glass beads of diameter d = 1 mm.
The rod buckling arises at zc = 0.13 m for Fc = 3.4 N.

same depth scaling, we show that the critical depth at
buckling is given by two di�erent scalings depending on
whether one force term or the other dominates. Finally,
we draw a phase diagram for the rod buckling or non
buckling and show that the buckling condition is given
by one main criterion.

II. EXPERIMENTAL SETUP

The experiment consists in plunging downwards at a
constant velocity a vertical thin rod into granular mat-
ter. We use rods of di�erent length L in the range 300
6 L 6 1100 mm and di�erent diameter D in the range 2
6 D 6 6 mm. The rods are very thin with a very large
length/diameter ratio 50 6 L/D 6 550 and are made
of materials with di�erent elastic Young modulus in the
range 3 . E . 130 GPa : PMMA or PVC (E ≃ 3 GPa),
wood (E ≃ 10 GPa), aluminium (E ≃ 58 GPa) and cop-
per (E ≃ 130 GPa). Granular matter consists in sieved
glass beads of diameter in the range 0.3 6 d 6 5 mm and
density ρ = 2.5×103 kg/m3. The beads are rather mono-
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Figure 2. (a) Penetration depth zc at buckling as a function
of the penetration velocity V . (◦) Data for a PVC rod of
diameter D = 4 mm and length L = 1000 mm into glass
beads of diameter d = 1 mm and (- - -) line of constant
zc = 97 mm. (b) Penetration depth zc as a function of the
rod length L at V = 20 mm/s for (◦) a D = 4 mm PVC rod,
(▽) a D = 3 mm PMMA rod, and (◃) a D = 3 mm wood rod.
(- - -) Power law �ts zc = A/L and zc = B/L2 of the data
with (o) A = 0.14 ± 0.01 m2 and B = 0.09 ± 0.01 m3, (▽)
A = 0.047 ± 0.001 m2 and (◃) A = 0.060 ± 0.001 m2 . The
shaded region corresponding to zc > L is not allowed.

disperse with a relative size dispersion smaller than 10 %.
The granular medium is prepared by pourring into a cy-
lindrical container of inner diameter ∆ and of height H
a volume of beads larger than the volume of the contai-
ner before tapping a few times the container and then
leveling the grains o� the cylinder with a straight ruler.
Following this procedure, we obtain a well reproducible
dense packing fraction ϕ ≃ 0.63 with only small varia-
tions. The container was chosen large enough to avoid
any possible wall e�ect. In particular, the container/rod
diameter ratio is in the range 13 < ∆/D < 40, which is
high enough for glass beads to avoid any side wall e�ects
[24, 25]. The container was chosen also deep enough to
avoid any bottom wall e�ect [24] with 40 < H/D < 400.
In most of the experiments presented here, ∆ = 80 mm
and H = 250 mm or more (up to 800 mm). The rod
is clamped vertically at its top end to a moving trans-
lation guide whereas its down end is let free, initially
just above the horizontal granular surface. The vertical
rod is then moved down at an imposed velocity in the
range 1 < V < 102 mm/s along the vertical axis of the
cylindrical container and penetrates thus gradually into
the granular packing. Images of the rod are taken from
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Figure 3. (a) Critical buckling force Fc as a function of the
rod length L for a D = 4 mm PVC rod into d = 1 mm glass
beads. (- - -) Power law �t Fc = A/L2 with A = 1.5 ± 0.1
N.m2. (b) Boundary condition parameter ϵ as a function of
the relative penetration depth at buckling zc/L for the same
data set. (- - -) Line of constant ϵ = 0.52.

the side. The rod remains �rst straight (see Fig. 1a) but
then may buckle (see Fig. 1c) at a given critical pene-
tration depth zc. For a given set of experimental condi-
tions, we made ten di�erent runs to measure the mean
value and the standard deviation of zc. With a force
sensor at the tip of the rod, one can also measure at
a high resolution(≃ 10 mN) the instantaneous vertical
force exerted by the grains on the penetrating rod provi-
ded that L < 1m for geometrical constraints. The evolu-
tion of the measured force as a function of the penetration
depth z of a PVC rod of length L = 600mm and diameter
D = 4 mm in a packing of d = 1 mm glass beads is shown
in Fig. 1b. The typical curve of Fig. 1b corresponds to
the ensemble average over ten runs. Despite large force
�uctuations inherent of granular matter [6, 14], a gradual
force increase is observed with the penetration depth z
up to a critical depth value zc ≃ 130 mm where the force
then saturates at the critical value Fc ≃ 3.4 N. At this
critical point, rod buckling occurs suddenly. In all the ex-
periments we take care that the critical depth value at
buckling is far enough from the bottom wall with always
the condition H − zc > 10D veri�ed.
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III. EXPERIMENTAL RESULTS

The �rst important result is that these observations
do not depend on the penetration velocity. Indeed, the
critical depth for buckling zc shown in Fig. 2a for a PVC
rod of diameter D = 4 mm and length L = 1000 mm
into d = 1 mm glass beads is roughly constant within the
present range of velocity from about one mm/s to a few
cm/s. This is not surprising as the drag force for moving
objects in grains is known to do not depend signi�cantly
on velocity in most experiments where the velocity is high
enough for not being sensitive to any possible vibrations
and low enough for not being in the inertial regime [16].
By contrast, the critical depth zc for buckling depends
strongly on the rod geometrical and mechanical charac-
teristics. As shown in Fig. 2b, zc decreases for increasing
L whatever the rod diameter and material. The three
curves of Fig. 2b corresponding to rods of two di�erent
diameters (D = 3 and 4 mm) and of two di�erent elastic
modulus (E = 3 and 10 GPa) show also that zc is smaller
for thicker and sti�er rods. Looking carefully to the curve
obtained for a D = 4 mm PVC rod (circle symbols), it
appears that the decrease of zc with L show two di�erent
regimes : A �rst decrease with the scaling zc ∼ L−1 for
L . 0.9 m followed by another decrease with a scaling
close to zc ∼ L−2 for L & 0.9. This second scaling is not
observed for the two other data sets.
Let us now look at the critical force Fc at buckling as

a function of the rod length L. The results reported in
Fig. 3a for the D = 4 mm PVC rod show that Fc de-
creases for increasing L with the scaling Fc ∼ L−2. Such
a scaling is expected from a classical buckling criterion.
Indeed, the critical buckling force for a free rod is

Fc0 =
(π
4

)3 ED4

(εL)2
, (1)

where ε is a parameter depending on the boundary
conditions for the two rod ends : e.g., ε = 1/2 for two
�xed boundaries or ε ≃ 0.7 for one �xed boundary and
the other with a pinned boundary. Figure 3b shows
the value of ε that can be deduced from each data
point of Fig. 3a. We see that ε is about constant with
the value ε = 0.52 ± 0.04 very close to the 1/2 value
corresponding to a �xed boundary at each rod end. A
�xed boundary condition is clearly imposed at the top
end by the present experimental set-up, but a �xed
condition seems to be also imposed at the bottom end
by the granular radial con�nement in the range of the
present experiments where zc/L & 0.1 and zc/D & 20.
In such a case, the depth penetration is high enough for
the rod to be embraced in the granular packing. This
about constant value of ε observed in Fig. 3b explains
the simple scaling Fc ∼ L−2 observed in Fig. 3a. Note
that no simple scaling appear neither for the critical
depth penetration nor for the critical force at buckling
as a function of the free length of the rod L − zc. In
the following, we thus consider the total rod length L
with two �xed boundary conditions at each end in the
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Figure 4. (a) Dimensionless vertical force F̃ = 4F/πϕρgD3

on the rod as a function of the dimensionless rod penetration
z/D. Same experimental data as in Fig. 1 together with (�
) the best �t by Eq. (3) with C1 = 17 and C2Kµ = 0.85

and (- - -) the two expected asymptotic scalings F̃ ∼ z/D

and F̃ ∼ (z/D)2 at small and large z/D respectively. (b)
Dimensionless rod penetration at buckling zc/D as a function
of the sti�ness parameterED/ρgL2 for rods of di�erent elastic
modulus E and diameter D into d =1 mm glass beads : (o)
D = 4 mm in PVC, (▽) D = 3 mm in PMMA, (◃) D = 3 mm
in wood, (⋄)D = 2mm in aluminium, (�)D = 5mm in PVC,
(△) D = 6 mm in PMMA and (D) D = 2 mm in copper.

modeling.

IV. MODELING

Let us now consider a simple modeling for the upwards
vertical drag force exerted by the granular medium on
the rod. The granular �pressure� p that exists in granu-
lar matter may be considered as increasing linearly with
depth as the hydrostatic pressure in classical �uids and
may thus be written as p = ϕρgz, where ϕρ is the e�ec-
tive density of the granular packing. The total force is
expected to come from two parts : (i) the granular force
pressure at the bottom tip of the rod of circular cross
section πD2/4, and (ii) the granular frictional force on
the lateral side of the �granular immersed� rod part of
area πDz with the grain/rod friction coe�cient µ. The
resultant upward vertical force is thus expected to have
the following form :

F =
πC1

4
ϕρgD2z +

πC2

2
KµϕρgDz2, (2)



4

C
2
 K

 µ

(b)

10-1 100 102101

D / d

C
1

(a)

10-1 100 102

100

60

80

40

20

0

15

20

10

5

0

101

D / d

Figure 5. (Color online) Coe�cients (a) C1 and (b) C2Kµ of
the two force terms of Eqs (1-2) as a function of the rod/grain
size ratio D/d. Same data symbols as in Fig. 4 with di�erent
colors for di�erent grain sizes : d = 0.3 mm (green), 1 mm
(black), 2 mm (blue) and 5 mm (red).

where C1 and C2 are numerical prefactors and K is the
coe�cient of redirection of the normal stress components
σii from the vertical z direction to the radial r direction
(p = σzz = σrr/K). The corresponding resulting force
when made non dimensionless by the weight of a volume
πD3/4 of grains corresponding to a rod penetration depth
z = D is

F

πϕρgD3/4
= C1

z

D
+ 2C2Kµ

( z

D

)2

. (3)

The �rst term in the right hand side of Eq. (3) should
dominate at low penetration depth (z/D ≪ 1) whereas
the second force term should dominate at large penetra-
tion depth (z/D ≫ 1), so that the force should approach
a linear scaling F ∼ z for z/D ≪ 1 but a quadratic
scaling F ∼ z2 for z/D ≫ 1. The crossover between
the two expected regimes where the two terms balance
should occur for z/D = C1/2C2Kµ. The F (z) measure-
ments of Fig. 1 are now shown in dimensionless form in
the log-log plot of Fig. 4a. The experimental data before
buckling are well �tted by Eqs (2-3) with C1 ≃ 17 and
C2Kµ ≃ 0.85, with a crossover between the successive
linear and quadratic regimes at z/D = C1/2C2Kµ ≃ 10
depending on the C1 and C2Kµ values.
In our experiments corresponding to the vertical pene-

tration of thin rods (L/D ≫ 1) we see a linear regime
in the experimental range 100 . z/D . 101 followed
by a supra linear (quadratic regime) in the experimental
range 101 . z/D . 102. Note that in the recent expe-
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Figure 6. Experimental observation of buckling (open sym-
bols) or non buckling (�lled symbols) in the parameter space
given by the rod size aspect ratio L/D and the rod/grain
stress ratio E/ρgD for all the experiments in d = 1 mm grains

(Same data symbols as in Fig. 4a). (- - -) L/D = α(E/ρgD)1/4

inferred from the modeling Eqs (1-3) with zc = L, and α = 1.

riments of [25] corresponding to the vertical penetration
of very thick �rods� (L/D ∼ 1) is observed a �rst subli-
near regime at very low penetration depth, in the range
10−2 . z/d . 10−1, followed by a linear regime at larger
depth, in the range 10−1 . z/d . 100. The �rst subli-
near regime, which corresponds to the transient growing
of a conical static zone of grains at the bottom tip of
the rod [25], is too small to be observed in the present
experiments with very thin rods.

The two force terms of Eqs (2-3) with the two di�erent
depth scalings F ∼ z and F ∼ z2 explain the di�erent
observed scalings for the penetration depth at buckling as
a function of the rod length observed in Fig. 2b. Indeed,
when the linear force term dominates, the penetration
depth at buckling should be given from the buckling crite-
rion of Eq. (1) by zc/D ≃ (π2/16ε2ϕC1)(ED/ρgL2) whe-
reas zc/D ≃ (π2/32ε2ϕC2Kµ)1/2(ED/ρgL2)1/2 when
the quadratic force term dominates. The scaling zc ∼ L−1

is observed for the three rods shown in Fig. 2b whereas
the scaling zc ∼ L−2 is only observed for the rod that
is thick enough (large enough D) but soft enough (low
enough E). The buckling onset for all the data sets is
reported in Fig. 4b where the dimensionless critical pe-
netration depth zc/D is shown as a function of the sti�-
ness parameter ED/ρgL2. In this plot, all the data for
di�erent materials (di�erent E) and rod diameter D ga-
thered close to one master curve, with however a large
dispersion arising from large dispersion in the values of
C1 and C2Kµ due to di�erent rod/grains interactions.
The corresponding values of C1 and C2Kµ are displayed
in Fig. 5 as a function of the rod/grain size ratio D/d.
The C1 values are rather dispersed around the mean va-
lue C1 ≃ 30±15 with no clear variation with D/d. In the
case of very large rod/grain size ratio (D/d ≫ 1) where
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the granular packing acts as a continuum medium on the
rod, [25] shows that C1 depends non linearly on the in-
ternal friction coe�cient of the granular packing due to
curved stress lines originating from a steady conical static
zone at the bottom of the rod and developing through the
Mohr-Coulomb slip criterion [18]. The C1 values found by
[25] for large rod/grain size ratio (D/d > 10) are between
14 and 32 for glass beads of internal friction angles ran-
ging from 22◦ to 28◦. Our measurements with the smal-
lest glass beads d = 0.3 mm (green symbols in Fig. 5) for
which D/d > 10 correspond to C1 ≃ 26, which is in the
expected range. Our measurements with larger grains are
more dispersed which is expected from the corresponding
low values of rod/grain size ratio (D/d < 10). The C2Kµ
values shown in Fig. 5b display also large errors bars but
seem to decrease from about 10 to 1 when D/d increases
from 1 to 10. Considering a typical valueKµ ≃ 0.2 would
lead to C2 values from about 50 down to 5 corresponding
to a range similar to C1.
Let us now look at the question of the buckling

or non buckling for the thin rod penetrating into
grains. Considering that buckling should occur up to
the maximal possible rod penetration zc = L leads
to the buckling condition L/D & α(E/ρgD)1/4 with
α = (π2/32ε2ϕC2Kµ)1/4, as the quadratic term of Eq.
2 dominates at large penetration depth (zc/D ≫ 1 as
L/D ≫ 1). This simple modeling predicts thus that
for a rod of a given aspect ratio L/D, buckling or
not buckling is governed by the rod/grain stress ratio
E/ρgD that corresponds to the balance of the elastic
modulus of the rod to the typical pressure scale of the
grains at the penetration depth D. Figure 6 gathers
all the data point where buckling is observed (open
symbols) or not (�lled symbols) in the parameter space
(L/D,E/ρgD). As there is some dispersion in the
C2Kµ values, α varies accordingly in the typical range
0.6 < α < 1.2 for 10 > C2Kµ > 1. The theoretical line

L/D = α(E/ρgD)1/4 shown in Fig. 6 gives a rather
good prediction for the buckling/non buckling transition
when considering the dispersion of α values.

V. CONCLUSION

In this paper, we focus on the possible buckling of a
thin rod when vertically plunged into a granular medium.
A simple modeling with two vertical force terms, a linear
one and a quadratic one for the depth dependence, allows
one to recover most of the experimental observations for
the buckling to appear. As long as the intruder is su�-
ciently immersed in the granular material, the granular
material acts as a embrace leading to an e�ective �xed
boundary condition for the bottom end of the rod. In
such conditions, the critical buckling depth exhibits two
scaling laws depending on the force term that prevailss
with a crossover between the two regimes. In the mode-
ling developed in the present paper, the granular �radial
stress� σrr is not taken into account. Recent experiments
on the buckling of a thin lamella partially immersed
in granular matter clearly shows that this con�nement
may be important [23] and elastogranular interactions
have been shown recently to display intricate coupling
[26]. A more re�ned model taking into account this gra-
nular radial stress will certainly be interesting to develop.
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