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Abstract. Graphs are a ubiquitous data model for capturing entities
and their relationships. Since most graphs that model real-world net-
works evolve over time, efficiently managing temporal graphs is an impor-
tant problem from both a theoretical and practical perspective. Querying
the history of temporal graphs can lead to new applications such as ob-
ject tracking, anomaly detection, and predicting future behavior. How-
ever, existing commercial graph databases lack native temporal support,
hindering their usefulness in these use cases.
This paper introduces Clock-G, a temporal graph management system
designed to handle the history temporal graphs. What differentiates
Clock-G from other temporal graph management systems is its compre-
hensive approach, covering query language, query processing, and phys-
ical storage. We define T-Cypher, a temporal extension of Cypher query
language, enabling user-friendly and concise querying of the graph’s his-
tory. Additionally, we propose a query processor that utilizes tempo-
ral statistics collected from underlying temporal graphs to offer a good
evaluation plan for T-Cypher queries. We also propose a novel storage
technique that balances space usage and query evaluation time.

Keywords: Temporal Graph management · Storage · Query language ·
Query processing.

1 Introduction

Graphs are frequently used to model real-world interactions as a collection
of vertices and relationships providing generally a fertile ground to analyze
relationship-centered domains. Despite the wealth of studies on managing static
graphs, a time version support is seldom provided.

This work is motivated by the industrial use case of Thing’in3, an Orange-
initiated platform that manages a graph of connected (machines, traffic lights,
cameras, etc.) and non-connected (doors, roads, shelves, etc.) objects with struc-
tural and semantic environment descriptions. Clients include companies and
public administrations developing smart city services and private object own-
ers building analytical IoT applications. The graph is maintained by a commer-
cial database lacking temporal support. However, there has been an extensive
3 https://www.thinginthefuture.com/
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and recent demand by the clients of Thign’in for preserving the past states and
connections of the graph for the interest of tracking objects, anomaly detection
and forecasting the future behaviour. Concrete use cases include Mo.Di.Flu4,
a project tracking product positions in a manufacturing pipeline to detect de-
lays or losses. To address these requirements, we designed the temporal graph
management system Clock-G. Although initially designed for the particular use
case of Thing’in, Clock-G is a general purpose system that can be used in other
application domains requiring temporal graph management.

Storing and querying temporal graphs are possible by exploiting a commer-
cial graph database with temporal metadata [7,5]. However, these systems do
not natively offer time-version support which might lead to unpredictable per-
formances. Hence, we argue that time should be considered as a first-class citizen
rather than a simple add-on.

Existing temporal graph management systems often lack comprehensive cov-
erage of the different layers that should be addressed to account for the temporal
dimension, as they may not provide a native temporal query language or an ef-
ficient query processor for temporal queries. Many existing systems [23,31,44]
prioritize storage techniques and only offer simple, general-purpose temporal
graph queries that cannot meet the requirements of specific applications such
as the Thing’in use case. To address this issue, our paper takes a comprehen-
sive approach to managing temporal graphs by addressing the different layers of
query language, query processing, and physical storage.

This paper is an extension of our previous work [30]. A major improvement of
this version compared to our previous work is the inclusion of a query language
that supports complex temporal queries into Clock-G, including graph pattern
matching and navigational queries with temporal predicates. Additionally, we
have developed a query processor capable of evaluating temporal graph queries.
Unlike the previous version, which focused primarily on storage techniques, this
version addresses the challenges of query languages and processing, making our
system more comprehensive.

Various temporal graph querying solutions have been proposed in the lit-
erature, extending OLAP and OLTP queries with time. OLAP queries include
finding most durable connected components [41], temporal shortest paths [20],
and temporal centrality [34], while OLTP queries include temporal graph pattern
matching [32,39] and temporal navigational queries [36,2]. In this paper, we fo-
cus on extending OLTP queries with the temporal dimension. Hence, we propose
T-Cypher, a temporal extension of the well-known graph query language Cypher
[10] designed to enhance graph pattern matching and navigational queries with
the temporal dimension.

Example 1.1 Figure 1 illustrates a graph pattern and its corresponding Cypher
query, as well as a temporal graph pattern and its corresponding T-Cypher query.
In this example, the non-temporal pattern retrieves machines (m1 and m2) that
indicate the same alert (a) and are situated in the same room (r). To enhance

4 https://www.pole-emc2.fr/projet/mo-di-flu/
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Fig. 1: Example showing a T-Cypher query with temporal constructs compared
to a non-temporal Cypher query

machine maintenance efficacy, one might want to identify machines that are
affected by malfunctions in other machines. In such a scenario, the order in
which alerts were triggered becomes significant since it allows for the retrieval
of machines that indicated an alert after another machine signaling the same
alert, thus implying machine-to-machine influence. This is translated in the T-
Cypher query by the inclusion of the temporal constraints (s2@T AFTER s1@T
AND i2@T DURING i1@T). Besides we trim the search space to a time interval
[t1, t2) of interest instead of searching the full history which is translated in the
T-Cypher query by RANGE_SLICE [t1, t2) clause at the beginning of the query.

We propose a query processor to evaluate T-Cypher queries. Our processing
pipeline involves an algebra, cost model, and plan selection algorithm. We in-
troduce a temporal graph algebra that extends the graph algebra proposed by
Hölsch et al. [21] for Cypher queries with temporal operators. The evaluation
plan composed of algebraic operators is chosen based on a cost model that re-
lies on changing cardinalities provided by the backend store. Unlike traditional
query processors, we consider the optimal plan to vary within the requested
time interval due to changes in cardinalities, and thus preserve the history of
cardinalities in temporal histograms. We implemented this query processor in
Clock-G and evaluated it by executing various queries on synthetic datasets,
comparing its performance with an alternative solution that is based on extend-
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ing a non-temporal graph database (Neo4j5) with the temporal dimension. The
results demonstrate the efficiency of our cost model and query processor.

Besides proposing a query language and a query processing pipeline, we pro-
pose and implement into Clock-G a storage technique for temporal graphs. Var-
ious storage approaches have been proposed in literature for managing temporal
graphs, including the Log and the Copy+Log methods. The former involves pre-
serving all graph updates as timestamped logs, while the latter stores the updates
in time windows, along with snapshots (i.e. states of the graph) at the end of
each window. However, the space usage of the Copy+Log method, especially for
growth-mostly graphs, can be space-consuming due to redundant graph entities
shared between snapshots. On the other hand, the impact of the Log approach
on query evaluation time can be detrimental. To address these limitations, we
propose the δ-Copy+Log method, which stores only the difference between suc-
cessive snapshots, called deltas. Snapshots are stored every M time windows and
used as starting points for query evaluation. Specifically, half of the time win-
dows and their corresponding deltas are stored in a forward fashion, while the
other half are stored in a backward fashion. During query evaluation, the choice
between forward or backward construction of the result is determined based on
the requested time instant. This approach results in a significant reduction in
the maximum execution time of queries by up to 50%. We also conducted experi-
ments to evaluate the performance of Clock-G. A comparison between traditional
methods and the δ-Copy+Log validates that our technique offers a good com-
promise between the performances of the Log and Copy+Log methods. Besides,
we showcase how the parameters of Clock-G can be calibrated in order to tune
the overall performance with an adequate configuration that adheres most with
the acceptable threshold of query latency and available storage resources.

The main contributions of this work reduce to the following:

– Proposing a user-friendly extension of the Cypher query language that en-
ables to express a large fraction of temporal queries.

– Proposing a temporal graph algebra and query processor for T-Cypher queries.
– Proposing δ-Copy+Log as a space-efficient variant of the traditional Copy+Log

method.
– Taking a holistic approach into managing temporal graphs by addressing the

different layers of storage, query language, and processing.

Outline Section 2 provides an overview of related work. Section 3 introduces
key definitions for our proposed approaches. Section 4 introduces our proposed
temporal graph query language. Section 5 describes the query processor used
to evaluate our temporal graph queries. Section 6 presents our proposed stor-
age approach. Section 7 presents the architecture and overall design features of
Clock-G. Section 8 presents the results of our experiments conducted on real
and synthetic datasets. Finally, Section 9 concludes the paper and gives a future
perspective.

5 https://neo4j.com
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2 Related work

This paper proposes a comprehensive approach to managing temporal graphs
with versioning support, which includes addressing challenges related to storage
techniques, query languages, and query evaluation. We discuss the related work
on these challenges in subsequent sections.

2.1 Query language

In the field of graph querying, subgraph pattern matching or navigational queries
are the core concepts. Many proposals to extend these queries with the temporal
dimension have been posited.

Some extensions focus only on extending navigational queries with the tem-
poral dimension. Temporal reachability queries where extended with the tempo-
ral dimension [40,43]. Granite [36] is a query engine that implements temporal
navigational queries by adding temporal predicates and temporal ordering con-
straints, as well as temporal aggregations. A temporal extension of regular path
queries (TRPQ) was proposed in [2] by introducing structural and temporal
navigational operators. The T-GQL [7] query language is a temporal extension
of the standard query language for graph databases GQL [8]. The proposed
extension allows the expression of different types of temporal paths. However,
these solutions focus on navigational queries rather than graph pattern matching
queries.

Other proposals present temporal extensions of graph pattern matching queries.
For instance, non-decreasing time flow pattern are defined as each path between
two nodes follows a non-decreasing time flow [34,37,45]. It is useful for study-
ing the spread of a disease or the flow of rumors in a social network. Most
Durable Graph Pattern (MDGP) returns the most durable matches of a given
non-temporal pattern, which is useful for analyzing the tightness of connectiv-
ity between nodes [41]. Despite the usefulness of these proposals in some ap-
plications, they cannot express more general temporal predicates between the
elements of a pattern.

The Temporal Graph Algebra (TGA) [32] is a temporal generalization based
on temporal relational algebra for some graph operators. These operators can
filter the search to a time instant or interval or returns subgraphs that are iso-
morphic to a given pattern during a given time instant or interval. GRALA
[39] is a temporal analytical language that offers temporal operators to deter-
mine graph snapshots, the difference between two snapshots, and the subgraphs
satisfying a given time-dependent graph pattern. Despite the novelty of these
extensions, they do not support navigational queries.

T-SPARQL [?] is a temporal graph query language for RDF that embeds the
features of TSQL2 [?]. To express temporal predicates over timestamp variables,
the authors propose using a subset of Allen’s temporal operators [1]. SPARQLT

is another query language for temporal RDF stores. Although this language
does not offer dedicated temporal operators to express temporal relations, it is
possible to use temporal functions that extract the starting and ending time
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instants of a tuple to express any of Allen’s temporal relations and temporal
slicing. In this paper, temporal predicates and slicing are used on the property
graph model, extended to include temporal navigation functionalities.

This paper presents a novel method for querying temporal graphs that builds
upon graph pattern matching and navigational queries by incorporating the tem-
poral dimension. Our primary objective is to propose a concise and user-friendly
syntax that is easy to learn and facilitates intuitive reasoning and query con-
struction for temporal graphs. Motivated by this goal, we proposed T-Cypher
(Section 4), a temporal graph query language that extends the popular Cypher
query language [10]. The rationale behind this choice is that the syntax of Cypher
is graph-like (i.e., graph patterns are expressed using “ASCII art”) and user-
friendly, making it a popular choice amongst graph query languages. Many fea-
tures extracted from Cypher will be echoed in the standardization of upcoming
standrad graph query language GQL [8]. Besides, Cypher is expressive, declar-
ative, normalized, and open source.

2.2 Query processing

A query processor uses an algebra to convert a query into a set of algebraic
operators. In the context of temporal graph management, a Temporal Graph
Algebra (TGA) was proposed in [32], which includes graph operators that are
extended with the temporal dimension. In this work, we define a temporal graph
algebra that extends the graph algebra defined by Hölsch et al. for Cypher queries
in [21]. Our choice of extending this algebra, rather than other alternative graph
algebras (such as GraphQL [18] and GRAD [12]), is based on its compatibility
with our proposed query language, which extends Cypher.

Evaluating a query implies choosing a good evaluation plan that ideally min-
imizes the cardinality of sub-results, reducing thus the overall execution time.
The plan selection technique is usually coupled with a cost model that defines
a cost function for each algebraic operator which allows to approximate the re-
sulting cardinality of an operator before evaluation. This evaluation pipeline was
followed in [13] for processing Cypher queries in a graph database. However, our
goal in this paper is to extend this pipeline for the temporal graph model.

A query processor for temporal navigational queries can be found in Gran-
ite [36]. This plan selection approach splits the query path into sub-path seg-
ments to reduce cardinality, and uses a cost model based on temporal histograms
to estimate plan cost. However, this approach is limited to path queries and can-
not handle temporal graph pattern matching, which requires a more complex
plan selection approach. To address this problem, we present a query processor
that evaluates temporal graph pattern matching queries (Section 5).

2.3 Storage

Available temporal graph storage techniques can be categorized as follows: Log,
Copy, Copy-On-Write and Copy+Log. These methods are mainly motivated
by concepts of logging and checkpointing which reflects on lessons learned from



Clock-G: Temporal graph management system 7

classical techniques of database state recovery. The Log storage approach used
in [15,11] stores graph updates as timestamped logs, allowing recovery of any
graph state by loading logs with a timestamp lower than or equal to the requested
one. In contrast, the Copy approach materializes and persists graph snapshots.
These methods represent two extremes in storing temporal graphs, favoring ei-
ther space optimization or query computation time optimization. Copy-On-
Write [19,27,29,4] involves copying a single graph entity whenever it gets up-
dated, while Copy+Log [17,31,25,23,24,16,44] stores graph updates in tempo-
rally disjoint partitions (called time windows), along with snapshots representing
valid states of the graph. The advantage of the Copy+Log approach is that the
state of the graph at a given time instant can be recovered by reading a single
snapshot and all graph updates recorded in a time window.

In this work, we address a critical limitation of the Copy+Log storage ap-
proach which relates to the high space consumption of full graph snapshots. To
mitigate this issue, we propose the δ-Copy+Log (Section 6) approach which
considers the difference between snapshots instead of materializing full snap-
shots. We preserve a number of snapshots to serve as starting points for query
evaluation and after a fixed number of delta, a full snapshot is materialized. This
approach differs from traditional methods such as RMAN in that it replaces full
backups with deltas that contain only the difference between two snapshots.

3 Formal definitions

3.1 Time domain

In this section, we present a definition of the time domain, which is essential in
the development of data management systems that incorporate temporal ontolo-
gies. The time domain definition is particularly important in assigning temporal
validity information to data items [33]. Our approach to modeling time involves
selecting a discrete temporal flow, which is achieved by quantifying a time axis
with time granules [6]. Time granules, also known as chronons, are the smallest
indivisible units of time defined by a specific temporal granularity (such as a
second or a millisecond). We define the time domain, denoted as ΩT , as a to-
tally ordered set of instants that includes a sequence of discrete time granules:
ΩT =

{
ti|i ∈ N

}⋃
{Now,∞}. The duration between consecutive instants in the

sequence is equal to a chronon. In addition, we assume that the system assigns
a transactional time to each graph update.

3.2 Temporal graph relation

A T-Cypher query produces a temporal graph relation as output. Each relation
is represented as a bag of tuples, where a tuple u is a partial function that maps
names to values. The named fields of a tuple are defined as u = (a1 : v1, . . . , an :
vn), where (a1, . . . , an) are distinct names, and each element in (v1, . . . , vn) can
be a value, node or relationship state, set of node or relationship states, or paths.
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(a) Toy graph A

(b) Toy graph B

Fig. 2: Toy graphs illustrating the traversal of products through machines, the
maintenance of these machines (Toy graph A), the transfer of products between
machines, and the closeness between self driving vehicles (Toy graph B)

These states correspond to nodes or relationships within a specific time interval
during which their property values remained constant. We consider V, k, ID, L,
and T to denote the set of values, property keys, node identifiers, node labels,
and relationship types, respectively.

A node state in n is a tuple (idn, l, k, τ) such that:

– idn ∈ ID is the node identifier.
– l ∈ 2L is the set of node labels.
– k = {k1 : v1, . . . , km : vm} is a map of property names and values such that

ki ∈ k and vi ∈ V,∀1 ≤ i ≤ m.
– τ ∈ ΩT × ΩT is the validity time interval during which the node state was

valid.

A relationship state in r is a tuple (idns
, idnt

, t, k, τ) such that:
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– idns
∈ ID is the source node identifier.

– idnt ∈ ID is the target node identifier.

– t ∈ 2T is the set of relationship types.

– k = {k1 : v1, . . . , km : vm} is a map of property names and values such that
ki ∈ k and vi ∈ V,∀1 ≤ i ≤ m.

– τ ∈ ΩT ×ΩT is the validity time interval during which the relationship state
was valid.

Example 3.1 To clarify the previous definitions, we present a concrete example
of a temporal property graph inspired by the use case of smart factories. Fig-
ures 2(a) and 2(b) show two toy graphs (A and B) inspired by this use-case. In
these graphs, nodes {n0, ..., n12} model products, machines, self-driving vehicles
(S.D. vehicles), and employees. Whereas, relationships {r0, ..., r11} represent the
connections between nodes. Properties {p0, . . . , p3} are attached to nodes and
relationships to describe these graph entities.

In the manufacturing process, a product may traverse through various ma-
chines, which is denoted by the isIn relationship between them. This relation-
ship captures the progression of the product through the different stages of
the manufacturing process. The machines are regularly maintained by employ-
ees through the maintains relationship. Additionally, products are transported
from one machine to another through an S.D. vehicle using the transfers re-
lationship. To indicate the proximity between S.D. vehicles, a temporary rela-
tionship isCloseTo is established if the distance between them is lower than a
predetermined threshold. The properties p0 and p1 of a machine can indicate its
temperature or position whereas the property p2 of an employee can its skills.
The tools used during maintenance can be represented by p3 of the maintains
relationship. Each node and relationship in the temporal graph contains sev-
eral states that map property names to values during specific time intervals.
Querying this temporal graph allows for analyzing the causes of system failures
by tracking the trajectory of products and monitoring the evolution of machine
states. We present in Tables 1(a) and 1(b) the node and relationship states of
N = {n0, . . . , n12} and R = {r0, . . . , r11} of the temporal property graphs (A
and B) presented in Figure 2.

Let us now discuss the creation of node states {n0
1, n

1
1, n

2
1, n

3
1} in the Toy

graph A (Figure 2(a)). For instance, the first node state n0
1 is bound with values

(8, x) for property keys (p0, p1). This state is valid during [t1, t6) since an update
of the property p1 occurred at time instant t6 which results in a new node state
n1
1. Both node states have the same value for the unmodified property (p1) and

different values for the updated property (p0). Similarly, the node state n2
1 is

created after the update of the properties p0 and p1 at time instants t8. Finally,
the last modification of the node is an update of the property p0 at time instant
t16 which results in a new node state n3

1 valid in [t16,∞).
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Table 1: A fraction of the relationships and their states of the graph in Figures
2(a) and 2(b)

(a) Node states

Nodes States
n0 n0

0 = (idn0 ,Employee, {p2 : a}, [t0,∞))

n1

n0
1 = (idn1 ,Machine, {p0 : 8, p1 : x}, [t1, t6))

n1
1 = (idn1 ,Machine, {p0 : 5, p1 : x}, [t6, t8))

n2
1 = (idn1 ,Machine, {p0 : 7, p1 : y}, [t8, t16))

n3
1 = (idn1 ,Machine, {p0 : 8, p1 : y}, [t16,∞))

n2 n0
2 = (idn2 ,Machine, {p1 : y}, [t0,∞))

(b) Relationship states

Relationships States
r0 r00 = (idn0 , idn1 ,Maintains, {p3 : c}, [t6, t8))
r1 r01 = (idn3 , idn1 , IsIn, {}, [t1, t2))
r2 r02 = (idn3 , idn2 , IsIn, {}, [t7, t8))

4 Temporal graph query language

This section presents our temporal graph query language T-Cypher that ex-
tends Cypher with temporal constructs. Throughout this section, we provide
clear query examples and their results to clarify the semantics of our temporal
constructs. A more detailed description of the syntax and semantics of T-Cypher
is given the online documentation 6. Our proposed extension, T-Cypher, is de-
signed to incorporate temporal constructs without requiring modifications to
the existing grammar rules. This approach ensures a straightforward transition
for practitioners who are already familiar with Cypher, while reducing query
verbosity.

With T-Cypher, graph variables such as nodes, relationships, and properties,
as well as temporal variables referring to time validity intervals, can be expressed.
This enables the application of temporal constraints to the temporal variables
of the query. Furthermore, T-Cypher introduces the trim statement, which can
be used at the beginning of a query to prune the search space to single or
multiple time intervals. This guarantees that all variables defined in the query
are valid during at least one of these intervals. Temporal functions and operators,
can also be used in T-Cypher to define constraints and predicates on temporal
variables of the query. Another key feature of T-Cypher is the ability to express
different types of temporal paths. We define these key temporal constructs in
the following.

Temporal slicing clause We propose a temporal slicing clause to prune the
search space of a query to a single time instant or time interval. Hence, the tem-
6 https://project.inria.fr/tcypher/
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poral selection will be applied to all the variables of a temporal query such that
the returned states of graph entities should be valid at the requested time instant
or during the requested time interval. We use different time slicing techniques
using the tokens SNAPSHOT, RANGE_SLICE, LEFT_SLICE and RIGHT_SLICE.

A query starting with the SNAPSHOT token searches for graph entities that are
valid at a single requested time instant. On the other hand, a query starting with
a time-slicing token, such as RANGESLICE, LEFTSLICE, or RIGHTSLICE, searches
for graph entities whose time intervals intersect with the requested time interval,
starts before, or ends after the requested time instant, respectively. If a query
does not start with a time-slicing token, it is applied to the latest version of the
graph.

Figure 3 shows two queries applied to the Toy graph A (Figure 2(a)), with
their results. The first query returns the machine states valid at t3, while the
second query returns machine states with time intervals intersects with [t1, t8).

Fig. 3: Example of temporal slicing

Temporal functions and operators We define a set of temporal functions
that can be applied to the temporal variables of a pattern to define temporal
predicates. For space limitations, we present some of these functions in Table 2,
whereas a more comprehensive description is given in the online documentation
of T-Cypher. Besides, we use Allen’s operators [1] (e.g., before, after, during) to
define temporal relations between the temporal variables of a pattern.

Figure 4 provides an example of a T-Cypher query using temporal functions
and operators and its result when applied to the Toy graph A (Figure 2(a)).
This query returns the elapsed time7 between the maintenance of a machine and
its failure. The failure of a machine can be detected if the value of property p0
(e.g., temperature) is higher than a threshold. The expression (n@T AFTER e@T)
7 The elapsed time between two time intervals i and i′ is equal to the difference between

the starting time instant of i′ and the ending time instant of i.
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Table 2: Description of some temporal functions used in T-Cypher
Function Description Return

type
ELAPSED_TIME(i, i′) Returns the elapsed time between i and i′ Duration
DURATION(i) Returns the duration of i Duration
INTERSECTION(i0, . . . , in)Returns the intersection between {i0, . . . , in} interval

indicates that the system failure must have occurred after the maintenance. We
notice that the machine state n2

1 is returned since it has a value of p0 higher
than the threshold and it occurred after the maintenance of the machine.

Fig. 4: Example of temporal functions and operators

Temporal paths The relationships in a temporal graph are valid during certain
time intervals. Hence, the connectivity between two nodes can be subject to
temporal conditions defined over the relationships of a path which results in
diverse types of temporal paths. In T-Cypher, we include three temporal types
that can cover a large subset of queries: Continuous, Sequential, and Pairwise-
continuous (Figure 5), which we describe in the following.

Temporal path A temporal path is defined as a tuple (ns
1, rs1, . . . , rsk, n

s
k+1, τp)

containing a sequence of k relationship states (rsi , ∀ 1 < i < k) and k + 1 node
states (ns

i , ∀ 1 < i < k + 1) and a time interval during which the path is valid.
Each relationship state (rsi , ∀ 1 < i < k) is a tuple (idni

, idni+1
, trsi , krsi , τrsi )

connecting two node states of the path ns
i = (idni

, lns
i
, kns

i
, τns

i
) and ns

i+1 =
(idni+1

, lns
i+1

, kns
i+1

, τns
i+1

). The time interval of the path τp is derived from the
time intervals of the path relationships and depends on the type of the temporal
path.

Continuous path [38] A continuous path is a temporal path where the inter-
section between the time intervals (τrki , ∀ 1 < i < k) of the relationship states
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Fig. 5: Different types of temporal relationship patterns: Continuous, Pairwise
Continuous and Sequential (τrs1 , τrs2 and τrs3 refer to time validity intervals of
relationships rs1, r2 and rs3)

(rki ) of the path is not null and τp is equal to the intersection between time
intervals {τrs1 , . . . , τrkk}.

Figure 6 presents a T-Cypher query with a continuous path and its result
when applied to Toy graph B (Figure 2(b)). This query returns the path be-
tween self-driving vehicles that were 3-Hop close to each other during the time
interval [t1, t16). Hence, the self-driving vehicles of the path were close during
the intersection of the time intervals of the path relationships. Notice that three
continuous paths of length 3 exist between the self-driving vehicles n7 and n12.
The time interval [t3, t7) of the first path is equal to the intersection between
the time intervals of its relationship states ([t3, t7), [t3, t8) and [t3, t9)).

Fig. 6: Example of a continuous path

Sequential path [45,22,37] A sequential path is a temporal path where each
relationship state rsi+1 should occur after the relationship state rsi (∀ 1 ≤ i < k).
Hence, the ending time instant of τrsi should be lower than the starting time
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instant of τrsi+1
. The time interval of the path is the range of time covered by

the time intervals of the path.
To illustrate, Figure 7 presents a T-Cypher query with a sequential path and

its result when applied to the Toy graph B (Figure 2(b)). It returns a product’s
transfer path of length 4 between two machines, implying that a self-driving
vehicle or a machine transfers a product after receiving it. Note that a sequential
path of length 4 exists between the node states n3 and n9. This path is valid
during the time interval [t2, t13) that represents the range of the time intervals
of its relationship states ([t2, t4), [t5, t7), [t8, t10) and [t11, t13)).

Fig. 7: Example of a sequential path

Pairwise-continuous path [7] A pairwise-continuous path is a temporal path
where the time interval of each relationship state rsi should overlap with that of
the outgoing relationship state rsi+1 (∀ 1 ≤ i < k). Therefore, τrsi starts within
the time boundaries of τrsi−1

and ends within the time boundaries of τrsi+1
.

Let us now consider that a vehicle a transfers a product to a close vehicle b.
Now, b also looks for a close vehicle, c, and transfers the product to it. Similarly,
the vehicle c transfers a product to a close vehicle d. The path between the
vehicles is pairwise continuous since the time intervals of each pair of consecutive
relationships are overlapping. To illustrate, Figure 8 presents a T-Cypher query
with a pairwise-continuous path and its result when applied to the Toy graph B
(Figure 2(b)). Notice that a single row is returned, corresponding to the pairwise-
continuous path between node states n7 and n12. The time interval of the path
[t11, t16) is equal to the range of the time intervals of its relationship states
([t11, t14), [t12, t15) and [t13, t16)).

5 Temporal graph query processor

In this section, we give an overview of the query processing pipeline presented
in Figure 9.
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Fig. 8: Example of pairwise-continuous path

The query parser checks the syntax of a T-Cypher query according to de-
fined grammar rules and generates an Abstract Syntax Tree (AST). The parser
then uses the AST to create a parsed query object that is understandable by the
query planner. Using a cost-based model, the query planner generates an alge-
braic plan with cardinalities of subqueries based on temporal histograms. The
query evaluator executes each query operator by communicating with the stor-
age engine using δ-Copy+Log technique presented in Section 6. In the following,
we will introduce our temporal graph algebra, cost model, and plan selection
algorithm.

Fig. 9: The query processing pipeline implemented in Clock-G

5.1 Temporal graph algebra

We extend the graph algebra proposed by Hölsch et al. [21] by adding time-
based operators to translate T-Cypher queries into algebraic representations.
Our extension relies on temporal graph relations defined in Section 3.2. These
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relations are bags of tuples that map names to various entities, including node
or relationship states, sets of states, or temporal paths.

Operators Let E denote an algebraic expression, µ(E) denote the set of vari-
ables defined in the expression. For example, if E corresponds to matching a
relationship between two node variables (a and c) such as (a − [b]− > c), then
µ(E) is the set of variables {a, b, c}.

We illustrate the utilization of our operators to convert a T-Cypher query
into an algebraic expression. Specifically, we demonstrate the process using a
sample query Q that is applied to toy graph A. The objective of this query
is to retrieve the state of a machine and a product that was present in the
machine before it underwent maintenance by an employee during a specified
time period. We present in Figure 10 a possible evaluation plan with the results
of the different algebraic expressions ({E0, . . . , E5}) composing the plan. Note
that these expressions are given in the following description of the operators.

Query Q

RANGE_SLICE [t1; t8)
MATCH (m: Machine) <-[r: Maintains]- (e: Employee),
(m) <- [i: IsIn] - (p:Product)
WHERE m.p_0 > 2 AND m@T BEFORE r@T
AND i@T BEFORE r@T AND p@T DURING i@T
RETURN m, r, e, i, p;

Fig. 10: Example showing the result of evaluating the algebraic operators
(E0, . . . , E5) on the toy graph in Figure 2(a)
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GetNodes operator The GetNodes operator returns a temporal graph relation
containing node states from the underlying graph G. We use ⃝τ,a,ρa

to denote
this operator, where

– τ : is a time interval such that the returned node states should have time
intervals that overlap with it.

– a: is the name of the node variable.
– ρa: is the label of the node variable.

Every node state in the underlying graph having a label ρa and its time interval
overlaps with τ will be returned by this operator. To illustrate this operator, we
consider the following expression returning the machine states valid in [t1, t8).

E0 = ⃝[t1,t8),m,Machine

The result of this operator is given in Figure 10.

Select operator The select operator, denoted as στ,θ(E), filters input tables
based on property values of node or relationship states. It uses a Boolean expres-
sion θ defined over validity intervals and property values of variables from µ(E).
This operator filters tuples from input graph relations that satisfy θ during the
time interval τ . To illustrate this operator, consider the following expression:

E1 = σ[t1,t8),m.p0>2(E0)

This operator filters the input relation resulting from applying E1 such that the
value of the property p0 of m is lower than 2. The result of this operator is
illustrated in Figure 10.

Expand operator The expand operator creates a new relation by expanding
input relation tuples with direct relationships and target nodes. It is denoted as
↑τ,a,b,ab,ρb,ρab

(E), and ensures that added relationship states are valid within a
specified time interval, where

– τ : is a time interval such that the returned relationship states should have
time intervals that overlap with it.

– a: is the name of the node in the input relation.
– b: is the name of the added target node.
– ab: is the name of the added relationship.
– ρb: is the label of the added target node b.
– ρab: is the type of the added relationship ab.

To denote an expansion with an incoming direction, we write ↓τ,a,b,ab,ρb,ρab
(E).

The expand operator can express joins between the input relation and under-
lying graph when a node in the input relation reaches another node in the graph
through a relationship. However, expressing paths through a recursion of join
operators leads to a limited relational model. The expansion operator is more
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general and convenient, as it does not restrict the data model. To illustrate this
operator, consider the following operator:

E2 =↓[t1,t8),m,e,r,Employee,Maintains (E1)

Consider that this operator’s input is the previous expression E1 resulting from
the select operator. Notice that the node states (n0

1 and n1
1) are each expanded

with (r00 and n0
0) and the node state n0

4 is expanded with (r04 and n0
5). Let us filter

the returned result to keep the machine states valid before the maintenance, as
follows:

E3 = σ[t1,t8),m@T BEFORE r@T(E2)

The result of this operator is given in Figure 10.

Join operator The Join operator joins two expressions based on a Boolean
expression. We use E ⋊⋉θ E′ to denote this operator where θ is a Boolean ex-
pression. To illustrate this operator, consider joining the previously described
expression E3 with the expression E4 given below. This expression returns the
product states valid when the product was in a machine in [t1, t8).

E4 = σ[t1,t8),p@T DURING i@T(↓[t1,t8),m,i,p (⃝[t1,t8),m))

The following operator joins E3 and E4 with a temporal condition. We refer
to a junction with a temporal condition as a temporal join. The result of this
operator is illustrated in Figure 10.

E5 = E3 ⋊⋉i@T BEFORE r@T E4

It should be mentioned that more complex operators can be defined including
the aggregation operator that we keep for later work.

5.2 Cost model

This section defines the cost model used by the query planner, which estimates
the cost of an evaluation plan. The cost of each operator is equal to the esti-
mated cardinality of its output relation. Our model differs from classical query
processing models commonly used in relational databases because it considers
the cost of a query to change over time, meaning an optimal plan for one time
interval may not be optimal for another due to changing cardinalities. Our query
planner accounts for this by computing the cardinality of each algebraic operator
based on the requested time interval. We use card(E) to denote the estimated
cardinality of an algebraic expression E.

We use temporal histograms to estimate the cardinalities of algebraic opera-
tors for a given requested time. We create a temporal histogram for the evolu-
tion of each of the following:
– Number of node states with a given label.
– Number of relationship states with a given type and labels for the source

and target nodes.
– Number of node states with a given label and a value for a property name.
– Number of relationship states with a given type and a value for a property

name.
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GetNodes operator The cost of the getNodes operator is equal to the esti-
mated cardinality of the node states with a given label ρa valid during a given
time interval τ , as given in the equation below.

card (⃝τ,a,ρa
) = C(τ,ρa)

Expand operator The cost of the expand operator is equal to the average
cardinality of the relationship states given the label of the source and target
node states (ρa, ρb), type of the relationship state (ρab), requested time interval
(τ) multiplied by the cost of the previous expression E (card(E)), as given in
the equation below.

card (↑τ,a,b,ab,ρb,ρab
(E)) =

C(τ,ρa,ρb,ρab)

C(τ,ρa)
∗ card(E)

Select operator The cardinality of the select operator applied on an expression
E is equal to the selectivity of the graph entity states selθ(E) satisfying the given
condition θ multiplied by the cardinality of E, as given in the equation below.

card(στ,a.p=v(E)) = sel(τ, ρa, p, v) ∗ card(E)

The selectivity of graph entities is computed as follows:

sel(τ, ρa, p, v) =
C(τ,ρa,p,v)

C(τ,ρa)

Note that, we define the cost of the selection operator in which we only consider
filtering on the values of the node and relationship properties defined in the
input expression. The selectivity of a condition θ is equal to the cardinality of
all the graph entities satisfying it a.p = v divided by the cardinality of all graph
entities with a label or type ρa that existed during the time interval τ .

Join operator The cost of the join operator applied on expressions E, and E′

is equal to the product of the cardinalities of these expressions, as given in the
equation below.

card(E ⋊⋉ E′) = card(E) ∗ card(E′)

5.3 Greedy plan selection algorithm

This section describes an algorithm that greedily generates an evaluation plan
for a T-Cypher query (Algorithm 1). The main idea is to iteratively compute
the optimal plan such that an optimal decision is chosen at each iteration by
selecting the less costly algebraic operator and adding it to the final plan.

The input is a query object Q, whereas the output is the algebraic plan pfinal.
The first step is to compute all the GetNodes operators representing the leaves of
the logical plan tree and add them to the set of sub-plans P . In each iteration, a
candidate set Pcand is initialized, which will then contain the possible operators
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(a) Graph pattern (b) Two equivalent algebraic plans p
and p′ corresponding to time inter-
vals [t, t′) and [t′, t′′)

Fig. 11: Example illustrating a graph pattern and two possible logical plans, each
corresponding to a time interval

that can be applied to the set of sub-plans P to cover all the nodes defined in
the query. Then, the possibility of joining two sub-plans is first checked, and
every possible join operator is added to the candidate plans Pcand. The method
joinExists(p, p′) returns the following:

joinExists(p, p′) =

{
True, if µ(Ep) ∩ µ(Ep′) ̸= {}
False, Otherwise

Consider µ(Ex) to denote the set of variables of the expression of the plan x,
then the method returns true if the variables of the plan p intersect with the
set of variables of the plan p′ and false otherwise. After including the possible
joins in Pcand, each candidate plan is extended with an Expand operator such
that the added node variable does not exist in the original plan. Every extended
plan will be added to Pcand. Now, if no candidate operators are available, the
final plan, which encloses all the node variables of the query Q is found, and
the iterations stop. Otherwise, the most optimal plan popt is chosen between
the set of candidate plans Pcand such that the cost of each plan corresponds to
the requested time interval τ . Note that the computations of the costs of each
operator are described in Section 5.2. After adding popt to P , the other plans
contained in P and enclosed by popt are removed from P . The method enclose
returns the following:

p.enclose(p′) =

{
True, if µ(Ep) ⊇ µ(Ep′) ̸= {}
False, Otherwise

This implies that a plan p is considered to enclose another plan p′ if the set of
variables of p contains all the variables of p′. Finally, the iterations stop when no



Clock-G: Temporal graph management system 21

candidate sub-plans are added to the Pcand and the final plan pfinal contained
in P is returned.

Algorithm 1: Greedy selection of a logical plan for a T-Cypher query
Input: Query object Q, τ
Output: Logical plan pfinal

1 P ← InitPlans() N ← ExtractNodes(Q) ;
2 τ ← ExtractTimeInterval(Q) ;
3 for n← N do
4 p← getNodes(n) ;
5 P .insert(p) ;

6 Pcand.size ≥ 1 Pcand ← initPlans() ;
7 for p ∈ P do
8 for p′ ∈ P do
9 if joinExists(p, p′) then

10 p′′ ← join(p, p′) ;
11 Pcand.insert(p′′) ;

12 for p ∈ P do
13 p′ ← expand(p) ;
14 Pcand.insert(p′) ;

15 if Pcand.size ≥ 1 then
16 popt ← chooseOptimal(Pcand, τ) ;
17 P .insert(popt) ;
18 for p ∈ P do
19 if popt.enclose(p) then
20 P .remove(p) ;

21 pfinal ← P .get(0)

We show how an optimal plan for the graph pattern presented in Figure
11(a) is computed by applying Algorithm 1. In this example, we present three
node variables {a, b, c} labelled with {L0, L1, L2} and the relationship variables
{ab, cb, ac} having types {T0, T1, T2}. We show in Figure 11(b) two of the many
possible execution plans for this graph pattern. We assume that the cardinalities
of the graph entities change over time which conduces to a change of the (greed-
ily) optimal plan. Hence, we consider that the plans presented in Figure 11(b)
correspond to time intervals [t, t′) and [t′, t′′), respectively. Figures 12(a) and
12(b) present the selection of operators in each iteration of Algorithm 1, yielding
to plans p and p′ presented in Figure 11(b). Note that we omit some parameters
from the notations of operators when they can be derived from the context.

Extracting cardinalities from temporal histograms implies fetching the total
number of graph entity states with given constraints (node label or relationship
type) that were valid during the requested time interval (i.e., their time intervals
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(a) Logical plan in [t, t′)

(b) Logical plan in [t′, t′′)

Fig. 12: Greedy selection of logical plans in for different time intervals

overlap with the requested time interval). A possible way of handling this is to
keep all the cardinalities in an array such that querying it for a given time
interval implies reading all the records until reaching the end time instant of the
requested time interval. Despite its compact space usage, an array data structure
implies at most searching all the elements of the array to retrieve the cardinality
for a single time interval. To mitigate this complexity, we propose the use of
segment trees [3].

A segment tree is a data structure that keeps information related to intervals
as a full binary tree to allow an efficient response to range queries. For example,
querying a segment tree allows finding an aggregated value (e.g., sum, maximum,
average) of consecutive array elements in a range. For our query planner, we use
segment trees to compute the maximum cardinality recorded in a time range to
estimate the overall cost of a query plan. We choose the maximum cardinality
since it can result in worst-case cost estimation.
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6 Temporal graph storage

The δ-Copy+Log is a variant of the Copy+Log storage approach that we pro-
pose to mitigate the space cost induced by storing full snapshots. Recall that
the Copy+Log consists of storing snapshots that are valid between the bound-
aries of a time window s.t. each time window contains a fixed number of graph
operations. Now, the δ-Copy+Log follows a similar mechanism with the main
difference that consists of storing deltas instead of snapshots. A critical point is
that a delta differs from a time window. That is, a time window contains every
graph operation that exists between two snapshots whereas a delta contains the
only the minimum number of graph operations that transform a snapshot into
another one. Indeed, an addition of an element in cancelled by a deletion of the
same element, hence, both operations are stored in time window but omitted
from the delta. We store a snapshot after a number of time windows in order to
serve as a starting point for query evaluation. Having this, we store graph oper-
ations in consecutive time buckets containing each a number M of time windows
such that the first M − 1 time windows end with a delta, whereas the final time
window ends with a snapshot. A critical optimization is the forward and back-
ward data storage and retrieval. That is, half of the deltas and time windows in a
bucket is constructed in a forward fashion whereas the other half is constructed
in a backward fashion. The rationale behind this choice is the acceleration of
the query execution time. That is, we choose the closest snapshot from which
to start the retrieval then compute the result in a forward or backward fashion
whether the time instant of that snapshot is lower or greater than the requested
one.

Figure 13 illustrates the storage internals of the δ-Copy+Log and Copy+Log
methods. It shows that the Copy+Log method stores time windows and snap-
shots. Whereas, the δ-Copy+Log stores time windows, deltas and snapshots. In
this example, we consider a set of time buckets B where M = 6 which implies
that the bucket contains 3 forward time windows {ω1

⇒, ω2
⇒, ω3

⇒} and 3 backward
time windows {ω4

⇐, ω5
⇐, ω6

⇐}. At the highest time instant of a forward time win-
dow, a delta is materialized resulting in 2 forward deltas {δ1⇒, δ2⇒}. Whereas, a
delta is materialized at the lowest time instant of every backward time window
except the last time window where a snapshot is materialized resulting in 2 back-
wards deltas {δ4⇐, δ5⇐} and snapshot {S6}. Note that, the subtractive relation ⊖
operating on two snapshots S and S′ s.t. S⊖S′ results in the minimum number
of graph updates that permits the transformation of S in to S′. Half of the time
windows is stored in forward fashion whereas the othe’r half is stored in a back-
ward fashion. Suppose a query with a requested time instant t. If t falls within
the time interval of time window ω2

⇒, we start the search in a forward fashion by
fetching ω1

⇒, then fetching ω2
⇒ whose timestamp is lower than t. Whereas, if t

falls within the time interval of the time window ω5
⇐, we construct the result in a

backward fashion. That is, we start by fetching S6 then δ5⇐ and finally ω5
⇐. Note

that, in the Copy+Log method all the time windows are considered as forward.
In the following, we describe the key components of the δ-Copy+Log ap-

proach.
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Time buckets: We store the history of the graph in a sequence of temporally
disjoint time buckets s.t. each time bucket is a logical container of M time
windows and their corresponding checkpoints. That is, a checkpoint can be either
a delta or a snapshot. Now, we store a snapshot that is valid at the highest time
instant of the last time window of a each bucket, whereas we store a delta
at the ending time instant of other time windows. Besides, the first M/2 time
windows are constructed in a forward fashion and ends each with a forward delta.
Whereas, the rest of the time windows are constructed in a backward fashion
and ends each with a backward delta.

Fig. 13: The internals of the Copy+Log and δ-Copy+Log showing a time bucket
(b0) with M = 6, forward and backwards time windows (ωi

⇒, ωi
⇐) , deltas (δi⇒,

δi⇐) and snapshot Si

Time windows: We use time windows as physical containers for sets of N graph
operations each. There are two types of time windows: forward and backward.
A forward time window ωi

⇒ has graph operations sorted in ascending order of
their timestamps, while a backward time window ωi

⇐ has operations sorted in
decreasing order of their timestamps after they have been reversed.

Snapshots: A snapshot represents a valid state at the end of the last time win-
dow within a bucket. For node or relationship labels, the snapshot includes all
existing nodes and relationships at the snapshot time. For dynamic properties,
the snapshot includes all nodes and relationships with that property and their
latest value before or at the snapshot time.
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Deltas: A delta is defined as the minimum number of graph updates required to
transform snapshot S into snapshot S′. In other words, if a graph entity is both
added and subsequently deleted, these operations will cancel each other out and
will not be included in the delta.

Bloom filter Bloom filters are assigned to each delta to mitigate the execution
time overhead of queries induced by the storage of deltas instead of snapshots.
For each graph operation in a delta, we add the identifier of the corresponding
node to the Bloom filter. Having this, queries are accelerated by skipping the
retrieval of graph operations related to the requested node if the identifier of the
latter is not found in the Bloom filter.

6.1 Space and time complexity analysis

This section analyzes the space and time complexities of δ-Copy+Log, Log, and
Copy+Log methods, taking into account system and graph parameters such as
γ, N , M , c1, c2, r1, r2, and pd. These parameters respectively correspond to the
set of all graph operations, the number of graph operations in a time window,
the number of time windows in a bucket, the size of a single graph operation or
element, the time taken to read a graph operation or element, and the probability
of deleting a graph element. Note that due to space limitations, this section
presents some formulas without detailed explanations of their derivation. A more
comprehensive complexity analysis is present in our previous paper [30].

The space usage of the δ-Copy+Log is the sum of the space occupied by
graph operations, deltas and snapshots. The total space usage of the δ-Copy+Log
method (χδ−CL) can be formulated as follows:

χδ−CL =

(
1 + (1− 2pd)

(M − 2)

M

)
c1|γ|+

(1− 2pd)

2NM
c2|γ|2

The space usage of the Log approach (χLog) is equal to the space occupied by
all graph operations (χo) which implies the following:

χLog = c1|γ|

The space usage of the Copy+Log method (χCL) is equal to the space occupied
by graph operations and snapshots (χo + χs) where M = 1. Having this, we
derive the following:

χCL = c1|γ|+
(1− 2pd)

2N
c2|γ|2

From the obtained equations for χLog, χδ−CL and χCL, we can derive the fol-
lowing:

χLog ≤ χδ−CL ≤ χCL

We analyze the time complexity of a simplified version of the expand opera-
tor for point-based queries. Note that point-based queries are those addressing
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a single graph snapshot. The expand operator (↑τ (v)) retrieves all the relation-
ships of a node v whose validity intervals contain the time instant τ .
Execution time of the expand operator: In our analysis, we consider the
worst-case execution time of the operator, which involves reading from the snap-
shot whose timestamp is closest to τ . This, in turn, requires reading all opera-
tions in the deltas of the selected time bucket whose time interval is before τ ,
resulting in the reading of ((M2 − 1)N) graph operations where M and N refer
to the number of time windows between snapshots and the number of graph
operations in each time window, respectively. Finally, we need to read all the
graph operations in the time window that follows the last selected delta. Based
on this, we derive the following:

Tδ−CL (↑τ (v)) =

(
r2 +

(
M

2
− 1

)
Nr1 +Nr1

)
The expansion of a node using the Log method might incur loading all graph
operations in γ. Having this, we derive the following:

TLog (↑τ (v)) = |γ|r1

Finally, the expansion of a node using the Copy+Log method incur a single
snapshot read which implies the following:

TCopy+Log (↑τ (v)) = r2

Consider |γ| ≫ (NM
2 ) and |γ| ≫ r2

r1
, then we can derive the following:

TCopy+Log (↑τ (v)) ≤ Tδ−CL (↑τ ) (v) ≤ TLog (↑τ ) (v)

This analysis validates that δ-Copy+Log presents a compromise between the Log
and Copy+Log methods. We specifically emphasize analyzing the time complex-
ity of the expand operator as the basis for comparing the time complexity of the
δ-Copy+Log approach with traditional methods such as Log and Copy+Log.

7 Overview

This section provides the details of the integration of our temporal graph query
language, query processor, and storage technique into Clock-G. Hence, we present
in the following the different components composing the architecture of Clock-G
(Figure 14).

Request Handler The request handler is responsible for managing the read and
write requests. As presented in Figure 14, the request handler comprises two
functional components: Reader and Writer.

Our proposed language, T-Cypher, requires the reader to process temporal
graph queries using three components: query extractor, planner, and evaluator.
The query extractor converts T-Cypher queries into a system-recognized query
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Fig. 14: Overview of the system architecture of Clock-G

object using our proposed T-Cypher grammar. The query planner uses our plan
selection algorithm to convert the query object into an execution plan that min-
imizes estimated cardinality of sub-results. Cardinality estimation is based on
a cost model and temporal histograms. The query evaluator executes operators
using a pool of atomic executors that share intermediate results.

The writer is responsible for inserting graph updates, which involves inform-
ing the storage manager which holds the meta data of the δ-Copy+Log technique
of the insertion. Then, the writer sends an insertion request to the backend con-
nector, which translates the request into atomic write operations for the backend
store.

Backend store The backend store is responsible for storing the temporal graphs
following our proposed storage technique the δ-Copy+Log. We rely on the column-
oriented database Apache Cassandra [28] for robustness, engineering maturity,
and scalability. Besides, Cassandra sorts blocks of data according to a given col-
umn or combination of columns. We utilize this feature to sort graph updates
according to their chronological order, accelerating their sequential read.

For instance, the storage is separated based on the graph entity type, re-
sulting in node, relationship, and dynamic property stores. For each node/rela-
tionship label or dynamic property, we partition the storage based on a Hash
partitioning strategy. Each of these partitions corresponds to a storage unit and
is stored following the δ-Copy+Log method (denoted δ-CL in Figure 14 for sim-
plicity).
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Storage manager The storage manager is responsible for applying the rules of
the δ-Copy+Log method to the storage. Besides, it maintains metadata that
helps direct read or write operations to the corresponding storage entities.

Backend connector The backend connector connects to and executes requests
against the backend store. Hence, it receives read or write requests from the
request handler and converts them into Cassandra queries before executing them
against the backend store.

Auxiliary data structures To reduce the prohibitive cost of accessing the sec-
ondary storage, we use auxiliary data structures maintained in memory and
queried when needed. These auxiliary data structures include Temporal his-
tograms and Bloom filters. The temporal histograms represent the evolution of
the cardinality of graph elements through time.

Client API Clock-G offers a client API enabling a client to connect, ingest
graph updates, or query the stored graphs. Users can insert graph operations
individually or in batches into the system. In both cases, graph operations are
attached to a transactional time based on the system’s internal clock. Besides,
users can query the temporal graph using the temporal graph query language
T-Cypher.

8 Evaluation

This section evaluates the performance of Clock-G, aiming to demonstrate that
δ-Copy+Log provides a balance between the traditional methods Copy+Log and
Log in terms of space usage and evaluation time. It also shows that Clock-G can
be tuned to account for acceptable query latency and storage resources. This
section also confirms the cost-effectiveness of our query optimizer for T-Cypher
queries.

8.1 Experimental setup

Machine configuration The experiments were conducted on a single machine
equipped with 32 Intel(R) Xeon(R) E5-2630L v3 1.80GHz CPUs, 264 GB mem-
ory, 1 TB SSD, running 64-bit Ubuntu 18.04.4 LTS with 5.0.0-23-generic Linux
kernel. We use OpenJDK 11.0.9, Go 1.14.4, DSE 6.8.4, CQL spec 3.4.5 and
Neo4j8 4.4.

Datasets We evaluated our proposed methods on synthetic and real tem-
poral graphs to validate their performance. Synthetic datasets were generated
with varying probabilities of addition, resulting in three datasets, DSpa

, with
pa values of 0.9, 0.75, and 0.6. These datasets allowed us to analyze the space
reduction achieved by δ-Copy+Log through the elimination of redundant graph
elements across snapshots.
8 https://neo4j.com
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We also used different real-world datasets such as DBLP dataset (DSDBLP

[26], Stack overflow dataset (DSstack) and Wiki talk dataset (DSwiki) [42]. To
evaluate the sequential paths (presented in Section 4), we used the CitiBike
dataset9 (DSciti) which includes information of bike trips between stations in
New York city.

We present some of the characteristics of the generated datasets in Table 3
where |V | refers to the total number of vertices, |E| refers to the total number
of graph operations.

Table 3: Characteristics of the generated graphs

Dataset |V | |E| Space usage (GB)
DSpa 500 K 10 M 0.315

DSstack 2.6 M 63.4 M 1.7
DSDBLP 1.8 M 29.5 M 0.831
DSwiki 1.1 M 7.8 M 0.173
DSciti 1 K 2.5 M 0.066
LDBC0 4.2 K 12 K 0.003
LDBC1 406.3 K 1.9 M 0.1
LDBC2 1.1 M 3.9 M 0.3

The storage technique was evaluated using previously described datasets, but
a dataset with different relationship and node labels, and time-evolving proper-
ties that change over time was required to evaluate complex T-Cypher queries
using our query processor. To perform these evaluations, we used the LDBC
dataset [9], which represents a temporal social graph where people know each
other or like each other’s posts and comments. However, the original LDBC
schema did not account for dynamic properties, which were necessary for our
testing requirements. Thus, we modified the schema by transforming some out-
going relationship types and target nodes into dynamic properties attached to
the incident nodes. The modified schema includes nodes for people, posts, and
comments, with relationships of type likes or knows. Each node and relation-
ship has a starting and ending time instant that defines the boundaries of the
validity time interval of each graph entity, as well as a set of dynamic and static
properties that characterize it. For example, the property university of a person
node was originally a relationship connected to that node and another university
node, which we have converted into a dynamic property. Similarly, we converted
the relationships connecting a person to a company and a post or comment to
a tag into dynamic properties. We present the characteristics of the generated
LDBC graphs (LDBC0, LDBC1, and LDBC2) in Table 3.

9 https://ride.citibikenyc.com/system-data
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Fig. 15: Comparison with state-of-the-art techniques
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Fig. 16: Evaluation of 8 Hop queries with f-δ-CL, b-δ-CL and δ-CL methods on
dataset DS0,6 with N set to 10K

8.2 Space usage and query evaluation time of basic temporal
queries

We evaluate disk space usage and query execution time with different system
parameter configurations using basic temporal queries such as local, global,
point, and range queries. It should be noted that local and global queries
request the local neighborhood of a single query and the state of the entire graph,
respectively. Point and range queries retrieve a point or global state that was
valid at a single time instant and during a time range, respectively. These queries
can be easily written using the T-Cypher’s syntax. In this experiment, local
queries start from 1k randomly selected vertices, while global queries retrieve
snapshots of the graph at uniformly chosen time instants within the time span
of the datasets. This evaluation focuses solely on storage technique performance,
without using a query processor. More complex T-Cypher queries are evaluated
in Section 8.3.

Comparison with state-of-the-art methods. We compare the results of the
proposed method δ-Copy+Log with those of the traditional methods Copy+Log
and Log. Now, the implementation of Copy+Log in Clock-G is fairly straight-
forward since it consists of setting parameter M to 1, while implementing Log
involves creating unbounded time windows.

Figures 15(a), 15(b) and 15(c) display the space usage, the execution time of
5-Hops and global queries on datasets DS0,6, DS0,75 and DS0,9. Note that, we
set the system parameters N and M to 10k and 12, respectively.

The results clearly demonstrate that the proposed δ-Copy+Log method pro-
vides a balance between the Log and Copy+Log approaches. It reduces space
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Fig. 17: Evaluation of the disk space usage and execution time of queries while
varying the system’s configuration parameter N . The evaluation is conducted
on the synthetic dataset DS0,6
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Fig. 18: Evaluation of the disk space usage and execution time of queries with
N = 10K. The evaluation is conducted on synthetic datasets DS0,6, DS0,75 and
DS0,9 having each a different value of parameter pa

usage by a factor of 12 compared to Copy+Log, and query execution time by a
factor of 340 compared to Log for DS0.75.

Validating the use of Bloom filters. In this evaluation test, we compare
the execution time using 3 methods namely: f-δ-CL, b-δ-CL and δ-CL. The f-
δ-CL method follows the same approach as the δ-Copy+Log with the difference
of storing only forward time windows and deltas and omitting the use of Bloom
filters. The b-δ-CL, standing for bloomed-δ-Copy+Log, consists of adding Bloom
filters to the f-δ-CL. Finally, the δ-CL refers the δ-Copy+Log method, hence,
consists of adding forward and backward time windows and deltas to the b-δ-
CL. Comparing these methods emphasizes the gain of adding Bloom filters and
that of storing backward time windows and deltas, separately. Figure 16 shows
the execution time of traversal queries with fixed depth 8 on dataset DS0,6 while
increasing the system parameter M from 1 to 12. The f-δ-CL method significantly
increases the execution time with increasing M , but adding Bloom filters to the
b-δ-CL reduces the execution time, with a speedup of 52% for M = 12. Adding
forward and backward time windows and deltas to the δ-CL speeds up traversals
by 23% compared to the b-δ-CL. The f-δ-CL method has an overhead of 206%
when M is increased from 1 to 12, which is reduced to 12.5% when using the
δ-CL.
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Fig. 19: Evaluation of the disk space usage and execution time of queries with
N = 250K. The evaluation is conducted on real datasets DSstackO, DSDBLP

and DSwiki

Variation of N and M . In this evaluation test, we study the effect of system
parameters N and M on disk space usage and query execution time. Figure
17(a) shows that increasing M while fixing N significantly reduces space usage
compared to the Copy+Log method. Smaller values of N result in higher space
usage of checkpoints. Increasing M induces more significant disk space gain for
smaller values of N . The execution time of 5-Hop and global queries is also
evaluated for different configurations of N and M , with results shown in Figures
17(b) and 17(c). A higher value of N results in higher execution time because
fewer checkpoints are created.

Variation of pa and M . In this evaluation test, we study the effect of varying
the linkage probability of datasets DSpa

and the system parameter M on the
space usage and query execution time. We display in Figure 18(a) the space oc-
cupied by checkpoints for datasets DS0,6, DS0,75, and DS0,9 for different system
configurations where M ranges from 1 to 12. Our results indicate that increas-
ing M leads to a decrease in space usage, and graphs with higher probability of
additions provide better space gains. This is because snapshots of such graphs
consume more space, making the replacement with deltas more significant in
terms of space gain. We also analyze the impact of varying pa and M on the
execution time of 5-Hop and global queries, as shown in Figures 18(b) and 18(c).
We find that increasing pa leads to an increase in query execution time, as higher
node degrees result in more computations to evaluate query results.

Evaluation on real datasets. We assess the space efficiency of ingesting real-
world datasets using the δ-Copy+Log method, with results shown in Figure 19(a).
The space usage of checkpoints created by ingesting datasets DSstack, DSDBLP ,
and DSwiki into Clock-G reduces significantly when increasing the value of M
from 1 to 12. Furthermore, we evaluate 5-Hop traversal and global queries on
these real-world datasets, and the results in Figures 19(b) and 19(c) demonstrate
that our solution significantly reduces space usage while adding only a slight
query execution time overhead, as compared to the Copy+Log method.



Clock-G: Temporal graph management system 33

Clock-G Neo4ji Neo4j
0

20

40

60

80

100

120

Sp
ac

e
us

ag
e

(M
B

)

(a) Space usage
2 4 6 8

0

2

4

6

8

10

12

Depth

E
xe

cu
ti

on
ti

m
e

(s
)

Clock-G
Neo4ji
Neo4j

(b) Varying the depth

2 4 6 8
0

2

4

6

8

10

12

Time range

E
xe

cu
ti

on
ti

m
e

(s
)

Clock-G
Neo4ji
Neo4j

(c) Varying the range

Fig. 20: Evaluation of the space usage and query execution time of Clock-G,
Neo4j and Neo4ji

Comparison with a non-temporal graph database. In this study, we com-
pare the performance of Clock-G with a commercial graph database Neo4j. To
enable the storage and evaluation of temporal graphs in Neo4j, we created a
temporal layer by adding validity intervals to each node and relationship occur-
rence. We tested two implementations: Neo4j without indexes and Neo4ji with
indexes where we add indexes to the starting and ending time instants (tStart
and tEnd) of nodes, relationships, and properties 10. We ingested dataset DSciti

in all three systems and evaluated a time increasing path query for each node
and for depths 1 to 8 and time ranges 1 hour to 8 hours.

Figure 20(a) compares the space usage of Clock-G with those of Neo4j and
Neo4ji. It is evident from the figures that Clock-G consumes less space than
Neo4j and Neo4ji.

The figures 20(b) and 20(c) show the performance of time increasing path
queries with varying depth and time range, comparing the execution time of
Clock-G with that of Neo4j and Neo4ji. Results show that Clock-G performs
better than the alternative solutions, especially with increasing depth and time
range. Clock-G uses parallelism to compute query results and trims the search
space to the requested time interval, which is not possible with Neo4j and Neo4ji.

The experiment results emphasize the importance of developing v a graph
management system that natively supports temporal data, rather than relying
on a non-temporal commercial system.

8.3 Query execution time of complex temporal queries

In this section, we evaluate the performance of our query processor by presenting
the execution time of T-Cypher queries with the best, random, and worst plan
selection. The best execution plan is selected using a greedy algorithm presented
in Algorithm 1. For the worst execution plan, a modified version of this algorithm
is used where the most expensive algebraic operator is selected at each iteration.
Similarly, a random plan is computed using the same algorithm, but the algebraic
operator is chosen randomly at each iteration.
10 We use the built-in Neo4j’s indexing utility to include indexes on the properties

tStart and tEnd
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Queries We ran these tests with several T-Cypher queries listed below. Note
that all these queries apply to a time interval covering the full history of the
LDBC datasets.

Query Q0
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k1:knows]-> (p2:person)
RETURN p1, p2

Query Q1
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k:knows*2]-> (p2:person)
RETURN p1, k, p2

Query Q2
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k:knows*3]-> (p2:person)
RETURN p1, k, p2

Query Q3
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k1:knows]-> (p2:person)
-[k2:knows]-> (p3:person)
WHERE p1.university=x AND p1@T STARTS k1@T AND p1@T STARTS k2@T
RETURN p1, p2, p3

Query Q4
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k1:knows]-> (p2:person) -[k2:knows]->
(p3:person), (p2:person) -[l:likes]-> (p:post)
RETURN p1, p2, p3, p

Query Q5
RANGE_SLICE [2009-01-01T08:00:00Z; 2020-01-01T10:00:00Z]
MATCH (p1:person) -[k:knows]-> (p2:person) -[l1:likes]->
(p:post), (p1:person) -[l2:likes]-> (p:post)
RETURN p1, p2, p

Q0 returns the pairs of persons who knew each other in the time interval. Q1

returns the person’s 2-hop friendship paths. Q2 returns the person’s 3-hop friend-
ship paths. Q3 returns the friends of friends of a person who went to the univer-
sity x such that the friendship started when the person studied in that university.
Q4 returns all friends of friends of each person such that the intermediate per-
son likes a post. Q5 returns the friends who like the same post. Some of these
queries include graph entities with varying levels of granularity. For example,
the knows relationships are more selective than the likes relationships. In such
cases, it is reasonable for the query processor to prioritize loading the "knows"
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relationships prior to the "likes" relationships during evaluation in queries Q4
and Q5.

Plan selection This section shows the best, random, and worst execution plans
of Query Q3 due to space constraints. Notably, the dataset exhibits a lower car-
dinality for the person label compared to the post label, and a higher cardinality
for the like relationship than the know type.

Fig. 21: Best, random, and worst evaluation plan of Query Q3

We present the evaluation plans for Query Q3 in Figure 21. The optimal plan
begins by retrieving nodes p1 and selecting those who attended the specified
university. It then expands nodes p1 with relationship k1, selects those who
began at the university, expands again with relationship k2, and selects those
who began with p1. As predicted, the worst plan postpones selections until the
end. The depicted random plan computes two subparts of the query and joins
the results. The first subpart retrieves nodes p1 and their direct neighbors p2
connected via relationship k1, selecting only those who studied at the given
university. The second subpart retrieves nodes p3 and their direct neighbors p′2
connected via relationship k2. The two subparts are then joined based on the
condition that p2 should equal p′2 and the temporal condition that k2 should be
started by p1.

Figure 22 displays the average execution time resulting from the best, ran-
dom, and worst plan selection strategies for computing queries {Q0, . . . , Q5} on
datasets LDBC0, LDBC1, and LDBC2. Note that these results correspond to
the average computation time of 10 repetitions.

The execution time of queries Q0, Q1, and Q2 increases with the number
of traversed hops for all evaluated datasets, but the best, random, and worst
evaluation plans show negligible differences. This difference is expected, as all
node and relationship variables in these queries share the same label and type,
resulting in the same cardinality. In contrast, the execution time for queries Q3,
Q4, and Q5 differs significantly between the best and worst evaluation plans
since these queries present graph entities of different granularity.
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Fig. 22: Comparison between the execution time of T-Cypher queries with worst,
random, and best execution plans

The worst plan selection strategy delays the selection process until the end
and begins with the nodes having the highest cardinalities. This negatively im-
pacts the cost of query evaluation. On the other hand, selecting plans randomly
provides a balance between the best and worst plan selection strategies in terms
of query execution time. This is because there are several alternative query plans
that fall between the best and worst plan selections. Therefore, these results
demonstrate the effectiveness of our plan selection algorithm and cost model.

Comparison with Neo4j We compared Clock-G with a non-temporal graph
system by introducing a temporal layer on top of Neo4j. This layer handles the
temporal dimension by storing time instants for graph updates and converting
T-Cypher queries into Cypher queries.

We compared the performance of Neo4j and Clock-G in executing queries
{Q0, . . . , Q5} using Algorithm 1 and present the results in Figure 23. Clock-G
outperforms Neo4j by up to 80% due to its ability to prune the search space and
directly search within selected time windows, snapshots, and deltas.
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Fig. 23: Comparison between the execution time of T-Cypher queries with Neo4j
and Clock-G on LDBC2
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9 Conclusion

In this paper, we presented Clock-G, a temporal graph management system
with a holistic approach to covering query language, processing, and storage. T-
Cypher is our user-friendly query language that allows for temporal constraints
on graph pattern matching and navigational queries. Our query processor eval-
uates T-Cypher queries and targets the minimization of the processing cost. To
address this, our processor uses a graph algebra that defines the algebraic oper-
ators of a plan, cost model that defines the cost of each operator, and temporal
histograms that preserve the cardinality’s evolution. Our storage technique, δ-
Copy+Log, targets the reduction of the space usage of the traditional Copy+Log
technique by storing deltas instead of full graph snapshots. Tests on synthetic
and real-world graphs show that δ-Copy+Log significantly reduces space usage
and execution time compared to traditional methods and validates the efficiency
of our query processor.

A promising direction for future work is the incorporation of the spatial
dimension into Clock-G, as it has been the subject of research in the area of
spatio-temporal databases [14,35]. To further enhance the capabilities of the
Thing’in platform, we can explore spatio-temporal queries, such as expressing
a geographic region in which objects should be located during a specified time
interval.
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