Sébastien Michelland 
email: sebastien.michelland@lcis.grenoble-inp.fr
  
Christophe Deleuze 
email: christophe.deleuze@grenoble-inp.fr
  
Laure Gonnord 
email: laure.gonnord@grenoble-inp.fr
  
From low-level fault modeling (of a pipeline attack) to a proven hardening scheme

Fault attacks present unique safety and security challenges that require dedicated countermeasures, even for bug-free programs. Models of these complex attacks are made workable by approximating their effects to a suitable level of abstraction. The common practice of targeting the Instruction Set Architecture (ISA) level isn't ideal because it discards important micro-architectural information, leading to weaker security guarantees. Conversely, including microarchitectural details makes countermeasures harder to model and reason about, creating a new challenge in validating and trusting protections.

We show that a semantic approach to modeling faults makes micro-architectural models workable, and enables precise cooperation between software and hardware in the design of countermeasures. We demonstrate the approach by designing and implementing a compiler/hardware countermeasure, which protects against a state-of-the-art pipeline fetch attack that generalizes multi-fault instruction skips. Crucially, we provide a formal security proof that guarantees faults are detected by the end of every basic block. This result shows that carefully embracing the complexity of lowlevel systems enables finer, more secure countermeasures.

2 These aren't classical basic blocks; not counting conditional branches as terminators works better for this fault. This is of minor importance except in the security proof.

From low-level fault modeling (of a pipeline attack) to a proven hardening scheme

Introduction

An attacker with access to a physical device can perform fault injection attacks. Physical interference such as a clock glitch, a power supply voltage glitch, or an electromagnetic pulse, can cause hardware to behave erroneously [START_REF] Bar-El | The Sorcerer's Apprentice Guide to Fault Attacks[END_REF]], sometimes just enough to bypass an application's security. The development of fault injection attacks [START_REF] Shepherd | Physical fault injection and side-channel attacks on mobile devices: A comprehensive analysis[END_REF]] makes them a tangible threat to modern safety-and security-critical systems. Countering them is uniquely challenging due to the unpredictable effects of lowlevel interference on high-level security properties -a leap that traditional development tools meticulously avoid by building upon a clean abstraction stack from hardware to programming languages.

In order to conquer the complexity of these attacks, security engineers construct fault models by approximating faults' effects to a desired level of abstraction. These span from bit flips in RTL (Register Transfer Level) latches [START_REF] Tollec | Exploration of Fault Effects on Formal RISC-V Microarchitecture Models[END_REF] to failures in pipeline forwarding [START_REF] Laurent | Modélisation de fautes utilisant la description RTL de microarchitectures pour l'analyse de vulnérabilité conjointe matérielle-logicielle[END_REF]] to corrupted ISA registers [START_REF] Barthe | Synthesis of Fault Attacks on Cryptographic Implementations[END_REF]] and branch inversion directly in source code [START_REF] Potet | Lazart: A Symbolic Approach for Evaluation the Robustness of Secured Codes against Control Flow Injections[END_REF]. Countermeasures are then based on these models, so in a sense secure programs resist fault models rather than faults. The clear trade-off is one of accuracy versus simplicity; low-level descriptions are more true to practical attacks, but high-level approximations make it practical (in many cases possible) to reason about and protect against them.

In practice, most existing works study faults at the ISA level, based on mis-executions of assembler programs (instruction skips, wrong jumps, corrupted registers, etc. [START_REF] Höller | QEMU-Based Fault Injection for a System-Level Analysis of Software Countermeasures Against Fault Attacks[END_REF]), with countermeasures as transformations of assembler programs. This is a natural choice as assembler is the lowest software abstraction, and dealing with software has benefits such as ease of deployment, board-independence, compiler automation, and the ability to protect only critical sections of programs (compared to fixed costs in e.g. die surface). Hardware protections [START_REF] Lashermes | Hardware-Assisted Program Execution Integrity: HAPEI[END_REF]] are less common, but better equipped to deal with local and remote side-channel attacks [START_REF] Tillich | Protecting AES Software Implementations on 32-Bit Processors Against Power Analysis[END_REF], which share many aspects with fault attacks (see f.i. [START_REF] Hans Winderix | Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency Side-Channel Attacks[END_REF]).

The key issue with ISA-level fault models is that the approximation is quite crude; [START_REF] Laurent | On the Importance of Analysing Microarchitecture for Accurate Software Fault Models[END_REF] shows that faulted behaviors often depend on micro-architectural features and cannot be described accurately without including hardware details. Pipeline analysis in [START_REF] Yuce | Software Fault Resistance is Futile: Effective Single-Glitch Attacks[END_REF]] further shows that targeted fault attacks can and do defeat many ISA-level countermeasures by exploiting unmodeled low-level effects.

Naturally, using low-level models widens the abstraction gap between the attack and the countermeasure (often applied during compilation at an IR or back-end level). This creates a risk that protections could be altered or defeated by the compiler's late stages. These cross-layer concerns (commonly avoided by disabling optimizations or basing security claims on exhaustive injection campaigns) resurface when attempting to formally prove a countermeasure's security.

The issue of proving security for countermeasures at the ISA level or lower has received little attention compared to traditional testing. Works that reach proven levels of security usually focus on specific boards (e.g. RTL model checking in [START_REF] Tollec | Exploration of Fault Effects on Formal RISC-V Microarchitecture Models[END_REF]) or high-level languages (e.g. symbolic analysis in [START_REF] Potet | Lazart: A Symbolic Approach for Evaluation the Robustness of Secured Codes against Control Flow Injections[END_REF]). Proving traditional countermeasures would provide an appropriate response to [START_REF] Yuce | Software Fault Resistance is Futile: Effective Single-Glitch Attacks[END_REF]] by guaranteeing the absence of attack opportunities, across multiple abstraction layers starting at the micro-architectural level.

This approach contrasts with recent progress in working out sophisticated hardening schemes that combine multiple types of protections or resist multiple consecutive or independent attacks (multi-fault attacks) [START_REF] Geier | Power supply glitch attacks: Design and evaluation From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference'17[END_REF][START_REF] Werner | An end-to-end approach to identify and exploit multi-fault injection vulnerabilities on microcontrollers[END_REF]. The applicability of these solutions still hinges on ISA-level fault models adequately capturing faults' effects, which is not guaranteed. To ensure security at a lower abstraction level, we choose to refocus on single but accurate models, which we address with a software/hardware co-design approach.

Contribution summary. We present the first formallyproven countermeasure addressing a low-level fault model. We formalize the fault in an extended assembler language in Section 2, then propose in Section 3 a countermeasure based on a hardware extension and a compile/link-time program transformation. From the formal semantics for the fault, we derive a security theorem in Section 4. We implement the scheme in LLVM and GNU ld, then evaluate its security with emulated fault campaigns and its performance with processor simulations in Section 5. Finally, we compare this work with recent literature in Section 6, and conclude in Section 7. The supplementary material for this paper contains a detailed operational semantics of the extended assembler and the complete proof of the security theorem.

Formal description of fetch skips

We protect against a slightly generalized version of the fault model described by [START_REF] Alshaer | Variable-Length Instruction Set: Feature or Bug?[END_REF], adapted for RISC-V 1 . The target system is a 32-bit little-endian RISC-V processor with the "C" extension for compressed instructions (such as RV32IC [The RISC-V Instruction Set Manual Vol. I 2019]), which means it has a mix of 16-bit and 32-bit instructions.

The instruction set includes the usual arithmetic instructions (add, xor. . . ), memory instructions (lw, sw. . . ), conditional (beq. . . ) and unconditional (j, jal. . . ) branches. All instructions have a 32-bit encoding unless prefixed with "c.", which denotes a 16-bit encoding from the "C" extension.

For brevity, we use "aligned" to mean a multiple of 4 (bytes) and "unaligned" for a multiple of 4 plus 2. We also use the term "line" to refer to 4 bytes of data at an aligned address.

1 RISC-V is an open standard ISA; details can be found at https://riscv.org. int g(int x) { return f(x) + 1; } g: # ▼ Push register ra to stack 24: 41 11 c.addi sp, sp, -16 26: 06 c6 c.sw ra, 12(sp) # ▼ Call f (linker later inserts address of f) # ▼ ra is both target address and return address 28: 97 00 00 00 auipc ra, 0 2c: e7 80 00 00 jalr ra, 0(ra) 

# ▼ Add
(x) = f(x) + 1.

RISC-V programs and their execution

This section introduces the notions needed to describe the fault and state the security theorem in Section 4; the full formal semantics can be found in the supplementary material. We model RISC-V programs as collections of blocks made of non-or conditionally-branching instructions, terminated by an unconditional branch. 2 Figure 1 shows a function g(x) = f(x) + 1 consisting of two blocks, one that calls f (implicitly forwarding the argument) and one that increments the return value a0 then returns.

We model the execution as a sequence of execution steps in which the CPU obtains the next instruction (with a combination of a buffer read and/or a memory fetch), decodes it, and executes it. For instance, function g in Figure 1 executes in 8 steps (ignoring the call to f), with each step running one instruction and consuming either 2 or 4 bytes of code.

The central behavior of interest in this paper is that there is not always one fetch for one step: certain instructions are fetched in advance, and others are read by the CPU over two consecutive fetches. This is because most CPUs always fetch 4 aligned bytes in memory, that is, a line in the memory layout table. For example, the first step in running g fetches the 4 bytes at address 24 and puts them in a decoding buffer, PC i16

... but only consumes the first 2 to execute c.addi. Then, the second step executes c.sw from the buffer without needing another memory fetch.

Figure 2 shows all the ways a step may use buffered data and/or fetch from memory when executing one instruction. When PC is aligned (left), the next instruction is on a new line, so a fetch is performed. When PC is unaligned (right), 2 bytes of instruction data are left in the decoding buffer. If they form a 16-bit instruction (case c), the CPU runs it immediately without a fetch. If they form the first half of a 32-bit instruction (case d), a fetch is performed at PC + 2 to obtain the second half and piece together the opcode. Each step then increments PC by 2 or 4, setting up the next cycle.

Fault model

We are interested in protecting programs against "fetch skip" attacks described by [START_REF] Alshaer | Variable-Length Instruction Set: Feature or Bug?[END_REF]. Fetch skips refine the traditional instruction skip fault model by analyzing the effect of physical attacks (here, clock glitches) on the microarchitecture rather than on the program only. Because the model is more accurate with respect to physical effects, a countermeasure against fetch skips will be more secure in practice than a countermeasure against plain instruction skip. Insérer le 80% d'Ihab

The different types of fetch skips are illustrated in Figure 3. In this model, attempts by the CPU to fetch at an address L may result in:

• Skip 32 bits, 𝑘 times (S32(𝑘)): Instead of returning the memory contents at address L, the memory contents at address L + 4𝑘 are returned, and PC is incremented by 4𝑘. We consider a "level 𝑁 attacker" that can independently attack every fetch with either one S32(𝑘) attack (1 ≤ 𝑘 ≤ 𝑁 ) or one S&R32 attack. 4The connection between fetch skips and the memory layout of instructions creates a new effect, which we call instruction forging and illustrate in Figure 4, that cannot be captured by the usual "instruction skip" model. Here, PC = L -2 and the decoding buffer contains the first half of a 32-bit unaligned add instruction. The CPU fetches at L to obtain the second half (Figure 2, case d). Attacking this fetch with S32(1) results in an unrelated 16-bit value (the start of an lw) being used to complete the add, causing the execution of an opcode not originally in the program. This opcode can be "anything" (including illegal). [START_REF] Alshaer | Variable-Length Instruction Set: Feature or Bug?[END_REF] demonstrate how this enables new vulnerabilities (e.g. by forging control flow instructions).

Once PC is out of sync, forging can continue without repeated fault injection. Continuing with Figure 4, after running the forged instruction we get PC = L + 6. Now the second half of lw is interpreted as its own 16-bit or (first half of) 32-bit instruction. Thus, the attack carries over to the next line; in the worst case, execution might not resynchronize with the intended sequence of instructions until a jump.

Program model

To design and prove a countermeasure against such a lowlevel attack, it is helpful to reflect the faults' effects into

Name Rule statement NOFAULT (PC, 𝜌) 𝑎 ⇒ [𝑎] (PC, [𝑎]) S32(𝑘) (PC, 𝜌) 𝑎 ⇒ [𝑎 + 4𝑘] (PC + 4𝑘, [𝑎 + 4𝑘]) S&R32 (PC, 𝜌) 𝑎 ⇒ 𝜌 (PC, [𝑎])
Figure 5. Short description of fetch rules.

(PC, 𝜌 ) 𝑎 ⇒ 𝑑 (PC ′ , 𝜌 ′ ) indicates that the fetch of address 𝑎 with current PC and 𝜌 returns value 𝑑 to the decoder, along with updated state PC ′ , 𝜌 ′ .

[𝑎] denotes the memory contents at address 𝑎.

language features, and study the updated language with semantic tools. In this section, we build a language model that captures the memory layout of instructions while ignoring most concrete effects (apart from jumps and select registers).

Syntax. A program is a collection of blocks. A block bb is a sequence of instructions bb = [i 1 , ..., i |bb| ]
where each instruction i 𝑗 is a 16-bit or 32-bit value, representing an assembler instruction encoded as described by the RISC-V ISA (or, as will be described in Section 3.2, a 32-bit "checksum literal"). We write ||i|| for the size in bytes of instruction i (which is either 2 or 4).

Program state. Due to the stateful nature of S&R32, which duplicates the "previous" fetched line, a full description of the program state must include the decoding buffer. We model this state with a 4-tuple ⟨PC, 𝜌, 𝜎, 𝛼⟩, containing:

• The current PC value (always a multiple of 2); • 𝜌, the last 4-byte value fetched by the CPU (decoding buffer). 𝜌 is used to decode at unaligned PCs (Figure 2, right) and replaces the targeted line during a S&R32 attack; • 𝜎, the values of the Xccs registers associated with our countermeasure, whose role is described in Section 3.2; • 𝛼, the rest of the architectural state (other registers, memory...), which we abstract away as an opaque value.

The attacks shown in Figure 3 are formalized in terms of this state in Figure 5. To illustrate alignment dynamics, attacking the fetch at 0x30 during the execution of g (just upon returning from f) produces the following execution:

⟨0x30, 𝜌 0 , 𝜎 0 , 𝛼 0 ⟩ ⟨0x36, 𝜌 1 = [0x34], 𝜎 1 , 𝛼 1 ⟩ ⟨𝛼 1 .ra = 0x30, 𝜌 2 = 𝜌 1 , 𝜎 2 , 𝛼 2 ⟩ S32(1): (0x30, 𝜌 0 ) 0x30 ⇒ [0x34] (0x34, [0x34]) Run instruction: c.addi sp, sp, 16
No fetch. Run instruction: c.ret c.ret jumps to the address stored in register ra, which is still 0x30 because we skipped the load from the stack, later leading to a typical stack corruption crash.

A co-designed countermeasure

In this section, we propose a software/hardware countermeasure, based on code instrumentation with hardware support. Figure 6. Linked object code for g after hardening (𝑁 = 2).

Numbers on the right refer to lines of Algorithm 1 that added the instructions.

Overview

The key ideas of the countermeasure are as follows. Machine code is augmented ("hardened") during compilation with checksum protections that react to a fault attack by forcing execution to trap before the end of the current block. This limits exploits by ensuring a sufficiently tight window between attack and detection (like most countermeasures it doesn't prevent side-effects immediately resulting from the fault, which is inherently difficult due to timing). Figure 6 shows the hardened code for the g function from Figure 1.

Hardware is modified to automatically maintain a running checksum (in fact, a simple sum) of every line of instruction data fetched from memory during the execution of a block, independent of instruction alignment. Blocks are compiled so that every exit is guarded by a ccs instruction (from our ISA extension), which traps if the running checksum is not equal to a reference value computed at compile-time. Blocks thus act as autonomous "jails", in that faulty executions causing the checksum to deviate from its expected value cannot leave their current block.

The co-designed nature of the countermeasure is a result of the cross-checking of information between hardware, whose monitoring produces a trace (checksum) sensitive to fault attacks, and software, which provides reference checksum values to interpret that trace.

Section 3.2 describes the hardware extension that we rely on for the countermeasure. 3.3 details the hardening algorithm. 3.4 highlights the subtleties of implementing the hardening algorithm in LLVM. Finally, 3.5 discusses the design choices in a more general context.

As always, one can attempt to attack the countermeasure itself. The security theorem in Section 4 proves that no attempt at skipping, repeating or forging ccs instructions or jumps can succeed, leading to a strong security guarantee.

ISA and hardware extensions

We support the countermeasure with a custom ISA extension named Xccs for Code CheckSum 5 . Throughout this section, all examples refer to Figure 6, and u N denotes the type of N-bit unsigned integers.

Xccs introduces four new Control and Status Registers (CSR), which together form the 𝜎 field of the program state:

• CCS : u 32 is the running checksum for the current block.

For example, the region of g from address 40108 through 40114 adds up in little-endian to 0x40b20505 + 0x00010141 + 0x0000100b = 0x40b31651 so the value of CCS at 40114 will be 0x40b31651 if no attack is performed. • CCSPROT : u 32 indicates the PC value at which a protected instruction (jump) is expected to execute. It is zero most of the time and non-zero for a single step after a checksum is validated. In Figure 6, it is set at 400f4 and 40118. • CCSD : {E : u 1 , JO : u 5 } holds control information; the enable bit (E) indicates whether checksum protection is active for the current block (which currently is whenever PC ≥ 0x40000), and the jump offset field (JO) is set by ccscall as described below. • CCSDS : u 32 ("delay slot") is used to implement the decoding of Xccs instructions' 32-bit checksum arguments. We leave discussion of this detail to supplementary material.

The meat of Xccs is the addition of four guard instructions whose encoding is shown in Figure 7, all of which are followed by a 32-bit ⟨checksum⟩ argument:

• ccs ⟨checksum⟩ compares the CCS register with the provided argument and traps if they differ. Otherwise, it sets CCSPROT = PC + 8 so a jump or function call can execute at the next step. For instance, at 40114 in Figure 6, the dynamic value of the CCS register is compared to 0x40b31651. When no faults are injected, these are equal, so execution proceeds to the c.ret instruction. • ccscall 𝑁 ⟨checksum⟩ is similar; it is used before function calls. It sets CCSD.JO = 𝑁 , which causes the next function call's return address to increase by 2𝑁 bytes. For instance, the ccscallb 8 at 400ec changes the return address after the jalr (call) instruction from 400f8 to 40108, skipping over the c.ebreak block. • ccsb and ccscallb are variations that flip the least significant bit (LSB) of the checksum before comparing it. This is leveraged to ensure that no ⟨checksum⟩ argument decodes as a jump or Xccs instruction, as detailed in Section 3.3. Again with Figure 6, the sum of the first block 5 The "X" is standard notation for unofficial RISC-V extensions. up to 400f0 is 0xc60675e3, but that decodes as a bltu, creating a vulnerability. The LSB is flipped to avoid this. All Xccs instructions further trap when run at unaligned PC, which prevents most attempts at forging them. Finally, existing CPU behavior is modified as follows: 1. All branch instructions trap if PC ≠ CCSPROT. If a branch occurs, CCS and CCSPROT are reset to 0. 2. Every other instruction traps if CCSPROT ≠ 0. 3. Every value retrieved from a fetch is added to CCS. 4. Call instructions add 2 × CCSD.JO to the return address and clear CCSD.JO before jumping. Hardware support in this countermeasure serves an important dual purpose: it enforces the jail, and it updates the checksum through a system that is not vulnerable to attacks, so that checks of the trusted CCS value can be guaranteed even though the reference ⟨checksum⟩ is itself vulnerable.

Hardening algorithm

Algorithm 1 shows the hardening process for a single block in pseudocode, with our canonical example in Figure 6. (As all blocks are independent, this algorithm is executed by the compiler for every block in the program.)

The main for loop (line 15) iterates over the instructions of the original block. All instructions are copied to the hardened block (line 26). Jump instructions are preceded by a guard, which is ccscall/ccscallb (line 22) for function calls and ccs/ccsb for other jumps (line 24). nops are used to ensure that guards are aligned and jumps are always separated by at least one non-jump instruction, both of which prevent subtle attacks against the countermeasure.

The second for loop (line 27) adds a barrier of c.ebreak instructions, which raise a distinctive exception when executed. Their role is to prevent control from leaving the block by skipping over the terminator. Up to 2𝑁 + 4 are needed to address the worst case where control reaches the middle of a checksum whose second half is a 32-bit opcode, in which an attack of a S&R32 followed by a S32(𝑁 ) would reach 4𝑁 + 6 bytes past the checksum.

Procedure addToBlock appends instructions to the hardened block while computing the reference checksum value sum by summing instruction's opcodes. This accounts for instructions' alignment with the function

realign(offset, i) = i if offset ≡ 0 [4] 2 16 LSH(i) + MSH(i) otherwise
Calling convention: a0 serves as both argument and return value for f and g. ra is used for function calls and is caller-saved (push/pop omitted). g: e4: 41 11 06 c6 (...) # push ra e8: 97 00 00 00 auipc ra, 0 ec: 0b 24 00 00 ccscall 8 # ▼ R_RISCV_CHECKSUM: g f0: 00 00 00 00

.word 0x00000000 f4: e7 80 00 00 jalr ra, 0(ra) f8: 02 90 c.ebreak # 8 times (2N+4 where LSH, MSH : u 32 → u 16 are the Most and Least Significant Halves respectively. This process is equivalent to summing the lines of the final layout table. Finally, addChecksum selects whether to use ccs/ccscall or their -b variants. The -b variants are selected when the checksum value is an "invalid checksum literal", i.e. it decodes as a jump, Xccs instruction or c.ebreak. Such values could be misused as instructions if an attacker were to skip the guard that precedes it. Flipping the LSB ensures that these sensitive values do not appear in code. Our running example in Figure 6 is obtained by executing this algorithm on both blocks of g's original code from Figure 1 and linking it.

LLVM implementation

Algorithm 1 cannot be implemented as-is in a single pass in a standard compiler, because reference checksum values depend on the exact bit-level encoding of each instruction, which is not decided until the linker relocates references to globals and functions. See for instance how the call in Figure 8c (before linking) has placeholder zero-offsets but the one in Figure 6 (after linking) has a proper target offset.

We see this as a benign occurrence of a fundamental issue: the progressive lowering that standard toolchains go through is designed around functional invariants, not security invariants. Encodings are decided late because they don't matter to the compiler, which is only interested in the functional specification of instructions. The addition of a security countermeasure to the compiler breaks this assumption and creates a new concern in threading the security transform through the abstraction gap of a functional lowering.

In this case, we are able to implement the algorithm in two steps: a late Machine IR6 pass followed by an extension to the linker relocation process.

• Machine IR pass: the program's Machine IR representation is first transformed late in the back-end (from Figure 8a to Figure 8b). This pass handles all tasks that add code into the program, including:

-Aligning functions and blocks to 4-byte boundaries; -Adding aligned Xccs instructions before all Machine IR instructions that expand into RISC-V jumps, such as PseudoRET. A label indicates the start of the region that the checksum must cover; -Adding the trap barrier with the PseudoCCSTRAP 𝑁 pseudo-instruction, which later expands into a series of 2𝑁 + 4 c.ebreak instructions. At this stage some jumps are still hidden in pseudo-instructions, like the function call in PseudoCALL. This is because far jumps in RISC-V are implemented with a pair of instructions, auipc and a jump, to overcome the limited distance that can be encoded into single jump instructions. In LLVM, this is expanded later in the code emitter due to limitations in the back-end structure; we count this towards the Machine IR pass for simplicity of exposition. The Machine IR pass is followed by static branch relaxation (the unfolding of far jumps into multi-instruction sequences and converse compaction of near jumps into shorter instructions), which is the main reason why the addition of new code cannot be delayed more; it would break short jumps. 8c) is added to mark the checksum region for the linker.8 • Linking: the linker follows relocation entries to compute checksums and insert them in the provided spaces. The linker script is also updated so that hardened objects are linked to a different virtual address (0x40000) than nonhardened libraries and runtime files (0x10000), which we use as the basis to enable Xccs protection.

Discussion

We discuss some of our design choices and how the scheme interacts with other micro-architectural features.

Fault's effect on CCS updates. Our countermeasure relies on CCS updates not being vulnerable to attacks. This is a reasonable inference based on the fault model: recall that fetch skips are induced by clock glitches, which are known to cause problems locally along critical signal propagation paths. [START_REF] Alshaer | Variable-Length Instruction Set: Feature or Bug?[END_REF] identify that such paths are mostly in the fetch stage of the pipeline, but CCS can be updated in the execution stage using the realign sum technique, and is thus unlikely to be affected.

Interrupts. Common interrupts and signal handlers (that are invisible from the main thread) would not interfere with Xccs protections (with the only OS support needed being to save Xccs registers, which can be viewed as an extension of PC, to the CPU context structure). However, a non-returning interrupt (such as a signal exiting) would leave the current block without a check. We assume such a no-returning action implies abandoning the critical section where the interrupt occurred; otherwise, there might be a vulnerability.

Effect of faults on complex architectures. The fault model from [START_REF] Alshaer | Variable-Length Instruction Set: Feature or Bug?[END_REF] does not describe hardware responses to fault attacks during speculative or out-of-order execution. The study and design of fault models at the microarchitectural level is already state-of-the-art, and applying it to these complex features is a completely open problem. While Xccs is amenable to speculative execution (mispredictions would not lead to false checksum exceptions because the checksum resets at the beginning of every block) and out-of-order execution (the checksum update is associativecommutative, allowing for reordering within each block) it remains unlikely that clock glitches would affect such complex designs in the same way as the simple processors from which fetch skips are derived.

Possibility of a hardware-only solution. Hardwareonly countermeasures against fault attacks present their own challenges [Clercq and Verbauwhede 2017]. Detecting the clock glitch at the (hardware) source using a fault detector [Gomina et al. 2014] creates a performance trade-off between sensitivity and the rate of false alarms, which limits the approach to security-critical systems that can afford the performance loss. Detecting corruption in the instruction stream requires extra hardware logic that risks being itself faulted (increased attack surface). Software/hardware propositions like our Xccs countermeasure have contrasting benefits. We minimize exposure to the fault because the detection only relies on CCS updates (which occur in the execution stage, away from disrupted fetch logic) and a checksum check made after the fault's transient effect has subsided. (We carefully discussed the safety of these operations with authors of [START_REF] Alshaer | Variable-Length Instruction Set: Feature or Bug?[END_REF]].) We also get the benefits of using more software and less hardware, such as incurring costs only in critical sections and the possibility of implementing hardware support late or during minor hardware revisions.

Specificity of the attack model. Many (mostly early) works in fault literature attempt to protect against all program misbehaviors, described as "soft errors". By contrast, we target a single vulnerability, which might appear overly specific. However, the fetch skips model coined by [START_REF] Alshaer | Variable-Length Instruction Set: Feature or Bug?[END_REF]] results from extensive physical injection campaigns, where it described the impact of 80-90% of clock glitches on Cortex-M boards [START_REF] Alshaer | Cross-Layer Fault Analysis for Microprocessor Architectures[END_REF]], making this countermeasure useful against common attack vectors on real boards. In addition, we argue that the lack of a precise definition for soft errors leads to tricky vulnerabilities 9 preventing any proof-based security standard from being met. This is why we focus on fetch skip attacks, for which we can formally prove security.

Security theorem

We now state the security theorem for our countermeasure and the main steps of the proof. We omit some invariants about 𝜎/𝜌 whose significance is only clear with the full formalization and proof (see supplementary material).

We define a step as a statement In essence, this theorem says that the countermeasure guarantees the execution of the original sequence of instructions (as witnessed by the checksum) at every control flow edge. The key property is the local security at the block level; the security property of passing checksums is checked at 9 For instance, triplication countermeasures such as SWIFT-R [START_REF] Chang | Automatic Instruction-Level Software-Only Recovery[END_REF]] and NEMESIS [START_REF] Didehban | NEMESIS: a software approach for computing in presence of soft errors[END_REF] tend to assume that a single "soft error" only affects one of the three execution streams, but this is not true of e.g. the kind of decoding errors mentioned in [START_REF] Didehban | NEMESIS: a software approach for computing in presence of soft errors[END_REF]]. 10 We do not protect the exit of the last block because in practice the last instruction is a syscall invocation in the non-hardened libc function exit().

𝑠 = ⟨PC, 𝜌, 𝜎, 𝛼⟩ → ⟨PC ′ , 𝜌 ′ , 𝜎 ′ , 𝛼 ′ ⟩
every block, and deviations from that property are detected before the block ends. This facilitates both formal analysis (by removing difficulties associated with control flow) and testing (by providing an easy way to detect failures in the countermeasure).

The progression of the argument is as follows:

1. Control cannot reach the end of a protected block due to the c.ebreak-based trap barrier; 2. Control can only leave a protected block through a jump if it passes the associated checksum; 3. Using exactly one faulted fetch in the execution of a block always invalidates the checksum.

The checksum method by itself does not always guarantee that the execution cannot be compromised, as a vulnerable block could contain a checksum collision: an unintended execution path, reachable with multiple faults, whose checksum is the same as the intended execution. Such collisions can be detected statically after linking, but they are hard to solve because the linker is unable to add or remove instructions to prevent the collision once it is discovered, as the first could break short jumps and both would change jump offsets thus more checksums. In this case, the toolchain's abstraction stack that we worked around fairly easily in Section 3.4 poses a greater challenge.

Note that the countermeasure still guarantees that checksums must pass even in multi-attack scenarios. Collisions are rare (as showcased in Section 5) despite the apparent weakness of the summing algorithm, mainly because the attacker cannot feed arbitrary inputs to the sum; they can only skip or repeat predetermined inputs. Thus, the scheme retains value as a practical protection mechanism against multi-fault attacks.

Implementation setting and evaluation

We now describe the implementation and the experimental settings we used to evaluate the countermeasure. We examine functional correctness, security guarantees, and cost.

Implementation and experimental setting

We implemented the hardening scheme in LLVM [START_REF] Lattner | LLVM: A compilation framework for lifelong program analysis & transformation[END_REF] 12.0, 11 linking programs with an off-the-shelf GNU C library using a modified GNU ld 2.40 linker. The hardware extension Xccs was prototyped in the system emulator QEMU 8.0 [START_REF] Bellard | QEMU, a Fast and Portable Dynamic Translator[END_REF]] and the processor simulator Gem5 22.1 [START_REF] Lowe-Power | The gem5 simulator: Version 20.0+[END_REF]]. The implementation is about 1150 lines in LLVM/ld for the countermeasure, and 850 lines in QEMU/Gem5 for evaluation. 12 We evaluate our countermeasure on programs from the MiBench benchmark suite [START_REF] Matthew R Guthaus | MiBench: A free, commercially representative embedded benchmark suite[END_REF], which is 11 All the modified tools used in this paper are publicly available at gricad-gitlab.univ-grenoble-alpes.fr/michelse/fetch-skips-hardening. 12 Gem5 currently only emulates 64-bit RISC-V instructions; we modified it to support 32-bit instructions for this evaluation. designed to be representative of embedded applications. We do not specifically use a cryptography-or security-oriented benchmark as we protect code at a low enough level that the nature of the program is not significant. Programs were hardened with 𝑁 = 2, i.e. assuming a strong attacker that can inject double-skips every fetch. We perform three types of experiments, on a standard x86_64 GNU/Linux machine:

• Exhaustive single-fault injection campaigns in QEMU;

• Random multi-fault injection campaigns in QEMU;

• No-fault performance simulations in Gem5.

We instrument QEMU to support fault injections by skipping or replacing data during the transpilation step. We take advantage of the locally-correct design of the countermeasure and raise an explicit "countermeasure bypassed" exception at every successful exit of a block where a fault was triggered. This ensures that successful fault attacks are reported and cannot be masked by program logic. We similarly extend Gem5 with the decoding and execution of Xccs instructions, but leave out exceptional conditions since we use it only to evaluate performance without fault injections.

Functional correctness

We first assert that hardening preserves the functional behavior of programs when no fault is injected. This is checked by running hardened MiBench programs and comparing their output to a non-cross-compiled x86 build and a nonhardened RISC-V build. 13 All programs pass this test.

Security guarantee

We then subject each program to two injection settings, both performed by emulation in QEMU: 1. Single-fault exhaustive injection: we attack every PC in the protected text segment of the program with single-fault S32(1), S32(2), and S&R32. 2. Multi-fault random injection: we attack 2000 code intervals of 64 bytes with randomly-selected sequences of 2 to 6 faults in close succession. This showcases the guarantees proven in Section 4. Outcomes of injections for which the targeted PC was reached are classified in four categories in Figure 9:

• Fault reported: An invalid checksum, illegal jump, or other Xccs-imposed constraint was violated; or c.ebreak was executed. • Segfault: The program segfaulted from an incorrect memory access as a result of the injected fault. • Other crash: Illegal instructions being decoded by the CPU (SIGILL) or other rare crashes such as SIGBUS. • Countermeasure bypassed: The program successfully exited a block after attacking it. This did not happen in any of the tests. Figure 9 shows that no attack was able to bypass the protection from the countermeasure, which in the multi-fault case means that no checksum collision occurred.

A significant majority of faults that are reached result in Xccs violations, meaning that failing checksums and invalid attempts to jump out of blocks are adequately reported. Because all exits of attacked blocks were guarded with "Countermeasure bypassed" exceptions, which were not reached, every crash we encountered also occurred within the attacked block. This shows that the countermeasure fulfills its goal of containing faults within blocks.

Interestingly, crashes alone do not provide sufficient security: unprotected programs (not depicted) experience ∼90% crashes but only ∼30% in the block where the fault is injected. So like with instruction skip, a system facing random failures could leave the code unprotected, but the threat of targeted attacks requires a countermeasure like Xccs.

Performance

On average, hardening with 𝑁 = 2 increased the size of protected functions (i.e., excluding libraries and runtime files) by a factor of 2.46 (which is large but usual for security applications especially against skips, due to duplication). Individual differences are given in Figure 10; unsurprisingly, programs with longer straight-line sections see less of an 13 For some programs, comparison with the native build is skipped due to differences in the precision of the math library. increase, while short, loop-intensive programs like dijkstra and bitcount get the largest overhead.

We run Gem5 simulations for each program14 to estimate the overhead in execution time, also reported in Figure 10. The simulated system mainly consists of a 1-GHz RISC-V core with a 1600 MHz DDR3 controller simulated by Gem5's timing model.

The main cost is the execution of Xccs instructions themselves, which incur extra fetch-decode-execute cycles. As expected, programs with denser control flow in hot sections such as dijkstra and bitcount see by far the largest difference. We expected the code size increase to reduce cache efficiency, and ran simulations with an 8-kB 4-way instruction cache (the median size of hardened sections in our test, which is a lot smaller than the total text segment). This speeds up executions significantly (not pictured) but the ratio of hardened to non-hardened speed remains consistent. The overall performance hit is 10.2%, consistent with the knowledge that MiBench programs average out 6-7 instructions per basic block (keeping in mind that our blocks are longer than traditional basic blocks). Unsurprisingly, cryptographic schemes have the best performance results due to being computation-heavy with long blocks.

Existing countermeasures without hardware support have a comparatively much larger overhead. [START_REF] Geier | Power supply glitch attacks: Design and evaluation From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference'17[END_REF] compare multiple combinations of countermeasures against single-to quadruple-instruction skips on a secure boot program. Only 3 combinations (nZDC + RACFED, NEMESIS + RACFED, and CompaSec) close more than 75% of vulnerabilities, all with space overhead above x4.85 and time overhead above x5.01.

Related work

The contribution of this paper follows the now numerous developments in the area of compilation for security. Recent countermeasure designs have consistently involved compilation tools [START_REF] Barry | Compilation of a Countermeasure Against Instruction-Skip Fault Attacks[END_REF][START_REF] Proy | Compiler-Assisted Loop Hardening Against Fault Attacks[END_REF][START_REF] Hans Winderix | Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency Side-Channel Attacks[END_REF], and issues stemming from cross-layer abstractions have been raised previously [START_REF] Barry | Automated Combination of Tolerance and Control Flow Integrity Countermeasures against Multiple Fault Attacks[END_REF]. Our work differs in its deliberate involvement of hardware, whereas existing designs that account for non-ISA details (such as timings in [START_REF] Hans Winderix | Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency Side-Channel Attacks[END_REF]) still end up performing pure assembly transformations.

Countermeasure designs that lay more heavily towards hardware also exist. [START_REF] Ait Manssour | Processor Extensions for Hardware Instruction Replay against Fault Injection Attacks[END_REF] show how hardware support can improve a classic countermeasure against data corruption which consists in executing instructions multiple times and comparing results. This is traditionally very costly due not only to repeated execution, but also program size, register pressure, and the addition of many branches for comparisons. In this work, the ISA is extended with a new "replay" instruction rpl w n which repeats the next 𝑤 instructions 𝑛 times, and compares in hardware with an exception in case of a mismatch. A benefit is that the compiler only needs to mark sensitive instructions, however this shifts more security burden to hardware and increases the effort for hardware qualification/certification compared to a more lightweight extension like Xccs.

Our countermeasure is based on classical redundancy ideas and draws inspiration from previous work on instruction skips [START_REF] Yao | A Low-Cost Function Call Protection Mechanism Against Instruction Skip Fault Attacks[END_REF] and control-flow integrity protections [START_REF] Mishra | Survey of Control-Flow Integrity Techniques for Real-Time Embedded Systems[END_REF][START_REF] Zgheib | A CFI Verification System based on the RISC-V Instruction Trace Encoder[END_REF]].

Complications associated with multi-fault attacks incentivized us to aim for a design that guarantees security locally (at every block) to keep formal reasoning simple. Many countermeasures in security literature (for instance [START_REF] Chang | Automatic Instruction-Level Software-Only Recovery[END_REF][START_REF] Didehban | NEMESIS: a software approach for computing in presence of soft errors[END_REF][START_REF] Geier | Power supply glitch attacks: Design and evaluation From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Conference'17[END_REF]) achieve sophisticated and carefully-balanced compiler transforms, but lack a detailed enough programming and fault model to allow for a formal proof of the security property. We believe that our semantics approach that includes "just enough" details in the programming model, encodes the fault model in the semantics, and encourages formal proofs, could be generalized for other low-level countermeasures.

As for the correctness of securization schemes, apart from manual proofs (in which this work falls), automatic countermeasure verification techniques includes translation validation [START_REF] Busi | Towards Effective Preservation of Robust Safety Properties[END_REF]], static analysis [START_REF] Christofi | Formal Verification of a CRT-RSA Implementation Against Fault Attacks[END_REF], and symbolic execution [START_REF] Potet | Lazart: A Symbolic Approach for Evaluation the Robustness of Secured Codes against Control Flow Injections[END_REF]]. These usually focus on proving properties of the form "either the attack is detected or the program crashed", as we did here. Another remarkable piece of work in this area is a proof that the C compiler CompCert [START_REF] Leroy | Formal Verification of a Realistic Compiler[END_REF]] preserves the constanttime countermeasure when applied to source code [START_REF] Hutin | Verified Secure Compilation against Timing Side-Channels[END_REF]]. A possible extension of our work would be to further validate through one of these approaches.

Conclusion

We have presented a new countermeasure to a micro-architectural fault attack targeting the instruction fetch unit in RISC-V processors. Our approach combines a hardware extension of the RISC-V ISA, dubbed Xccs, and a machine code transformation performed at compile-and link-time. The design process was guided by a specially-tailored semantics that captures just the right set of architectural details to formalize the hardening process and enable a proof of security. We evaluated the scheme's security by emulating both exhaustive single-fault and random multi-fault injection campaigns, and its performance with a processor simulation. To our knowledge, the present contribution is the first example of such a proven countermeasure for a micro-architectural fault model; which notably connects recent security experts' results to compiler back-end techniques.

We believe that this approach is applicable more generally to the design of code hardening schemes that guarantee both security and safety. We implemented this particular countermeasure in the late back-end, which is pretty standard for low-level attacks, and keeps the abstraction gap between the attack and countermeasure fairly small. In future work we wish to explore countermeasures implemented at other (sometime multiple) levels in the compilation flow, widening that gap. This will escalate toolchain integration challenges already raised in this paper, as the compiler's heavy descent in abstraction might break or hinder security properties. Partial solutions such as [START_REF] Vu | Optimizing Property-Preserving Compilation[END_REF]], which advocates for embedding security properties into functional properties, leads us to believe that cleaner, more methodical integration is possible. Similar improvements to the semantic model appear needed to mirror this property preservation in the security proof.

Data-availability statement

An artifact of this work is available for reproduction on Zenodo [START_REF] Michelland | Replication package for article: From low-level fault modeling (of a pipeline attack) to a proven hardening scheme Jan[END_REF]] and includes pre-built tools and reference outputs. Source code and documentation for the tools (LLVM, GNU binutils, QEMU, Gem5) is further available for reuse through the Git repository at gricad-gitlab.univgrenoble-alpes.fr/michelse/fetch-skips-hardening. differ on their low bits.

Note that 𝜌 is a raw 32-bit value which is not necessarily a legal instruction because instructions are not always 32-bit and not always aligned in memory.

Definition 3 (Step, Execution).

A step is a statement representing the effect of executing one instruction, written ⟨PC, 𝜌, 𝜎, 𝛼⟩ → 𝑟 where 𝑟 is either a program state or one of two termination reasons: • ⊥, denoting an exception or crash;

• end(𝛼), denoting successful completion with final state 𝛼.

An execution is a sequence of program states ending with a termination reason, such that all pairs of consecutive elements are related by a step:

⟨PC, 𝜌, 𝜎, 𝛼⟩ → ... → ⟨PC 𝑛 , 𝜌 𝑛 , 𝜎 𝑛 , 𝛼 𝑛 ⟩ → ⊥ end(𝛼 ′ )

A.2 Fetch and step rules

We can now describe how execution steps are derived from the fetch-decode-execute cycle of the CPU, including fault injections during fetches.

Definition 4 (Fetch).

A fetch is a statement (PC, 𝜌) 𝑎 ⇒ 𝑑 (PC ′ , 𝜌 ′ ) representing the CPU fetching 32 bits at 4-aligned address 𝑎 : u 32 and getting value 𝑑 : u 32 ("data"), with the PC and 𝜌 members of the program state being updated in the process.

Each fault attack corresponds to one use of the S32(𝑘) or S&R32 rules. Notice, for example, how rule S32(𝑘) skips over 𝑎 directly to 𝑎 + 4𝑘. In the following rules, [𝑎] denotes the 32 bits stored in memory at address 𝑎.

NOFAULT

(PC, 𝜌) 𝑎 ⇒ [𝑎] (PC, [𝑎]) S32(𝑘) 1 < 𝑘 ≤ 𝑁 (PC, 𝜌) 𝑎 ⇒ [𝑎 + 4𝑘] (PC + 4𝑘, [𝑎 + 4𝑘]) S&R32 𝜌 ≠ [𝑎] (PC, 𝜌) 𝑎 ⇒ 𝜌 (PC, [𝑎]) Figure 11. Fetch rules.
From there, we can formalize execution steps as an optional fetch, then the execution of a decoded instruction. This is shown in Figure 12. The • and • 𝑐𝑐𝑠 functions represent the semantics of individual instructions and are specified later. Both are oblivious to 𝜌 so we re-insert 𝜌 into their result after-the-fact using the • function. The functions LSH, MSH : u 32 → u 16 extract the least and most significant halves of a 32-bit value.

These inference rules for steps formalize the patterns shown in Figure 2 (ALIGNED-* 

⊥ • 𝜌 = ⊥ end(𝛼) • 𝜌 = end(𝛼) Figure 12.
Step rules.

2.(c) and UNALIGNED-32 is 2.(d))

. For instance, in UNALIGNED-32, MSH(𝜌) identifies the two remaining bytes in the previouslyfetched line as 32-bit instruction leader, so the rule fetches the next line 𝑑 at PC + 2 and recombines 𝜌 with LSH(𝑑) to form the complete 32-bit instruction and run it.

The extra rule CHECKSUM-DELAY-SLOT describes the special treatment of the 32-bit checksum value following an Xccs instruction, which is triggered by 𝜎.CCSDS ≠ 0 and is described later with the semantics of Xccs instructions.

A.3 Instruction semantics

We now define instruction semantics through the functions

• : (PC, 𝜎, 𝛼) ↦ → ⟨PC ′ , 𝜎 ′ , 𝛼 ′ ⟩ or ⊥ or end(𝛼 ′ ) • 𝑐𝑐𝑠 : (PC, 𝜎, 𝛼, 𝑑) ↦ → ⟨PC ′ , 𝜎 ′ , 𝛼 ′ ⟩ or ⊥ or end(𝛼 ′ )
The two functions are similar in nature; • 𝑐𝑐𝑠 is used when re-running Xccs instructions after their 32-bit checksum value (passed as 4th argument) has been found.

In the following, we assume a function encode which encodes assembler notation into 16/32-bit values (16-bit for 16 As per the RISC-V ISA [The RISC-V Instruction Set Manual Vol. I 2019], a 32-bit instruction leader is a value 𝑖 : u 16 such that 𝑖 ≡ 3 [4] and a 16-bit instruction is any other 16-bit value. mnemonics starting with "c.", 32-bit otherwise), following the RISC-V ISA [The RISC-V Instruction Set Manual Vol. I 2019]. Unspecified members in the output 𝜎 ′ /𝛼 ′ are implicitly kept from the input 𝜎/𝛼.

Instructions that are not jumps, traps, or Xccs instructions have their natural semantics, with two small changes: they cannot run when CCSPROT is set to a non-zero address, and they update CCS as a side-effect. We illustrate this category with the add and c.add instructions, and the c.nop instruction that we use as padding while hardening.

• i = encode(add r d , rs 1 , rs 2 ), i = encode(c.add r d , rs 1 , rs 2 ) : i (PC, 𝜎, 𝛼) =              ⊥ if 𝜎.CCSPROT ≠ 0 ⟨PC + ||i||, 𝜎 ′ , 𝛼 ′ ⟩ otherwise, with 𝜎 ′ .CCS = 𝜎.CCS + realign(PC, u 32 (i)) 𝛼 ′ [r d ] = 𝛼 [rs 1 ] + 𝛼 [rs 2 ] • i = encode(c.nop) : i (PC, 𝜎, 𝛼) =          ⊥ if 𝜎.CCSPROT ≠ 0 ⟨PC + ||i||, 𝜎 ′ , 𝛼⟩ otherwise 𝜎 ′ .CCS = 𝜎.CCS + realign(PC, u 32 (i))
The CCS update adds the instruction's opcode to the CCS register, adjusted for PC alignment: 17

realign(PC, i) = i if PC ≡ 0 [4] 2 16 LSH(i) + MSH(i) otherwise
Trapping instructions include ebreak/c.ebreak which we treat as non-recoverable, and ecall which invokes a syscall whose number is specified in register a7 (x17). We treat an invocation of syscall __NR_exit (1) as program termination. 18

• i = encode(ebreak), i = encode(c.ebreak) : i (PC, 𝜎, 𝛼) = ⊥ • i = encode(ecall) : i (PC, 𝜎, 𝛼) = end(𝛼) if 𝛼 [17] = 1 and 𝜎.CCSPROT = 0 ⊥ otherwise
Among standard instructions, jumps are the most heavily affected. We show here the cases of jal (jump-and-link), which in RISC-V is used for unconditional branches and function calls, and beq (branch-if-equal), a representative conditional branch. The extension to jalr (which is used to return from functions) is immediate by replacing the target PC + imm of jal with the value of a register in 𝛼.

• i = encode(jal r d , imm):

17 Computing the sum of realigned instruction opcodes ends up being equivalent to summing the values returned by fetch rules in the program, see Lemma 3. We choose to update during decoding because of our intuition that a CCS update during the fetch cycle would be impacted by the fault. 18 We provide this exit mechanism to have a reasonable program model, but in practice the exit() function is in the non-protected libc, so we don't actually worry about protecting the last block.

3. a 4-aligned ccs or ccsb; 4. a 4-aligned 32-bit checksum value; 5. the conditional branch of se 𝑘 ;

• the hf (hardened final) section consists of:

1. the straight instructions of hf; 2. an optional c.nop or nop, in a way that 1) and 2) combined are not empty; 3. a 4-aligned csscall or ccscallb if the terminator is a function call, a ccs or ccsb otherwise; 4. a 4-aligned 32-bit checksum value; 5. the terminator of sf; 6. 2𝑁 + 4 c.ebreak instructions.

Proof. Decomposition: The main (for i) loop in HARDEN is a morphism for concatenation. Take for he 𝑘 /hf the hardened sequences corresponding to se 𝑘 /sf in the input; structurally, we get hb = he 1 + ... + he 𝑚 + hf.

Section contents: Straight instructions are clearly preserved by HARDEN. For both types of sections, items 2 through 5 are generated by the handling of the section's jump by HARDEN. The trap barrier is always added at the end of the block; we can count it towards hf.

Alignment: First, all sections have a length that is a multiple of 4. This constraint is ensured by adding a c.nop before section's branch if the straight instructions finish on an unaligned address. The following Xccs instruction, checksum value, and branch instruction all occupy 4 bytes each. Then, because the block hb itself is 4-aligned and the sections follow each other in memory, each section individually must be 4-aligned.

□

Finally, we give an intuitive view of the checksum values by proving that the per-instruction summing process with realignment is equivalent to summing 4-aligned lines. We can do this by comparing both computations on the underlying sequences of u 16 values.

Lemma 3 (realign sum computes the sum of fetched lines). Let ℎ = (ℎ 0 , ..., ℎ 2𝑛-1 ) : u 2𝑛 16 a sequence of u 16 ("halfwords"). Assume (𝑤 0 , ..., 𝑤 𝑛-1 ) : u 𝑛 32 is a sequence of u 32 ("words") whose concatenation is ℎ, i.e. such that 𝑤 𝑖 = ℎ 2𝑖 + 2 16 ℎ 2𝑖+1 .

Let (i 0 , ..., i 𝑚-1 ) a sequence of instructions, and write offset 𝑗 = 1 2

𝑗 -1 𝑘=0 ||𝑖 𝑘 || the offset of instruction 𝑗 in the sequence (in 16-bit units). Assume the concatenation of this sequence is also ℎ, i.e. offset 𝑚 = 2𝑛 and for all 𝑗,

• i 𝑗 = ℎ offset 𝑗 if i 𝑗 is a 16-bit instruction; • i 𝑗 = ℎ offset 𝑗 + 2 16 ℎ offset 𝑗 +1 otherwise. Then, 𝑚-1 ∑︁ 𝑗=0 realign(2 • offset 𝑗 , u 32 (i 𝑗 )) = 𝑛-1 ∑︁ 𝑖=0 𝑤 𝑖 .
Proof. First, rewrite every instruction's realigned contribution in terms of ℎ 𝑖 ; specifically, we have

∀𝑗, realign(2 • offset 𝑗 , u 32 (i 𝑗 )) = offset 𝑗 +1 -1 ∑︁ 𝑖=offset 𝑗 2 16(𝑖 mod 2) ℎ 𝑖 .
This we can show by distinguishing four cases:

• i 𝑗 is 16-bit, offset 𝑗 mod 2 = 0: -LHS is i 𝑗 -RHS is ℎ offset 𝑗 = i 𝑗 • i 𝑗 is 16-bit, offset 𝑗 mod 2 = 1: -LHS is 2 16 i 𝑗 -RHS is 2 16 ℎ offset 𝑗 = 2 16 i 𝑗 • i 𝑗 is 32-bit, offset 𝑗 mod 2 = 0: -LHS is i 𝑗 -RHS is ℎ offset 𝑗 + 2 16 ℎ offset 𝑗 +1 = i 𝑗 • i 𝑗 is 32-bit, offset 𝑗 mod 2 = 1: -LHS is MSH(i 𝑗 ) + 2 16 LSH(i 𝑗 ) -RHS is 2 16 ℎ offset 𝑗 + ℎ offset 𝑗 +1 = 2 16 LSH(i 𝑗 ) + MSH(i 𝑗 )
Now, by summing from 𝑗 = 0 to 𝑚 -1, we get

𝑆 := 𝑚-1 ∑︁ 𝑗=0 realign(offset 𝑗 , u 32 (i 𝑗 )) = offset 𝑚 -1 ∑︁ 𝑖=0 2 16(𝑖 mod 2) ℎ 𝑖 .
Recalling that offset 𝑚 = 2𝑛, this equivalent to unfolding 𝑤 𝑖 into a sum of u 16 :

𝑛-1 ∑︁ 𝑖=0 𝑤 𝑖 = 2𝑛-1 ∑︁ 𝑖=0 2 16(𝑖 mod 2) ℎ 𝑖 = 𝑆. □ B.

Program state upon leaving a hardened block

We will now show that the counter-measure ensures good properties in the execution of hardened blocks, namely that they can only be exited by a legitimate jump instruction and while validating the checksum associated to that jump.

In the following, we assume a program 𝑃 and a successful execution 𝑒 = [𝑠 1 , ..., 𝑠 |𝑒 | ], with each step being written

𝑠 𝑖 = ⟨PC 𝑖 , 𝜌 𝑖 , 𝜎 𝑖 , 𝛼 𝑖 ⟩ → 𝑟 𝑖 ,
which structurally implies that

𝑟 𝑖 = ⟨PC 𝑖+1 , 𝜌 𝑖+1 , 𝜎 𝑖+1 , 𝛼 𝑖+1 ⟩ if 𝑖 < |𝑒 |; 𝑟 |𝑒 | = end(𝛼 |𝑒 | ).
The first step in the proof is to show that the trap barrier prevents the end of a hardened block from being reached, meaning that any exit must happen through a jump instruction.

Lemma 4 (Hardened blocks must be exited by jumps).

Let hb be a hardened block of 𝑃, and assume the execution enters hb, meaning that there exists 𝑡 ("top") such that PC 𝑡 = blockAddr(hb).

Let 𝑛 be the number of instructions executed without leaving hb, i.e. the largest number such that the following all hold:

1. 𝑡 + 𝑛 ≤ |𝑒 |; 2. ∀𝑖 ∈ [𝑡, 𝑡 + 𝑛), PC 𝑖+1 ∈ blockSpan(hb); 3. ∀𝑖 ∈ [𝑡, 𝑡 + 𝑛), 𝑠 𝑖 is not a jump instruction. 19
Then, either Proof. By contradiction. An exit not covered by the lemma statement must be with 𝑡 + 𝑛 < |𝑒 | and 𝑠 𝑡 +𝑛 not a jump instruction. As such, there must be no jump instruction in the entire sub-sequence 𝑠 𝑡 ... 𝑠 𝑡 +𝑛 .

• 𝑡 + 𝑛 = |𝑒 | (hence 𝑠 𝑡 +𝑛
For a non-jumping step 𝑠 𝑖 , we always have PC 𝑖+1 > PC 𝑖 . This is because the only two changes to PC are the update by the instruction's semantics (which always adds ||i|| > 0) and the potential skip from the S32(𝑘) fetch rule (which is 4𝑘 ≥ 0).

Therefore, (PC 𝑖 ) 𝑡 ≤𝑖 ≤𝑡 +𝑛 is a strictly increasing sequence, which means that every address in blockSpan(hb) is part of exactly one [PC 𝑖 , PC 𝑖+1 ) interval (i.e. there is exactly one step that consumes it as part of its execution).

So then, we can look at hb's ending, which has the following 4-aligned sequence (where each line covers 4 bytes of code): The j32 marker represents the jump instruction, which is always a 32-bit instruction. The trap barrier starts at address L and contains 2𝑁 + 4 c.ebreak instructions, therefore the block ends at L + 4𝑁 + 8.

From the previous argument, there is exactly one step 𝑠 𝑖 such that address L lies in the interval [PC 𝑖 , PC 𝑖+1 ), meaning that the line at address L is loaded or skipped during the execution of step 𝑠 𝑖 .

Step 𝑠 𝑖 starts at PC 𝑖 , which can be written in a unique way as either PC 𝑖 = L -4𝑘 or PC 𝑖 = L -4𝑘 -2 depending on its alignment.

Now by analyzing all cases for the value of 𝑘 and alignment of PC, we can show that the execution always crashes at or shortly after 𝑠 𝑖 , completing the contradiction argument.

• 𝑘 > 0. This case is only possible if step 𝑠 𝑖 uses the fetch rule S32(𝑘 ′ ) because PC 𝑖+1 > L, yet all other options for non-jump instructions result in PC 𝑖+1 ≤ PC 𝑖 + 4. Since 𝑘 ′ ≤ 𝑁 , the fetch will not reach beyond the trap barrier, so the fetch returns a pair of c.ebreak instructions. These then get consumed by 𝑠 𝑖 's step rule, which we can identify from the alignment of PC.

-PC aligned: 𝑠 𝑖 must then be using either ALIGNED-16 or CHECKSUM-DELAY-SLOT. In the first case, the first c.ebreak fetched by 𝑠 𝑖 is executed, leading to a trap. In the second case, the checksum check also traps because double c.ebreak is not a valid checksum literal. -PC unaligned: since there was a fetch, UNALIGNED-32 is being used. A 32-bit instruction is composed from MSH(𝜌 𝑖 ) and the first c.ebreak. Recall that 𝑠 𝑖 is not a jump, so this instruction either crashes or leads into 𝑠 𝑖+1 with PC 𝑖+1 unaligned. In this case, 𝑠 𝑖+1 will use UNALIGNED-16 and run the second c.ebreak, trapping as claimed. • 𝑘 = 0. In this case, PC 𝑖 must be either L or L -2.

-PC 𝑖 = L (aligned). Here, 𝑠 𝑖 can either use rule ALIGNED-16, ALIGNED-32, or CHECKSUM-DELAY-SLOT, all of which require a fetch that can only return 𝜌 𝑖 = encode(j32) (if S&R32 is used) or a pair of c.ebreak. Using ALIGNED-16 and ALIGNED-32 would either crash from running a c.ebreak or contradict the hypothesis that 𝑠 𝑖 is not a jump. Using CHECKSUM-DELAY-SLOT would also crash because neither fetch result is a valid checksum literal.

-PC 𝑖 = L -2 (unaligned). Because there is a fetch, 𝑠 𝑖 must be using rule UNALIGNED-32. Much like the similar case in 𝑘 > 0, the instruction recomposed from MSH(𝜌 𝑖 ) and LSH(𝑑) cannot be a jump, so if it doesn't crash execution continues to 𝑠 𝑖+1 with the new LSH(𝜌 𝑖+1 ).

If 𝑠 𝑖 uses fetch rule NOFAULT or S32(𝑘 ′ ), then 𝜌 𝑖+1 is a pair of c.ebreak, therefore 𝑠 𝑖+1 will use UNALIGNED-16 and crash running the second c.ebreak.

Execution can only proceed past 𝑠 𝑖+1 if 𝑠 𝑖 uses fetch rule S&R32, in which case 𝑠 𝑖+1 is a repeat of 𝑠 𝑖 4 bytes later (PC 𝑖+1 = L + 2). The analysis of 𝑠 𝑖 can be repeated, with two changes. First, S32(𝑘 ′ ) could now reach 4 bytes further, up to L+4+4𝑁 , which hits the last 4 bytes of the barrier. This shows why 2𝑁 + 4 c.ebreak are required. Second, using S&R32 no longer succeeds because 𝜌 𝑖+1 is now also a pair of c.ebreak. Therefore, 𝑠 𝑖+2 crashes. This guaranteed crash implies that a successful execution can only exit a protected block in one of the ways described by the theorem statement.

□

The next objective is to show that the Xccs instruction, checksum and jump instruction sequence is secure in that only legitimate jumps can be used to exit a hardened block.

A key part of this is that only original instructions must be executed around the time of the jump, not forged instructions. This synchronization is guaranteed by the fact that an Xccs instruction is needed to jump, and Xccs instructions cannot be forged.

Lemma 5 (Xccs instructions can be repeated but not forged). Let hb = [i 1 , ..., i |hb| ] be a hardened block and 𝑠 = ⟨PC, 𝜌, 𝜎, 𝛼⟩ → ⟨PC ′ , 𝜌 ′ , 𝜎 ′ , 𝛼 ′ ⟩ a step that successfully runs an Xccs opcode within hb, i.e. such that [PC, PC ′ ) ⊆ blockSpan(hb). Further assume that we don't repeat upon landing in hb, i.e. either 𝑠 doesn't use rule S&R32 or PC ≥ blockAddr(hb) + 4.

Then, the instruction executed by 𝑠 is an original instruction of hb, in the sense that there is an Xccs instruction i 𝑗 ∈ hb (with address L = blockAddr(hb) + 𝑗 -1 𝑘=0 ||i 𝑘 ||) such that one of the following is true: 1. 𝑠 uses fetch rule NOFAULT and PC = L; 2. 𝑠 uses fetch rule S32(𝑘) and PC = L -4𝑘; 3. 𝑠 uses fetch rule S&R32 and PC = L + 4.

Proof. Xccs instructions trap when executed with unaligned PC, so they can only be run by step rule ALIGNED-32. This rule always uses the value 𝑑 returned by a fetch as an opcode, which is a 4-aligned value found in program memory at an address that depends on the fetch rule:

• With NOFAULT, 𝑑 is the value at PC; • With S32(𝑘), 𝑑 is the value at PC + 4𝑘;

• With S&R32, 𝑑 is the value at PC -4.

Given the hypotheses and the length of the trap barrier, this value must be a 4-aligned value within hb, which can intersect the instruction sequence in three ways: 1. 𝑑 matches a 32-bit instruction i 𝑗 ∈ hb: then the lemma is obviously true. 2. LSH(𝑑) is the last two bytes of an instruction i 𝑗 ∈ hb and MSH(𝑑) is the first two bytes of i 𝑗+1 . This is impossible because 𝑑 is an Xccs opcode so MSH(𝑑) = 0. The 16-bit zero value is reserved in the RISC-V ISA as an invalid opcode, thus i 𝑗+1 could not be a valid instruction. 3. 𝑑 matches a 32-bit checksum argument to an Xccs instruction: this is also impossible because Xccs opcodes are not valid checksum literals. Since only case 1) is possible, 𝑠 𝑖 must indeed be executing a legitimate instruction i 𝑗 ∈ hb (maybe after a fault Proof. Walking back from the last few instructions, for 𝑠 𝑏 to be a jump and not trap, we must have 𝜎 𝑏 .CCSPROT ≠ 0. Therefore 𝑏 > 𝑡 and 𝑠 𝑏 -1 must use the CHECKSUM-DELAY-SLOT rule, as no other type of step can end with CCSPROT ≠ 0. This implies that 𝜎 𝑏 -1 .CCSDS ≠ 0, so once again 𝑏 -1 > 𝑡 and 𝑠 𝑏 -2 must execute an Xccs instruction, because CCSDS can only be non-zero for one step and no other instruction sets it.

By Lemma 5, there must be an original Xccs instruction from hb being executed by 𝑠 𝑏 -2 , and such instructions are only found at the end of early or final sections, which have the following structure: L: ccs/ccsb/ccscall/ccscallb L+4: <checksum value> L+8: j32 L+12: # ... next section or c.ebreak ... Note that while 𝑠 𝑏 -2 runs the opcode found in memory at address L, PC 𝑏 -2 is not guaranteed to be L since faults might be involved. The lemma focuses on showing that even then, in all execution scenarios starting from 𝑠 𝑏 -2 the legitimate jump at L + 8 must be taken by 𝑠 𝑏 while also passing the checksum at L + 4. 20First note that, as Xccs instructions set CCSPROT = PC + 8 and both 𝑠 𝑏 -2 and 𝑠 𝑏 already increment PC by 4, neither 𝑠 𝑏 -1 nor 𝑠 𝑏 can fetch with S32(𝑘) as that would cause PC > CCSPROT in 𝑠 𝑏 and trap. The only variable after 𝑠 𝑏 -2 is whether the S&R32 fetch rule is used to change either fetched value.

• If 𝑠 𝑏 -2 uses either of the fetch rules NOFAULT and S32(𝑘), then PC 𝑏 -1 = L + 4 and PC 𝑏 = L + 8. Then, 𝑠 𝑏 -1 uses the CHECKSUM-DELAY-SLOT rule after fetching a checksum literal. Attacking the fetch with S&R32 would return the Xccs opcode of 𝑠 𝑏 -2 , and trap because it's not a valid checksum literal. Thus 𝑠 𝑏 -1 must fetch with NOFAULT, passing the checksum.

Finally, 𝑠 𝑏 performs the jump. Fetching with S&R32 is again impossible as that would execute the checksum literal, which cannot be a jump. Therefore, 𝑠 𝑏 fetches with NOFAULT, and executes the intended jump at L + 8 while passing the intended checksum.

• If 𝑠 𝑏 uses the fetch rule S&R32, then PC 𝑏 = L + 4, which means that PC 𝑏 -1 = L + 8 and PC 𝑏 = L + 12. This time, 𝑠 𝑏 -1 must fetch with S&R32 to obtain the intended checksum, as a NOFAULT fetch would return the jump opcode, which is not a valid checksum literal.

Then, 𝑠 𝑏 must also fetch with S&R32 to get the jump, since a NOFAULT fetch would the value at L + 12, which cannot be a jump.

Notice that in the second case the entire jump widget is "delayed" by 4 bytes by repeated attack with S&R32. This is still a legitimate exit for the purpose of this lemma. We will show later that in single-fault cases, the checksum would not pass in such a scenario. Now, since the jump was executed properly, it is fairly easy to show that 𝑠 𝑏 is a legitimate entry into another block.

• The target of the jump is the blockAddr of another block by assumption about the validity of the entire program 𝑃. • After the jump, we have 𝜎 𝑏 .CCSPROT = 0 and 𝜎 𝑏 .CCSDS = 0 as a result of the semantics of 𝑠 𝑏 -1 and 𝑠 𝑏 . • Finally, 𝜌 𝑏+1 is either a jump, a c.ebreak, or the first line of the next section (which is never an Xccs instruction).

□ B.3 Security guarantees

This key lemma implies that legitimate entries and exits from hardened blocks is an execution invariant. We can sum this up in the most general (multi-fault) case as every block guaranteeing its checksum must pass.

Theorem 1 (Security guarantee for multi-fault executions).

Let 𝑃 a fully hardened program and 𝑒 = [𝑠 0 , ..., 𝑠 As we've discussed previously, this doesn't completely rule out attacks, because for some blocks there exist multifaulted paths whose checksum collides with the expected checksum. However, such paths do not exist when a single fault is injected during the execution of a block. To show this, we can go back to the sum-of-u 32 expression of the checksum and reason on the series of fetches that builds it. Proof. The checksum upon leaving the block is 𝜎 𝑏 = 𝜎 𝑏 -1 (since CCS is not updated during checks and jumps). By definition of instructions' semantics, 𝜎 𝑏 -1 is the realigned sum of the instructions executed by 𝑠 𝑡 ... 𝑠 𝑏 -2 (i.e. the values being passed to • or • 𝑐𝑐𝑠 in each step rule).

Because the sequence takes no branch, each instruction i ends with PC ← PC + ||i|| so each new fetch queries the data immediately following the previous fetch. Accounting for skips in S32(𝑘) means that 𝑎 next(𝑖 ) = 𝑎 𝑖 + 4𝑘 𝑖 + 4 (𝑘 𝑖 being 0 for other rules).

In addition, the sequence starts on a 4-aligned boundary and ends with a 4-aligned Xccs instruction, so the concatenation of executed instructions' encodings is exactly equal to the concatenation of values returned by fetches. Thus, by Lemma 3, 𝜎 𝑏 -1 .CCS is equal to the sum of values returned by fetches. These can be determined for all four categories of fetches:

• For 𝑖 ∈ 𝑁 , NOFAULT returns [𝑎 𝑖 ]; • For 𝑖 ∈ 𝑆, S32(𝑘) returns [𝑎 𝑖 + 4𝑘 𝑖 ]; • For 𝑖 ∈ 𝑅 (𝑖 > 𝑡), S&R32 returns 𝜌 𝑖 , which is always equal to [𝑎 𝑖 -4] (because 𝜌 𝑖 = [𝑎 𝑖 ] at the end of every step that includes a fetch);

• If 𝑠 𝑡 uses the S&R32 rule, then the fetch for 𝑠 𝑡 returns 𝜌 𝑡 (the last value fetched by the previous block), otherwise it's counted by 𝑁 and 𝑆. Adding these up yields the claimed formula for 𝜎 𝑏 -1 .CCS. □ Lemma 8 (Single faults always invalidate the checksum). Let hb a hardened block of 𝑃 and 𝑠 𝑡 ... 𝑠 𝑏 a legitimate execution of hb ending in a jump. Assume the maximum number of skips allowed in a single S32(𝑘) rule is 𝑁 = 1. Then there cannot be exactly one fault attack during the execution of the block, i.e.

Card since the execution is offset by the skip at 𝑠 𝑗 , leading to 𝑎 𝑖 = blockAddr(hb) + 4𝑖 + 4(𝑖 ≥ 𝑗). The difference is [𝑎 𝑗 ]; for the checksum to pass we must have [𝑎 𝑗 ] = 0. This is impossible: for the same reasons as discussed in Lemma 5, a 4-aligned zero value cannot intersect any instructions, so it would have to be a checksum value... but then 𝑠 𝑗 would crash. This is because the execution was not faulted up to this point, so 𝑠 𝑗 must be using rule CHECKSUM-DELAY-SLOT with S32(1). As a result, 𝑠 𝑗 fetching [𝑎 𝑗 + 4], which is not a valid checksum literal (it's a 32-bit jump), leads to a crash. □

We are now finally able to prove the security property that a successful execution with no more than one fault per block has no faults at all. 21Theorem 2 (Security guarantee for single-fault executions).

Let 𝑃 a fully hardened program and 𝑒 = [𝑠 0 , ..., 𝑠 |𝑒 | ] an execution such that • 𝑠 0 is a legitimate entry into a block of 𝑃;

• 𝑠 |𝑒 | ends successfully, returning some end(𝛼).

Let [hb 1 , ..., hb 𝑚 ], (𝑠 𝑡 𝑖 ... 𝑠 𝑏 𝑖 ) 1≤𝑖 ≤𝑚 be the partition of 𝑒 into block executions outlined by Theorem 1.

If each segment 𝑠 𝑡 𝑖 ... 𝑠 𝑏 𝑖 uses at most one faulted fetch rule and the last segment 𝑠 𝑡 𝑚 ... 𝑠 𝑏 𝑚 is faultless, then 𝑒 is faultless.

Proof. By Theorem 1, segments 𝑖 = 1 to 𝑚 -1 all validate their checksums, and by hypothesis, they use at most one faulted fetch rule. By Lemma 8, they must in fact use no faulted fetch. The last block is itself faultless by hypothesis. As a result, the entire execution is legitimate. □

B.4 Feasibility of Algorithm HARDEN

Algorithm 2 relies on the ability to get rid of invalid checksum literals by flipping their Least Significant Bit (LSB). We still have to show that this indeed works.

Lemma 9 (Invalid checksum literals can be avoided).

If 𝑑 : u 32 is an invalid checksum literal, then (𝑑 ⊕ 1) + 2 14 is a valid checksum literal.

Proof. Invalid checksum literals are jumps, Xccs instructions, and pairs of c.ebreak. The low 7 bits of each invalid literal is listed in Table ??; note how flipping the LSB never yields a new pattern that's present in the table.

It is important that the validity of the checksum literal can be inferred from the low 7 bits only. This is because flipping the LSB of the checksum literal also comes with an update to the Xccs opcode (replacing ccs by ccsb or ccscall by ccscallb). This update amounts to flipping bit 14 of the opcode, thus affecting bits 14-31 of the checksum value. Since bits 0-6 are not affected, the final checksum literal is still valid even after accounting for this change. □
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  is a successful termination by an invocation of the exit syscall), or • 𝑡 + 𝑛 < |𝑒 | and 𝑠 𝑡 +𝑛 is a jump instruction.

  .ebreak; c.ebreak # (repeat N+2 times)
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 9 Fetch trace).The fetch trace of a subsequence 𝑠 𝑡 ... 𝑠 𝑏 of 𝑒 is the tuple (𝑁 , 𝑆, 𝑅, 𝜌 entry , (𝑎 𝑖 ), (𝑘 𝑖 ), next)where fetches are partitioned by rule type:• 𝑁 = {𝑖 | 𝑠 𝑖 uses the NOFAULT rule} • 𝑆 = {𝑖 | 𝑠 𝑖 uses the S32(𝑘) rule} • 𝑅 = {𝑖 | 𝑠 𝑖 uses the S&R32 rule and 𝑖 ≠ 𝑡 } • 𝜌 entry = 𝜌 𝑡 if 𝑠 𝑡 uses the S&R32 rule, 0 otherwiseand relevant information is recorded as follows:• for 𝑖 ∈ 𝑁 ∪ 𝑆 ∪ 𝑅, 𝑎 𝑖 is the address fetched by 𝑠 𝑖 ;• for 𝑖 ∈ 𝑆, 𝑘 𝑖 is the parameter to S32(•) (0 for other 𝑖);• next gives the next step that includes a fetch, i.e.next(𝑖) = min { 𝑗 ∈ 𝑁 ∪ 𝑆 ∪ 𝑅 | 𝑗 > 𝑖}.Lemma 7 (Relation between checksum and fetch trace). Let hb a hardened block of 𝑃, 𝑠 𝑡 ... 𝑠 𝑏 a legitimate execution of hb and (𝑁 , 𝑆, 𝑅, 𝜌 entry , (𝑎 𝑖 ), (𝑘 𝑖 ), next) the fetch trace of 𝑠 𝑡 ... 𝑠 𝑏 -2 (only up to the last Xccs instruction that counts towards the checksum).Then fetched addresses are contiguous in the sense that∀𝑖 < 𝑏 -2, 𝑎 next(𝑖 ) = 𝑎 𝑖 + 4𝑘 𝑖 + 4and the checksum upon leaving the block is 𝜎 𝑏 -1 .CCS = ∑︁ 𝑖 ∈𝑁 [𝑎 𝑖 ] + ∑︁ 𝑖 ∈𝑆 [𝑎 𝑖 + 4𝑘 𝑖 ] + ∑︁ 𝑖 ∈𝑅 [𝑎 𝑖 -4] + 𝜌 entry .

𝜎

  𝑏 -1 .CCS = 𝑏 -2 ∑︁ 𝑖=𝑡 [𝑎 𝑖 ] -[𝑎 𝑗 ] + [𝑎 𝑗 -4] still with 𝑎 𝑖 = blockAddr(hb) + 4𝑖. The difference with 𝜎 expected is [𝑎 𝑗 -4] -[𝑎 𝑗 ] = 𝜌 𝑗 -[𝑎 𝑗 ]which is again non-zero due to the condition on S&R32.• Some 𝑠 𝑗 uses S32(1): still by Lemma 7, the checksum is now𝜎 𝑏 -1 .CCS = ∑︁ 𝑖 ∈𝑁 [𝑎 𝑖 ] + [𝑎 𝑗 + 4] = ] -[𝑎 𝑗 ],

  Execution step patterns. i16/ i32 represent arbitrary 16/32-bit instructions. The dashed region is the next instruction to be run.

			PC
			...	i16
	a. Fetch at PC, use 2/4 bytes	c. Read from buffer, no fetch
			PC
	PC	
			...	i32 (1/2)
	i32 (1/2)	i32 (2/2)
			i32 (2/2)	...
	b. Fetch at PC, use 4/4 bytes
			d. Fetch at PC+2, use 2 bytes
	Left: PC aligned	Right: PC unaligned
	Figure 2.	
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  Algorithm 1 Algorithm: HARDEN Input: A source block [i 1 , ..., i 𝑛 ] Input: Upper bound 𝑁 for S32(𝑘) rule (𝑘 ≤ 𝑁 ) Output: A hardened block hb.

	1: hb ← [ ]	
	2: sum : u 32 ← 0	
	3: offset ← 0	⊲ Blocks are 4-aligned.
	4: procedure addToBlock(i)	
	5:	hb.append(i)	
	6:	sum ← sum + realign(offset, u 32 (i))
	7:	offset ← offset + ||𝑖 ||	
	8: procedure addChecksum(i, ib)	
	9:	if sum + i is not a valid checksum literal then
	10:	addToBlock(ib)	
	11:	addToBlock(sum ⊕ 1)	
	12:	else	
	13:	addToBlock(i)	
	14:	addToBlock(sum)	
	16:	if i is a jump instruction then
	17:	if offset = 0 then	⊲ No empty sections.
	25:	offset ← 0	
	26:	addToBlock(i)	

15: for i in [i 1 , ..., i 𝑛 ] do 18: addToBlock(encode(nop)) 19: else if offset ≡ 2 [4] then ⊲ Force alignment. 20: addToBlock(encode(c.nop)) 21: if i is a function call then 22: addChecksum(encode(ccscall (2𝑁 + 4)), encode(ccscallb (2𝑁 + 4))) 23: else ⊲ Jumps/branches. 24: addChecksum(encode(ccs), encode(ccsb)) 27: for 𝑗 = 1 to 2𝑁 + 4 do ⊲ Add trap barrier. 28: addToBlock(encode(c.ebreak)) 29: return hb During object file generation, the 8-byte CCS Machine IR instruction is replaced with a 4-byte Xccs opcode and a placeholder zero-checksum. A custom relocation of type R_RISCV_CHECKSUM (marked by a comment in Figure

  𝑡 𝑖 . . . 𝑠 𝑏 𝑖 ) 1≤𝑖 ≤𝑚 each executing one hardened block HARDEN(bb 𝑖 ), such that 1. Each 𝑠 𝑡 𝑖 starts at the top of HARDEN(bb 𝑖 ); 2. Each 𝑠 𝑏 𝑖 (𝑖 ≠ 𝑚) runs a legitimate (non-forged) jump instruction of bb 𝑖 , and 𝜎 𝑏 𝑖 .CCS is the correct associated checksum; 3. If each segment 𝑠 𝑡 𝑖 . . . 𝑠 𝑏 𝑖 contains at most one faulted fetch and the last segment 𝑠 𝑡 𝑚 . . . 𝑠 𝑏 𝑚 has none 10 , then the entire execution 𝑒 contains no faults.

materializing the change in execution state associated with the execution of a single instruction, and an execution as a sequence of steps [𝑠 0 , . . . , 𝑠 𝑛 ] such that the initial state of any 𝑠 𝑖 (𝑖 > 0) is the final state of 𝑠 𝑖 -1 . Theorem (simplified). Let 𝑃 = [HARDEN(bb 1 ), . . . HARDEN(bb |𝑃 | )] a program hardened by Algorithm 1, and 𝑒 = [𝑠 0 , . . . , 𝑠 |𝑒 | ] an execution such that • 𝑠 0 starts at the top of a block of 𝑃; • 𝑠 |𝑒 | successfully executes a program exit instruction.

Then 𝑒 can be partitioned into sub-sequences (𝑠

  is 2.(a) and (b), UNALIGNED-16 is 𝜌) PC ⇒ 𝑑 (PC 𝐹 , 𝜌 ′ ) 𝜎.CCSDS = 0 LSH(𝑑) is a 16-bit instruction 16 ⟨PC, 𝜌, 𝜎, 𝛼⟩ → LSH(𝑑) (PC 𝐹 , 𝜎, 𝛼) • 𝜌 ′ 𝜌, 𝜎, 𝛼⟩ → MSH(𝜌) (PC, 𝜎, 𝛼) • 𝜌 ′

	ALIGNED-16	
	PC aligned (PC, ALIGNED-32
	PC aligned	(PC, 𝜌) PC ⇒ 𝑑 (PC 𝐹 , 𝜌 ′ )
	𝜎.CCSDS = 0	LSH(𝑑) is a 32-bit instruction leader 16
	⟨PC, 𝜌, 𝜎, 𝛼⟩ → 𝑑 (PC 𝐹 , 𝜎, 𝛼) • 𝜌 ′
	UNALIGNED-16
	PC unaligned	𝜎.CCSDS = 0
	MSH(𝜌) is a 16-bit instruction 16
	⟨PC, UNALIGNED-32	
	PC unaligned	MSH(𝜌) is a 32-bit instruction leader 16
	𝜎.CCSDS = 0	

(PC, 𝜌) PC + 2 ⇒ 𝑑 (PC 𝐹 , 𝜌 ′ ) ⟨PC, 𝜌, 𝜎, 𝛼⟩ → 2 16 MSH(𝜌) + LSH(𝑑) (PC 𝐹 , 𝜎, 𝛼) • 𝜌 ′ CHECKSUM-DELAY-SLOT PC aligned 𝜎.CCSDS ≠ 0 (PC, 𝜌) PC ⇒ 𝑑 (PC 𝐹 , 𝜌 ′ ) ⟨PC, 𝜌, 𝜎, 𝛼⟩ → 𝜎.CCSDS 𝑐𝑐𝑠 (PC 𝐹 , 𝜎, 𝛼, 𝑑) • 𝜌 ′ Re-inserting 𝜌 into the ⟨PC, 𝜎, 𝛼⟩ • 𝜌 = ⟨PC, 𝜌, 𝜎, 𝛼⟩ result of • and • 𝑐𝑐𝑠 :

  Definition 8 (Legitimate execution of a block). A sequence of steps 𝑠 𝑡 ... 𝑠 𝑏 ("top", "bottom") is defined as a legitimate execution of a hardened block hb if the following conditions are met:• 𝑠 𝑡 's initial state is a legitimate entry into hb; • ∀𝑖 ∈ [𝑡, 𝑏), PC 𝑖+1 ∈ blockSpan(hb);• 𝑠 𝑏 is the first and only instruction in the sequence to be either a taken jump or an invocation of the exit syscall.Lemma 6 (Jumps out of hardened blocks must be legitimate). Let hb = [i 1 , ..., i |hb| ] a hardened block of 𝑃, and 𝑠 𝑡 ... 𝑠 𝑏 a legitimate execution of hb where 𝑠 𝑏 is a jump. 𝑘=0 ||i 𝑘 || and step 𝑠 𝑏 executes the opcode i 𝑗 . 3. The checksum is correct when leaving the block, i.e. 𝜎 𝑏 .CCS = [PC 𝑏 -4] if it's a valid checksum literal; [PC 𝑏 -4] ⊕ 1 otherwise. 4. 𝑠 𝑏 's final state is a legitimate entry into another block.

). □ Definition 7 (Legitimate entry). A state ⟨PC, 𝜌, 𝜎, 𝛼⟩ is called a legitimate entry into a block bb if PC = blockAddr(bb), 𝜎.CCSPROT = 𝜎.CCSDS = 0, and 𝜌 does not decode as an Xccs instruction. Then: 1. 𝑏 ≥ 𝑡 + 2 and 𝑠 𝑏 -2 is an Xccs instruction; 2. The jump is legitimate, i.e. there is an instruction i 𝑗 ∈ hb such that PC 𝑏 = blockAddr(hb) + 𝑗 -1

  The execution 𝑒 can be partitioned into subsequences (𝑠 𝑡 𝑖 ... 𝑠 𝑏 𝑖 ) 1≤𝑖 ≤𝑚 each a legitimate execution of hb 𝑖 ; 2. Each 𝑠 𝑏 𝑖 (𝑖 ≠ 𝑚) is a legitimate jump of hb 𝑖 and 𝜎 𝑏 𝑖 .CCS is the correct checksum associated with that jump. Proof. By induction, constructing (𝑡 𝑖 ), (𝑏 𝑖 ) and (hb 𝑖 ) along the way. Assume 𝑠 𝑡 𝑖 is a legitimate entry into hb 𝑖 (which is true for 𝑖 = 0). By Lemma 4, there is 𝑏 𝑖 such that 𝑠 𝑡 𝑖 ... 𝑠 𝑏 𝑖 is an execution of hb 1 , with 𝑠 𝑏 𝑖 leaving either by successful termination or by a jump. If 𝑠 𝑏 𝑖 ends the program, we're done. Otherwise, by Lemma 6, 𝑠 𝑏 𝑖 is a legitimate jump out of hb 𝑖 with 𝜎 𝑏 𝑖 .CCS passing the associated checksum, and its final state is a legitimate entry into another block hb 𝑖+1 . Define 𝑡 𝑖+1 := 𝑏 𝑖 + 1 and start over. □

|𝑒 | ] an execution such that • 𝑠 0 is a legitimate entry into a block of 𝑃; • 𝑠 |𝑒 | ends successfully, returning some end(𝛼).

Then there exists a sequence [hb 1 , ..., hb 𝑚 ] of blocks of 𝑃 such that 1.

  {𝑖 ∈ [𝑡, 𝑏] | 𝑠 𝑖 uses S32(𝑘) or S&R32} ≠ 1.Proof. By Lemma 6, a legitimate exit by a jump requires an Xccs instruction at 𝑠 𝑏 -2 , and 𝑠 𝑏 -1 and 𝑠 𝑏 must either both use NOFAULT or both use S&R32. The second option immediately implies the theorem; this leaves the first.Let (𝑁 , 𝑆, 𝑅, 𝜌 entry , (𝑎 𝑖 ), (𝑘 𝑖 ), next) be the fetch trace of 𝑠 𝑡 ... 𝑠 𝑏 -2 . Because 𝑠 𝑏 -1 and 𝑠 𝑏 both use NOFAULT, the fault attack must occur in 𝑠 𝑡 ... 𝑠 𝑏 -2 , which leaves 3 options.• 𝑠 𝑡 uses S&R32: by Lemma 7, the checksum at the end of the block is𝜎 𝑏 -1 .CCS = The difference is 𝜌 entry -[blockAddr(hb)] = 𝜌 𝑡 -[𝑎 𝑡 ],which is non-zero due to the condition on S&R32 (silent replacements do not count as faults). Therefore the checksum doesn't pass, contradicting the hypothesis that 𝑠 𝑡 ... 𝑠 𝑏 is a legitimate execution of hb. • Some 𝑠 𝑗 uses S&R32 (𝑗 ≠ 𝑡): by Lemma 7, the checksum is

		𝑏 -2
		∑︁
		𝑖=𝑡 +1
	𝑏 -2	
	∑︁	[blockAddr(hb) + 4𝑖].
	𝑖=𝑡	

[𝑎 𝑖 ] + 𝜌 entry , with 𝑎 𝑖 = blockAddr(hb) + 4𝑖. Remember that the expected checksum is 𝜎 expected =
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[START_REF] Alshaer | Variable-Length Instruction Set: Feature or Bug?[END_REF] observes that a the CPU may run a nop during a S32(𝑘 ) attack; we omit this detail here but account for it in the countermeasure.

We use these patterns because the behavior of more complex combinations cannot be inferred from[START_REF] Alshaer | Variable-Length Instruction Set: Feature or Bug?[END_REF]] without more hardware details.Conference'17, July 2017, Washington, DC, USA Sébastien Michelland, Christophe Deleuze, and Laure Gonnord

The back-end intermediate representation used by LLVM, which is aware of the target architecture, not the usual LLVM IR.

We disable linker relaxation for simplicity to maintain jumps' alignment, but it could be enabled after adding appropriate alignment relocations.

The R_RISCV_CALL relocation for auipc/jump pairs is also replaced with a custom type to inform the linker of the newly-added ccs in the pair.

Except patricia, due to a 32-vs. 64-bit compatibility issue related to reused opcodes in the RISC-V ISA.

There is no risk of type confusion because

16-and 32-bit instructions 

For now we consider a forged jump that jumps back somewhere into the block as "leaving" the block; we will later show that this cannot happen.

The analysis in this lemma remains correct even if rule S32(𝑘 ) caused the execution of extra nop instructions, as that would reset CCSPROT to 0 and just prevent the jump altogether.

We exclude the last block since we don't protect ecall; in practice it's in non-protected libc and the entry into the exit() function is a function call that is itself protected.

Supplementary material for the CC'24 submission: From low-level fault modeling (of a pipeline attack) to a proven hardening scheme

A Operational semantics

In this appendix, we formalize operational semantics for a minimal, representative subset of 32-bit RISC-V assembly which includes fetch skip attacks and our Xccs extension, and provide a detailed proof of the claims made in Section 4.

Notations. We write u N the type of N-bit unsigned integers. We also use structure-like notations {⟨field⟩ : ⟨type⟩ , ...} and ⟨struct⟩.⟨field⟩ for bit fields and named collections of values.

A.1 Program and execution models

Definition 1 (Instruction, Block, Program).

An instruction i is a 16-or 32-bit integer (a u 16 or a u 32 ) corresponding to a RISC-V opcode. 15 We write ||i|| the size of an instruction in bytes (2 or 4).

A block bb is a nonempty sequence of instructions, along with a 4-aligned address value blockAddr(bb) indicating where it is loaded in memory.

A program P is a collection of non-intersecting blocks.

Since instructions in the same block are loaded contiguously, each block spans the interval blockSpan(bb) = blockAddr(bb), blockAddr(bb)+ ∑︁ i∈bb ||i|| .

Programs are assumed to be well-formed, in that no two blocks' spans intersect and every jump points to the blockAddr of some block. The program state tracks the progress of execution. For simplicity, we do not include memory, which would be handled like the registers in 𝛼, or side-effects, which could be recorded as a trace whenever a side-effecting syscall is invoked by the ecall instruction. We only consider the final state of registers.

There are two changes compared to traditional jumps: (1) it is only allowed when CCSPROT is set to PC; (2) it accounts for the jump offset (JO) field of CCSD to jump over trap barriers after function calls. The jump also prepares the execution of the next block by resetting CCS and other registers to 0. We do not allow the compiler to compress jal into the 16-bit version c.jal to make sure the next block is also aligned.

Conditional branches are similar, except that if the branch is not taken the block continues and in particular CCS is updated rather than reset.

The last type of instruction is Xccs instructions. Because these have both a 32-bit opcode and a 32-bit argument, they cannot be executed in a single step. A "delay slot" mechanism with 𝜎.CCSDS and the CHECKSUM-DELAY-SLOT rule is used to solve this issue in two steps. At the first step, the Xccs opcode will be fetched and recorded in 𝜎.CCSDS. At the second step, the checksum value will be fetched, and passed as argument to the appropriate semantics function 𝜎.CCSDS 𝑐𝑐𝑠 .

The first step which records the opcode in CCSDS proceeds as follows:

The second step, which always uses the CHECKSUM-DELAY-SLOT rule, reads back from CCSDS and calls the 𝑐𝑐𝑠 function by passing the checksum 𝑑 just fetched from memory as an extra 4th argument. All 4 Xccs instructions have similar semantics; the -call variants set CCSD.JO = N and the -b variants flip the least significant bit of the checksum value before comparing. We factor them as follows.

• Checksum step (𝑑 is a checksum value):

The purpose of the "checksum literals" check is to close attack vectors in which an attacker feeds an incorrect checksum value by injecting a fault between the Xccs opcode and its checksum parameter. We avoid these by preventing a 32-bit value 𝑑 from appearing verbatim as a checksum value if:

• it decodes as a jump instruction;

• it decodes as an Xccs instruction;

• it decodes as a pair of c.ebreak.

The countermeasure gets rid of such values by flipping their LSB, which is shown to be correct in Lemma 9.

B Hardening algorithm and proof of security B.1 Structure of hardened programs

The security property that we want to establish is that in the execution of a hardened program, any single-fault injection leads to termination with ⊥ before the end of the current block. This relies on a particular structure for blocks, which we also use to formalize the hardening process.

Definition 5 (Source block).

A source block is a block whose sequence of instructions consists of:

• 0 or more straight (add, ebreak, ecall...) or conditional branch (beq) instructions, excluding c.ebreak and Xccs instructions; followed by • One unconditional branch instruction (jal).

Unlike classical definitions, we do not count conditional branches as block terminators. This improves the correspondence between blocks and checksum regions; in particular, it ensures the invariant that CCS resets to 0 at the start of every block.

Definition 6 (Hardened block).

A hardened block is a block hb obtained by hardening a source block, i.e. hb = HARDEN(sb, 𝑁 ) for some source block sb. HARDEN is detailed as Algorithm 2 (which is a copy of Algorithm 1).

The hardening algorithm processes instructions individually. All the original instructions are kept. Before each jump, a checksum check is added by procedure addChecksum(), in the form of an Xccs instruction (ccscall for function calls, ccs otherwise) followed by the reference checksum value. In order to close certain attack vectors, the checksum value must not decode as a jump or Xccs instruction; if that happens, the LSB of the checksum value is flipped and the Xccs instruction is replaced by its -b variant. Finally, a barrier of c.ebreak instructions is added at the end. Now, conditional branches in the middle of a block allow for early exits, but don't reset the checksum. The idea is that upon exiting the block, the expected checksum value is always the sum of all lines from the beginning of the block to the exit instruction. It will nonetheless be useful to split the blocks at each exit point to help formalization.

Lemma 1 (Structure of source blocks).

A source block sb can be uniquely decomposed into 𝑚 ≥ 0 early sections followed by one final section, i.e. sb = se 1 + ... + se 𝑚 + sf ("+" is concatenation) where

• each se 𝑘 (source early, 1 ≤ 𝑘 ≤ 𝑚) section consists of straight instructions followed by one conditional branch;