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Abstract

Synthetic Minority Oversampling Technique (SMOTE) is a common rebalancing
strategy for handling imbalanced tabular data sets. However, few works analyze
SMOTE theoretically. In this paper, we prove that SMOTE (with default parameter)
tends to copy the original minority samples asymptotically. We also prove that
SMOTE exhibits boundary artifacts, thus justifying existing SMOTE variants. Then
we introduce two new SMOTE-related strategies, and compare them with state-of-
the-art rebalancing procedures. Surprisingly, for most data sets, we observe that
applying no rebalancing strategy is competitive in terms of predictive performances,
with tuned random forests, logistic regression or LightGBM. For highly imbalanced
data sets, our new methods, named CV-SMOTE and Multivariate Gaussian SMOTE,
are competitive. Besides, our analysis sheds some lights on the behavior of common
rebalancing strategies, when used in conjunction with random forests.

1 Introduction

Imbalanced data sets for binary classification are encountered in various fields such as fraud detection
[Hassan and Abraham, 2016], medical diagnosis [Khalilia et al., 2011] and even churn detection
[Nguyen and Duong, 2021]. In our study, we focus on imbalanced data in the context of binary
classification on tabular data, for which most machine learning algorithms have a tendency to predict
the majority class. This leads to biased predictions, so that several rebalancing strategies have been
developed in order to handle this issue, as explained by Krawczyk [2016] and Ramyachitra and
Manikandan [2014]. These procedures can be divided into two categories: model-level and data-level.

Model-level approaches modify existing classifiers in order to prevent predicting only the majority
class. Among such techniques, Class-Weight (CW) works by assigning higher weights to minority
samples. Another related proposed by Zhu et al. [2018] assigns data-driven weights to each tree of
a random forest, in order to improve aggregated metrics such as F1 score or ROC AUC. Another
model-level technique is to modify the loss function of the classifier. For instance, Cao et al. [2019]
and Lin et al. [2017] introduced two new losses, respectively LDAM and Focal losses, in order to
produce neural network classifiers that better handle imbalanced data sets. However, model-level
approaches are not model agnostic, and thus cannot be applied to a wide variety of machine learning
algorithms. Consequently, we focus in this paper on data-level approaches.
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Data-level approaches can be divided into two groups: synthetic and non-synthetic procedures. Non-
synthetic procedures works by removing or copying original data points. Mani and Zhang [2003]
explain that Random Under Sampling (RUS) is one of the most used resampling strategy and design
new adaptive versions called Nearmiss. RUS produces the prespecified balance between classes by
dropping uniformly at random majority class samples. The Nearmiss1 strategy [Mani and Zhang,
2003] includes a distinction between majority samples by ranking them with their mean distance to
their nearest neighbor from the minority class. Then, low-ranked majority samples are dropped until
a given balancing ratio is reached. In contrast, Random Over Sampling (ROS) duplicates original
minority samples. The main limitation of all these sampling strategies is the fact that they either
remove information from the data or do not add new information.

On the contrary, synthetic procedures generate new synthetic samples in the minority class. One of
the most famous strategies in this group is Synthetic Minority Oversampling Technique [SMOTE,
see Chawla et al., 2002]1. In SMOTE, new minority samples are generated via linear interpolation
between an original minority sample and one of its nearest neighbor in the minority class. Other
approaches are based on Generative Adversarial Networks [GAN Islam and Zhang, 2020], which
are computationally expensive and mostly designed for specific data structures, such as images.
Random Over Sampling Examples [see Menardi and Torelli, 2014] is a variant of ROS that produces
duplicated samples and then add a noise in order to get these samples slightly different from the
original ones. This leads to the generation of new samples on the neighborhood of original minority
samples. The main difficulty of these strategies is to synthesize relevant new samples, which must
not be outliers nor simple copies of original points.

Contributions We place ourselves in the setting of imbalanced classification on tabular data, which
is very common in real-world applications [see Shwartz-Ziv and Armon, 2022]. In this paper:

• We prove that, without tuning the hyperparameter K (usually set to 5), SMOTE asymptoti-
cally copies the original minority samples, therefore lacking the intrinsic variability required
in any synthetic generative procedure. We provide numerical illustrations of this limitation
(Section 3).

• We also establish that SMOTE density vanishes near the boundary of the support of the
minority distribution, therefore justifying the introduction of SMOTE variants such as
BorderLine SMOTE (Section 3).

• Our theoretical analysis naturally leads us to introduce two SMOTE alternatives, CV-SMOTE
and Multivariate Gaussian SMOTE (MGS). In Section 4, we evaluate our new strategies
and state-of-the-art rebalancing strategies on several real-world data sets using random
forests/logistic regression/LightGBM. Through these experiments 2, we show that applying
no strategy is competitive for most data sets. For the remaining data sets, our proposed
strategies, CV-SMOTE and MGS, are among the best strategies in terms of predictive
performances. Our analysis also provides some explanations about the good behavior of
RUS, due to an implicit regularization in presence of random forests classifiers.

2 Related works

In this section, we focus on the literature that is the most relevant to our work: long-tail learning,
SMOTE variants and theoretical studies of rebalancing strategies.

Long-tailed learning [see, e.g., Zhang et al., 2023] is a relatively new field, originally designed to
handle image classification with numerous output classes. Most techniques in long-tailed learning are
based on neural networks or use the large number of classes to build or adapt aggregated predictors.
However, in most tabular classification data sets, the number of classes to predict is relatively small,
usually equal to two [Chawla et al., 2004, He and Garcia, 2009, Grinsztajn et al., 2022]. Therefore,
long-tailed learning methods are not intended for our setting as (i) we only have two output classes
and (ii) state-of-the-art models for tabular data are not neural networks but tree-based methods, such
as random forests or gradient boosting [see Grinsztajn et al., 2022, Shwartz-Ziv and Armon, 2022].

1More than 25.000 papers found in GoogleScholar with a title including “SMOTE” over the last decade.
2All our experiments and our newly proposed methods can be found at https://github.com/

artefactory/smote_strategies_study.
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SMOTE has seen many variants proposed in the literrature. Several of them focus on generating
synthetic samples near the boundary of the minority class support, such as ADASYN [He et al.,
2008], SVM-SMOTE [Nguyen et al., 2011] or Borderline SMOTE [Han et al., 2005]. Many other
variants exist such as SMOTEBoost [Chawla et al., 2003], Adaptive-SMOTE [Pan et al., 2020],
Xie et al. [2020] or DBSMOTE [Bunkhumpornpat et al., 2012]. From a computational perspective,
several synthetic methods are available in the open-source package imb-learn [see Lemaître et al.,
2017]. Several papers study experimentally some specificities of the sampling strategies and the
impact of hyperparameter tuning. For example, Kamalov et al. [2022] study the optimal sampling
ratio for imbalanced data sets when using synthetic approaches. Aguiar et al. [2023] realize a survey
on imbalance data sets in the context of online learning and propose a standardized framework in
order to compare rebalancing strategies in this context. Furthermore, Wongvorachan et al. [2023] aim
at comparing the synthetic approaches (ROS, RUS and SMOTE) on educational data.

Several works study theoretically the rebalancing strategies. Xu et al. [2020] study the weighted risk
of plug-in classifiers, for arbitrary weights. They establish rates of convergence and derive a new
robust risk that may in turn improve classification performance in imbalanced scenarios. Then, based
on this previous work, Aghbalou et al. [2024] derive a sharp error bound of the balanced risk for
binary classification context with severe class imbalance. Using extreme value theory, Chaudhuri
et al. [2023] show that applying Random Under Sampling in binary classification framework improve
the worst-group error when learning from imbalanced classes with tails. Wallace and Dahabreh
[2014] study the class probability estimates for several rebalancing strategies before introducing a
generic methodology in order to improve all these estimates. Dal Pozzolo et al. [2015] focus on
the effect of RUS on the posterior probability of the selected classifier. They show that RUS affect
the accuracy and the probability calibration of the model. To the best of our knowledge, there are
only few theoretical works dissecting the intrinsic machinery in SMOTE algorithm, with the notable
exception of Elreedy and Atiya [2019] and Elreedy et al. [2023] who established the density of
synthetic observations generated by SMOTE, the associated expectation and covariance matrix.

3 A study of SMOTE

Notations We denote by U([a, b]) the uniform distribution over [a, b]. We denote by N (µ,Σ) the
multivariate normal distribution of mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. For any set A,
we denote by V ol(A), the Lebesgue measure of A. For any z ∈ Rd and r > 0, let B(z, r) be the ball
centered at z of radius r. We note cd = V ol(B(0, 1)) the volume of the unit ball inRd. For any p, q ∈
N, and any z ∈ [0, 1], we denote by B(p, q; z) =

∫ z

t=0
tp−1(1− t)q−1dt the incomplete beta function.

Algorithm 1 SMOTE iteration.

Input: Minority class samples X1, . . . , Xn,
number K of nearest-neighbors
Select uniformly at random Xc (called central
point) among X1, . . . , Xn.
Denote by I the set composed of the K nearest-
neighbors of Xc among X1, . . . , Xn (w.r.t. L2

norm).
Select Xk ∈ I uniformly.
Sample w ∼ U([0, 1])
ZK,n ← Xc + w(Xk −Xc)
Return ZK,n

3.1 SMOTE algorithm

We assume to be given a training sample com-
posed of (Xi, Yi) N pairs independent and
identically distributed as (X,Y ), where X and
Y are random variables that take values respec-
tively in X ⊂ Rd and {0, 1}. We consider a
class imbalance problem, in which the class
Y = 1 is under-represented, compared to the
class Y = 0, and thus called the minority class.
We assume that we have n minority samples in
our training set. We define the imbalance ratio
as n/N . In this paper, we consider continuous
input variables only, as SMOTE was originally designed such variables only.

In this section, we study the SMOTE procedure, which generates synthetic data through linear
interpolations between two pairs of original samples of the minority class. SMOTE algorithm has
a single hyperparameter, K, by default set to 5, which stands for the number of nearest neighbors
considered when interpolating. A single SMOTE iteration is detailed in Algorithm 1. In a classic
machine learning pipeline, SMOTE procedure is repeated in order to obtain a prespecified ratio
between the two classes, before training a classifier.
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3.2 Theoretical results on SMOTE

SMOTE has been shown to exhibit good performances when combined to standard classification
algorithms [see, e.g., Mohammed et al., 2020]. However, there exist only few works that aim at
understanding theoretically SMOTE behavior. In this section, we assume that X1, . . . , Xn are i.i.d
samples from the minority class (that is, Yi = 1 for all i ∈ [n]), with a common density fX with
bounded support, denoted by X .

Lemma 3.1 (Convexity). Given fX the distribution density of the minority class, with support X , for
all K,n, the associated SMOTE density fZK,n

satisfies

Supp(fZK,n
) ⊆ Conv(X ). (1)

By construction, synthetic observations generated by SMOTE cannot fall outside the convex hull of X .
Equation (1) is not an equality, as SMOTE samples are the convex combination of only two original
samples. For example, in dimension two, if X is concentrated near the vertices of a triangle, then
SMOTE samples are distributed near the triangle edges, whereas Conv(X ) is the surface delimited
by the triangle.

SMOTE algorithm has only one hyperparameter K, which is the number of nearest neighbors taken
into account for building the linear interpolation. By default, this parameter is set to 5. The following
theorem describes the behavior of SMOTE distribution asymptotically, as K/n→ 0.

Theorem 3.2. For all Borel sets B ⊂ Rd, if K/n→ 0, as n tends to infinity, we have

lim
n→∞

P[ZK,n ∈ B] = P[X ∈ B]. (2)

The proof of Theorem 3.2 can be found in B.2. Theorem 3.2 proves that the random variables ZK,n

generated by SMOTE converge in distribution to the original random variable X , provided that K/n
tends to zero. From a practical point of view, Theorem 3.2 guarantees asymptotically the ability of
SMOTE to regenerate the distribution of the minority class. This highlights a good behavior of the
default setting of SMOTE (K = 5), as it can create more data points, different from the original
sample, and distributed as the original sample. Note that Theorem 3.2 is very generic, as it makes no
assumptions on the distribution of X .

SMOTE distribution has been derived in Theorem 1 and Lemma 1 in Elreedy et al. [2023]. We
provide here a slightly different expression for the density of the data generated by SMOTE, denoted
by fZK,n

. Although our proof shares the same structure as that of Elreedy et al. [2023], our starting
point is different, as we consider random variables instead of geometrical arguments. The proof can
be found in Section B.3. When no confusion is possible, we simply write fZ instead of fZK,n

.

Lemma 3.3. Let Xc be the central point chosen in a SMOTE iteration. Then, for all xc ∈ X , the
random variable ZK,n generated by SMOTE has a conditional density fZK,n

(.|Xc = xc) which
satisfies

fZK,n
(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
(3)

× B (n−K − 1,K; 1− βxc,z,w) dw,

where βxc,z,w = µX (B (xc, ||z − xc||/w)) and µX is the probability measure associated to fX .
Using the following substitution w = ∥z − xc∥/r, we have,

fZK,n
(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ ∞

r=∥z−xc∥
fX

(
xc +

(z − xc)r

∥z − xc∥

)
× rd−2B (n−K − 1,K; 1− µX (B (xc, r)))

∥z − xc∥d−1
dr. (4)

A close inspection of Lemma 3.3 allows us to derive more precise bounds about the behavior of
SMOTE, as established in Theorem 3.5.

Assumption 3.4. There exists R > 0 such that X ⊂ B(0, R). Besides, there exist 0 < C1 < C2 <
∞ such that for all x ∈ Rd, C11x∈X ≤ fX(x) ≤ C21x∈X .
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Theorem 3.5. Grant Assumption 3.4. Let xc ∈ X and α ∈ (0, 2R). For all K ≤ (n −
1)µX (B (xc, α)), we have

P(∥ZK,n −Xc∥2 ≥ α|Xc = xc) ≤ ηα,R,d exp

(
−2(n− 1)

(
µX (B (xc, α))−

K

n− 1

)2
)

(5)

with ηα,R,d = C2cdR
d ×

{
ln
(
2R
α

)
if d = 1,

1
d−1

((
2R
α

)d−1 − 1
)

if d > 1.

Consequently, if limn→∞ K/n = 0, we have, for all xc ∈ X , ZK,n|Xc = xc → xc in probability.

The proof of Theorem 3.5 can be found in B.4. Theorem 3.5 establishes an upper bound on the
distance between an observation generated by SMOTE and its central point. Asymptotically, when
K/n tends to zero, the new synthetic observation concentrates around the central point. Recall that,
by default, K = 5 in SMOTE algorithm. Therefore, Theorem 3.2 and Theorem 3.5 prove that, with
the default settings, SMOTE asymptotically targets the original density of the minority class and
generates new observations very close to the original ones. The following result establishes the
characteristic distance between SMOTE observations and their central points.
Corollary 3.6. Grant Assumption 3.4. For all d ≥ 2, for all γ ∈ (0, 1/d), we have

P
[
∥ZK,n −Xc∥22 > 12R(K/n)γ

]
≤
(
K

n

)2/d−2γ

. (6)

The proof of Corollary 3.6 can be found in B.5 and is an adaptation of Theorem 2.4 in Biau and
Devroye [2015]. The characteristic distance between a SMOTE observation and the associated central
point is of order (K/n)1/d. As expected from the curse of dimensionality, this distance increases
with the dimension d. Choosing K that increases with n leads to larger characteristic distances:
SMOTE observations are more distant from their central points. Corollary 3.6 leads us to choose
K such that K/n does not tend too fast to zero, so that SMOTE observations are not too close to
the original minority samples. However, choosing such a K can be problematic, especially near the
boundary of the support, as shown in the following theorem.

Theorem 3.7. Grant Assumption 3.4 with X = B(0, R). Let ε ∈ (0, R) such that
(
ε
R

)1/2 ≤ cd√
2dC2

.

Then, for all 1 ≤ K < n, and all z ∈ B(0, R)\B(0, R− ε), and for all d > 1, we have

fZK,n
(z) ≤ C

3/2
2

(
2d+2c

1/2
d

d1/2

)(
n− 1

K

)( ε

R

)1/4
. (7)

The proof of Theorem 3.7 can be found in B.6. Theorem 3.7 establishes an upper bound of SMOTE
density at points distant from less than ε from the boundary of the minority class support. More
precisely, Theorem 3.7 shows that SMOTE density vanishes as ε1/4 near the boundary of the support.
Choosing ε/R = o((K/n)4) leads to a vanishing upper bound, which proves that SMOTE density
is unable to reproduce the original density fX ≥ C1 in the peripheral area B(0, R)\B(0, R − ε).
Such a behavior was expected since the boundary bias of local averaging methods (kernels, nearest
neighbors, decision trees) has been extensively studied [see, e.g. Jones, 1993, Arya et al., 1995, Arlot
and Genuer, 2014, Mourtada et al., 2020].

For default settings of SMOTE (i.e., K = 5), and large sample size, this area is relatively small
(ε = o(n−4)). Still, Theorem 3.7 provides a theoretical ground for understanding the behavior of
SMOTE near the boundary, a phenomenon that has led to introduce variants of SMOTE to circumvent
this issue [see Borderline SMOTE in Han et al., 2005]. While increasing K leads to more diversity in
the generated observations (as shown in Theorem 3.5), it increases the boundary bias of SMOTE.
Indeed, choosing K = n3/4 implies a boundary effect in the peripheral area B(0, R)\B(0, R− ε)
for ε = o(1/n), which may not be negligible. Finally, note that constants in the upper bounds are of
reasonable size. Letting d = 3, K = 5, X ∼ U(Bd(0, 1)), the upper bound turns into 0.89nε1/4.

3.3 Numerical illustrations

Through Section 3, we highlighted the fact that SMOTE asymptotically regenerates the distribution
of the minority class, by tending to copy the minority samples. The purpose of this section is to
numerically illustrate the theoretical limitations of SMOTE, typically with the default value K = 5.
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Simulated data In order to measure the similarity between any generated data set Z = {Z1, . . . , Zm}
and the original data set X = {X1, . . . , Xn}, we compute C(Z,X) = 1

m

∑m
i=1 ∥Zi −X(1)(Zi)∥2,

where X(1)(Zi) is the nearest neighbor of Zi among X1, . . . , Xn. Intuitively, this quantity measures
how far the generated data set is from the original observations: if the new data are copies of the
original ones, this measure equals zero. We apply the following protocol: for each value of n,

1. Generate X composed of n i.i.d samples distributed as U([−3, 3]2).

2. Generate Z composed of m = 1000 new i.i.d observations by applying SMOTE procedure
on the original data set X, with different values of K. Compute C(Z,X).

3. Generate X̃ composed of m i.i.d new samples distributed as U([−3, 3]2). Compute
C(X̃,X), which is a reference value in the ideal case of new points sampled from the
same distribution.

Steps 1-3 are repeated 75 times. The average of C(Z,X) (resp. C(X̃,X)) over these
repetitions is computed and denoted by C̄(Z,X) (resp. C̄(X̃,X)). We consider the met-
ric C̄(Z,X)/C̄(X̃,X), depicted in Figure 1 (see also Figure 3 in Appendix for C̄(Z,X)).
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0.2

0.3

0.4
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X)
/C

(X
,X

)

K = 5
K = n
K = 0.01 × n
K = 0.1 × n
K = 0.3 × n
K = 0.8 × n

Figure 1: C̄(Z,X)/C̄(X̃,X) with U([−3, 3]2).

Results. Figure 1 shows the renormalized quan-
tity C̄(Z,X)/C̄(X̃,X) as a function of n. We
notice that the asymptotic for K = 5 is differ-
ent since it is the only one where the distance
between SMOTE data points and original data
points does not vary with n. Besides, this dis-
tance is smaller than the other ones, thus stress-
ing out that the SMOTE data points are very
close to the original distribution for K = 5.
Note that, for the other asymptotics in K, the
diversity of SMOTE observations increases with
n, meaning C̄(Z,X) gets closer from C̄(X̃,X).
This behavior in terms of average distance is
ideal, since X̃ is drawn from the same theoret-
ical distribution as X. On the contrary, K = 5
keeps a lower average distance, showing a lack
of diversity of generated points. Besides, this diversity is asymptotically more important for K = 0.1n
and K = 0.01n. This corroborates our theoretical findings (Theorem 3.2) as these asymptotics do
not satisfy K/n → 0. Indeed, when K is set to a fraction of n, the SMOTE distribution does
not converge to the original distribution anymore, therefore generating data points that are not
simple copies of the original uniform samples. By construction, SMOTE data points are close
to central points, which may explain why the quantity of interest in Figure 1 is smaller than 1.
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Figure 2: C̄(Z,X)/C̄(X̃,X)with Phoneme data.

Extension to real-world data sets We extended
our protocol to a real-world data set by splitting
the data into two sets of equal size X and X̃. The
first one is used for applying SMOTE strategies
to sample Z and the other set is used to compute
the normalization factor C̄(X̃,X). More details
about this variant of the protocol are available
on Appendix A.

Results We apply the adapted protocol to
Phoneme data set, described in Table 1. Fig-
ure 2 displays the quantity C̄(Z,X)/C̄(X̃,X)
as a function of the size n of the minority class.
As above, we observe in Figure 2 that the aver-
age normalized distance C̄(Z,X)/C̄(X̃,X) in-
creases for all strategies but the one with K = 5.
The strategies using a value of hyperparameter K such that K/n→ 0 seem to converge to a value
smaller than all the strategies with K such that K/n ̸→ 0.

6



4 Predictive evaluation on real-world data sets

In this section, we first describe the different rebalancing strategies and the two new ones we propose.
Then, we describe our experimental protocol before discussing our results.

4.1 Rebalancing strategies

Class-weight (CW) [Model-level strategy] The class weighting strategy assigns the same weight
(choosen as hyperparameter) to each minority samples. The default setting for this strategy is to
choose a weight ρ such that ρn = N −n, where n and N −n are respectively the number of minority
and majority samples in the data set.

Over/Under Sampling strategies [Non-synthetic data-level strategies] Random Under Sampling
(RUS) acts on the majority class by selecting uniformly without replacement several samples in order
to obtain a prespecified size for the majority class. Similarly, Random Over Sampling (ROS) acts on
the minority class by selecting uniformly with replacement several samples to be copied in order to
obtain a prespecified size for the minority class.

Table 1: Initial data sets.

N n/N d

Haberman 306 26% 3
Ionosphere 351 36% 32
Breast cancer 630 36% 9
Pima 768 35% 8
Vehicle 846 23% 18
Yeast 1 462 11% 8
Abalone 4 177 1% 8
Wine 4 974 4% 11
Phoneme 5 404 29% 5
MagicTel 13 376 50% 10
House_16H 22 784 30% 16
California 20 634 50% 8
CreditCard 284 315 0.2% 29

NearMissOne [Non-synthetic data-level strategy]
NearMissOne is an undersampling procedure. For
each sample Xi in the majority class, the averaged
distance of Xi to its K nearest neighbors in the mi-
nority class is computed. Then, the samples Xi are
ordered according to this averaged distance. Finally,
iteratively, the first Xi is dropped until the given num-
ber/ratio is reached. Consequently, the Xi with the
smallest mean distance are dropped firstly.

Borderline SMOTE 1 and 2 [Synthetic data-level
strategies] Borderline SMOTE 1 [Han et al., 2005]
procedure works as follows. For each individual
Xi in the minority class, let m−(Xi) be the num-
ber of samples of the majority class among the m
nearest neighbors of Xi, where m is a hyperpa-
rameter. For all Xi in the minority class such that
m/2 ≤ m−(Xi) < m, generate q successive sam-
ples Z = WXi + (1 −W )Xk where W ∼ U([0, 1]) and Xk is selected among the K nearest-
neighbors of Xi in the minority class. In Borderline SMOTE 2 [Han et al., 2005], the selected
neighbor Xk is chosen from the neighbors of both positive and negative classes, and Z is sampled
with W ∼ U([0, 0.5]).
The limitations of SMOTE highlighted in Section 3 drive us to two new rebalancing strategies.

CV SMOTE [Synthetic data-level strategy] We introduce a new algorithm, called CV
SMOTE, that finds the best hyperparameter K among a prespecified grid via a 5-fold cross-
validation procedure. The grid is composed of the set {1, 2, . . . , 15} extended with the values
⌊0.01ntrain⌋, ⌊0.1ntrain⌋, ⌊0.5ntrain⌋, ⌊0.7ntrain⌋ and ⌊√ntrain⌋, where ntrain is the number of
minority samples in the training set. Recall that through Theorem 3.5, we show that SMOTE pro-
cedure with the default value K = 5 asymptotically copies the original samples. The idea of CV
SMOTE is then to test several (larger) values of K in order to avoid duplicating samples, therefore
improving predictive performances. CV SMOTE is one of the simplest ideas to solve some SMOTE
limitations, which were highlighted theoretically in Section 3.

Multivariate Gaussian SMOTE(K) (MGS) [Synthetic data-level strategy] We introduce a new
oversampling strategy in which new samples are generated from the distribution N (µ̂, Σ̂), where
the empirical mean µ̂ and covariance matrix Σ̂ are estimated using the K neighbors and the central
point (see Algorithm 2 for details). By default, we choose K = d+ 1, so that estimated covariance
matrices can be of full rank. MGS produces more diverse synthetic observations than SMOTE as
they are spread in all directions (in case of full-rank covariance matrix) around the central point.
Besides, sampling from a normal distribution may generate points outside the convex hull of the
nearest neighbors.
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4.2 Preliminary results

Initial data sets We employ classical tabular data sets already used in Grinsztajn et al. [2022].
We also used some data sets from UCI Irvine [see Dua and Graff, 2017, Grinsztajn et al.,
2022] and other public data sets such as Phoneme [Alinat, 1993] and Credit Card [Dal Poz-
zolo et al., 2015]. All data sets are described in Table 1 and we call them initial data sets.
As we want to compare several rebalancing methods including SMOTE, originally designed to
handle continuous variables only, we have removed all categorical variables in each data set.

Algorithm 2 Multivariate Gaussian SMOTE iter-
ation.

Input: Minority class samples X1, . . . , Xn ,
number K of nearest-neighbors.
Select uniformly Xc among X1, . . . , Xn.
Denote by I the set composed of the K + 1
nearest-neighbors of Xc among X1, . . . , Xn

including Xc (w.r.t. L2 norm).
µ̂← 1

K+1

∑
x∈I

x

Σ̂← 1
K+1

∑
x∈I

(x− µ̂)
T
(x− µ̂)

Sample Z ∼ N
(
µ̂, Σ̂

)
Return Z

Protocol We compare the different rebalancing
strategies on the initial data sets of Table 1. We
employ a 5-fold stratified cross-validation, and
apply each rebalancing strategy on four train-
ing folds, in order to obtain the same number
of minority/majority samples. Then, we train
a Random Forest classifier [showing good pre-
dictive performance, see Grinsztajn et al., 2022]
on the same folds, and evaluate its performance
on the remaining fold, via the ROC AUC. Re-
sults are averaged over the five test folds and
over 20 repetitions of the cross-validation. We
use the RandomForestClassifier module in
scikit-learn [Pedregosa et al., 2011] and tune
the tree depth (when desired) via nested cross-
validation Cawley and Talbot [2010]. We use the
implementation of imb-learn [Lemaître et al., 2017] for the state-of-the-art rebalancing strategies
(see Appendix A.2 for implementation details).

None is competitive for low imbalanced data sets For 10 initial data sets out of 13, applying no
strategy is the best, probably highlighting that the imbalance ratio is not high enough or the learning
task not difficult enough to require a tailored rebalancing strategy. Therefore, considering only
continuous input variables, and measuring the predictive performance with ROC AUC, we observe
that dedicated rebalancing strategies are not required for most data sets. While the performance
without applying any strategy was already perceived in the literature [see, e.g., Han et al., 2005,
He et al., 2008], we believe that our analysis advocates for its broad use in practice, at least as a
default method. Note that for these 10 data sets, qualified as low imbalanced, applying no rebalancing
strategy is on par with the CW strategy, one of the most common rebalancing strategies (regardless of
tree depth tuning, see Table 5 and Table 7).

4.3 Experiments on highly imbalanced data sets

Strengthening the imbalance To analyze what could happen for data sets with higher imbalance
ratio, we subsample the minority class for each one of the initial data sets mentioned above, so that
the resulting imbalance ratio is set to 20%, 10% or 1% (when possible, taking into account dimension
d). By doing so, we reproduce the high imbalance that is often encountered in practice [see He and
Garcia, 2009]. We apply our subsampling strategy once for each data set and each imbalance ratio in
a nested fashion, so that the minority samples of the 1% data set are included in the minority samples
of the 10% data set. The new data sets thus obtained are called subsampled data sets and presented in
Table 4 in Appendix A.2. For the sake of brevity, we display in Table 2 the data sets among the initial
and subsampled for which the None strategy is not the best (up to its standard deviation). The others
are presented in Table 5 in Appendix A.3.

Hereafter, we discuss the performances of rebalancing methods presented in Table 2. We remark that
the included data sets correspond to the most imbalanced subsampling for each data set, or simply
the initial data set in case of high initial imbalance. Therefore, in the following, we refer to them as
highly imbalanced data sets.

Performances on highly imbalanced data sets Whilst in the vast majority of experiments, applying
no rebalancing is among the best approaches to deal with imbalanced data (see Table 5), it seems
to be outperformed by dedicated rebalancing strategies for highly imbalanced data sets (Table 2).
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Table 2: Highly imbalanced data sets ROC AUC (max_depth tuned with ROC AUC). Only data
sets whose ROC AUC of at least one rebalancing strategy is larger than that of None strategy plus
its standard deviation are displayed. Undersampled data sets are in italics. Standard deviations are
displayed in Table 10.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d + 1)

CreditCard (0.2%) 0.966 0.967 0.970 0.935 0.892 0.949 0.944 0.947 0.954 0.952
Abalone (1%) 0.764 0.748 0.735 0.722 0.656 0.744 0.753 0.741 0.791 0.802
Phoneme (1%) 0.897 0.868 0.868 0.858 0.698 0.867 0.869 0.888 0.924 0.915
Yeast (1%) 0.925 0.920 0.938 0.908 0.716 0.949 0.954 0.955 0.942 0.945
Wine (4%) 0.928 0.925 0.915 0.924 0.682 0.933 0.927 0.934 0.938 0.941
Pima (20%) 0.798 0.808 0.799 0.790 0.777 0.793 0.788 0.789 0.787 0.787
Haberman (10%) 0.708 0.709 0.720 0.704 0.697 0.723 0.721 0.719 0.742 0.744
MagicTel (20%) 0.917 0.921 0.917 0.922 0.649 0.920 0.905 0.921 0.919 0.913
California (1%) 0.887 0.877 0.880 0.883 0.630 0.885 0.874 0.906 0.916 0.923

Surprisingly, most rebalancing strategies do not benefit drastically from tree depth tuning, with the
notable exceptions of applying no rebalancing and CW (see the differences between Table 2 and
Table 6).

Re-weighting strategies RUS, ROS and CW are similar strategies in that they are equivalent to
applying weights to the original samples. When random forests with default parameters are applied,
we see that ROS and CW have the same predictive performances (see Table 6). This was expected, as
ROS assigns random weights to minority samples, whose expectation is that of the weights produced
by CW. More importantly, RUS has better performances than both ROS and CW. This advocates for
the use of RUS among these three rebalancing methods, as RUS produces smaller data sets, thus
resulting in faster learning phases. We describe another benefit of RUS in the next paragraph.

Implicit regularization The good performances of RUS, compared to ROS and CW, may result from
the implicit regularization of the maximum tree depth. Indeed, fewer samples are available after the
undersampling step, which makes the resulting trees shallower, as by default, each leaf contains at
least one observation. When the maximum tree depth is fixed, RUS, ROS and CW strategies have the
same predictive performances (see Table 8 or Table 9). Similarly, when the tree depth is tuned, the
predictive performances of RUS, ROS and CW are smoothed out (see Table 2). This highlights the
importance of implicit regularization on RUS good performances.

SMOTE and CV-SMOTE Default SMOTE (K = 5) has a tendency to duplicate original observa-
tions, as shown by Theorem 3.5. This behavior is illustrated through our experiments when the tree
depth is fixed. In this context, SMOTE (K = 5) has the same behavior as ROS, a method that copies
original samples (see Table 8 or Table 9). When the tree depth is tuned, SMOTE may exhibit better
performances compared to reweighting methods (ROS, RUS, CW), probably due to a higher tree
depth. Indeed, even if synthetic data are close to the original samples, they are distinct and thus allow
for more splits in the tree structure. However, as expected, CV SMOTE performances are higher than
default SMOTE (K = 5) on most data sets (see Table 2).

MGS Our second new publicly available 3 strategy exhibits good predictive performances (best
performance in 4 out of 9 data sets in Table 2). This could be explained by the Gaussian sampling of
synthetic observations that allows generating data points outside the convex hull of the minority class,
therefore limiting the border phenomenon, established in Theorem 3.7. Note that with MGS, there is
no need of tuning the tree depth: predictive performances of default RF are on par with tuned RF.
Thus, MGS is a promising new strategy.

4.4 Supplementary results

Logistic Regression When replacing random forests with Logistic regression in the above protocol
(see Table 15), we still do not observe strong benefits of using a rebalancing strategies for most data
sets. We compared in Table 17 the LDAM and Focal losses intended for long-tailed learning, using

3https://github.com/artefactory/smote_strategies_study
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PyTorch. Table 17 shows that Focal loss performances are on par with the None strategy ones, while
the performances of LDAM are significantly lower. Such methods do not seem promising for binary
classification on tabular data, for which they were not initially intended.

LightGBM - ROC AUC We apply the same protocol as in Section 4.2, using LightGBM [a second-
order boosting algorithm, see Ke et al., 2017] instead of random forests. Again, only data sets such
that None strategy is not competitive (in terms of ROC AUC) are displayed in Table 3 (the remaining
ones can be found in Table 20). In Table 3, we note that our introduced strategies, CV-SMOTE and
MGS, display good predictive results.

Table 3: LightGBM ROC AUC. Only data sets whose ROC AUC of at least one rebalancing strategy
is larger than that of None strategy plus its standard deviation are displayed. Undersampled data sets
are in italics. Standard deviations are displayed in Table 20.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d + 1)

CreditCard (0.2%) 0.761 0.938 0.970 0.921 0.879 0.941 0.932 0.937 0.950 0.956
Abalone (1%) 0.738 0.738 0.726 0.738 0.700 0.750 0.757 0.748 0.775 0.745
Haberman (10%) 0.691 0.689 0.575 0.643 0.564 0.710 0.674 0.712 0.726 0.729
House_16H (1%) 0.903 0.896 0.899 0.896 0.605 0.907 0.909 0.894 0.894 0.912

PR AUC As above, we apply exactly the same protocol as described in Section 4.2 using the PR
AUC metric instead of the ROC AUC. The results are displayed in Table 13 and Table 14 for tuned
random forests. For LightGBM classifiers, results are available in Table 18 and Table 19. Again, we
only focus on data sets such that None strategy is not competitive (in terms of PR AUC). In Table 13,
for random forests tuned on PR AUC, we remark that CV-SMOTE exhibits good performances, being
among the best rebalancing strategy for 3 out of 4 data sets. For LightGBM classifier, in Table 18, we
note that our introduced strategies, CV-SMOTE and MGS, display good predictive results.

5 Conclusion and perspectives

In this paper, we analyzed the impact of rebalancing strategies on predictive performance for binary
classification tasks on tabular data. First, we prove that default SMOTE tends to copy the original
minority samples asymptotically, and exhibits boundary artifacts, thus justifying several SMOTE
variants. From a computational perspective, we show that applying no rebalancing is competitive for
most datasets, when used in conjunction with a tuned random forest/Logistic regression/LightGBM,
whether considering the ROC AUC or PR AUC as metric. For highly imbalanced data sets, rebalancing
strategies lead to improved predictive performances, with or without tuning the maximum tree depth.
The SMOTE variants we propose, CV-SMOTE and MGS, appear promising, with good predictive
performances regardless of the hyperparameter tuning of random forests. Besides, our analysis
sheds some lights on the performances of reweighting strategies (ROS, RUS, CW) and an implicit
regularization phenomenon occurring when such rebalancing methods are used with random forests.

More analyses need to be carried out in order to understand the influence of MGS parameters
(regularization of the covariance matrices, number of nearest neighbors...). We also plan to extend
our new MGS method to handle categorical features, and compare the different rebalancing strategies
in presence of continuous and categorical input variables.

10



References
Anass Aghbalou, Anne Sabourin, and François Portier. Sharp error bounds for imbalanced classi-

fication: how many examples in the minority class? In International Conference on Artificial
Intelligence and Statistics, pages 838–846. PMLR, 2024.

Gabriel Aguiar, Bartosz Krawczyk, and Alberto Cano. A survey on learning from imbalanced
data streams: taxonomy, challenges, empirical study, and reproducible experimental framework.
Machine learning, pages 1–79, 2023.

Pierre Alinat. Periodic progress report 4, roars project esprit ii-number 5516. Technical Thomson
Report TS ASM 93/S/EGS/NC, 79, 1993.

Sylvain Arlot and Robin Genuer. Analysis of purely random forests bias. arXiv preprint
arXiv:1407.3939, 2014.

Sunil Arya, David M Mount, and Onuttom Narayan. Accounting for boundary effects in nearest
neighbor searching. In Proceedings of the eleventh annual symposium on computational geometry,
pages 336–344, 1995.

Thomas Benjamin Berrett. Modern k-nearest neighbour methods in entropy estimation, independence
testing and classification. 2017. doi: 10.17863/CAM.13756. URL https://www.repository.
cam.ac.uk/handle/1810/267832.

Gérard Biau and Luc Devroye. Lectures on the nearest neighbor method, volume 246. Springer,
2015.

Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap. Dbsmote: density-
based synthetic minority over-sampling technique. Applied Intelligence, 36:664–684, 2012.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Gavin C Cawley and Nicola LC Talbot. On over-fitting in model selection and subsequent selection
bias in performance evaluation. The Journal of Machine Learning Research, 11:2079–2107, 2010.

Kamalika Chaudhuri, Kartik Ahuja, Martin Arjovsky, and David Lopez-Paz. Why does throwing
away data improve worst-group error? In International Conference on Machine Learning, pages
4144–4188. PMLR, 2023.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Nitesh V Chawla, Aleksandar Lazarevic, Lawrence O Hall, and Kevin W Bowyer. Smoteboost:
Improving prediction of the minority class in boosting. In Knowledge Discovery in Databases:
PKDD 2003: 7th European Conference on Principles and Practice of Knowledge Discovery in
Databases, Cavtat-Dubrovnik, Croatia, September 22-26, 2003. Proceedings 7, pages 107–119.
Springer, 2003.

Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special issue on learning from
imbalanced data sets. ACM SIGKDD explorations newsletter, 6(1):1–6, 2004.

Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi. Calibrating prob-
ability with undersampling for unbalanced classification. In 2015 IEEE symposium series on
computational intelligence, pages 159–166. IEEE, 2015.

Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. URL http://archive.ics.
uci.edu/ml.

Dina Elreedy and Amir F Atiya. A comprehensive analysis of synthetic minority oversampling
technique (smote) for handling class imbalance. Information Sciences, 505:32–64, 2019.

11

https://www.repository.cam.ac.uk/handle/1810/267832
https://www.repository.cam.ac.uk/handle/1810/267832
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Dina Elreedy, Amir F. Atiya, and Firuz Kamalov. A theoretical distribution analysis of synthetic
minority oversampling technique (SMOTE) for imbalanced learning. Machine Learning, January
2023. ISSN 1573-0565. doi: 10.1007/s10994-022-06296-4. URL https://doi.org/10.1007/
s10994-022-06296-4.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in neural information processing systems, 35:
507–520, 2022.

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method
in imbalanced data sets learning. In International conference on intelligent computing, pages
878–887. Springer, 2005.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2.

Amira Kamil Ibrahim Hassan and Ajith Abraham. Modeling insurance fraud detection using imbal-
anced data classification. In Advances in Nature and Biologically Inspired Computing: Proceedings
of the 7th World Congress on Nature and Biologically Inspired Computing (NaBIC2015) in Pieter-
maritzburg, South Africa, held December 01-03, 2015, pages 117–127. Springer, 2016.

Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on knowledge
and data engineering, 21(9):1263–1284, 2009.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks
(IEEE world congress on computational intelligence), pages 1322–1328. Ieee, 2008.

Jyoti Islam and Yanqing Zhang. Gan-based synthetic brain pet image generation. Brain informatics,
7:1–12, 2020.

M Chris Jones. Simple boundary correction for kernel density estimation. Statistics and computing,
3:135–146, 1993.

Firuz Kamalov, Amir F Atiya, and Dina Elreedy. Partial resampling of imbalanced data. arXiv
preprint arXiv:2207.04631, 2022.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Mohammed Khalilia, Sounak Chakraborty, and Mihail Popescu. Predicting disease risks from highly
imbalanced data using random forest. BMC medical informatics and decision making, 11:1–13,
2011.

Bartosz Krawczyk. Learning from imbalanced data: open challenges and future directions. Progress
in Artificial Intelligence, 5(4):221–232, 2016.

Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine
Learning Research, 18(17):1–5, 2017. URL http://jmlr.org/papers/v18/16-365.html.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pages
2980–2988, 2017.

Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case study involving
information extraction. In Proceedings of workshop on learning from imbalanced datasets, volume
126, pages 1–7. ICML, 2003.

12

https://doi.org/10.1007/s10994-022-06296-4
https://doi.org/10.1007/s10994-022-06296-4
https://doi.org/10.1038/s41586-020-2649-2
http://jmlr.org/papers/v18/16-365.html


Giovanna Menardi and Nicola Torelli. Training and assessing classification rules with imbalanced
data. Data mining and knowledge discovery, 28:92–122, 2014.

Ahmed Jameel Mohammed, Masoud Muhammed Hassan, and Dler Hussein Kadir. Improving classi-
fication performance for a novel imbalanced medical dataset using smote method. International
Journal of Advanced Trends in Computer Science and Engineering, 9(3):3161–3172, 2020.

Jaouad Mourtada, Stéphane Gaïffas, and Erwan Scornet. Minimax optimal rates for mondrian trees
and forests. Annals of Statistics, 48(4):2253–2276, 2020.

Hien M Nguyen, Eric W Cooper, and Katsuari Kamei. Borderline over-sampling for imbalanced data
classification. International Journal of Knowledge Engineering and Soft Data Paradigms, 3(1):
4–21, 2011.

Nam N Nguyen and Anh T Duong. Comparison of two main approaches for handling imbalanced
data in churn prediction problem. Journal of advances in information technology, 12(1), 2021.

Tingting Pan, Junhong Zhao, Wei Wu, and Jie Yang. Learning imbalanced datasets based on smote
and gaussian distribution. Information Sciences, 512:1214–1233, 2020.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Duraisamy Ramyachitra and Parasuraman Manikandan. Imbalanced dataset classification and
solutions: a review. International Journal of Computing and Business Research (IJCBR), 5(4):
1–29, 2014.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

George Proctor Wadsworth, Joseph G Bryan, and A Cemal Eringen. Introduction to probability and
random variables. Journal of Applied Mechanics, 28(2):319, 1961.

Byron C Wallace and Issa J Dahabreh. Improving class probability estimates for imbalanced data.
Knowledge and information systems, 41(1):33–52, 2014.

Tarid Wongvorachan, Surina He, and Okan Bulut. A comparison of undersampling, oversampling, and
smote methods for dealing with imbalanced classification in educational data mining. Information,
14(1):54, 2023.

Yuxi Xie, Min Qiu, Haibo Zhang, Lizhi Peng, and Zhenxiang Chen. Gaussian distribution based
oversampling for imbalanced data classification. IEEE Transactions on Knowledge and Data
Engineering, 34(2):667–679, 2020.

Ziyu Xu, Chen Dan, Justin Khim, and Pradeep Ravikumar. Class-weighted classification: Trade-offs
and robust approaches. In International Conference on Machine Learning, pages 10544–10554.
PMLR, 2020.

Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed learning:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Min Zhu, Jing Xia, Xiaoqing Jin, Molei Yan, Guolong Cai, Jing Yan, and Gangmin Ning. Class
weights random forest algorithm for processing class imbalanced medical data. IEEE Access, 6:
4641–4652, 2018.

13



A Experiments

Hardware For all the numerical experiments, we use the following processor : AMD Ryzen
Threadripper PRO 5955WX: 16 cores, 4.0 GHz, 64 MB cache, PCIe 4.0. We also add access to
250GB of RAM.

A.1 Numerical illustrations
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Figure 3: Average distance C̄(Z,X).

Results with C̄(Z,X) Figure 3 depicts the quantity C̄(Z,X) as a function of the size of the
minority class, for different values of K. The metric C̄(Z,X) is consistently smaller for K = 5 than
for other values of K, therefore highlighting that data generated by SMOTE with K = 5 are closer
to the original data sample. This phenomenon is strengthened as n increases. This is an artifact of the
simulation setting as the original data samples fill the input space as n increases.

More details on the numerical illustrations protocol applied to real-world data sets We apply
SMOTE on real-world data and compare the distribution of the generated data points to the original
distribution, using the metric C̄(Z,X)/C̄(X̃,X).

For each value of n, we subsample n data points from the minority class. Then,

1. We uniformly split the data set into X1, . . . , Xn/2 (denoted by X) and X̃1, . . . , X̃n/2

(denoted by X̃).

2. We generate a data set Z composed of m = n/2 i.i.d new observations Z1, . . . , Zm by
applying SMOTE procedure on the original data set X, with different values of K. We
compute C(Z,X).

3. We use X̃ in order to compute C(X̃,X).

This procedure is repeated B = 100 times to compute averages values as in Section 3.3.

A.2 Binary classification protocol

General comment on the protocol For each data set, the ratio hyperparameters of each rebalancing
strategy are chosen so that the minority and majority class have the same weights in the training
phase.The main purpose is to apply the strategies exactly on the same data points (Xtrain), then train
the chosen classifier and evaluate the strategies on the same Xtest. This objective is achieved by
selecting each time 4 fold for the training, apply each of the strategies to these 4 exact same fold.

The state-of-the-art rebalancing strategies[see Lemaître et al., 2017] are used with their default
hyperparameter values.
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Table 4: Subsampled data sets.
N n/N d

Haberman (10%) 250 10% 3
Ionosphere (20%) 281 20% 32
Ionosphere (10%) 250 10% 32
Breast cancer (20%) 500 20% 9
Breast cancer (10%) 444 10% 9
Pima (20%) 625 20% 8
Vehicle (10%) 718 10% 18
Yeast (1%) 1 334 1% 8
Phoneme (20%) 4 772 20% 5
Phoneme (10%) 4 242 10% 5
Phoneme (1%) 3 856 1% 5
MagicTel (20%) 8 360 20% 10
House_16H (20%) 20 050 20% 16
House_16H (10%) 17 822 10% 16
House_16H (1%) 16 202 1% 16
California (20%) 12 896 20% 8
California (10%) 11 463 10% 8
California (1%) 10 421 1% 8

The subsampled data sets (see Table 4) can be obtained through the repository (the functions and the
seeds are given in a jupyter notebook). For the CreditCard data set, a Time Series split is performed
instead of a Stratified 5−fold, because of the temporality of the data. Furthermore, a group out is
applied on the different scope time value.

For MagicTel and California data sets, the initial data sets are already balanced, leading to no
opportunity for applying a rebalancing strategy. This is the reason why we do not include these
original data sets in our study but only their subsampled associated data sets.

The max_depth hyperparameter is tuned using GridSearch function from scikit-learn. The grids
minimum is 5 and the grid maximum is the mean depth of the given strategy for the given data set
(when random forest is used without tuning depth hyperparameter). Then, using numpy [Harris et al.,
2020], a list of integer of size 8 between the minimum value and the maximum is value is built.
Finally, the "None" value is added to this list.

Mean standard deviation For each protocol run, we computed the standard deviation of the ROC
AUC over the 5-fold. Then, all of these 100 standard deviation are averaged in order to get what we
call in some of our tables the mean standard deviations. On Table 10, Table 11 and Table 17 means
standard deviation over 100 runs are displayed for each strategy (no averaging is performed).

CV SMOTE We also apply our protocol for SMOTE with values of hyperparameter K depending
on the number of minority inside the training set. The results are shown on both Table 12 and Table 16.
As expected, CV SMOTE is most of the time the best strategy among the SMOTE variants for highly
imbalanced data sets. This another illustration of our Theorem 3.5.

More results about None strategy from seminal papers Several seminal papers already noticed
that the None strategy was competitive in terms of predictive performances. He et al. [2008] compare
the None strategy, ADASYN and SMOTE, followed by a decision tree classifier on 5 data sets
(including Vehicle, Pima, Ionosphere and Abalone). In terms of Precision and F1 score, the None
strategy is on par with the two other rebalancing methods. Han et al. [2005] study the impact of
Borderline SMOTE and others SMOTE variant on 4 data sets (including Pima and Haberman). The
None strategy is competitive (in terms of F1 score) on two of these data sets.

Random forests - PR AUC We apply exactly the same protocol as described in Section 4.2 but
using the PR AUC metric instead of the ROC AUC. Data sets such that the None strategy is not
competitive (in terms of PR AUC) are displayed in Table 13, others can be found in Table 14. As for
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the ROC AUC metric, None and CW strategies are competitive for a large number of data sets (see
Table 14). Furthermore, in Table 13, CV-SMOTE exhibits good performances, being among the best
rebalancing strategy for 3 out of 4 data sets.

LightGBM - PR AUC As above, we apply the same protocol as in Section 4.2, using the PR AUC
metric instead of the ROC AUC and LightGBM [a second-order boosting algorithm, see Ke et al.,
2017] instead of random forests. Again, only data sets such that None strategy is not competitive
(in terms of PR AUC) are displayed in Table 18 (the remaining ones can be found in Table 19). In
Table 18, we note that our introduced strategies, CV-SMOTE and MGS, display good predictive
results.

The classification experiments needed 2 months of calculation time.

A.3 Additional experiments

Tables The tables in appendix can be divided into 3 categories. First, we have the tables related
to random forests. Then the tables related to logistic regression. Finally, we have the tables of
LightGBM classifiers. Here are some details fore each group:

• Random Forest: In Table 5, ROC AUC of the data sets not presented Table 2 are displayed
(using tuned forest on ROC AUC for both). In Table 6 and Table 7, ROC AUC of default
random forests are displayed for all the data sets. In Table 8 and Table 9 are displayed
default random forests ROC AUC with a max tree depth fixed to respectively 5 and the value
of RUS depth. Table 10 and Table 11 illustrate respectively the same setting as Table 2 and
Table 5 with the standard deviation displayed. In Table 12, the ROC AUC of several SMOTE
strategies with various K hyperparameter value are displayed using defaults random forests
for all data sets. PR AUC of tuned random forests on PR AUC are displayed in Table 13 and
Table 14.

• Logistic Regression: Table 15 display ROC AUC of several rebalancing strategies when
using Logistic regression. In Table 16, the ROC AUC of several SMOTE strategies with
various K hyperparameter value are displayed using logistic regression for all data sets.
Table 17 shows ROC AUC of None, LDAM and Focal loss strategies when using a logistic
regression reimplemented using PyTorch.

• LightGBM: The PR AUC and ROC AUC of the remaining data sets when using LightGBM
classifiers are displayed respectively in Table 18/Table 19 and Table 20.
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Table 5: Remaining data sets (without those of Table 2). Random Forest (max_depth= tuned with
ROC AUC) ROC AUC for different rebalancing strategies and different data sets. Other data sets are
presented in Table 2. The best strategy is highlighted in bold for each data set. Standard deviations
are available on Table 11.

Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS
Miss1 SMOTE (d+ 1)

Phoneme 0.962 0.961 0.951 0.962 0.910 0.960 0.961 0.962 0.961 0.959
Phoneme (20%) 0.952 0.952 0.935 0.953 0.793 0.950 0.951 0.953 0.953 0.949
Phoneme (10%) 0.936 0.935 0.909 0.936 0.664 0.933 0.932 0.935 0.938 0.932
Pima 0.833 0.832 0.828 0.823 0.817 0.814 0.811 0.820 0.824 0.826
Yeast 0.968 0.971 0.971 0.968 0.921 0.964 0.965 0.968 0.969 0.968
Haberman 0.686 0.686 0.685 0.673 0.686 0.682 0.670 0.681 0.690 0.698
California (20%) 0.956 0.955 0.951 0.956 0.850 0.953 0.947 0.955 0.956 0.954
California (10%) 0.948 0.946 0.940 0.948 0.775 0.945 0.934 0.947 0.950 0.948
House_16H 0.950 0.950 0.948 0.950 0.899 0.945 0.942 0.948 0.949 0.948
House_16H (20%) 0.950 0.949 0.946 0.949 0.835 0.943 0.938 0.946 0.947 0.946
House_16H (10%) 0.945 0.943 0.940 0.944 0.717 0.939 0.931 0.939 0.942 0.937
House_16H (1%) 0.906 0.893 0.902 0.885 0.600 0.894 0.896 0.898 0.905 0.889
Vehicle 0.995 0.994 0.990 0.994 0.978 0.994 0.993 0.994 0.995 0.995
Vehicle (10%) 0.992 0.991 0.982 0.989 0.863 0.991 0.989 0.992 0.993 0.994
Ionosphere 0.978 0.978 0.974 0.978 0.945 0.978 0.978 0.978 0.977 0.976
Ionosphere (20%) 0.988 0.986 0.974 0.987 0.881 0.981 0.974 0.981 0.983 0.983
Ionosphere (10%) 0.988 0.983 0.944 0.981 0.822 0.972 0.962 0.966 0.967 0.968
Breast Cancer 0.994 0.993 0.993 0.993 0.994 0.992 0.992 0.993 0.994 0.993
Breast Cancer (20%) 0.996 0.995 0.994 0.995 0.997 0.994 0.993 0.995 0.996 0.996
Breast Cancer (10%) 0.997 0.996 0.994 0.996 0.997 0.993 0.992 0.996 0.997 0.997

Table 6: Highly imbalanced data sets. Random Forest (max_depth=∞) ROC AUC for different
rebalancing strategies and different data sets. Data sets artificially undersampled for minority class
are in italics. Other data sets are presented in Table 7. Mean standard deviations are computed.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d+ 1)

CreditCard (0.2%) (±0.003) 0.930 0.927 0.968 0.932 0.887 0.933 0.941 0.950 0.961 0.953
Abalone (1%) (±0.018) 0.716 0.698 0.732 0.699 0.652 0.745 0.754 0.744 0.777 0.805
Phoneme (1%) (±0.020) 0.852 0.851 0.864 0.840 0.690 0.859 0.863 0.883 0.893 0.913
Yeast (1%) (±0.020) 0.914 0.926 0.922 0.919 0.711 0.936 0.954 0.936 0.954 0.932
Wine (4%) (±0.008) 0.926 0.923 0.917 0.927 0.693 0.934 0.927 0.934 0.935 0.939
Pima (20%) (±0.009) 0.777 0.791 0.796 0.787 0.767 0.791 0.790 0.789 0.786 0.786
Haberman (10%) (±0.028) 0.680 0.685 0.709 0.688 0.697 0.716 0.713 0.721 0.735 0.736
MagicTel (20%) (±0.001) 0.917 0.921 0.917 0.921 0.650 0.920 0.905 0.921 0.921 0.913
California (1%) (±0.009) 0.857 0.871 0.881 0.637 0.883 0.876 0.904 0.908 0.921 0.874
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Table 7: Remaining data sets (without those of Table 2). Random Forest (max_depth=∞) ROC AUC
for different rebalancing strategies and different data sets. Only datasets such that the None strategy is
on par with the best strategies are displayed. Other data sets are presented in Table 6. Mean standard
deviations are computed. The best strategy is highlighted in bold for each data set.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d+ 1)

Phoneme (±0.001) 0.961 0.962 0.951 0.963 0.909 0.961 0.961 0.962 0.961 0.959
Phoneme (20%) (±0.002) 0.952 0.952 0.935 0.953 0.793 0.950 0.951 0.953 0.953 0.949
Phoneme (10%) (±0.004) 0.937 0.936 0.911 0.937 0.668 0.933 0.932 0.935 0.915 0.933
Pima (±0.005) 0.824 0.824 0.823 0.821 0.808 0.813 0.812 0.820 0.821 0.822
Yeast (±0.003) 0.965 0.969 0.970 0.968 0.919 0.964 0.967 0.967 0.968 0.966
Haberman (±0.017) 0.674 0.674 0.675 0.672 0.691 0.678 0.668 0.684 0.680 0.679
California (20%)(±0.001) 0.956 0.955 0.951 0.956 0.850 0.954 0.947 0.955 0.954 0.954
California (10%)(±0.001) 0.948 0.947 0.939 0.948 0.775 0.945 0.935 0.947 0.947 0.948
House_16H (±0.001) 0.951 0.950 0.948 0.950 0.900 0.945 0.942 0.948 0.948 0.948
House_16H (20%)(±0.001) 0.950 0.949 0.946 0.949 0.835 0.943 0.938 0.946 0.945 0.946
House_16H (10%)(±0.001) 0.945 0.943 0.941 0.944 0.718 0.939 0.931 0.939 0.939 0.937
House_16H (1%)(±0.001) 0.888 0.875 0.902 0.880 0.599 0.893 0.898 0.899 0.896 0.890
Vehicle (±0.001) 0.995 0.994 0.990 0.995 0.977 0.994 0.994 0.994 0.994 0.995
Vehicle (10%) (±0.003) 0.992 0.992 0.983 0.991 0.867 0.991 0.989 0.992 0.992 0.993
Ionosphere (±0.003) 0.978 0.978 0.974 0.978 0.946 0.978 0.979 0.979 0.979 0.976
Ionosphere (20%) (±0.004) 0.989 0.987 0.977 0.988 0.883 0.982 0.974 0.981 0.982 0.985
Ionosphere (10%) (±0.008) 0.989 0.983 0.946 0.982 0.825 0.973 0.961 0.965 0.965 0.967
Breast Cancer (±0.001) 0.994 0.993 0.993 0.993 0.994 0.992 0.992 0.993 0.993 0.993
Breast Cancer (20%) (±0.001) 0.996 0.996 0.994 0.996 0.996 0.994 0.993 0.995 0.996 0.996
Breast Cancer (10%) (±0.001) 0.997 0.996 0.994 0.996 0.997 0.994 0.993 0.996 0.996 0.997

Table 8: Highly imbalanced data sets. ROC AUC Random Forest with max_depth=5.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d+ 1)

CreditCard (0.2%)(±0.002) 0.954 0.970 0.970 0.971 0.898 0.960 0.962 0.971 0.971 0.964
Abalone (1%)(±0.017) 0.775 0.756 0.735 0.731 0.653 0.760 0.754 0.744 0.757 0.780
Phoneme (1%)(±0.012) 0.891 0.871 0.870 0.867 0.697 0.865 0.851 0.882 0.878 0.886
Yeast (1%)(±0.023) 0.923 0.921 0.934 0.887 0.709 0.933 0.922 0.945 0.940 0.944
Wine (4%)(±0.005) 0.900 0.905 0.900 0.907 0.587 0.895 0.880 0.902 0.899 0.885
Pima (20%) (±0.007) 0.802 0.811 0.805 0.809 0.778 0.804 0.805 0.805 0.806 0.804
Haberman (10%)(±0.029) 0.714 0.722 0.708 0.723 0.699 0.749 0.738 0.751 0.750 0.759
MagicTel (20%) (±0.001) 0.893 0.892 0.893 0.891 0.604 0.888 0.874 0.891 0.891 0.885
California (1%)(±0.008) 0.880 0.877 0.875 0.874 0.631 0.852 0.838 0.867 0.866 0.878

Table 9: Highly imbalanced data sets. ROC AUC Random Forest with max_depth=RUS. On the last
column, the value of maximal depth when using Random forest (max_depth=∞) with RUS strategy
for each data set.

Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS depth

Miss1 SMOTE (d+ 1)

CreditCard (0.2%)(±0.002) 0.954 0.950 0.970 0.970 0.893 0.960 0.962 0.972 0.972 0.962 10

Abalone (1%) (±0.017) 0.770 0.750 0.733 0.729 0.656 0.762 0.758 0.744 0.761 0.795 7

Phoneme (1%)(±0.014) 0.897 0.874 0.872 0.869 0.695 0.869 0.858 0.887 0.880 0.894 6

Yeast (1%)(±0.021) 0.928 0.927 0.928 0.893 0.725 0.924 0.919 0.934 0.925 0.945 3

Wine (4%) (±0.006) 0.927 0.922 0.915 0.925 0.665 0.923 0.913 0.923 0.925 0.923 10

Pima (20%) (±0.009) 0.784 0.797 0.793 0.790 0.768 0.792 0.789 0.792 0.792 0.790 10

Haberman (10%) (±0.028) 0.696 0.711 0.713 0.721 0.690 0.737 0.729 0.740 0.748 0.752 7

MagicTel (20%) (±0.001) 0.917 0.920 0.917 0.921 0.651 0.919 0.905 0.921 0.921 0.913 20

California (1%) (±0.009) 0.895 0.871 0.877 0.875 0.639 0.876 0.859 0.884 0.903 0.913 10
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Table 10: Table 2 with standard deviations over 100 runs. Random Forest (max_depth=tuned with
ROC AUC) ROC AUC for different rebalancing strategies and different data sets. The best strategies
are displayed in bold are displayed.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d+ 1)

CreditCard (0.2%) 0.966 0.967 0.970 0.935 0.892 0.949 0.944 0.947 0.954 0.952
std ±0.003 ±0.003 ±0.003 ±0.003 ±0.005 ±0.005 ±0.006 ±0.004 ±0.003 ±0.003

Abalone (1%) 0.764 0.748 0.735 0.722 0.656 0.744 0.753 0.741 0.791 0.802
std ±0.021 ±0.021 ±0.021 ±0.021 ±0.033 ±0.025 ±0.019 ±0.019 ±0.018 ±0.012

Phoneme (1%) 0.897 0.868 0.868 0.858 0.698 0.867 0.869 0.888 0.924 0.915
std ±0.015 ±0.018 ±0.015 ±0.02 ±0.030 ±0.026 ±0.023 ±0.020 ±0.014 ±0.013

Yeast (1%) 0.925 0.920 0.938 0.908 0.716 0.949 0.954 0.955 0.942 0.945
std ±0.017 ±0.030 ±0.026 ±0.021 ±0.069 ±0.0220 ±0.009 ±0.016 ±0.021 ±0.018

Wine (4%) 0.928 0.925 0.915 0.924 0.682 0.933 0.927 0.934 0.938 0.941
std ±0.007 ±0.008 ±0.005 ±0.008 ±0.013 ±0.007 ±0.008 ±0.006 ±0.006 ±0.005

Pima (20%) 0.798 0.808 0.799 0.790 0.777 0.793 0.788 0.789 0.787 0.787
std ±0.009 ±0.008 ±0.010 ±0.009 ±0.007 ±0.009 ±0.008 ±0.008 ±0.007 ±0.008

Haberman (10%) 0.708 0.709 0.720 0.704 0.697 0.723 0.721 0.719 0.742 0.744
std ±0.027 ±0.029 ±0.040 ±0.024 ±0.038 ±0.027 ±0.027 ±0.024 ±0.022 ±0.026

MagicTel (20%) 0.917 0.921 0.917 0.922 0.649 0.920 0.905 0.921 0.919 0.913
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.005 ±0.001 ±0.002 ±0.001 ±0.001 ±0.001

California (1%) 0.887 0.877 0.880 0.883 0.630 0.885 0.874 0.906 0.916 0.923
std ±0.010 ±0.013 ±0.010 ±0.011 ±0.012 ±0.014 ±0.013 ±0.011 ±0.007 ±0.006

House_16H (1%) 0.906 0.893 0.902 0.885 0.600 0.894 0.896 0.898 0.905 0.889
std ±0.006 ±0.006 ±0.006 ±0.007 ±0.018 ±0.008 ±0.006 ±0.006 ±0.005 ±0.005
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Table 11: Table 5 with standard deviations over 100 runs. Random Forest (max_depth=tuned with
ROC AUC) ROC AUC for different rebalancing strategies and different data sets. The best strategies
are displayed in bold.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d+ 1)

Phoneme 0.962 0.961 0.951 0.962 0.910 0.960 0.961 0.962 0.961 0.959
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.003 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Phoneme (20%) 0.952 0.952 0.935 0.953 0.793 0.950 0.951 0.953 0.953 0.949
std ±0.001 ±0.001 ±0.002 ±0.001 ±0.014 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Phoneme (10%) 0.936 0.935 0.909 0.936 0.664 0.933 0.932 0.935 0.938 0.932
std ±0.003 ±0.003 ±0.005 ±0.003 ±0.013 ±0.003 ±0.004 ±0.003 ±0.003 ±0.003

Pima 0.833 0.832 0.828 0.823 0.817 0.814 0.811 0.820 0.824 0.826
std ±0.004 ±0.004 ±0.004 ±0.005 ±0.004 ±0.005 ±0.005 ±0.007 ±0.006 ±0.006

Yeast 0.968 0.971 0.971 0.968 0.921 0.964 0.965 0.968 0.969 0.968
std ±0.003 ±0.002 ±0.002 ±0.004 ±0.005 ±0.004 ±0.003 ±0.004 ±0.004 ±0.003

Haberman 0.686 0.686 0.685 0.673 0.686 0.682 0.670 0.681 0.690 0.698
std ±0.020 ±0.015 ±0.025 ±0.015 ±0.012 ±0.016 ±0.014 ±0.012 ±0.015 ±0.014

California (20%) 0.956 0.955 0.951 0.956 0.850 0.953 0.947 0.955 0.956 0.954
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

California (10%) 0.948 0.946 0.940 0.948 0.775 0.945 0.934 0.947 0.950 0.948
std ±0.002 ±0.002 ±0.002 ±0.001 ±0.004 ±0.001 ±0.002 ±0.001 ±0.001 ±0.001

House_16H 0.950 0.950 0.948 0.950 0.899 0.945 0.942 0.948 0.949 0.948
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

House_16H (20%) 0.950 0.949 0.946 0.949 0.835 0.943 0.938 0.946 0.947 0.946
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

House_16H (10%) 0.945 0.943 0.940 0.944 0.717 0.939 0.931 0.939 0.942 0.937
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.003 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

House_16H (1%) 0.906 0.893 0.902 0.885 0.600 0.894 0.896 0.898 0.905 0.889
std ±0.006 ±0.006 ±0.006 ±0.007 ±0.018 ±0.008 ±0.006 ±0.006 ±0.005 ±0.005

Vehicle 0.995 0.994 0.990 0.994 0.978 0.994 0.993 0.994 0.995 0.995
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.003 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Vehicle (10%) 0.992 0.991 0.982 0.989 0.863 0.991 0.989 0.992 0.993 0.994
std ±0.002 ±0.002 ±0.005 ±0.002 ±0.010 ±0.002 ±0.003 ±0.002 ±0.001 ±0.001

Ionosphere 0.978 0.978 0.974 0.978 0.945 0.978 0.978 0.978 0.977 0.976
std ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.003 ±0.002 ±0.002

Ionosphere (20%) 0.988 0.986 0.974 0.987 0.881 0.981 0.974 0.981 0.983 0.983
std ±0.002 ±0.003 ±0.005 ±0.002 ±0.013 ±0.003 ±0.004 ±0.003 ±0.004 ±0.003

Ionosphere (10%) 0.988 0.983 0.944 0.981 0.822 0.972 0.962 0.966 0.967 0.968
std ±0.004 ±0.005 ±0.016 ±0.005 ±0.026 ±0.007 ±0.005 ±0.005 ±0.006 ±0.006

Breast Cancer 0.994 0.993 0.993 0.993 0.994 0.992 0.992 0.993 0.994 0.993
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001

Breast Cancer (20%) 0.996 0.995 0.994 0.995 0.997 0.994 0.993 0.995 0.996 0.996
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.001 ±0.001

Breast Cancer (10%) 0.997 0.996 0.994 0.996 0.997 0.993 0.992 0.996 0.997 0.997
std ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001
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Table 12: Highly imbalanced data sets at the top and remaining ones at the bottom. Random Forest
(max_depth=∞) ROC AUC. The best strategy is highlighted in bold for each data set.

SMOTE K = 5 K =
√
n K = 0.01n K = 0.1n CV

Strategy SMOTE

CreditCard (±0.004) 0.949 0.959 0.941 0.961 0.961
Abalone (1%)(±0.021) 0.744 0.745 0.727 0.729 0.777
Phoneme (1%)(±0.019) 0.883 0.880 0.872 0.871 0.893
Yeast (1%)(±0.016) 0.940 0.935 0.932 0.931 0.954
Wine (4%)(±0.006) 0.934 0.935 0.930 0.934 0.935
Pima (20%) (±0.008) 0.789 0.786 0.790 0.788 0.786
Haberman (10%)(±0.024) 0.721 0.723 0.715 0.725 0.735
MagicTel (20%)(±0.001) 0.921 0.921 0.921 0.920 0.921
California (1%)(±0.009) 0.904 0.905 0.893 0.905 0.908

Phoneme (±0.001) 0.962 0.961 0.962 0.961 0.961
Phoneme (20%) (±0.001) 0.953 0.952 0.953 0.952 0.953
Phoneme (10%) (±0.003) 0.935 0.938 0.936 0.939 0.915
Pima (±0.005) 0.820 0.819 0.821 0.819 0.821
Yeast (±0.003) 0.967 0.970 0.968 0.969 0.968
Haberman (±0.016) 0.684 0.684 0.674 0.680 0.680
California (20%)(±0.001) 0.955 0.954 0.954 0.953 0.954
California (10%)(±0.001) 0.947 0.947 0.947 0.946 0.947
House_16H (±0.001) 0.948 0.947 0.947 0.947 0.948
House_16H (20%)(±0.001) 0.946 0.944 0.945 0.944 0.945
House_16H (10%)(±0.001) 0.939 0.938 0.939 0.937 0.939
House_16H (1%)(±0.005) 0.899 0.898 0.896 0.898 0.896
Vehicle (±0.001) 0.994 0.994 0.994 0.994 0.994
Vehicle (10%) (±0.002) 0.992 0.992 0.992 0.992 0.992
Ionosphere (±0.003) 0.979 0.977 0.978 0.978 0.979
Ionosphere (20%) (±0.003) 0.981 0.981 0.984 0.982 0.982
Ionosphere (10%) (±0.005) 0.965 0.964 0.965 0.966 0.965
Breast Cancer (±0.001) 0.993 0.993 0.993 0.993 0.993
Breast Cancer (20%) (±0.001) 0.995 0.995 0.996 0.995 0.996
Breast Cancer (10%) (±0.001) 0.996 0.996 0.996 0.996 0.996

Table 13: Random Forest (max_depth=tuned with PR AUC) PR AUC for different rebalancing
strategies and different data sets.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d + 1)

Abalone (1%) 0.048 0.055 0.047 0.049 0.022 0.045 0.041 0.039 0.055 0.035
Phoneme (1%) 0.198 0.215 0.081 0.146 0.054 0.226 0.236 0.236 0.260 0.101
Haberman (10%) 0.246 0.264 0.275 0.227 0.274 0.274 0.287 0.278 0.292 0.283
MagicTel (20%) 0.755 0.759 0.742 0.760 0.336 0.740 0.701 0.756 0.756 0.748
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Table 14: Random Forest (max_depth=tuned with PR AUC) PR AUC for different rebalancing
strategies and different data sets.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d + 1)

CreditCard (0.2%) 0.849 0.845 0.739 0.846 0.614 0.817 0.808 0.845 0.842 0.837
std 0.003 0.003 0.005 0.003 0.051 0.006 0.009 0.003 0.000 0.002

Phoneme 0.919 0.917 0.885 0.919 0.846 0.911 0.911 0.916 0.914 0.917
std 0.003 0.002 0.005 0.003 0.005 0.004 0.003 0.004 0.004 0.003

Phoneme (20%) 0.863 0.857 0.776 0.861 0.573 0.842 0.844 0.855 0.854 0.855
std 0.004 0.005 0.007 0.005 0.022 0.006 0.005 0.004 0.005 0.005

Phoneme (10%) 0.724 0.707 0.533 0.710 0.268 0.675 0.677 0.695 0.693 0.691
std 0.011 0.012 0.016 0.012 0.018 0.015 0.011 0.010 0.014 0.012

Yeast 0.837 0.843 0.825 0.831 0.712 0.786 0.765 0.831 0.833 0.835
std 0.011 0.006 0.014 0.013 0.019 0.014 0.015 0.008 0.013 0.013

Yeast (1%) 0.351 0.304 0.208 0.269 0.126 0.354 0.301 0.351 0.373 0.316
std 0.055 0.045 0.067 0.055 0.047 0.054 0.051 0.055 0.053 0.060

Wine (4%) 0.602 0.598 0.400 0.588 0.140 0.580 0.572 0.589 0.588 0.536
std 0.023 0.027 0.018 0.028 0.017 0.024 0.024 0.025 0.025 0.027

Pima 0.718 0.709 0.703 0.696 0.701 0.673 0.672 0.689 0.687 0.710
std 0.011 0.008 0.011 0.011 0.009 0.016 0.011 0.015 0.013 0.009

Pima (20%) 0.525 0.522 0.514 0.498 0.490 0.476 0.465 0.484 0.482 0.516
std 0.016 0.020 0.024 0.019 0.013 0.019 0.017 0.017 0.015 0.015

Haberman 0.465 0.479 0.457 0.411 0.468 0.417 0.421 0.431 0.436 0.483
std 0.029 0.024 0.031 0.022 0.017 0.019 0.025 0.024 0.024 0.026

California (20%) 0.888 0.885 0.871 0.886 0.672 0.874 0.862 0.882 0.880 0.879
std 0.001 0.001 0.001 0.002 0.004 0.002 0.002 0.002 0.002 0.002

California (10%) 0.802 0.795 0.760 0.797 0.384 0.774 0.738 0.787 0.784 0.767
std 0.003 0.003 0.004 0.003 0.010 0.004 0.006 0.003 0.003 0.003

California (1%) 0.297 0.290 0.208 0.210 0.019 0.227 0.210 0.249 0.267 0.196
std 0.018 0.018 0.020 0.020 0.002 0.014 0.018 0.021 0.015 0.012

House_16H 0.901 0.896 0.890 0.897 0.799 0.885 0.881 0.892 0.891 0.902
std 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 .001 0.001

House_16H (20%) 0.856 0.847 0.832 0.847 0.578 0.827 0.814 0.837 0.836 0.857
std 0.001 0.001 0.002 0.002 0.005 0.002 0.003 0.001 0.001 0.001

House_16H (10%) 0.757 0.729 0.691 0.731 0.242 0.703 0.680 0.711 0.709 0.756
std 0.003 0.002 0.006 0.003 0.008 0.003 0.006 0.003 0.003 0.002

House_16H (1%) 0.312 0.242 0.167 0.185 0.032 0.208 0.201 0.203 0.212 0.265
std 0.013 0.014 0.018 0.013 0.005 0.011 0.010 0.010 0.011 0.013

Vehicle 0.981 0.978 0.963 0.981 0.957 0.979 0.979 0.978 0.978 0.982
std 0.003 0.003 0.008 0.002 0.006 0.003 0.003 0.003 0.002 0.003

Vehicle (10%) 0.949 0.942 0.869 0.921 0.699 0.932 .935 0.947 0.942 0.944
std 0.010 0.009 0.028 0.014 0.034 0.010 0.012 0.009 0.008 0.009

Ionosphere 0.971 0.970 0.965 0.971 0.932 0.968 0.970 0.968 0.967 0.969
std 0.003 0.003 0.003 0.003 0.007 0.004 0.005 0.005 0.005 0.004

Ionosphere (20%) 0.964 0.955 0.927 0.958 0.730 0.921 0.877 0.925 0.919 0.963
std 0.005 0.007 0.015 0.006 0.022 0.012 0.014 0.010 0.013 0.006

Ionosphere (10%) 0.945 0.917 0.808 0.920 0.526 0.845 0.761 0.820 0.838 0.941
std 0.017 0.019 0.065 0.020 0.065 0.028 0.031 0.033 0.031 0.017

Breast Cancer 0.988 0.986 0.984 0.986 0.987 0.983 0.981 0.986 0.986 0.989
std 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.004 0.003 0.002

Breast Cancer (20%) 0.984 0.980 0.968 0.979 0.984 0.971 0.967 0.978 0.980 0.985
std 0.005 0.005 0.011 0.008 0.005 0.007 0.009 0.007 0.006 0.005

Breast Cancer (10%) 0.975 0.962 0.939 0.960 0.976 0.936 0.921 0.957 0.954 0.978
std 0.008 0.009 0.014 0.009 0.009 0.016 0.014 0.015 0.015 0.006
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Table 15: Highly imbalanced data sets at the top and remaning ones at the bottom. Logistic Regression
ROC AUC. For each data set, the best strategy is highlighted in bold and the mean of the standard
deviation is computed (and rounded to 10−3).

Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS
Miss1 SMOTE (d+ 1)

CreditCard (±0.001) 0.951 0.953 0.963 0.951 0.888 0.903 0.919 0.946 0.955 0.926
Abalone (1%) (±0.009) 0.848 0.876 0.814 0.878 0.761 0.859 0.853 0.878 0.879 0.872
Phoneme (1%) (±0.013) 0.800 0.804 0.792 0.804 0.695 0.783 0.779 0.805 0.806 0.805
Yeast (1%) (±0.006) 0.975 0.974 0.965 0.972 0.920 0.974 0.973 0.973 0.974 0.970
Wine (4%) (±0.003) 0.836 0.840 0.835 0.839 0.576 0.837 0.831 0.838 0.839 0.833
Pima (20%) (±0.005) 0.821 0.820 0.813 0.819 0.797 0.818 0.820 0.819 0.819 0.818
Haberman (10%) (±0.028) 0.751 0.760 0.726 0.758 0.750 0.750 0.746 0.753 0.754 0.743
MagicTel (20%)(±0.001) 0.844 0.841 0.841 0.841 0.490 0.815 0.814 0.841 0.842 0.838
California (1%) (±0.004) 0.909 0.922 0.892 0.923 0.648 0.918 0.914 0.925 0.924 0.923

Phoneme (±0.001) 0.813 0.811 0.811 0.811 0.576 0.801 0.805 0.810 0.812 0.808
Phoneme (20%) (±0.001) 0.810 0.808 0.807 0.808 0.505 0.801 0.805 0.807 0.809 0.805
Phoneme (10%) (±0.002) 0.802 0.800 0.799 0.800 0.426 0.796 0.799 0.799 0.801 0.794
Pima (±0.003) 0.831 0.831 0.828 0.831 0.822 0.829 0.830 0.830 0.830 0.830
Yeast (±0.001) 0.968 0.967 0.966 0.967 0.945 0.966 0.965 0.967 0.967 0.965
Haberman (±0.019) 0.674 0.678 0.672 0.674 0.702 0.663 0.661 0.674 0.670 0.674
California (20%) (±0.001) 0.927 0.927 0.926 0.928 0.903 0.928 0.925 0.928 0.928 0.928
California (10%) (±0; 001) 0.923 0.925 0.921 0.925 0.855 0.925 0.919 0.926 0.926 0.925
House_16H (±0.001) 0.886 0.889 0.889 0.889 0.867 0.888 0.888 0.889 0.889 0.889
House_16H (20%)(±0.001) 0.881 0.887 0.887 0.887 0.826 0.886 0.886 0.887 0.887 0.886
House_16H (10%)(±0.001) 0.871 0.885 0.884 0.885 0.764 0.885 0.885 0.885 0.885 0.883
House_16H (1%) (±0.006) 0.822 0.862 0.856 0.862 0.694 0.849 0.854 0.861 0.860 0.848
Vehicle (±0.001) 0.994 0.993 0.990 0.994 0.990 0.993 0.992 0.994 0.994 0.994
Vehicle (10%) (±0.001) 0.994 0.993 0.985 0.994 0.984 0.993 0.991 0.994 0.994 0.994
Ionosphere (±0.012) 0.901 0.899 0.904 0.893 0.872 0.889 0.889 0.894 0.895 0.897
Ionosphere (20%) (±0.021) 0.894 0.886 0.896 0.879 0.872 0.882 0.888 0.881 0.879 0.885
Ionosphere (10%) (±0.018) 0.862 0.856 0.857 0.858 0.812 0.868 0.878 0.860 0.858 0.862
Breast Cancer (±0.001) 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
Breast Cancer (20%) (±0.001) 0.997 0.997 0.997 0.997 0.997 0.996 0.994 0.997 0.997 0.997
Breast Cancer (10%) (±0.001) 0.997 0.997 0.997 0.997 0.996 0.997 0.997 0.997 0.997 0.997
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Table 16: Highly imbalanced data sets at the top and remaining ones at the bottom. Logistic regression
ROC AUC. For each data set, the best strategy is highlighted in bold and the mean of the standard
deviation is computed (and rounded to 10−3).

SMOTE K = 5 K =
√
n K = 0.01n K = 0.1n CV

Strategy SMOTE

CreditCard (±0.001) 0.946 0.947 0.947 0.949 0.955
Abalone (1%)(±0.001) 0.878 0.878 0.881 0.877 0.879
Phoneme (1%)(±0.001) 0.805 0.805 0.806 0.806 0.806
Yeast (1%)(±0.001) 0.973 0.974 0.973 0.973 0.974
Wine (4%)(±0.003) 0.838 0.837 0.838 0.837 0.839
Pima (20%) (±0.005) 0.819 0.818 0.819 0.819 0.819
Haberman (10%)(±0.028) 0.753 0.749 0.756 0.753 0.754
MagicTel (20%)(±0.001) 0.841 0.840 0.841 0.841 0.842
California (1%)(±0.003) 0.925 0.925 0.925 0.925 0.924

Phoneme (±0.001) 0.810 0.810 0.810 0.810 0.812
Phoneme (20%) (±0.01) 0.807 0.807 0.807 0.808 0.809
Phoneme (10%) (±0.001) 0.799 0.799 0.799 0.799 0.801
Pima (±0.003) 0.830 0.830 0.830 0.830 0.830
Yeast (±0.001) 0.967 0.967 0.967 0.967 0.967
Haberman (±0.018) 0.674 0.677 0.678 0.677 0.670
California (20%)(±0.001) 0.928 0.928 0.928 0.928 0.928
California (10%)(±0.001) 0.926 0.926 0.926 0.925 0.926
House_16H(±0.001) 0.889 0.889 0.889 0.889 0.889
House_16H (20%)(±0.001) 0.887 0.887 0.887 0.886 0.887
House_16H (10%)(±0.001) 0.885 0.885 0.885 0.884 0.885
House_16H (1%)(±0.005) 0.861 0.860 0.859 0.859 0.860
Vehicle (±0.001) 0.994 0.994 0.994 0.994 0.994
Vehicle (10%) (±0.001) 0.994 0.994 0.994 0.994 0.994
Ionosphere (±0.011) 0.894 0.896 0.895 0.894 0.895
Ionosphere (20%) (±0.20) 0.881 0.881 0.879 0.880 0.879
Ionosphere (10%) (±0.017) 0.860 0.857 0.861 0.859 0.858
Breast Cancer (±0.001) 0.996 0.996 0.996 0.996 0.996
Breast Cancer (20%) (±0.001) 0.997 0.997 0.997 0.997 0.997
Breast Cancer (10%) (±0.001) 0.997 0.997 0.997 0.997 0.997

Table 17: Highly imbalanced data sets ROC AUC. Logistic regression reimplemented in PyTorch
using the implementation of Cao et al. [2019].

Strategy None LDAM loss Focal loss

CreditCard 0.968± 0.002 0.934± 0.003 0.967± 0.002
Abalone 0.790± 0.008 0.735± 0.046 0.799± 0.009
Phoneme (1%) 0.806± 0.008 0.656± 0.091 0.807± 0.008
Yeast (1%) 0.977± 0.002 0.942± 0.002 0.977± 0.002
Wine 0.827± 0.002 0.675± 0.087 0.831± 0.002
Pima (20%) 0.821± 0.005 0.697± 0.036 0.821± 0.005
Haberman (10%) 0.749± 0.030 0.611± 0.077 0.750± 0.029
MagicTel (20%) 0.843± 0.001 0.785± 0.20 0.844± 0.001
California (1%) 0.833± 0.006 0.922± 0.003 0.841± 0.007

Table 18: LightGBM PR AUC for different rebalancing strategies and different data sets.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d + 1)

CreditCard (0.2%) 0.276 0.772 0.729 0.757 0.334 0.627 0.620 0.724 0.720 0.731
Phoneme (1%) 0.228 0.230 0.054 0.223 0.040 0.263 0.255 0.267 0.278 0.157
House_16H (1%) 0.343 0.362 0.180 0.356 0.023 0.330 0.344 0.312 0.321 0.367
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Table 19: LightGBM PR AUC for different rebalancing strategies and different data sets.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d + 1)

Abalone (1%) 0.056 0.054 0.047 0.053 0.034 0.050 0.049 0.044 0.045 0.040
std 0.016 0.012 0.015 0.012 0.008 0.011 0.010 0.008 0.008 0.006

Phoneme 0.898 0.895 0.864 0.895 0.733 0.883 0.884 0.894 0.893 0.889
std 0.003 0.003 0.004 0.003 0.014 0.003 0.005 0.003 0.003 0.003

Phoneme (20%) 0.836 0.830 0.757 0.829 0.492 0.814 0.812 0.830 0.828 0.816
std 0.003 0.004 0.008 0.006 0.024 0.007 0.006 0.004 0.006 0.005

Phoneme (10%) 0.683 0.679 0.519 0.680 0.237 0.653 0.657 0.670 0.671 0.643
std 0.012 0.011 0.018 0.013 0.017 0.012 0.011 0.013 0.011 0.014

Yeast 0.795 0.797 0.785 0.801 0.697 0.768 0.761 0.792 0.791 0.793
std 0.017 0.017 0.023 0.016 0.020 0.019 0.020 0.018 0.017 0.017

Yeast (1%) 0.296 0.299 0.010 0.296 0.010 0.330 0.293 0.337 0.334 0.322
std 0.076 0.080 0.000 0.078 0.000 0.072 0.058 0.074 0.068 0.064

Wine (4%) 0.603 0.596 0.269 0.595 0.081 0.545 0.567 0.546 0.534 0.560
std 0.026 0.024 0.019 0.026 0.010 0.022 0.025 0.027 0.022 0.028

Pima 0.666 0.666 0.665 0.672 0.673 0.651 0.658 0.667 0.667 0.672
std 0.014 0.015 0.015 0.012 0.010 0.014 0.017 0.014 0.017 0.012

Pima (20%) 0.475 0.480 0.473 0.473 0.483 0.466 0.470 0.471 0.471 0.466
std 0.019 0.017 0.026 0.016 0.018 0.019 0.021 0.022 0.017 0.019

Haberman 0.433 0.434 0.481 0.410 0.493 0.422 0.423 0.425 0.429 0.418
std 0.026 0.023 0.027 0.022 0.017 0.021 0.021 0.019 0.024 0.027

Haberman (10%) 0.267 0.262 0.140 0.209 0.133 0.255 0.233 0.259 0.272 0.274
std 0.029 0.035 0.028 0.031 0.029 0.035 0.029 0.033 0.030 0.039

MagicTel (20%) 0.761 0.765 0.735 0.765 0.259 0.728 0.729 0.760 0.760 0.750
std 0.003 0.004 0.005 0.004 0.008 0.006 0.005 0.004 0.004 0.004

California (20%) 0.906 0.905 0.891 0.904 0.562 0.895 0.896 0.901 0.902 0.898
std 0.001 0.002 0.002 0.001 0.013 0.002 0.002 0.001 0.001 0.001

California (10%) 0.830 0.831 0.786 0.830 0.314 0.816 0.818 0.823 0.823 0.810
std 0.003 0.003 0.006 0.002 0.012 0.003 0.003 0.003 0.003 0.004

California (1%) 0.359 0.368 0.234 0.343 0.041 0.342 0.322 0.347 0.372 0.285
std 0.019 0.019 0.028 0.023 0.010 0.017 0.018 0.017 0.019 0.020

House_16H 0.911 0.909 0.906 0.909 0.674 0.902 0.901 0.907 0.907 0.910
std 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001

House_16H (20%) 0.869 0.867 0.857 0.866 0.417 0.855 0.854 0.862 0.861 0.868
std 0.002 0.001 0.002 0.001 0.005 0.001 0.002 0.001 0.001 0.001

House_16H (10%) 0.776 0.770 0.735 0.769 0.174 0.751 0.752 0.757 0.755 0.775
std 0.002 0.003 0.006 0.002 0.004 0.003 0.003 0.003 0.003 0.002

Vehicle 0.989 0.989 0.974 0.988 0.903 0.989 0.990 0.988 0.988 0.980
std 0.003 0.003 0.008 0.003 0.011 0.003 0.003 0.003 0.002 0.004

Vehicle (10%) 0.958 0.954 0.857 0.948 0.392 0.954 0.942 0.954 0.955 0.954
std 0.012 0.011 0.033 0.013 0.060 0.012 0.012 0.011 0.011 0.010

Ionosphere 0.968 0.967 0.958 0.965 0.937 0.962 0.967 0.963 0.963 0.967
std 0.004 0.005 0.004 0.005 0.009 0.006 0.005 0.006 0.006 0.004

Ionosphere (20%) 0.953 0.953 0.898 0.952 0.798 0.937 0.943 0.930 0.933 0.953
std 0.013 0.011 0.016 0.012 0.022 0.012 0.010 0.011 0.013 0.008

Ionosphere (10%) 0.895 0.895 0.456 0.882 0.431 0.865 0.868 0.827 0.840 0.903
std 0.027 0.024 0.080 0.024 0.085 0.027 0.027 0.026 0.028 0.019

Breast cancer 0.989 0.990 0.986 0.989 0.987 0.988 0.987 0.990 0.989 0.991
std 0.003 0.002 0.004 0.002 0.004 0.002 0.003 0.002 0.003 0.002

Breast cancer (20%) 0.980 0.981 0.974 0.980 0.981 0.976 0.972 0.979 0.977 0.984
std 0.005 0.005 0.008 0.007 0.005 0.008 0.008 0.006 0.007 0.005

Breast cancer (10%) 0.972 0.973 0.926 0.973 0.967 0.965 0.962 0.973 0.970 0.975
std 0.011 0.010 0.019 0.010 0.008 0.014 0.015 0.011 0.013 0.010
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Table 20: LightGBM ROC AUC for different rebalancing strategies and different data sets.
Strategy None CW RUS ROS Near BS1 BS2 SMOTE CV MGS

Miss1 SMOTE (d + 1)

CreditCard (0.2%) 0.761 0.938 0.970 0.921 0.879 0.941 0.932 0.937 0.950 0.956
std 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.002

Abalone (1%) 0.738 0.738 0.726 0.738 0.700 0.750 0.757 0.748 0.775 0.745
std 0.029 0.029 0.018 0.023 0.030 0.019 0.021 0.020 0.015 0.016

Phoneme 0.954 0.953 0.943 0.953 0.863 0.949 0.950 0.952 0.952 0.951
std 0.001 0.001 0.001 0.001 0.006 0.001 0.002 0.001 0.001 0.001

Phoneme (20%) 0.946 0.945 0.929 0.944 0.761 0.942 0.942 0.945 0.942 0.942
std 0.001 0.001 0.002 0.002 0.014 0.002 0.002 0.001 0.002 0.001

Phoneme (10%) 0.930 0.928 0.907 0.929 0.628 0.923 0.926 0.925 0.926 0.925
std 0.003 0.003 0.005 0.004 0.014 0.003 0.003 0.004 0.003 0.003

Phoneme (1%) 0.898 0.878 0.828 0.836 0.706 0.889 0.883 0.895 0.885 0.888
std 0.014 0.022 0.021 0.028 0.042 0.013 0.022 0.014 0.017 0.018

Yeast 0.966 0.966 0.966 0.968 0.923 0.968 0.968 0.968 0.968 0.967
std 0.003 0.003 0.004 0.003 0.006 0.002 0.003 0.002 0.002 0.003

Yeast (1%) 0.930 0.933 0.500 0.847 0.500 0.927 0.928 0.927 0.923 0.915
std 0.025 0.023 0.000 0.069 0.000 0.025 0.027 0.025 0.022 0.028

Wine (4%) 0.927 0.922 0.906 0.918 0.682 0.920 0.924 0.920 0.920 0.923
std 0.006 0.008 0.007 0.010 0.013 0.008 0.007 0.008 0.006 0.008

Pima 0.803 0.802 0.798 0.806 0.789 0.800 0.801 0.804 0.805 0.807
std 0.008 0.007 0.008 0.007 0.006 0.008 0.008 0.009 0.009 0.008

Pima (20%) 0.773 0.772 0.772 0.772 0.762 0.782 0.784 0.780 0.780 0.771
std 0.011 0.010 0.014 0.009 0.009 0.012 0.010 0.012 0.010 0.010

Haberman 0.684 0.687 0.707 0.668 0.707 0.680 0.677 0.685 0.681 0.666
std 0.018 0.018 0.018 0.018 0.013 0.019 0.019 0.017 0.017 0.019

Haberman (10%) 0.691 0.689 0.575 0.643 0.564 0.710 0.674 0.712 0.726 0.729
std 0.031 0.034 0.063 0.030 0.052 0.030 0.040 0.026 0.030 0.025

MagicTel (20%) 0.923 0.925 0.917 0.924 0.622 0.918 0.918 0.922 0.922 0.917
std 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001

California (20%) 0.964 0.963 0.960 0.963 0.833 0.960 0.961 0.962 0.962 0.960
std 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001

California (10%) 0.957 0.957 0.949 0.956 0.771 0.954 0.954 0.955 0.955 0.949
std 0.001 0.001 0.002 0.001 0.005 0.001 0.001 0.001 0.001 0.002

California (1%) 0.911 0.908 0.890 0.906 0.663 0.910 0.907 0.907 0.912 0.884
std 0.007 0.006 0.010 0.007 0.017 0.009 0.009 0.007 0.005 0.012

House_16H 0.954 0.954 0.953 0.953 0.874 0.950 0.950 0.953 0.953 0.954
std 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000

House_16H (20%) 0.953 0.953 0.951 0.953 0.794 0.949 0.949 0.951 0.951 0.953
std 0.000 0.000 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.00

House_16H (10%) 0.950 0.949 0.945 0.949 0.686 0.945 0.946 0.945 0.944 0.950
std 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001

House_16H (1%) 0.903 0.896 0.899 0.896 0.605 0.907 0.909 0.894 0.894 0.912
std 0.005 0.007 0.005 0.006 0.013 0.005 0.006 0.005 0.004 0.005

Vehicle 0.996 0.996 0.992 0.996 0.949 0.996 0.997 0.996 0.996 0.996
std 0.001 0.001 0.002 0.001 0.006 0.001 0.001 0.001 0.001 0.001

Vehicle (10%) 0.993 0.992 0.978 0.990 0.794 0.993 0.991 0.992 0.992 0.992
std 0.003 0.004 0.005 0.008 0.020 0.003 0.003 0.006 0.005 0.002

Ionosphere 0.973 0.973 0.967 0.972 0.944 0.971 0.975 0.972 0.972 0.974
std 0.004 0.005 0.005 0.004 0.006 0.005 0.004 0.005 0.004 0.005

Ionosphere (20%) 0.981 0.980 0.962 0.980 0.887 0.978 0.980 0.974 0.975 0.981
std 0.006 0.005 0.007 0.007 0.012 0.006 0.006 0.005 0.007 0.004

Ionosphere (10%) 0.972 0.972 0.777 0.959 0.753 0.954 0.951 0.927 0.946 0.975
std 0.010 0.013 0.048 0.017 0.057 0.013 0.013 0.015 0.013 0.007

Breast cancer 0.995 0.995 0.994 0.995 0.994 0.994 0.994 0.995 0.995 0.995
std 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Breast cancer (20%) 0.996 0.996 0.994 0.996 0.996 0.995 0.995 0.996 0.996 0.997
std 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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B Main proofs

This section contains the main proof of our theoretical results. The technicals lemmas used by several
proofs are available on Appendix C.

B.1 Proof of Lemma 3.1

Proof of Lemma 3.1. Let X be the support of PX . SMOTE generates new points by linear interpola-
tion of the original minority sample. This means that for all x, y in the minority samples or generated
by SMOTE procedure, we have (1 − t)x + ty ∈ Conv(X ) by definition of Conv(X ). This leads
to the fact that precisely, all the new SMOTE samples are contained in Conv(X ). This implies
Supp(PZ) ⊆ Conv(X ).

B.2 Proof of Theorem 3.2

Proof of Theorem 3.2. For any event A,B, we have
1− P[A ∩B] = P[Ac ∪Bc] ≤ P[Ac] + P[Bc], (8)

which leads to
P[A ∩B] ≥ 1− P[Ac]− P[Bc] (9)

= P[A]− P[Bc]. (10)
By construction,

∥Xc − Z∥ ≤ ∥Xc −X(K)(Xc)∥. (11)
Let x ∈ X and η > 0. Let α, ε > 0. We have,

P[Xc ∈ B(x, α− ε)]− P[∥Xc −X(K)(Xc)∥ > ε] (12)

≤ P[Xc ∈ B(x, α− ε), ∥Xc −X(K)(Xc)∥ ≤ ε] (13)

≤ P[Xc ∈ B(x, α− ε), ∥Xc − Z∥ ≤ ε] (14)
≤ P[Z ∈ B(x, α)]. (15)

Similarly, we have
P[Z ∈ B(x, α)]− P[∥Xc −X(K)(Xc)∥ > ε] (16)

≤ P[Z ∈ B(x, α), ∥Xc −X(K)(Xc)∥ ≤ ε] (17)

≤ P[Z ∈ B(x, α), ∥Xc − Z∥ ≤ ε] (18)
≤ P[Xc ∈ B(x, α+ ε)]. (19)

Since Xc admits a density, for all ε > 0 small enough
P[Xc ∈ B(x, α+ ε)] ≤ P[Xc ∈ B(x, α)] + η, (20)

and
P[Xc ∈ B(x, α)]− η ≤ P[Xc ∈ B(x, α− ε)]. (21)

Let ε such that (20) and (21) are verified. According to Lemma 2.3 in Biau and Devroye [2015],
since X1, . . . , Xn are i.i.d., if K/n tends to zero as n→∞, we have

P[∥Xc −X(K)(Xc)∥ > ε]→ 0. (22)
Thus, for all n large enough,

P[Xc ∈ B(x, α)]− 2η ≤ P[Z ∈ B(x, α)] (23)
and

P[Z ∈ B(x, α)] ≤ 2η + P[Xc ∈ B(x, α)]. (24)
Finally, for all η > 0, for all n large enough, we obtain

P[Xc ∈ B(x, α)]− 2η ≤ P[Z ∈ B(x, α)] ≤ 2η + P[Xc ∈ B(x, α)], (25)
which proves that

P[Z ∈ B(x, α)]→ P[Xc ∈ B(x, α)]. (26)
Therefore, by the Monotone convergence theorem, for all Borel sets B ⊂ Rd,

P[Z ∈ B]→ P[Xc ∈ B]. (27)
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B.3 Proof of Lemma 3.3

Proof of Lemma 3.3. We consider a single SMOTE iteration. Recall that the central point Xc (see
Algorithm 1) is fixed, and thus denoted by xc.

The random variables X(1)(xc), . . . , X(n−1)(xc) denote a reordering of the initial observations
X − 1, X2, . . . , Xn such that

||X(1)(xc)− xc|| ≤ ||X(2)(xc)− xc|| ≤ . . . ≤ ||X(n−1)(xc)− xc||.

For clarity, we remove the explicit dependence on xc. Recall that SMOTE builds a linear interpolation
between xc and one of its K nearest neighbors chosen uniformly. Then the newly generated point Z
satisfies

Z = (1−W )xc +W

K∑
k=1

X(k)1{I=k}, (28)

where W is a uniform random variable over [0, 1], independent of I,X1, . . . , Xn, with I distributed
as U({1, . . . ,K}).
From now, consider that the k-th nearest neighbor of xc, X(k)(xc), has been chosen (that is I = k).
Then Z satisfies

Z = (1−W )xc +WX(k) (29)

= xc −Wxc +WX(k), (30)

which implies

Z − xc = W (X(k) − xc). (31)

Let fZ−xc , fW and fX(k)−xc be respectively the density functions of Z − xc, W and X(k) − xc. Let
z, z1, z2 ∈ Rd. Recall that z ≤ z1 means that each component of z is lower than the corresponding
component of z1. Since W and X(k) − xc are independent, we have,

P(z1 ≤ Z − xc ≤ z2) =

∫
w∈R

∫
x∈Rd

fW,X(k)−xc(w, x)1{z1≤wx≤z2}dwdx (32)

=

∫
w∈R

∫
x∈Rd

fW (w)fX(k)−xc
(x)1{z1≤wx≤z2}dwdx (33)

=

∫
w∈R

fW (w)

(∫
x∈Rd

fX(k)−xc
(x)1{z1≤wx≤z2}dx

)
dw. (34)

Besides, let u = wx. Then x = (u1

w , . . . , ud

w )T .The Jacobian of such transformation equals:∣∣∣∣∣∣∣
∂x1

∂u1
. . . ∂x1

∂ud

...
. . .

...
∂xd

∂u1
. . . ∂xd

∂ud

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1
w 0

. . .
0 . . . 1

w

∣∣∣∣∣∣∣ =
1

wd
(35)

Therefore, we have x = u/w and dx = du/wd, which leads to

P(z1 ≤ Z − xc ≤ z2) (36)

=

∫
w∈R

1

wd
fW (w)

(∫
u∈Rd

fX(k)−xc

( u
w

)
1{z1≤u≤z2}du

)
dw. (37)

Note that a random variable Z ′ with density function

fZ′(z′) =

∫
w∈R

1

wd
fW (w)fX(k)−xc

(
z′

w

)
dw (38)

satisfies, for all z1, z2 ∈ Rd,

P(z1 ≤ Z − xc ≤ z2) =

∫
w∈R

1

wd
fW (w)

(∫
u∈Rd

fX(k)−xc

( u
w

)
1{z1≤u≤z2}du

)
dw. (39)

28



Therefore, the variable Z − xc admits the following density

fZ−xc(z
′|Xc = xc, I = k) =

∫
w∈R

1

wd
fW (w)fX(k)−xc

(
z′

w

)
dw. (40)

Since W follows a uniform distribution on [0, 1], we have

fZ−xc
(z′|Xc = xc, I = k) =

∫ 1

0

1

wd
fX(k)−xc

(z′
w

)
dw. (41)

The density fX(k)−xc
of the k-th nearest neighbor of xc can be computed exactly [see, Lemma 6.1 in

Berrett, 2017], that is

fX(k)−xc
(u) = (n− 1)

(
n− 2

k − 1

)
fX(xc + u)

[
µX (B(xc, ||u||))

]k−1

×
[
1− µX (B(xc, ||u||))

]n−k−1
, (42)

where

µX (B(xc, ||u||)) =
∫
B(xc,∥u∥)

fX(x)dx. (43)

We recall that B(xc, ∥u∥) is the ball centered on xc and of radius ∥u∥. Hence we have

fX(k)−xc
(u) = (n− 1)

(
n− 2

k − 1

)
fX(xc + u)µX (B(xc, ||u||))k−1

[1− µX (B(xc, ||u||))]n−k−1
.

(44)
Since Z − xc is a translation of the random variable Z, we have

fZ(z|Xc = xc, I = k) = fZ−xc(z − xc|Xc = xc, I = k). (45)

Injecting Equation (44) in Equation (41), we obtain

fZ(z|Xc = xc, I = k) (46)
= fZ−xc

(z − xc|Xc = xc, I = k) (47)

=

∫ 1

0

1

wd
fX(k)−xc

(z − xc

w

)
dw (48)

= (n− 1)

(
n− 2

k − 1

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
µX

(
B

(
xc,
||z − xc||

w

))k−1

(49)

×
[
1− µX

(
B

(
xc,
||z − xc||

w

))]n−k−1

dw (50)
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Recall that in SMOTE, k is chosen at random in {1, . . . ,K} through the uniform random variable I .
So far, we have considered I fixed. Taking the expectation with respect to I , we have

fZ(z|Xc = xc) (51)

=

K∑
k=1

fZ(z|Xc = xc, I = k)P[I = k] (52)

=
1

K

K∑
k=1

∫ 1

0

1

wd
fX(k)−xc

(z − xc

w

)
dw (53)

=
1

K

K∑
k=1

(n− 1)

(
n− 2

k − 1

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
µX

(
B

(
xc,
||z − xc||

w

))k−1

(54)

× [1− µX

(
B

(
xc,
||z − xc||

w

))
]n−k−1dw (55)

=
(n− 1)

K

∫ 1

0

1

wd
fX

(
xc +

z − xc

w

) K∑
k=1

(
n− 2

k − 1

)
µX

(
B

(
xc,
||z − xc||

w

))k−1

(56)

× [1− µX

(
B

(
xc,
||z − xc||

w

))
]n−k−1dw (57)

=
(n− 1)

K

∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)K−1∑
k=0

(
n− 2

k

)
µX

(
B

(
xc,
||z − xc||

w

))k

(58)

×
[
1− µX

(
B

(
xc,
||z − xc||

w

))]n−k−2

dw. (59)

Note that the sum can be expressed as the cumulative distribution function of a Binomial distribution
parameterized by n− 2 and µX(B(xc, ∥z − xc∥/w)), so that

K−1∑
k=0

(
n− 2

k

)
µX

(
B

(
xc,
||z − xc||

w

))k [
1− µX

(
B

(
xc,
||z − xc||

w

))]n−k−2

(60)

=(n−K − 1)

(
n− 2

K − 1

)
B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
, (61)

(see Technical Lemma C.1 for details). We inject Equation (61) in Equation (51)

fZ(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw. (62)

We know that

fZ(z) =

∫
xc∈X

fZ(z|Xc = xc)fX(xc)dxc.

Combining this remark with the result of Equation (62) we get

fZ(z) = (n−K − 1)

(
n− 1

K

)∫
xc∈X

∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
fX(xc)dwdxc. (63)

Link with Elreedy’s formula According to the Elreedy formula

fZ(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ ∞

r=∥z−xc∥
fX

(
xc +

(z − xc)r

∥z − xc∥

)
rd−2

∥z − xc∥d−1

× B (n−K − 1,K; 1− µX (B (xc, r))) dr. (64)
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Now, let r = ∥z − xc∥/w so that dr = −∥z − xc∥dw/w2. Thus,

fZ(z|Xc = xc)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

fX

(
xc +

z − xc

w

)
1

wd−2

1

∥z − xc∥
(65)

× B
(
n−K − 1,K; 1− µX

(
B

(
xc,

z − xc

w

)))
∥z − xc∥

w2
dw (66)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,

z − xc

w

)))
dw. (67)

B.4 Proof of Theorem 3.5

Proof of Theorem 3.5. Let xc ∈ X be a central point in a SMOTE iteration. From Lemma 3.3, we
have,

fZ(z|Xc = xc)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw (68)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
1{xc+

z−xc
w ∈X}

× B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw. (69)

Let R ∈ R such that X ⊂ B(0, R). For all u = xc +
z−xc

w , we have

w =
||z − xc||
||u− xc||

. (70)

If u ∈ X , then u ∈ B(0, R). Besides, since xc ∈ X ⊂ B(0, R), we have ||u− xc|| < 2R and

w >
||z − xc||

2R
. (71)

Consequently,

1{xc+
z−xc

w ∈X} ≤ 1{w>
||z−xc||

2R }. (72)

So finally

1{xc+
z−xc

w ∈X} = 1{xc+
z−xc

w ∈X}1{w>
||z−xc||

2R }. (73)

Hence,

fZ(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
1{xc+

z−xc
w ∈X}1{w>

||z−xc||
2R }

× B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw (74)

= (n−K − 1)

(
n− 1

K

)∫ 1

||z−xc||
2R

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw. (75)
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Now, let 0 < α ≤ 2R and z ∈ Rd such that ||z − xc|| > α. In such a case, w > α
2R and:

fZ(z|Xc = xc) (76)

= (n−K − 1)

(
n− 1

K

)∫ 1

α
2R

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw (77)

≤ (n−K − 1)

(
n− 1

K

)∫ 1

α
2R

1

wd
fX

(
xc +

z − xc

w

)
B (n−K − 1,K; 1− µX (B (xc, α))) dw.

(78)

Let µ ∈ [0, 1] and Sn be a binomial random variable of parameters (n− 1, µ). For all K,

P[Sn ≤ K] = (n−K − 1)

(
n− 1

K

)
B (n−K − 1,K; 1− µ) . (79)

According to Hoeffding’s inequality, we have, for all K ≤ (n− 1)µ,

P[Sn ≤ K] ≤ exp

(
−2(n− 1)

(
µ− K

n− 1

)2
)
. (80)

Thus, for all z /∈ B(xc, α), for all K ≤ (n− 1)µX (B (xc, α)),

fZ(z|Xc = xc) (81)

≤ exp

(
−2(n− 1)

(
µX (B (xc, α))−

K

n− 1

)2
)∫ 1

α
2R

1

wd
fX

(
xc +

z − xc

w

)
dw (82)

≤ C2 exp

(
−2(n− 1)

(
µX (B (xc, α))−

K

n− 1

)2
)∫ 1

α
2R

1

wd
dw (83)

≤ C2η(α,R) exp

(
−2(n− 1)

(
µX (B (xc, α))−

K

n− 1

)2
)
, (84)

with

η(α,R) =

{
ln
(
2R
α

)
if d = 1

1
d−1

((
2R
α

)d−1 − 1
)

otherwise
.

Letting

ϵ(n, α,K, xc) = C2η(α,R) exp

(
−2(n− 1)

(
µX (B (xc, α))−

K

n− 1

)2
)
, (85)

we have, for all α ∈ (0, 2R), for all K ≤ (n− 1)µX (B (xc, α)),

P (|Z −Xc| ≥ α|Xc = xc) =

∫
z/∈B(xc,α),z∈X

fZ(z|Xc = xc)dz (86)

≤
∫
z/∈B(xc,α),z∈X

ε(n, α,K, xc)dz (87)

= ε(n, α,K, xc)

∫
z/∈B(xc,α),z∈X

dz (88)

≤ cdR
dε(n, α,K, xc), (89)

as X ⊂ B(0, R). Since xc ∈ X , by definition of the support, we know that for all ρ > 0,
µX(B(xc, ρ)) > 0. Thus, µX (B (xc, α)) > 0. Consequently, ε(n, α,K, xc) tends to zero, as K/n
tends to zero.

32



B.5 Proof of Corollary 3.6

We adapt the proof of Theorem 2.1 and Theorem 2.4 in Biau and Devroye [2015] to the case where
X belongs to B(0, R). We prove the following result.

Lemma B.1. Let X takes values in B(0, R). For all d ≥ 2,

E[∥X(1)(X)−X∥22] ≤ 36R2

(
k

n+ 1

)2/d

, (90)

where X(1)(X) is the nearest neighbor of X among X1, . . . , Xn.

Proof of Lemma B.1. Let us denote by X(i,1) the nearest neighbor of Xi among
X1, . . . , Xi−1, Xi+1, . . . , Xn+1. By symmetry, we have

E[∥X(1)(X)−X∥22] =
1

n+ 1

n+1∑
i=1

E∥X(i,1) −Xi∥22. (91)

Let Ri = ∥X(i,1) −Xi∥2 and Bi = {x ∈ Rd : ∥x−Xi∥ < Ri/2}. By construction, Bi are disjoint.
Since Ri ≤ 2R, we have

∪n+1
i=1 Bi ⊂ B(0, 3R), (92)

which implies,

µ
(
∪n+1
i=1 Bi

)
≤ (3R)dcd. (93)

Thus, we have

n+1∑
i=1

cd

(
Ri

2

)d

≤ (3R)dcd. (94)

Besides, for all d ≥ 2, we have(
1

n+ 1

n+1∑
i=1

R2
i

)d/2

≤ 1

n+ 1

n+1∑
i=1

Rd
i , (95)

which leads to

E[∥X(1)(X)−X∥22] =
1

n+ 1

n+1∑
i=1

E∥X(i,1) −Xi∥22 (96)

= E

[
1

n+ 1

n+1∑
i=1

R2
i

]
(97)

≤
(
(6R)d

n+ 1

)2/d

(98)

≤ 36R2

(
1

n+ 1

)2/d

. (99)

Lemma B.2. Let X takes values in B(0, R). For all d ≥ 2,

E[∥X(k)(X)−X∥22] ≤ (21+2/d)36R2

(
k

n

)2/d

, (100)

where X(k)(X) is the nearest neighbor of X among X1, . . . , Xn.
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Proof of Lemma B.2. Set d ≥ 2. Recall that E[∥X(k)(X)−X∥22] ≤ 4R2. Besides, for all k > n/2,
we have

(21+2/d)36R2

(
k

n

)2/d

> (21+2/d)36R2

(
1

2

)2/d

(101)

> 72R2 (102)

> E[∥X(k)(X)−X∥22]. (103)

Thus, the result is trivial for k > n/2. Set k ≤ n/2. Now, following the argument of Theorem 2.4 in
Biau and Devroye [2015], let us partition the set {X1, . . . , Xn} into 2k sets of sizes n1, . . . , n2k with

2k∑
j=1

nj = n and
⌊ n

2k

⌋
≤ nj ≤

⌊ n

2k

⌋
+ 1. (104)

Let X⋆
(1)(j) be the nearest neighbor of X among all Xi in the jth group. Note that

∥X(k)(X)−X∥2 ≤ 1

k

2k∑
j=1

∥X⋆
(1)(j)−X∥2, (105)

since at least k of these nearest neighbors have values larger than ∥X(k)(X)−X∥2. By Lemma B.1,
we have

∥X(k)(X)−X∥2 ≤ 1

k

2k∑
j=1

36R2

(
1

nj + 1

)2/d

(106)

≤ 1

k

2k∑
j=1

36R2

(
2k

n

)2/d

(107)

≤ 21+2/d × 36R2

(
k

n

)2/d

. (108)

Proof of Corollary 3.6. Let d ≥ 2. By Markov’s inequality, for all ε > 0, we have

P
[
∥X(k)(X)−X∥2 > ε

]
≤
E[∥X(k)(X)−X∥22]

ε2
. (109)

Let γ ∈ (0, 1/d) and ε = 12R(k/n)γ , we have

P
[
∥X(k)(X)−X∥2 > 12R(k/n)γ

]
≤
(
k

n

)2/d−2γ

. (110)

Noticing that, by construction of a SMOTE observation ZK,n, we have

∥ZK,n −X∥22 ≤ ∥X(K)(X)−X∥22. (111)
Thus,

P
[
∥ZK,n −X∥22 > 12R(k/n)γ

]
≤ P

[
∥X(K)(X)−X∥22 > 12R(k/n)1/d

]
(112)

≤
(
k

n

)2/d−2γ

. (113)

B.6 Proof of Theorem 3.7

Proof of Theorem 3.7. Let ε > 0 and z ∈ B(0, R) such that ∥z∥ ≥ R − ε. Let Aε = {x ∈
B(0, R), ⟨x− z, z⟩ ≤ 0}. Let 0 < α < 2R and Ãα,ε = Aε ∩ {x, ∥z − x∥ ≥ α}. An illustration is
displayed in Figure 4.

We have

fZ(z) =

∫
xc∈Ãα,ε

fZ(z|Xc = xc)fX(xc)dxc +

∫
xc∈Ãc

α,ε

fZ(z|Xc = xc)fX(xc)dxc (114)
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Figure 4: Illustration of Theorem 3.7.

First term Let xc ∈ Ãα,ε. In order to have xc +
z−xc

w = z +
(
−1 + 1

w

)
(z − xc) ∈ B(0, R), it is

necessary that (
−1 + 1

w

)
∥z − xc∥ ≤

√
2εR (115)

which leads to

w ≥ 1

1 +
√
2εR

∥z−xc∥

(116)

Since xc ∈ Ãα,ε, we have ∥xc − z∥ ≥ α. Thus, according to inequality (116), xc +
z−xc

w ∈ B(0, R)
implies

w ≥ 1

1 +
√
2εR
α

. (117)

Recall that xc +
z−xc

w ∈ X . Consequently, according to Lemma 3.3, for all xc ∈ Ãα,ε,

fZ(z|Xc = xc) (118)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw (119)

≤ C2(n−K − 1)

(
n− 1

K

)∫ 1

1

1+

√
2εR
α

1

wd
B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw.

(120)

Besides,

(n−K − 1)

(
n− 1

K

)
B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
(121)

=

(
n− 1

K

)
(n−K − 1)

(
n− 2

K − 1

)
B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
(122)

≤ n− 1

K
, (123)

according to Lemma C.1. Thus,

fZ(z|Xc = xc) ≤ C2

(
n− 1

K

)∫ 1

1

1+

√
2εR
α

1

wd
dw (124)

≤ C2

(
n− 1

K

)
η(α,R), (125)
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with

η(α,R) =


ln
(
1 +

√
2εR
α

)
if d = 1

1
d−1

((
1 +

√
2εR
α

)d−1

− 1

)
otherwise

.

Second term According to Lemma 3.3, we have

fZ(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw (126)

≤
(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
dw (127)

Since X ⊂ B(0, R), all points x, z ∈ X satisfy ∥x− z∥ ≤ 2R. Consequently, if ∥z − xc∥/w > 2R,

xc +
∥z − xc∥

w
/∈ X . (128)

Hence, for all w ≤ ∥z − xc∥/2R,

fX

(
xc +

z − xc

w

)
= 0. (129)

Plugging this equality into (127), we have
fZ(z|Xc = xc) (130)

≤
(
n− 1

K

)∫ 1

∥z−xc∥/2R

1

wd
fX

(
xc +

z − xc

w

)
dw (131)

≤ C2

(
n− 1

K

)∫ 1

∥z−xc∥/2R

1

wd
dw (132)

≤ C2

(
n− 1

K

)[
− 1

d− 1
w−d+1

]1
∥z−xc∥/2R

(133)

≤ C2

(
n− 1

K

)
(2R)d−1

d− 1

1

∥z − xc∥d−1
. (134)

Besides, note that, for all α > 0, we have∫
B(z,α)

1

∥z − xc∥d−1
fX(xc)dxc (135)

≤ C2

∫
B(0,α)

1

rd−1
rd−1 sind−2(φ1) sin

d−3(φ2) . . . sin(φd−2)drdφ1 . . . dφd−2, (136)

where r, φ1, . . . , φd−2 are the spherical coordinates. A direct calculation leads to∫
B(z,α)

1

∥z − xc∥d−1
fX(xc)dxc

≤ C2

∫ α

0

dr
∫
S(0,α)

sind−2(φ1) sin
d−3(φ2) . . . sin(φd−2)dφ1 . . . dφd−2 (137)

≤ 2C2π
d/2

Γ(d/2)
α, (138)

as ∫
S(0,α)

sind−2(φ1) sin
d−3(φ2) . . . sin(φd−2)dφ1 . . . dφd−2 (139)

is the surface of the Sd−1 sphere. Finally, for all z ∈ X , for all α > 0, and for all K,N such that
1 ≤ K ≤ N , we have∫

B(z,α)

fZ(z|Xc = xc)fX(xc)dxc ≤
2C2

2 (2R)d−1πd/2

(d− 1)Γ(d/2)

(
n− 1

K

)
α. (140)
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Final result Using Figure 4 and Pythagore’s Theorem, we have a2 ≤
√
2εR. Let d > 1 and ϵ > 0.

Then we have for all α such that α > a.

fZ(z) (141)

=

∫
xc∈Ãα,ε

fZ(z|Xc = xc)fX(xc)dxc +

∫
xc∈Ãc

α,ε

fZ(z|Xc = xc)fX(xc)dxc (142)

≤ C2

d− 1

(1 + √2εR
α

)d−1

− 1

(n− 1

K

)
+

2C2
2 (2R)d−1πd/2

(d− 1)Γ(d/2)

(
n− 1

K

)
α (143)

=
C2

d− 1

(
n− 1

K

)(1 + √2εR
α

)d−1

− 1

+
2C2(2R)d−1πd/2

Γ(d/2)
α

 , (144)

But this inequality is true if α ≥ a. We know that (1 + x)d−1 ≤ (2d−1 − 1)x+ 1 for x ∈ [0, 1] and
d− 1 ≥ 0. Then, for α such that

√
2εR
α ≤ 1,

fZ(z) (145)

≤ C2

d− 1

(
n− 1

K

)[((
(2d−1 − 1)

√
2εR

α
+ 1

)
− 1

)
+

2C2(2R)d−1πd/2

Γ(d/2)
α

]
(146)

≤ C2

d− 1

(
n− 1

K

)[(
(2d−1 − 1)

√
2εR

α

)
+

2C2(2R)d−1πd/2

Γ(d/2)
α

]
. (147)

Since
√
2εR
α ≤ 1, then α ≥

√
2εR ≥ a. So our initial condition on α to get the upper bound of the

second term is still true. Now, we choose α such that,

(2d−1 − 1)

√
2εR

α
≤ 2C2(2R)d−1πd/2

Γ(d/2)
α, (148)

which leads to the following condition

α ≥

(
Γ(d/2)(2d−1 − 1)

√
2εR

2C2(2R)d−1πd/2

)1/2

, (149)

assuming that ( ε

R

)1/2
≤ 1√

2dC2

V ol(Bd(0, 1)). (150)

Finally, for

α =

(
Γ(d/2)(2d−1 − 1)

√
2εR

2C2(2R)d−1πd/2

)1/2

, (151)

we have,

fZ(z) ≤
C2

d− 1

(
n− 1

K

)[
4C2(2R)d−1πd/2

Γ(d/2)
α

]
(152)

≤ C2

d− 1

(
n− 1

K

)4C2(2R)d−1πd/2

Γ(d/2)

(
Γ(d/2)(2d−1 − 1)

√
2εR

2C2(2R)d−1πd/2

)1/2
 (153)

= 2d+2

(
n− 1

K

)(
C3

2V ol(Bd(0, 1))

d

)1/2 ( ε

R

)1/4
. (154)
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C Technical lemmas

C.0.1 Cumulative distribution function of a binomial law

Lemma C.1 (Cumulative distribution function of a binomial distribution). Let X be a
random variable following a binomial law of parameter n ∈ N and p ∈ [0, 1]. The
cumulative distribution function F of X can be expressed as Wadsworth et al. [1961]:

(i)

F (k;n, p) = P(X ≤ k) =

⌊k⌋∑
i=0

(
n

i

)
pi(1− p)n−i,

(ii)

F (k;n, p) = (n− k)

(
n

k

)∫ 1−p

0

tn−k−1(1− t)kdt

= (n− k)

(
n

k

)
B(n− k, k + 1; 1− p),

with B(a, b;x) =
∫ x

t=0
ta−1(1− t)b−1dt, the incomplete beta function.

Proof. see Wadsworth et al. [1961].

C.0.2 Upper bounds for the incomplete beta function

Lemma C.2. Let B(a, b;x) =
∫ x

t=0
ta−1(1 − t)b−1dt, be the incomplete beta function. Then we

have

xa

a
≤ B(a, b;x) ≤ xa−1

(
1− (1− x)b

b

)
,

for a > 0.

Proof. We have

B(a, b;x) =

∫ x

t=0

ta−1(1− t)b−1dt

≤
∫ x

t=0

xa−1(1− t)b−1dt

= xa−1

∫ x

t=0

(1− t)b−1dt

= xa−1

[
(−1)(1− t)b

b

]x
0

= xa−1

[
− (1− x)b

b
+

1

b

]
= xa−1 1− (1− x)b

b
.
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On the other hand,

B(a, b;x) =

∫ x

t=0

ta−1(1− t)b−1dt

≥
∫ t

t=0

xa−1dt

=

[
ta

a

]x
0

=
xa

a
− 0a

a

=
xa

a
.

C.0.3 Upper bounds for binomial coefficient

Lemma C.3. For k, n ∈ N such that k < n, we have

(
n

k

)
≤
(en
k

)k
. (155)

Proof. We have,

(
n

k

)
=

n(n− 1) . . . (n− k + 1)

k!
≤ nk

k!
. (156)

Besides,

ek =

+∞∑
i=0

ki

i!
=⇒ ek ≥ kk

k!
=⇒ ek

kk
≥ 1

k!
. (157)

Hence, (
n

k

)
=

n(n− 1) . . . (n− k + 1)

k!
≤ nk

k!
≤
(en
k

)k
. (158)

C.0.4 Inequality x ln
(
1
x

)
≤
√
x

Lemma C.4. For x ∈]0,+∞[,

x ln

(
1

x

)
≤
√
x. (159)

Proof. Let,

f(x) =
√
x− x ln

(
1

x

)
(160)

=
√
x+ x ln(x). (161)

39



Then,

f
′
(x) =

1

2
√
x
+ lnx+ 1. (162)

And,

f
′′
(x) =

1

x
− 1

4x3/2
. (163)

We have,

f
′′
(x) ≥ 0 =⇒ 1

x
− 1

4x3/2
≥ 0

=⇒ 1

x
≥ 1

4x3/2
(164)

Since x ∈]0,+∞[,

Equation (164) =⇒ x3/2

x
≥ 1

4
(165)

=⇒
√
x ≥ 1

4
(166)

=⇒ x ≥ 1

16
. (167)

This result leads to,

x

f
′′

f
′

0 1
16 +∞

− 0 +

2 + ln( 1
16 ) + 12 + ln( 1
16 ) + 1

(168)

We have 2 + ln( 1
16 ) + 1 > 0. So f

′
(x) > 0 for all x ∈]0,∞[. Furthermore limx→0+ f(x) = 0,

hence f(x) > 0 for all x ∈]0,∞[, therefore
√
x > x ln

(
1
x

)
for all x ∈]0,∞[.
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