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Abstract

Synthetic Minority Oversampling Technique (SMOTE) is a common rebalancing strategy for handling
imbalanced data sets. Asymptotically, we prove that SMOTE (with default parameter) regenerates the
original distribution by simply copying the original minority samples. We also prove that SMOTE density
vanishes near the boundary of the support of the minority distribution, therefore justifying the common
BorderLine SMOTE strategy. Then we introduce two new SMOTE-related strategies, and compare them
with state-of-the-art rebalancing procedures. We show that rebalancing strategies are only required when
the data set is highly imbalanced. For such data sets, SMOTE, our proposals, or undersampling procedures
are the best strategies.

1 Introduction

Imbalanced data sets are a typical problem encountered practically in several applications (He and Garcia, 2009),
such as fraud detection (Hassan and Abraham, 2016), medical diagnosis (Khalilia et al., 2011) and even churn
detection (Nguyen and Duong, 2021). In presence of imbalanced data sets, most machine learning algorithms
have a tendency to predict the majority class, therefore leading to biased predictions. Several strategies have
been developed in order to handle this issue, as explained by Krawczyk (2016) and Ramyachitra and Manikandan
(2014). All of these strategies can be split into two categories: the model-level approaches and the data-level
approaches.

Model-level approaches deal with this problem by acting directly on machine learning algorithms. Such
approaches contain the class weighting of the samples: higher weights are allocated to the minority samples.
Zhu et al. (2018) introduce a Random Forest based algorithm that have different weights allocated to the
classes for each tree of the forest. However, model-level approaches are not agnostic to the model, which can
be restrictive. In this paper, we focus on data-level approaches.

Data-level approaches can be split into two groups. All the sampling strategies that do not generate new
observations in the initial set belong to this group. Mani and Zhang (2003) explain that the most used under
sampling strategies are Random Under Sampling and Nearmiss under sampling. The Random Under Sampling
technique produce the desired balance between classes by dropping majoring samples without any notion of
order between these samples. The Nearmiss1 strategies (Mani and Zhang, 2003) include distinction between
minority samples by ranking them using their mean distance to their nearest neighbor of the minority class.
Then the ranking is used to drop the samples (from the bottom) until a given balancing ratio is reached. The
main default of these under sampling strategies is the fact that they remove samples from the data set, which
results in a loss of information. The second group of data-level approaches consists in all strategies that generate
new synthetic samples in the minority class, therefore called synthetic approaches. The most famous strategy
in this group is probably Synthetic Minority Oversampling Technique (SMOTE, see Chawla et al., 2002). In
SMOTE, new minority samples are generated via linear interpolation between an original sample and one of its
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nearest neighbor, with both of them belonging to the minority class. Other approaches are based on Generative
Adversial Networks (GAN Islam and Zhang, 2020), which are computationally expensive and mostly designed
for specific data structures such as images. The main difficulty of these strategies is to synthesize relevant new
samples, which should not be outliers or simple copies of original points.

Several papers study some specificities of the sampling strategies for imbalanced data sets and the impact of
hyperparameter tuning. For example, Kamalov et al. (2022) study the optimal sampling ratios for imbalanced
data set when using synthetic approaches. Aguiar et al. (2023) realize a survey on imbalance data sets in the
context of online learning and propose a standardized framework in order to compare rebalancing strategies in
this context. Furthermore, Wongvorachan et al. (2023) aim at comparing the synthetic approaches (Random
Over Sampling, Random Under Sampling and SMOTE) in purpose of application on educational data.

Contributions We place ourselves in the framework of imbalanced classification with continuous input vari-
ables, since synthetic procedures such as SMOTE are originally designed to handle continuous variables. We first
show that the points generated via SMOTE procedure with default parameters are asymptotically distributed
as the minority class, when the number of minority samples increases. We also prove that, without tuning the
hyperparameter K (usually set to 5), SMOTE asymptotically copies the original minority samples, therefore
lacking the intrinsic variability required in any synthetic generative procedure. This highlights the importance
of hyperparameter tuning in SMOTE, when the number of samples in the minority class is large enough. As
a product of our analysis, we establish that SMOTE density vanishes near the boundary of the support of the
minority distribution, therefore justifying the introduction of SMOTE variants such as BorderLine SMOTE
strategy. Our theoretical analysis naturally leads us to introduce two SMOTE alternatives (CV-SMOTE and
Multivariate Gaussian SMOTE). We compare the impact on predictive performances of several rebalancing
strategies (including our proposals) on simulated and real-world data sets. We show that rebalancing strate-
gies are required only for strongly imbalanced data sets. When such approaches are necessary, SMOTE, our
proposals or undersampling strategies appear to be the best procedures.

2 Related works

In the synthetic approaches group, SMOTE is the central algorithm from which most of the others algorithms
derive. Indeed, except the Neural-Networks based algorithms, most of the others strategies always use a variant
of the linear interpolation introduced inside SMOTE procedure. Several variants try to focus on the generation
of the synthetic samples near the boundary of the minority class support. The most common one is ADASYN
(He et al., 2008) whose main idea is to produce more synthetic samples via linear interpolation between samples
from the minority class which are mostly surrounded by majority class samples. Borderline SMOTE approaches
(Han et al., 2005) aim at generating new synthetics samples on the frontier of both classes. Another SMOTE
variant focusing on borders is SVM-SMOTE (Nguyen et al., 2011) whose the idea is to begin by applying a
Support Vector Machine classifier to the imbalanced data. Then the linear interpolation is done on the support
vector from the minority class.

Imb-learn (see Lemâıtre et al., 2017) is an open source package containing python implementations of :
SMOTE, ADASYN, Borderline SMOTE and SVM-SMOTE.

Others variants of SMOTE does not focus on the boundary of the minority class support, but more generally
on the way of generating the new samples. For example, Pan et al. (2020) introduce a SMOTE variant that select
3 points and interpolate inside the triangle formed by these 3 minority samples. Two-steps procedures such
as DBSMOTE (Bunkhumpornpat et al., 2012) generates synthetic samples based on a preliminary procedure
(DBSCAN method) are also introduced in the community. Chawla et al. (2003) introduce SMOTEBoost, a
strategy that apply SMOTE before fitting a new weak classifier inside a boosting procedure.

Several works study theoretically the rebalancing strategies. The class weighting method is studied theo-
retically by King and Zeng (2001). King and Zeng (2001) study the Random Under Sampling strategy effect
on a logistic regression classifier. To the best of our knowledge, there are only few theoretical works dissecting
the intrinsic machinery in SMOTE algorithm. For example, Elreedy et al. (2023) establish the distribution of
SMOTE samples based on the distribution of the original minority samples. Before that, Elreedy and Atiya
(2019) derive the expectation and covariance matrix of the data generated by SMOTE. Elreedy and Atiya (2019)
also highlights the effects of the input dimension, the hyperparameter K and the number of minority samples on
SMOTE procedure. Results on simulated and real-world data sets show that the predictive performance of the
classifier applied after SMOTE increases with the number of minority samples. Increasing the number of input
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Algorithm 1 SMOTE iteration.

Input: Minority class samples X1, . . . , Xn, number K of nearest-neighbors
Select uniformly Xc (called central point) among {X1, . . . , Xn}.
Denote by I = X(1)(Xc, ) . . . , X(K)(Xc), the K nearest-neighbor of Xc (with respect to the L2 norm).
Select Xk ∈ I uniformly.
w ← U([0, 1])
Z ← Xc + w(Xk −Xc)
Return Z

variables decreases SMOTE ability of regenerating the minority distribution, in terms of Total Variance Differ-
ence, Kullback–Leibler divergence and Frobenius norm. A guideline is also given : choosing K ∈ {5, 6, . . . , 10}
is a good trade-off in order to be free of the high errors of large K values and limit the correlation phenomenon
of small K values.

3 A study of SMOTE

Notations We denote by U([a, b]) the uniform distribution over [a, b]. We denote by N (µ,Σ) the multivariate
normal distribution centered on µ and of covariance matrix Σ. For any set A, we denote by V ol(A), the
Lebesgue measure of A. For any z ∈ Rd and r > 0, we let B(z, r) be the ball centered at z of radius r. We
let cd = V ol(B(0, 1)) the volume of the unit ball in Rd. For any p, q ∈ N, and any z ∈ [0, 1], we denote by
B(p, q; z) =

∫ z

t=0
tp−1(1− t)q−1dt the incomplete beta function.

3.1 SMOTE algorithm

We assume to be given a training sample composed of N independent and identically distributed pairs (Xi, Yi),
where Xi ∈ Rd and Y ∈ {0, 1}. We consider an imbalanced problem, in which the class Y = 1 is under-
represented, compared to the class Y = 0, and thus called the minority class. We assume that we have n
minority samples in our training set. In this paper, we place our theoretical and experimental studies in the
context of SMOTE applied to data sets containing only continuous explanatory variables.
In this section, we study the SMOTE procedure, which generates synthetic data through linear interpolations
between two pairs of original samples of the minority class. SMOTE algorithm has a single hyperparameter,
K which stands for the number of nearest neighbors considered when interpolating. A single SMOTE iteration
is detailed in Algorithm 1. In a classic machine learning pipeline, SMOTE procedure is repeated in order to
obtain a prespecified ration between the both classes before training a classifier.

3.2 Theoretical results on SMOTE

SMOTE has been shown to exhibit good performances when combined to standard classification algorithms
(see for instance Mohammed et al., 2020). However, there exist only few works that aim at understanding
theoretically SMOTE behavior. In this section, we assume that X1, . . . , Xn are i.i.d samples from the minority
class (that is, Yi = 1 for all i ∈ [n]), with a common density fX with bounded support, denoted by X .

Lemma 1 (Convexity). Given fX the distribution density of the minority class, with support X , for all K,n,
the associated SMOTE density fZK,n

satisfies

Supp(fZK,n
) ⊆ Conv(X ). (1)

By construction, synthetic observations generated by SMOTE cannot fall outside the convex hull of X .
Equation (1) is not an equality, as SMOTE samples are the convex combination of only two original samples.
For example, in dimension two, if X is concentrated near the vertices of square, then SMOTE samples are
distributed near the square edges, whereas Conv(X ) is the whole square.

SMOTE distribution has been derived in Elreedy et al. (2023). We build on these works and provide, in the
following theorem, a different expression for the density of the data generated by SMOTE, denoted by fZK,n

.
When no confusion is possible, we denote fZK,n

simply by fZ .
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Theorem 3.1. Assume that Xc is the central point chosen in a SMOTE iteration. Then, for all xc ∈ X , the
random variable Z generated by SMOTE has a conditional density fZK,n

(.|Xc = xc) which satisfies

fZK,n
(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
B (n−K − 1,K; 1− βxc,z,w) dw, (2)

where βxc,z,w = µX (B (xc, ||z − xc||/w)) and µX is the probability measure associated to fX . Consequently, the
density fZK,n

of the data generated by SMOTE is

fZK,n
(z) = (n−K − 1)

(
n− 1

K

) ∫
xc∈X

∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B (n−K − 1,K; 1− βxc,z,w) fX(xc)dwdxc. (3)

Using the following substitution w = ∥z − xc∥/r, we have,

fZK,n
(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ ∞

r=∥z−xc∥
fX

(
xc +

(z − xc)r

∥z − xc∥

)
× rd−2B (n−K − 1,K; 1− µX (B (xc, r)))

∥z − xc∥d−1
dr. (4)

Theorem 3.1 provides the expression of the density of SMOTE synthetic data unconditionally, and conditional
on the central point used to generate the new observation. The expressions established in Theorem 3.1 are very
similar to Theorem 1 and Lemma 1 in Elreedy et al. (2023). Although our proof shares the same structure
as that of Elreedy et al. (2023), our starting point is different, as we consider random variables instead of
geometrical arguments. The proof of Theorem 3.1 can be found in Section 8.2.

SMOTE algorithm has only one hyperparameter K, which is the number of nearest neighbors taken into
account for building the linear interpolation. By default, this parameter is set to 5. The following theorem
describes the behavior of SMOTE distribution asymptotically, as K/n→ 0.

Theorem 3.2. For all Borel sets B ⊂ Rd, if K/n→ 0, as n tends to infinity, we have

lim
n→∞

P[ZK,n ∈ B] = P[X ∈ B]. (5)

The proof of Theorem 3.2 can be found in 8.3. Theorem 3.2 suggests that any choice of K such that
K/n tends to zero is asymptotically correct, thus corroborating the usual practice of choosing K = 5. A close
inspection of Theorem 3.1 allows us to derive more precise bounds about the behavior of SMOTE, as established
in Theorem 3.3.

Theorem 3.3. Assume that there exists R > 0, such that X ⊂ B(0, R). Suppose that there exists C2 such that,
for all x ∈ Rd, fX(x) ≤ C21x∈X . Then, for all n ≥ K ≥ 1, for all xc ∈ X and for all α > 0, we have

P(|ZK,n −Xc| ≥ α|Xc = xc) ≤ ε(n, α,K, xc), (6)

where

ε(n,K, xc, α) = cdR
dη(α,R) exp

[
n

(
3

√
e

1− βxc,α

√
K

n
+ ln (1− βxc,α)

)]
, (7)

with βxc,α = µX (B (xc, α)) > 0 and

η(α,R) =


C2 ln

(
2R
α

)
if d = 1,

C2

d−1

((
2R
α

)d−1 − 1
)

if d > 1,

0 if α > 2R.

Consequently, if limn→∞ K/n = 0, we have, for all xc ∈ X , ZK,n|Xc = xc → xc in probability.
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According to Theorem 3.3, SMOTE regenerates the original distribution at the cost of copying the original
minority samples. Indeed, the probability of a SMOTE sample to be at a distance superior to α > 0 from his
central point tends to 0 when K/n→ 0. This means that when K/n→ 0, SMOTE samples are closer to their
associated central point, leading the procedure to generate new samples by copying the original ones. The proof
of Theorem 3.3 can be found in 8.4.

Corollary 3.3.1. Assume that there exists R > 0, such that X ⊂ B(0, R). Suppose that there exist C1, C2 such

that, for all x ∈ Rd, C11x∈X ≤ fX(x) ≤ C21x∈X . Let xc ∈
o

X . Let γ ∈ R. For all n/K ≥ R, we have
For d = 1 and γ such that

max

(
0,

ln(4C1)

ln
(
n
K

) ) < γ <
1

2
+ min

(
0,

ln
(
3
√
2e/C1

)
ln(K/n)

)
, (8)

we have

P (|ZK,n −Xc| ≥ (K/n)γ |Xc = xc) ≤
4C2e

−1(γ + 1)

3K
√
2e

exp

[
−3
√

enK

2

]
2R.

For d > 1 and all γ such that,

max

(
0,

ln(2C1cd)

d ln
(
n
K

) ) < γ <
1

2d
+min

0,
ln
(

6
√
2e

C1cd

)
d ln(K/n)

 ,

we have

P (|ZK,n −Xc| ≥ (K/n)γ |Xc = xc) ≤
2C2

d

(
8d+ 2

3
√
2eK

)4d+1

exp

[
−3
√
2enK

2

]
cdR

d.

Through Corollary 3.3.1 the result of Theorem 3.3 is illustrated for a given value of α depending on K and
n. Corollary 3.3.1 provides a characteristic distance of the synthetic samples and their associated central point.
The proof of Corollary 3.3.1 can be found in 8.5. The next step of our work is to study SMOTE near the
boundary of the support of the minority class. This is the purpose of Theorem 3.4

Theorem 3.4. Assume that there exists R > 0, such that X = B(0, R). Suppose that there exist C2 such that,
for all x ∈ Rd, fX(x) ≤ C21x∈X . We consider 0 < ε < R. Then, for all K,n, and all z ∈ B(0, R)\B(0, R− ε),
and for d > 1, we have

fZK,n
(z) ≤ C(K,n, d, C2)R

(1/4)−d+1ε1/4. (9)

with,

C(K,n, d, C2) =
2C2

d− 1

(n−K − 1)

K

(
n− 1

K

)(
Γ(d/2)(2d−1 − 1)

√
2

2C2πd/2

)1/2

.

Theorem 3.4 highlights the fact that SMOTE density vanishes near the boundary of the minority class
support. The proof of Theorem 3.4 can be found in 8.6. Theorem 3.4 justifies why the community introduced
variants of SMOTE that tends to generate synthetic samples on the boundary of the minority class. An example
is Borderline SMOTE which was introduced by Han et al. (2005).

4 Numerical illustrations

Through Section 3, we highlighted the fact that SMOTE asymptotically regenerate the distribution of the
minority class, by copying the minority samples. The purpose of this section is to numerically illustrate the
theoretical limitations of SMOTE procedure. We show in particular that with the default value K = 5, the
SMOTE procedure generates data points that are very similar to the original data set.
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4.1 Simulated data

In order to measure the similarity between any generated data set Z = {Z1, . . . , Zm} and the original data set
X = {X1, . . . , Xn}, we compute

C(Z,X) =
1

m

m∑
i=1

∥Zi −X(1)(Zi)∥2, (10)

where X(1)(Zi) is the nearest neighbor of Zi among X1, . . . , Xn. Intuitively, this quantity measures how far the
generated data set is from the original observations: if the new data are copies of the original ones, this measure
equals zero. We apply the following protocol: for each value of n,

1. We generate a data setX composed of n i.i.d samplesX1, . . . , Xn following a bivariate uniform distribution
U([−3, 3]2) (as chosen by Elreedy et al., 2023).

2. We generate a data set Z composed of m = 1000 i.i.d new observations Z1, . . . , Zm by applying SMOTE
procedure on the original data set X, with different values of K. We compute C(Z,X).

3. We generate a data set X̃ composed of m = 1000 i.i.d new samples X̃1, . . . , X̃m, distributed as U([−3, 3]2).
We compute C(X̃,X), which is a reference value in the ideal case of new points sampled from the same
distribution.

Steps 1-3 are repeated B = 75 times. The average of C(Z,X) (resp. C(X̃,X)) over these B repetitions
is computed and denoted by C̄(Z,X) (resp. C̄(X̃,X)). We consider two different metrics: C̄(Z,X) and
C̄(Z,X)/C̄(X̃,X). The results are depicted in Figure 1 and Figure 2.

Results. Figure 1 depicts the quantity C̄(Z,X) as a function of the size of the minority class, for different
values of K. The metric C̄(Z,X) is consistently smaller for K = 5 than for other values of K, therefore high-
lighting that data generated by SMOTE with K = 5 are closer to the original data sample. This phenomenon
is strengthened as n increases. This is an artifact of the simulation setting as the original data samples fill the
input space as n increases.

0 200 400 600 800 1000
Number of initial minority samples (n)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

C(
Z,

X)

K = 5
K = n
K = 0.01 × n
K = 0.1 × n
K = 0.3 × n
K = 0.8 × n

Figure 1: Average distance C̄(Z,X) of SMOTE samples to their nearest neighbors in the original sample,
distributed as U([−3, 3]2).
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1.0
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X)
/C

(X
,X
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K = 0.3 × n
K = 0.8 × n

Figure 2: Average normalized distance C̄(Z,X)/C̄(X̃,X) of SMOTE samples to their nearest neighbor in the
original sample, distributed as U([−3, 3]2).

Figure 2 is similar to Figure 1, except that the renormalized quantity C̄(Z,X)/C̄(X̃,X) is plotted as a
function of n. We notice that the asymptotic for K = 5 is different since it is the only one where the distance
between SMOTE data points and original data points seems not to vary with n. Besides, this distance is smaller
than the other ones, thus stressing out that the SMOTE data points are very close to the original distribution
for K = 5. Note that, for the other asymptotics in K, the diversity of SMOTE observations increases with
n, meaning C̄(Z,X) gets closer from C̄(X̃,X). Besides, this diversity is asymptotically more important for
K = 0.1n and K = 0.01n. This corroborates our theoretical findings (Theorem 3.2) as this asymptotics do
not satisfy K/n → 0. Indeed, when K is set to a fraction of n, the SMOTE distribution does not converge to
the original distribution anymore, therefore generating data points that are not simple copies of the original
uniform samples. By construction SMOTE data points are close to central points which may explain why
the quantity of interest in Figure 2 is smaller than 1.

4.2 Extension to real-world data sets.

In this section, we apply SMOTE on real-world data and compare the distribution of the generated data points
to the original distribution, using the metric C̄(Z,X)/C̄(X̃,X).

For each value of n, we subsample n data points from the minority class. Then,

1. We uniformly split the data set into X1, . . . , Xn/2 (denoted by X) and X̃1, . . . , X̃n/2 (denoted by X̃).

2. We generate a data set Z composed of m = n/2 i.i.d new observations Z1, . . . , Zm by applying SMOTE
procedure on the original data set X, with different values of K. We compute C(Z,X).

3. We use X̃ in order to compute C(X̃,X).

This procedure is repeated B = 100 times to compute averages values as in Section 4.1.

Results. We apply the above protocol to two real-world data sets (GA4 and Phoneme), described in Table 1.
Figure 3 and Figure 4 display the quantity C̄(Z,X)/C̄(X̃,X) as a function of the size n of the minority class.
As in Section 4.1, we observe in Figure 3 and Figure 4 that for the strategies, Average normalized distance
C̄(Z,X)/C̄(X̃ increases except for SMOTE K = 5. The strategies using a value of hyperparameter K such that
K/n→ 0 tends to converge to a value smaller than all the strategies with K such that K/n ̸→ 0.
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Figure 3: Protocol real-data on Phoneme data set.

Algorithm 2 Multivariate Gaussian SMOTE iteration.

Input: Minority class samples Xc, . . . , Xn, number of nearest-neighbor K.
Select uniformly Xc (called central point), a random instance between X1, . . . , Xn.
Denote by I = X(1)(Xc) . . . , X(K)(Xc), the K nearest-neighbor of Xc (minimizing L2 norm).

µ̂(Xc)← 1
K+1

∑
Xk∈I∪{Xc} Xk

Σ̂(Xc)← 1
K+1

∑
Xk∈I∪{Xc} (Xk − µ̂)

T
(Xk − µ̂)

Sample Z ∼ N
(
µ̂(xc), Σ̂(xc)

)
Return Z

5 Predictive evaluation on real-world data sets

In this section, we first describe the different rebalancing strategies and two new ones we propose, and then
describe our experimental protocol. The data sets we consider are described in Table 1. They are open source
data sets for imbalanced cases from UCI Irvine (see Dua and Graff, 2017), except for GA4, Phoneme and Credit
Card.
Recall that in this paper, we focus on applying data sets containing only continuous explanatory variables. To
this aim, we have removed all categorical variables in each data set.

5.1 Rebalancing strategies

Over/Under Sampling strategies Random Under Sampling (RUS) acts on the majority class by selecting
uniformly without replacement several samples in order to obtain a prespecified size for the majority class.
Similarly, Random Over Sampling (ROS) acts on the minority class by selecting uniformly with replacement
several samples to be copied in order to obtain a prespecified size for the minority class.

Class weight The class weighting strategy assigns the same weight (hyperparameter of the procedure) to
each minority samples. The default setting for this strategy is to choose a weight ρ such that ρn = N − n,
where n and N − n are respectively the number of minority and majority samples in the data set.
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Figure 4: Protocol real-data on GA4 data set.

NearMissOne NearMissOne is an undersampling procedure. For each sample Xi in the majority class, the
averaged distance of Xi to its K nearest neighbors in the minority class is computed. Then, the samples Xi are
ordered (decreasingly) according to this averaged distance. Finally, from bottom to top, the Xi are dropped
until the given number/ratio is reached. Consequently, the Xi with the smallest mean distance are dropped
firstly.

Borderline SMOTE Borderline SMOTE 1 Han et al. (2005) procedure works as follows. For each individual
Xi in the minority class, let m−(Xi) be the number of samples of the majority class among the m nearest
neighbors of Xi, where m is a hyperparameter. For all Xi in the minority class such that m/2 ≤ m−(Xi) < m,
do the following:

• Select uniformly Xk among the K nearest-neighbors of Xi in the minority class, and build a linear
interpolation between Xi and this nearest neighbor as

Z = WXi + (1−W )Xk, (11)

where W ∼ U([0, 1]).

• Repeat Step 1 q times.

Borderline SMOTE 2 Han et al. (2005) works exactly as Borderline SMOTE 1 except that the selected point
in Step 1 is uniformly chosen among the K nearest neighbors of xi in the full original sample (including positive
and negative examples). Then, the new observation Z is built as in Equation 11 with W ∼ U([0, 0.5]).

5.2 Introducing new oversampling strategies

The limitations of SMOTE highlighted in Section 3 drive us to two new rebalancing strategies.

CV SMOTE We introduce a new algorithm, called CV SMOTE, that finds the best hyperparameter K
among a prespecified grid via a 5-fold cross-validation procedure. The grid is composed of the set {1, 2, . . . , 15}
extended with the values ⌊0.01ntrain⌋, ⌊0.1ntrain⌋ and ⌊√ntrain⌋, where ntrain is the number of minority
samples in the training set.
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Table 1: Description of the data sets, where n is the number of samples, and d the number of features.

Total N minority d
samples n/N

GA4 319 066 0.7% 7
CreditCard 284 315 0.2% 29
Abalone 4 177 1% 8
Phoneme 5 404 29% 5
Yeast 1 462 11% 8
Pima 768 35% 8
Wine 4 974 4% 11

Vehicule 846 23% 18
Ionosphere 351 36% 32
Haberman 306 26% 3

Breast cancer 630 36% 9

Recall that through Theorem 3.3, we show that SMOTE procedure with the default value of hyperparameter
K = 5 asymptotically copy the original samples. The idea of CV SMOTE is then to try several values of K
in order to avoid copying samples and probably get better improvement of the used classifier at the following
step of the machine learning pipeline. CV SMOTE is the simplest idea that the theorems drive us as solution
of SMOTE limitations.

Multivariate Gaussian SMOTE(K) Now, we introduce a new oversampling strategy named Multivariate
Gaussian SMOTE (MGS). In this procedure, we generate new samples from the distribution N (µ̂, Σ̂), where
the empirical mean and covariance µ̂, Σ̂ are estimated using the K neighbors and the central point. We detail
one MGS iteration in Algorithm 2.

The idea behind MGS, is to exploit for the maximum the neighborhood of the central point. Using a
multivariate gaussian distribution, which support is unbounded, reduces the risk of simply copying the original
samples when K/n→ 0.

5.3 Experiments

Table 2: Random Forest ROC AUC for different rebalancing strategies and different data sets. Only datasets
such that the None strategy is not among the best ones (displayed in bold) are displayed. Data sets artificially
undersampled for minority class are in italics. Other data sets are presented in Table 3. Mean standard
deviations are computed.

Resampling None Class RUS ROS Near BS1 BS2 Smote CV MGS
Strategy weight Miss1 Smote

GA4 (1%) (±0.004) 0.660 0.472 0.866 0.500 0.848 0.652 0.695 0.506 0.720 0.650
CreditCard (0.2%) (±0.003) 0.939 0.938 0.975 0.941 0.906 0.945 0.945 0.954 0.954 0.950

Abalone (1%) (±0.015) 0.697 0.702 0.719 0.712 0.570 0.712 0.742 0.756 0.750 0.799
Phoneme (1%) (±0.021) 0.819 0.821 0.851 0.814 0.575 0.847 0.861 0.876 0.877 0.899
Yeast (1%) (±0.019) 0.906 0.928 0.931 0.929 0.806 0.946 0.940 0.967 0.968 0.944
Wine (4%)(±0.008) 0.819 0.815 0.846 0.810 0.748 0.827 0.780 0.828 0.822 0.822
Pima (10%) (±0.012) 0.797 0.804 0.802 0.800 0.680 0.814 0.812 0.807 0.806 0.821

Haberman (26%) (±0.013) 0.684 0.680 0.670 0.673 0.704 0.652 0.660 0.687 0.675 0.664
Haberman (10%) (±0.037) 0.580 0.580 0.599 0.582 0.634 0.609 0.624 0.617 0.598 0.619

Protocol We compare the different rebalancing strategies on 11 real-world data sets, described in Table 1.
We use 80%/20% (train/test) stratified split of the data, and apply each rebalancing strategy on the training
set, in order to obtain a balanced data set. A learning procedure (Logistic regression or Random Forest) with
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default hyperparameters is trained on the rebalanced training set. The performance is evaluated on the test
set via the ROC AUC. This procedure is repeated 100 times and the averaged results are computed. We use
the implementation of imb-learn (Lemâıtre et al., 2017) for the state-of-the-art strategies (see Appendix 7.1 for
more details).

For 6 data sets out of 11, the None strategy is the best, probably highlighting that the imbalance ratio is
not high enough or the learning task not difficult enough to require a tailored rebalancing strategy. To analyze
what could happen for more imbalanced data sets, we use the following protocol. We subsample the minority
class for each one of the 6 data sets mentioned above, so that the resulting imbalanced ratio is set to either
10% or 1%. This subsampling strategy is applied once for each data set and each imbalance ratio in a nested
fashion, so that the minority class of the 1% data set is included in the 10% data set. Data sets such that the
None strategy is not the best are displayed in Table 2. Other results are presented in Table 3 in Appendix 7.2.

Rebalancing methods Note that all data sets presented in Table 2 are highly imbalanced, with a ratio lower
than 1% (10%, 26% and 10% for Pima, Haberman and Haberman(10%) data sets respectively). Whilst in the
vast majority of scenarios, None is among the best approaches to deal with imbalanced data (see Table 3),
it seems to be outperformed by dedicated rebalancing strategies for highly imbalanced data sets, presented in
Table 2. Similar observations are extracted from Table 5 when using Logistic Regression. Therefore, considering
only continuous input variables, and measuring the predictive performance with ROC AUC, we observe that
rebalancing strategy are required only in some specific settings in which the minority class is highly under-
represented. Besides, we see that RUS strategy shows an advantage for very large data-sets, that we expect to
be less sensitive to the loss of information from undersampling.

Several seminal papers already noticed that the None strategy was competitive in terms of predictive per-
formances. He et al. (2008) compare the None strategy, ADASYN and SMOTE, followed by a Decision tree
classifier on 5 data sets (including Vehicle, Pima, Ionosphere and Abalone). In terms of Precision and F1 score,
the None strategy is on par with the two other rebalancing methods. Han et al. (2005) study the impact of
Borderline SMOTE and others SMOTE variant on 4 data sets (including Pima and Haberman). The None
strategy is competitive (in terms of F1 score) on two of these data sets.

SMOTE We remark that the performances of CV SMOTE are comparable to that of SMOTE with the
default hyperparameter setting (K = 5). This could be explained by our grid choice (which could be expanded)
or by the data set characteristics. Indeed, the only data set for which we note that CV SMOTE is notably
better than SMOTE is GA4, which contains the highest number of minority samples. This corresponds to our
theoretical analysis (Theorem 3.3) that highlights that SMOTE, by default, tends to copy original minority
samples, when the number of minority samples is large enough. Therefore, more analyses should be carried out
to analyze the potential efficiency of CV SMOTE when the number of minority samples is large enough.

Multivariate Gaussian SMOTE(K) This new strategy exhibits good predictive performances. Indeed, as
shown in Table 2, MGS has the best improvement on 3 data sets. This could be explained by the Gaussian
sampling of synthetic observations that allows generated data points to fall outside the convex hull of the
minority class, therefore limiting the border phenomenon, established in Theorem 3.4. MGS is potentially a
promising new strategy, which will be available in an open source package.

6 Conclusion

Our work in this paper is both theoretical and experimental. We first proved that SMOTE (with default param-
eter) regenerates the original distribution by simply copying the original minority samples. We also established
that SMOTE density vanishes near the boundary of the support of the minority distribution, therefore justifying
the introduction of SMOTE variants focusing on the border. Our experiments show that for most data sets,
the None strategy seems to be competitive, at least when the minority class is well represented. While our CV
SMOTE approach is not efficient in general, our MGS proposal appears to be promising, by circumventing the
borderline issue of SMOTE, exhibited in Theorem 3.4.

More experiments should be carried out to understand the surprising performances of RUS, which consis-
tently outperforms ROS, whereas the two methods are really close, as they both rely on resampling. Besides,
in order to analyze MGS(K) in more details, we would like to study the impact of a renormalizing factor λ in
the covariance matrix estimation, such that the last step in Algorithm 2 would turn into Z ∼ N (µ̂, λΣ̂).
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7 Experiments

7.1 Binary classification protocol

For each data set, the ratio hyperparameters of each rebalancing strategy are chosen so that the minority and
majority class have the same weights in the training phase.The main purpose is to apply the strategies exactly
on the same data points (Xtrain), then train the chosen classifier and evaluate the strategies on the same Xtest.
This objective is achieved by selecting each time 4 fold for the training, apply each of the strategies to these 4
exact same fold.

The state-of-the-art rebalancing strategies(see Lemâıtre et al., 2017) are used with their default hyperpa-
rameter values.

GA4 and CreditCard For the GA4 data set, a Time Series split is performed instead of a Stratified 5−fold,
because of the temporality of the data. Furthermore, a group out is applied on the different client ID. This
means that a client that appears in the training set (composed each time of 4 folds) is systemically deleted from
the test set if it appears inside. For the CreditCard data set, a 5 fold Time Series split is performed instead of
a Stratified 5−fold, because of the temporality of the data.

7.2 Additional experiments
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Table 3: Random Forest ROC AUC for different rebalancing strategies and different data sets. Only datasets
such that the None strategy is on par with the best strategies are displayed. Other data sets are presented in
Table 2. Mean standard deviations are computed. The best strategy is highlighted in bold for each data set.
CV SMOTE is not applied to data sets artifically undersampled Ionosphere(1%) and Breast Cancer (1%) due
to the small number of minority class samples.

Strategy None Class RUS ROS Near BS1 BS2 Smote CV MGS
weight Miss1 Smote

Phoneme (±0.0007) 0.961 0.961 0.950 0.962 0.900 0.960 0.961 0.962 0.962 0.961
Phoneme (10%) (±0.003) 0.957 0.957 0.936 0.957 0.649 0.957 0.957 0.958 0.959 0.961

Pima (±0.004) 0.826 0.826 0.823 0.824 0.803 0.813 0.812 0.823 0.823 0.826
Yeast (±0.003) 0.960 0.964 0.968 0.964 0.906 0.962 0.965 0.964 0.966 0.965
Vehicle (±0.001) 0.994 0.994 0.990 0.995 0.924 0.995 0.994 0.994 0.994 0.994

Vehicle (10%) (±0.003) 0.992 0.993 0.978 0.994 0.755 0.991 0.988 0.992 0.991 0.992
Ionosphere (±0.002) 0.974 0.973 0.967 0.973 0.944 0.971 0.972 0.971 0.972 0.970

Ionosphere (10%) (±0.008) 0.969 0.965 0.932 0.965 0.822 0.949 0.946 0.949 0.957 0.950
Ionosphere (1%) (±0.006) 1.0 1.0 0.962 1.0 0.980 1.0 0.985 1.0 0.999
Breast Cancer (±0.001) 0.992 0.991 0.991 0.991 0.990 0.991 0.990 0.991 0.991 0.992

Breast Cancer (10%) (±0.002) 0.993 0.993 0.992 0.993 0.990 0.992 0.989 0.993 0.992 0.994
Breast Cancer (1%) (±0.001) 1.0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Table 4: Random Forest ROC AUC SMOTE strategies. The best strategy is highlighted in bold for each data
set.

SMOTE K = 5 K =
√
n K = 0.01n K = 0.1n CV

Strategy Smote

GA4 (±0.004) 0.506 0.639 0.567 0.701 0.720
CreditCard (±0.003) 0.954 0.961 0.962 0.965 0.954
Abalone (±0.015) 0.756 0.756 0.719 0.725 0.750
Phoneme (±0.001) 0.962 0.961 0.962 0.960 0.962
Pima (±0.003) 0.826 0.823 0.823 0.823 0.823
Wine (±0.007) 0.828 0.825 0.828 0.825 0.822
Yeast (±0.003) 0.964 0.965 0.964 0.965 0.966
Vehicle (±0.001) 0.994 0.994 0.994 0.994 0.994

Ionosphere (±0.002) 0.971 0.971 0.972 0.972 0.972
Haberman (±0.013) 0.675 0.675 0.672 0.677 0.664

Breast cancer (±0.001) 0.991 0.991 0.991 0.991 0.990
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Table 5: Logistic Regression ROC AUC. The best strategy is highlighted in bold for each data set. CV SMOTE
is not applied to data sets artifically undersampled Ionosphere(1%) and Breast Cancer (1%) due to the small
number of minority class samples.

Strategy None Class RUS ROS Near BS1 BS2 Smote CV MGS
weight Miss1 Smote

GA4 (±0.001) 0.831 0.866 0.865 0.866 0.896 0.862 0.870 0.859 0.862 0.855
CreditCard (±0.001) 0.939 0.938 0.975 0.941 0.906 0.945 0.945 0.954 0.954 0.950
Abalone (±0.002) 0.767 0.855 0.734 0.866 0.777 0.868 0.873 0.866 0.866 0.848
Phoneme (±0.001) 0.812 0.811 0.811 0.811 0.571 0.801 0.805 0.811 0.811 0.810

Phoneme (10%) (±0.001) 0.809 0.806 0.805 0.806 0.431 0.801 0.805 0.805 0.805 0.805
Phoneme (1%)(±0.009) 0.798 0.803 0.787 0.803 0.435 0.771 0.767 0.802 0.805 0.802

Yeast (±0.001) 0.960 0.964 0.968 0.965 0.906 0.962 0.965 0.964 0.966 0.965
Yeast (1%) (±0.015) 0.893 0.947 0.867 0.949 0.733 0.926 0.931 0.947 0.947 0.941

Pima (±0.004) 0.830 0.832 0.823 0.826 0.812 0.819 0.819 0.825 0.825 0.826
Pima (10%) (±0.008) 0.785 0.776 0.774 0.782 0.684 0.787 0.796 0.782 0.778 0.787

Wine (±0.004) 0.827 0.846 0.831 0.845 0.722 0.845 0.805 0.845 0.845 0.842
Vehicle (±0.001) 0.993 0.991 0.991 0.993 0.994 0.992 0.988 0.993 0.993 0.991

Vehicle (10%) (±0.003) 0.994 0.995 0.989 0.994 0.983 0.994 0.989 0.994 0.994 0.994
Ionosphere (±0.006) 0.878 0.875 0.879 0.870 0.842 0.854 0.858 0.868 0.871 0.865

Ionosphere (10%) (±0.019) 0.950 0.947 0.925 0.943 0.848 0.936 0.938 0.946 0.951 0.932
Ionosphere (1%) (±0.008) 0.997 0.997 0.947 0.997 0.915 0.997 0.994 0.997 0.997
Breast Cancer (±0.001) 0.610 0.721 0.681 0.693 0.757 0.623 0.622 0.680 0.648 0.676

Breast Cancer (10%)(±0.069) 0.576 0.657 0.652 0.659 0.589 0.669 0.647 0.658 0.665 0.654
Breast Cancer (1%) (±0.059) 0.850 0.855 0.881 0.852 0.335 0.850 0.859 0.857 0.869

Haberman (±0.013) 0.694 0.698 0.688 0.693 0.720 0.664 0.652 0.685 0.681 0.687
Haberman (10%)(±0.003) 0.633 0.634 0.611 0.632 0.668 0.598 0.605 0.618 0.615 0.598

Table 6: Logistic regression ROC AUC SMOTE strategies. The best strategy is highlighted in bold for each
data set.

SMOTE K = 5 K =
√
n K = 0.01n K = 0.1n CV

Strategy Smote

GA4 (±0.001) 0.859 0.857 0.857 0.860 0.862
CreditCard (±0.001) 0.954 0.961 0.961 0.965 0.954
Abalone (±0.001) 0.866 0.866 0.867 0.868 0.824
Phoneme (±0.001) 0.811 0.811 0.811 0.811 0.811
Pima (±0.004) 0.825 0.824 0.824 0.825 0.825
Wine (±0.003) 0.845 0.845 0.843 0.845 0.845
Yeast (±0.003) 0.966 0.965 0.966 0.965 0.966
Vehicle (±0.001) 0.992 0.992 0.993 0.992 0.993

Ionosphere (±0.007) 0.868 0.871 0.868 0.871 0.871
Breast cancer(±0.001) 0.680 0.668 0.682 0.674 0.648
Haberman (±0.013) 0.685 0.687 0.688 0.689 0.681
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8 Main proofs

8.1 Proof of Lemma 1

Proof of Lemma 1. Let X be the support of PX . SMOTE generates new points by linear interpolation of
the original minority sample. This means that for all x, y in the minority samples or generated by SMOTE
procedure, we have (1− t)x+ ty ∈ Conv(X ) by definition of Conv(X ). This leads to the fact that precisely, all
the new SMOTE samples are contained in Conv(X ). This implies Supp(PZ) ⊆ Conv(X ).

8.2 Proof of Theorem 3.1

Proof of Theorem 3.1. We consider a single SMOTE iteration. Recall that the central point Xc (see Algo-
rithm 1) is fixed, and thus denoted by xc.

The random variablesX(1)(xc), . . . , X(n−1)(xc) denote a reordering of the initial observationsX−1, X2, . . . , Xn

such that
||X(1)(xc)− xc|| ≤ ||X(2)(xc)− xc|| ≤ . . . ≤ ||X(n−1)(xc)− xc||.

For clarity, we remove the explicit dependence on xc. Recall that SMOTE builds a linear interpolation between
xc and one of its K nearest neighbors chosen uniformly. Then the newly generated point Z satisfies

Z = (1−W )xc +W

K∑
k=1

X(k)1{I=k}, (12)

whereW is a uniform random variable over [0, 1], independent of I,X1, . . . , Xn, with I distributed as U({1, . . . ,K}).
From now, consider that the k-th nearest neighbor of xc, X(k)(xc), has been chosen (that is I = k). Then

Z satisfies

Z = (1−W )xc +WX(k) (13)

= xc −Wxc +WX(k), (14)

which implies

Z − xc = W (X(k) − xc). (15)

Let fZ−xc
, fW and fX(k)−xc

be respectively the density functions of Z−xc, W and X(k)−xc. Let z, z1, z2 ∈
Rd. Recall that z ≤ z1 means that each component of z is lower than the corresponding component of z1. Since
W and X(k) − xc are independent, we have,

P(z1 ≤ Z − xc ≤ z2) =

∫
w∈R

∫
x∈Rd

fW,X(k)−xc
(w, x)1{z1≤wx≤z2}dwdx (16)

=

∫
w∈R

∫
x∈Rd

fW (w)fX(k)−xc
(x)1{z1≤wx≤z2}dwdx (17)

=

∫
w∈R

fW (w)

(∫
x∈Rd

fX(k)−xc
(x)1{z1≤wx≤z2}dx

)
dw. (18)

Besides, let u = wx. Then x = (u1

w , . . . , ud

w )T .The Jacobian of such transformation equals:∣∣∣∣∣∣∣
∂x1

∂u1
. . . ∂x1

∂ud

...
. . .

...
∂xd

∂u1
. . . ∂xd

∂ud

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1
w 0

. . .

0 . . . 1
w

∣∣∣∣∣∣∣ =
1

wd
(19)

Therefore, we have x = u/w and dx = du/wd, which leads to

P(z1 ≤ Z − xc ≤ z2) (20)

=

∫
w∈R

1

wd
fW (w)

(∫
u∈Rd

fX(k)−xc

( u
w

)
1{z1≤u≤z2}du

)
dw. (21)
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Note that a random variable Z ′ with density function

fZ′(z′) =

∫
w∈R

1

wd
fW (w)fX(k)−xc

(
z′

w

)
dw (22)

satisfies, for all z1, z2 ∈ Rd,

P(z1 ≤ Z − xc ≤ z2) =

∫
w∈R

1

wd
fW (w)

(∫
u∈Rd

fX(k)−xc

( u
w

)
1{z1≤u≤z2}du

)
dw. (23)

Therefore, the variable Z − xc admits the following density

fZ−xc(z
′|Xc = xc, I = k) =

∫
w∈R

1

wd
fW (w)fX(k)−xc

(
z′

w

)
dw. (24)

Since W follows a uniform distribution on [0, 1], we have

fZ−xc
(z′|Xc = xc, I = k) =

∫ 1

0

1

wd
fX(k)−xc

(z′
w

)
dw. (25)

The density fX(k)−xc
of the k-th nearest neighbor of xc can be computed exactly (see, Lemma 6.1 in Berrett,

2017), that is

fX(k)−xc
(u) = (n− 1)

(
n− 2

k − 1

)
fX(xc + u)

[
µX (B(xc, ||u||))

]k−1

×
[
1− µX (B(xc, ||u||))

]n−k−1
, (26)

where

µX (B(xc, ||u||)) =
∫
B(xc,∥u∥)

fX(x)dx. (27)

We recall that B(xc, ∥u∥) is the ball centered on xc and of radius ∥u∥. Hence we have

fX(k)−xc
(u) = (n− 1)

(
n− 2

k − 1

)
fX(xc + u)µX (B(xc, ||u||))k−1

[1− µX (B(xc, ||u||))]n−k−1
. (28)

Since Z − xc is a translation of the random variable Z, we have

fZ(z|Xc = xc, I = k) = fZ−xc(z − xc|Xc = xc, I = k). (29)

Injecting Equation (28) in Equation (25), we obtain

fZ(z|Xc = xc, I = k) (30)

= fZ−xc(z − xc|Xc = xc, I = k) (31)

=

∫ 1

0

1

wd
fX(k)−xc

(z − xc

w

)
dw (32)

= (n− 1)

(
n− 2

k − 1

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
µX

(
B

(
xc,
||z − xc||

w

))k−1

(33)

×
[
1− µX

(
B

(
xc,
||z − xc||

w

))]n−k−1

dw (34)
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Recall that in SMOTE, k is chosen at random in {1, . . . ,K} through the uniform random variable I. So far,
we have considered I fixed. Taking the expectation with respect to I, we have

fZ(z|Xc = xc) (35)

=

K∑
k=1

fZ(z|Xc = xc, I = k)P[I = k] (36)

=
1

K

K∑
k=1

∫ 1

0

1

wd
fX(k)−xc

(z − xc

w

)
dw (37)

=
1

K

K∑
k=1

(n− 1)

(
n− 2

k − 1

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
µX

(
B

(
xc,
||z − xc||

w

))k−1

(38)

× [1− µX

(
B

(
xc,
||z − xc||

w

))
]n−k−1dw (39)

=
(n− 1)

K

∫ 1

0

1

wd
fX

(
xc +

z − xc

w

) K∑
k=1

(
n− 2

k − 1

)
µX

(
B

(
xc,
||z − xc||

w

))k−1

(40)

× [1− µX

(
B

(
xc,
||z − xc||

w

))
]n−k−1dw (41)

=
(n− 1)

K

∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)K−1∑
k=0

(
n− 2

k

)
µX

(
B

(
xc,
||z − xc||

w

))k

(42)

×
[
1− µX

(
B

(
xc,
||z − xc||

w

))]n−k−2

dw. (43)

Note that the sum can be expressed as the cumulative distribution function of a Binomial distribution param-
eterized by n− 2 and µX(B(xc, ∥z − xc∥/w)), so that

K−1∑
k=0

(
n− 2

k

)
µX

(
B

(
xc,
||z − xc||

w

))k [
1− µX

(
B

(
xc,
||z − xc||

w

))]n−k−2

(44)

=(n−K − 1)

(
n− 2

K − 1

)
B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
, (45)

(see Technical Lemma 2 for details). We inject Equation (45) in Equation (35)

fZ(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw. (46)

We know that

fZ(z) =

∫
xc∈X

fZ(z|Xc = xc)fX(xc)dxc.

Combining this remark with the result of Equation (46) we get

fZ(z) = (n−K − 1)

(
n− 1

K

)∫
xc∈X

∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
fX(xc)dwdxc. (47)

Link with Elreedy’s formula According to the Elreedy formula

fZ(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ ∞

r=∥z−xc∥
fX

(
xc +

(z − xc)r

∥z − xc∥

)
rd−2

∥z − xc∥d−1

× B (n−K − 1,K; 1− µX (B (xc, r))) dr. (48)
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Now, let r = ∥z − xc∥/w so that dr = −∥z − xc∥dw/w2. Thus,

fZ(z|Xc = xc)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

fX

(
xc +

z − xc

w

)
1

wd−2

1

∥z − xc∥
(49)

× B
(
n−K − 1,K; 1− µX

(
B

(
xc,

z − xc

w

)))
∥z − xc∥

w2
dw (50)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
B
(
n−K − 1,K; 1− µX

(
B

(
xc,

z − xc

w

)))
dw. (51)

8.3 Proof of Theorem 3.2

Proof of Theorem 3.2. For any event A,B, we have

1− P[A ∩B] = P[Ac ∪Bc] ≤ P[Ac] + P[Bc], (52)

which leads to

P[A ∩B] ≥ 1− P[Ac]− P[Bc] (53)

= P[A]− P[Bc]. (54)

By construction,

∥Xc − Z∥ ≤ ∥Xc −X(K)(Xc)∥. (55)

Let x ∈ X and η > 0. Let α, ε > 0. We have,

P[Xc ∈ B(x, α− ε)]− P[∥Xc −X(K)(Xc)∥ > ε] (56)

≤ P[Xc ∈ B(x, α− ε), ∥Xc −X(K)(Xc)∥ ≤ ε] (57)

≤ P[Xc ∈ B(x, α− ε), ∥Xc − Z∥ ≤ ε] (58)

≤ P[Z ∈ B(x, α)]. (59)

Similarly, we have

P[Z ∈ B(x, α)]− P[∥Xc −X(K)(Xc)∥ > ε] (60)

≤ P[Z ∈ B(x, α), ∥Xc −X(K)(Xc)∥ ≤ ε] (61)

≤ P[Z ∈ B(x, α), ∥Xc − Z∥ ≤ ε] (62)

≤ P[Xc ∈ B(x, α+ ε)]. (63)

Since Xc admits a density, for all ε > 0 small enough

P[Xc ∈ B(x, α+ ε)] ≤ P[Xc ∈ B(x, α)] + η, (64)

and

P[Xc ∈ B(x, α)]− η ≤ P[Xc ∈ B(x, α− ε)]. (65)

Let ε such that (64) and (65) are verified. According to Lemma 2.3 in Biau and Devroye (2015), sinceX1, . . . , Xn

are i.i.d., if K/n tends to zero as n→∞, we have

P[∥Xc −X(K)(Xc)∥ > ε]→ 0. (66)

Thus, for all n large enough,

P[Xc ∈ B(x, α)]− 2η ≤ P[Z ∈ B(x, α)] (67)
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and

P[Z ∈ B(x, α)] ≤ 2η + P[Xc ∈ B(x, α)]. (68)

Finally, for all η > 0, for all n large enough, we obtain

P[Xc ∈ B(x, α)]− 2η ≤ P[Z ∈ B(x, α)] ≤ 2η + P[Xc ∈ B(x, α)], (69)

which proves that

P[Z ∈ B(x, α)]→ P[Xc ∈ B(x, α)]. (70)

Therefore, by the Monotone convergence theorem, for all Borel sets B ⊂ Rd,

P[Z ∈ B]→ P[Xc ∈ B]. (71)

8.4 Proof of Theorem 3.3

Proof of Theorem 3.3. Let xc ∈ X be a central point in a SMOTE iteration. From Theorem 3.1, we have,

fZ(z|Xc = xc)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw (72)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
1{xc+

z−xc
w ∈X}

× B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw. (73)

Let R ∈ R such that X ⊂ B(0, R). For all u = xc +
z−xc

w , we have

w =
||z − xc||
||u− xc||

. (74)

If u ∈ X , then u ∈ B(0, R). Besides, since xc ∈ X ⊂ B(0, R), we have ||u− xc|| < 2R and

w >
||z − xc||

2R
. (75)

Consequently,

1{xc+
z−xc

w ∈X} ≤ 1{w>
||z−xc||

2R }. (76)

So finally

1{xc+
z−xc

w ∈X} = 1{xc+
z−xc

w ∈X}1{w>
||z−xc||

2R }. (77)

Hence,

fZ(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
1{xc+

z−xc
w ∈X}1{w>

||z−xc||
2R }

× B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw (78)

= (n−K − 1)

(
n− 1

K

)∫ 1

||z−xc||
2R

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw. (79)
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Now, let 0 < α ≤ 2R and z ∈ Rd such that ||z − xc|| > α. In such a case, w > α
2R and:

fZ(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ 1

α
2R

1

wd
fX

(
xc +

z − xc

w

)
(80)

× B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw.

Using Lemma 3, we have

fZ(z|Xc = xc)

= (n−K − 1)

(
n− 1

K

)∫ 1

α
2R

1

wd
fX

(
xc +

z − xc

w

)
B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw (81)

≤ (n−K − 1)

K

(
n− 1

K

)∫ 1

α
2R

1

wd
fX

(
xc +

z − xc

w

)

×
[
1− µX

(
B

(
xc,
||z − xc||

w

))]n−K−2
[
1−

[
µX

(
B

(
xc,
||z − xc||

w

))]K]
dw (82)

≤ (n−K − 1)

K

(
n− 1

K

)∫ 1

α
2R

1

wd
fX

(
xc +

z − xc

w

)
×
[
1− µX

(
B
(
xc,

α

w

))]n−K−2
[
1−

[
µX

(
B
(
xc,

α

w

))]K]
dw. (83)

Recall that there is C2 ∈ R such that fX ≤ C2. Hence, for all z ∈ Rd such that ||z − xc|| > α,

fZ(z|Xc = xc) (84)

≤ C2(n−K − 1)

K

(
n− 1

K

)∫ 1

α
2R

1

wd

[
1− µX

(
B
(
xc,

α

w

))]n−K−2
[
1−

[
µX

(
B
(
xc,

α

w

))]K]
dw (85)

≤ C2(n−K − 1)

K

(
n− 1

K

)∫ 1

α
2R

1

wd
[1− µX (B (xc, α))]

n−K−2
[
1− [µX (B (xc, α))]

K
]
dw (86)

≤ C2(n−K − 1)

K

(
n− 1

K

)
[1− µX (B (xc, α))]

n−K−2
∫ 1

α
2R

1

wd
dw (87)

= C2
n

K

(
1− K − 1

n

)(
n− 1

K

)
[1− µX (B (xc, α))]

n−K−2
∫ 1

α
2R

1

wd
dw (88)

= η(α,R)
C2n

K

(
1− K − 1

n

)(
n− 1

K

)
[1− µX (B (xc, α))]

n−K−2
(89)

with

η(α,R) =

{
ln
(
2R
α

)
if d = 1

1
d−1

((
2R
α

)d−1 − 1
)

otherwise
.

Using Lemma 4, and letting βxc,α = µX (B (xc, α)), we have

fZ(z|Xc = xc) (90)

≤ η(α,R)
C2n

K

(
1− K − 1

n

)(
e(n− 1)

K

)K

(1− βxc,α)
n−K−2

(91)

≤ η(α,R)C2

( n

K

)K+1

eK
(
1− K − 1

n

)
(1− βxc,α)

n−K−2
(92)

≤ η(α,R)C2

( n

K

)K+1

eK (1− βxc,α)
n−K−2

(93)

= C2η(α,R) exp

[
n

(
K

n
+

(K + 1)

n
ln
( n

K

)
− K + 2

n
ln(1− βxc,α) + ln(1− βxc,α)

)]
. (94)

21



So,

K

n
+

(K + 1)

n
ln
( n

K

)
− K + 2

n
ln(1− βxc,α) ≤

K + 2

n
+

K + 2

n
ln
( n

K

)
+

K + 2

n
ln

(
1

1− βxc,α

)
(95)

=
K + 2

n

[
1 + ln

( n

K

)
+ ln

(
1

1− βxc,α

)]
(96)

=
K + 2

n

[
ln(e) + ln

( n

K

)
+ ln

(
1

1− βxc,α

)]
(97)

=
K + 2

n
ln

(
en

K(1− βxc,α)

)
. (98)

Since K ≥ 1, we have,

K + 2

n
ln

(
en

K(1− βxc,α)

)
≤ K + 2K

n
ln

(
en

K(1− βxc,α)

)
(99)

=
3K

n
ln

(
en

K(1− βxc,α)

)
(100)

=
K(1− βxc,α)

en
ln

(
en

K(1− βxc,α)

)
3e

1− βxc,α
(101)

Using Lemma 5, we have

K(1− βxc,α)

en
ln

(
en

K(1− βxc,α)

)
3e

1− βxc,α
≤
√

K(1− βxc,α)

en

3e

1− βxc,α
(102)

= 3

√
e

1− βxc,α

√
K

n
(103)

So finally,

K

n
+

(K + 1)

n
ln
( n

K

)
− K + 2

n
ln(1− βxc,α) ≤ 3

√
e

1− βxc,α

√
K

n
. (104)

Hence, for all z /∈ B(xc, α),

fZ(z|Xc = xc) ≤ C2η(α,R) exp

[
n

(
3

√
e

1− βxc,α

√
K

n
+ ln (1− βxc,α)

)]
(105)

= ϵ(n, α,K, xc). (106)

Consequently,

P (|Z −Xc| ≥ α|Xc = xc) =

∫
z/∈B(xc,α),z∈X

fZ(z|Xc = xc)dz (107)

≤
∫
z/∈B(xc,α),z∈X

ε(n, α,K, xc)dz (108)

= ε(n, α,K, xc)

∫
z/∈B(xc,α),z∈X

dz (109)

≤ ε(n, α,K, xc)×Vol(Conv(X )), (110)

where Vol(Conv(X )) is the volume of the convex hull of the support of the distribution of X. Since xc ∈ X , by
definition of the support (see ), we know that for all ρ > 0, µX(B(xc, ρ)) > 0. Thus, βxc,α = µX (B (xc, α)) > 0.
Consequently,

ε(n, α,K, xc) = C2η(α,R) exp

[
n

(
3

√
e

1− βxc,α

√
K

n
+ ln (1− βxc,α)

)]
(111)

tends to zero, as K/n tends to infinity.
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8.5 Proof of Corollary 3.3.1

Proof of Corollary 3.3.1. Let x ∈
o

X . By assumption, according to Theorem 3.3, for all n ≥ K ≥ 1, for all α > 0
such that α ≤ 2R,

P(|Z −Xc| ≥ α|Xc = xc) ≤ ϵ(n, α,K, xc)×Vol(Conv(X )), (112)

where Vol(Conv(X )) is the volume of the convex hull of X , and

ε(n,K, xc, α) = C2η(α,R) exp

[
n

(
3

√
e

1− βxc,α

√
K

n
+ ln (1− βxc,α)

)]
, (113)

with βxc,α = µX (B (xc, α)) and

η(α,R) =

{
ln
(
2R
α

)
if d = 1

1
d−1

((
2R
α

)d−1 − 1
)

otherwise.

Let αn = (K/n)γ , with γ > 0. By assumption, K/n tends to zero as n tends to infinity, so that limn→∞ αn = 0.

Since xc ∈ X , for all n large enough, B(xc, αn) ⊂
o

X . Therefore, for all n large enough,

C1cdα
d
n ≤ βxc,αn =

∫
x∈B(xc,αn)

fX(x)dx ≤ C2cdα
d
n, (114)

with cd = πd/2/Γ
(
d
2 + 1

)
. Besides, we have for all x ∈ [−∞, 1], ln(1− x) ≤ −x. Then, according to (113) and

(114),

ε(n,K, xc, αn) ≤ C2η(αn, R) exp

[
n

(
3

√
e

1− C1cdαd
n

√
K

n
− C1cdα

d
n

)]
. (115)

Case d = 1. If d = 1, then

ε(n,K, xc, αn) ≤ C2 ln

(
2R

αn

)
exp

[
n

(
3

√
e

1− C1c1αd
n

√
K

n
− C1c1α

d
n

)]
(116)

≤ C2 ln
(
2R
( n

K

)γ)
exp

n
3

√
e

1− C1c1
(
K
n

)γ√K

n
− C1c1

(
K

n

)γ
 (117)

≤ C2 ln
(
2R
( n

K

)γ)
exp

n√K

n

3

√
e

1− C1c1
(
K
n

)γ − C1c1

(
K

n

)γ− 1
2

 . (118)

For this upper to tend to zero, we need to have 0 < γ < 1/2. Note that

C1c1

(
K

n

)γ

≤ 1

2
, (119)

is equivalent to

γ ≥ ln(2C1c1)

ln
(
n
K

) . (120)

Thus, assuming that

max

(
0,

ln(2C1c1)

ln
(
n
K

) )
< γ < 1/2, (121)
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we have

ε(n,K, xc, αn) ≤ C2 ln
(
2R
( n

K

)γ)
exp

[
n

√
K

n

(
3
√
2e− C1cd

(
K

n

)γ)]
. (122)

Additionally, assuming that

C1c1

(
K

n

)γ− 1
2

≥ 6
√
2e, (123)

which is equivalent to

γ ≤ 1

2
+

ln
(
6
√
2e/C1c1

)
ln(K/n)

, (124)

leads to

ε(n,K, xc, αn) ≤ C2 ln
(
2R
( n

K

)γ)
exp

[
−3
√
2enK

]
. (125)

So far, we have assumed that

max

(
0,

ln(2C1c1)

ln
(
n
K

) )
< γ <

1

2
+ min

(
0,

ln
(
6
√
2e/C1c1

)
ln(K/n)

)
. (126)

Besides, we assume that n/K ≥ R, which leads to

ε(n,K, xc, αn) ≤(γ + 1)C2 ln
( n

K

)
exp

[
−3
√
2enK

]
. (127)

Letting v =
√
n/K, we have

ε(n,K, xc, αn) ≤ 2C2v exp

[
−3
√
2eKv

2

]
exp

[
−3
√
2eKv

2

]
. (128)

Maximizing f : v 7→ 2A1v exp [−A2v/2] over v ∈ (0,∞) with A1 = (γ + 1)C2 and A2 = 3K
√
2e leads to

ε(n,K, xc, αn) ≤
4A1

eA2
exp

[
−3
√
2eKv

2

]
(129)

Thus, for all n/K ≥ R and all γ such that

max

(
0,

ln(2C1c1)

ln
(
n
K

) )
< γ <

1

2
+ min

(
0,

ln
(
6
√
2e/C1c1

)
ln(K/n)

)
, (130)

we have

ε(n,K, xc, αn) ≤
4C2e

−1(γ + 1)

3K
√
2e

exp

[
−3
√

enK

2

]
. (131)

Since c1 = 2, for all n/K ≥ R, and all γ such that

max

(
0,

ln(4C1)

ln
(
n
K

) ) < γ <
1

2
+ min

(
0,

ln
(
3
√
2e/C1

)
ln(K/n)

)
, (132)

that is, for all R ≤ n/K.
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Case d > 1. If d > 1, then

ε(n,K, xc, αn) (133)

≤ C2
1

d− 1

((
2R

αn

)d−1

− 1

)
exp

[
n

(
3

√
e

1− C1cdαd
n

√
K

n
− C1cdα

d
n

)]
(134)

≤ C2
1

d− 1

((
2R
( n

K

)γ)d−1

− 1

)
exp

n
3

√
e

1− C1cd
(
K
n

)γd
√

K

n
− C1cd

(
K

n

)γd
 (135)

≤ C2
1

d− 1

(
2R
( n

K

)γ)d−1

exp

n
3

√
e

1− C1cd
(
K
n

)γd
√

K

n
− C1cd

(
K

n

)γd
 (136)

= C2
1

d− 1
exp

(d− 1) ln
(
2R
( n

K

)γ)
+ n

3

√
e

1− C1cd
(
K
n

)γd
√

K

n
− C1cd

(
K

n

)γd
 (137)

Let ε > 0 and from now γd = 1/2 + λ. Then,

ε(n,K, xc, αn) (138)

≤ C2
1

d− 1
exp

(d− 1) ln

(
2R
( n

K

) 1
d (

1
2+λ)

)
+ n

3

√
e

1− C1cd
(
K
n

)(1/2)+λ

√
K

n
− C1cd

(
K

n

)(1/2)+λ

(139)

≤ C2
1

d− 1
exp

(d− 1) ln

(
2R
( n

K

) 1
d (

1
2+λ)

)
+ n

√
K

n

3

√
e

1− C1cd
(
K
n

)(1/2)+λ
− C1cd

(
K

n

)λ
 . (140)

For this upper to tend to zero, we need to have −1
2 < λ < 0. Note that,

C1cd

(
K

n

)(1/2)+λ

≤ 1

2
, (141)

is equivalent to

λ ≥ ln(2C1cd)

ln
(
n
K

) − 1

2
. (142)

Thus, assuming that

max

(
0,

ln(2C1cd)

ln
(
n
K

) )
− 1

2
< λ < 0, (143)

we have

ε(n,K, xc, αn) (144)

≤ C2
1

d− 1
exp

[
(d− 1) ln

(
2R
( n

K

) 1
d (

1
2+λ)

)
+ n

√
K

n

(
3
√
2e− C1cd

(
K

n

)λ
)]

. (145)

Additionally, assuming that

C1c1

(
K

n

)λ

≥ 6
√
2e, (146)

which is equivalent to

λ ≤
ln
(
6
√
2e/C1cd

)
ln(K/n)

, (147)
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leads to

ε(n,K, xc, αn) ≤ C2
1

d− 1
exp

[
(d− 1) ln

(
2R
( n

K

) 1
d (

1
2+λ)

)
− n

√
K

n

(
3
√
2e
)]

(148)

So far, we have assumed that

max

(
0,

ln(2C1cd)

ln
(
n
K

) )
− 1

2
< λ < min

(
0,

ln
(
6
√
2e/C1cd

)
ln(K/n)

)
. (149)

Besides, we assume that n/K ≥ R, which leads to

ε(n,K, xc, αn) ≤ C2
1

d− 1
exp

[
(d− 1) ln

(( n

K

) 1
d (

1
2+λ)+1

)
− n

√
K

n

(
3
√
2e
)]

(150)

= C2
1

d− 1
exp

[
(d− 1)

(
1

d

(
1

2
+ λ

)
+ 1

)
ln
( n

K

)
− n

√
K

n

(
3
√
2e
)]

(151)

Letting v =
√
n/K, we have

ε(n,K, xc, αn) ≤ C2
1

d− 1
exp

[
(d− 1)

(
1

d

(
1

2
+ λ

)
+ 1

)
ln
(
v2
)
− vK

(
3
√
2e
)]

. (152)

Maximizing g : v 7→ B1x
⌈2B2⌉ exp

[
−3

√
2eKx
2

]
with B1 = C2

1
d−1 and B2 = (d− 1)

(
1
d

(
1
2 + λ

)
+ 1
)
leads to

ε(n,K, xc, αn) ≤ B1

(
4B2 + 2

3
√
2eK

)2B2+1

exp

[
−3
√
2enK

2

]
. (153)

Thus, for all n/K ≥ R and all γ such that

max

(
0,

ln(2C1cd)

ln
(
n
K

) )
− 1

2
< λ < min

(
0,

ln
(
6
√
2e/C1cd

)
ln(K/n)

)
, (154)

which is equivalent to,

1

d
max

(
0,

ln(2C1cd)

ln
(
n
K

) )
< γ <

1

d

(
1

2
+ min

(
0,

ln
(
6
√
2e/C1cd

)
ln(K/n)

))
. (155)

Remark that, γ < 1/2 which implies,

B2 = (d− 1)(γ + 1) (156)

< (d− 1)

(
1

2
+ γ

)
(157)

≤ 3

2
(d− 1) (158)

≤ 2d. (159)

On the other side, we have for all d > 1 : 1/d− 1 ≤ 2/d, which leads to

B1 = C2
1

d− 1
(160)

≤ 2C2

d
. (161)
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Finally, for all n/K ≥ R and all γ such that

1

d
max

(
0,

ln(2C1cd)

ln
(
n
K

) )
< γ <

1

d

(
1

2
+ min

(
0,

ln
(
6
√
2e/C1cd

)
ln(K/n)

))
, (162)

we have,

ε(n,K, xc, αn) ≤
2C2

d

(
8d+ 2

3
√
2eK

)4d+1

exp

[
−3
√
2enK

2

]
(163)

8.6 Proof of Theorem 3.4

Proof of Theorem 3.4. Let ε > 0 and z ∈ B(0, R) such that ∥z∥ ≥ R−ε. Let Aε = {x ∈ B(0, R), ⟨x−z, z⟩ ≤ 0}.
Let 0 < α < 2R and Ãα,ε = Aε ∩ {x, ∥z − x∥ ≥ α}. An illustration is displayed in Figure 5.

Figure 5: Illustration of Theorem 3.4.

We have

fZ(z) =

∫
xc∈Ãα,ε

fZ(z|Xc = xc)fX(xc)dxc +

∫
xc∈Ãc

α,ε

fZ(z|Xc = xc)fX(xc)dxc (164)

First term Let xc ∈ Ãα,ε. In order to have xc +
z−xc

w = z+
(
−1 + 1

w

)
(z− xc) ∈ B(0, R), it is necessary that(

−1 + 1

w

)
∥z − xc∥ ≤

√
2εR (165)

which leads to

w ≥ 1

1 +
√
2εR

∥z−xc∥

(166)

Since xc ∈ Ãα,ε, we have ∥xc − z∥ ≥ α. Thus, according to inequality (166), xc +
z−xc

w ∈ B(0, R) implies

w ≥ 1

1 +
√
2εR
α

. (167)
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Recall that xc +
z−xc

w ∈ X . Consequently, according to Theorem 3.1, for all xc ∈ Ãα,ε,

fZ(z|Xc = xc) (168)

= (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
B
(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw (169)

≤ C2(n−K − 1)

K

(
n− 1

K

)∫ 1

1

1+

√
2εR
α

1

wd

[
1− µX

(
B
(
xc,

α

w

))]n−K−2
[
1−

[
µX

(
B
(
xc,

α

w

))]K]
dw (170)

≤ C2n

K

(
1− K − 1

n

)(
n− 1

K

)∫ 1

1

1+

√
2εR
α

1

wd
dw (171)

≤ η(α,R)
C2n

K

(
1− K − 1

n

)(
n− 1

K

)
, (172)

with

η(α,R) =


ln
(
1 +

√
2εR
α

)
if d = 1

1
d−1

((
1 +

√
2εR
α

)d−1

− 1

)
otherwise

.

Second term According to Theorem 3.1, we have

fZ(z|Xc = xc) = (n−K − 1)

(
n− 1

K

)∫ 1

0

1

wd
fX

(
xc +

z − xc

w

)
× B

(
n−K − 1,K; 1− µX

(
B

(
xc,
||z − xc||

w

)))
dw. (173)

Letting βxc,α(w) = µX

(
B
(
xc,

||z−xc||
w

))
, according to Lemma 3,

B (n−K − 1,K; 1− βxc,α(w)) ≤
(1− βxc,α(w))

n−K−2

K

(
1− βxc,α(w)

K
)

(174)

≤ (1− βxc,α(w))
n−K−2

K
, (175)

since βxc,α(w) ∈ [0, 1]. Note that, since X ⊂ B(0, R), all points x, z ∈ X satisfy ∥x− z∥ ≤ 2R. Consequently, if
∥z − xc∥/w ≥ 2R,

B(0, R) ⊂ B(xc, ∥z − xc∥/w). (176)

Hence, for all w ≤ ∥z − xc∥/2R, βxc,α(w) = 1. Plugging this equality into (173), we have

fZ(z|Xc = xc) (177)

=
(n−K − 1)

K

(
n− 1

K

)∫ ∥z−xc∥/2R

0

1

wd
fX

(
xc +

z − xc

w

)
(1− βxc,α(w))

n−K−2dw (178)

+
(n−K − 1)

K

(
n− 1

K

)∫ 1

∥z−xc∥/2R

1

wd
fX

(
xc +

z − xc

w

)
(1− βxc,α(w))

n−K−2dw (179)

=
(n−K − 1)

K

(
n− 1

K

)∫ 1

∥z−xc∥/2R

1

wd
fX

(
xc +

z − xc

w

)
(1− βxc,α(w))

n−K−2dw (180)

≤ C2
(n−K − 1)

K

(
n− 1

K

)∫ 1

∥z−xc∥/2R

1

wd
dw (181)

≤ C2
(n−K − 1)

K

(
n− 1

K

)[
− 1

d− 1
w−d+1

]1
∥z−xc∥/2R

(182)

≤ C2(2R)d−1

d− 1

(n−K − 1)

K

(
n− 1

K

)
1

∥z − xc∥d−1
. (183)
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Besides, note that, for all α > 0, we have∫
B(z,α)

1

∥z − xc∥d−1
fX(xc)dxc (184)

≤ C2

∫
B(0,α)

1

rd−1
rd−1 sind−2(φ1) sin

d−3(φ2) . . . sin(φd−2)drdφ1 . . . dφd−2, (185)

where r, φ1, . . . , φd−2 are the spherical coordinates. A direct calculation leads to∫
B(z,α)

1

∥z − xc∥d−1
fX(xc)dxc ≤ C2

∫ α

0

dr

∫
S(0,α)

sind−2(φ1) sin
d−3(φ2) . . . sin(φd−2)dφ1 . . . dφd−2 (186)

≤ 2C2π
d/2

Γ(d/2)
α, (187)

as ∫
S(0,α)

sind−2(φ1) sin
d−3(φ2) . . . sin(φd−2)dφ1 . . . dφd−2 (188)

is the surface of the Sd−1 sphere. Finally, for all z ∈ X , for all α > 0, and for all K,N such that 1 ≤ K ≤ N ,
we have ∫

B(z,α)

fZ(z|Xc = xc)fX(xc)dxc ≤
2C2

2 (2R)d−1πd/2

(d− 1)Γ(d/2)

(n−K − 1)

K

(
n− 1

K

)
α. (189)

Final result Using Figure 5 and Pythagore’s Theorem, we have a2 ≤
√
2εR. Let d > 1 and ϵ > 0. Then we

have for all α such that α > a.

fZ(z) (190)

=

∫
xc∈Ãα,ε

fZ(z|Xc = xc)fX(xc)dxc +

∫
xc∈Ãc

α,ε

fZ(z|Xc = xc)fX(xc)dxc (191)

≤ C2

d− 1

(1 + √2εR
α

)d−1

− 1

 (n−K − 1)

K

(
n− 1

K

)
+

2C2
2 (2R)d−1πd/2

(d− 1)Γ(d/2)

(n−K − 1)

K

(
n− 1

K

)
α (192)

=
C2

d− 1

(n−K − 1)

K

(
n− 1

K

)(1 + √2εR
α

)d−1

− 1

+
2C2(2R)d−1πd/2

Γ(d/2)
α

 , (193)

But this inequality is true if α ≥ a. We know that (1 + x)d−1 ≤ (2d−1 − 1)x + 1 for x ∈ [0, 1] and d − 1 ≥ 0.

Then, for α such that
√
2εR
α ≤ 1,

fZ(z) (194)

≤ C2

d− 1

(n−K − 1)

K

(
n− 1

K

)[((
(2d−1 − 1)

√
2εR

α
+ 1

)
− 1

)
+

2C2(2R)d−1πd/2

Γ(d/2)
α

]
(195)

≤ C2

d− 1

(n−K − 1)

K

(
n− 1

K

)[(
(2d−1 − 1)

√
2εR

α

)
+

2C2(2R)d−1πd/2

Γ(d/2)
α

]
. (196)

Since
√
2εR
α ≤ 1, then α ≥

√
2εR ≥ a. So our initial condition on α to get the upper bound of the second term

is still true. Now, we choose α such that,

(2d−1 − 1)

√
2εR

α
≤ 2C2(2R)d−1πd/2

Γ(d/2)
α, (197)

which leads to the following condition

α ≥

(
Γ(d/2)(2d−1 − 1)

√
2εR

2C2(2R)d−1πd/2

)1/2

. (198)
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Finally, for

α =

(
Γ(d/2)(2d−1 − 1)

√
2εR

2C2(2R)d−1πd/2

)1/2

, (199)

we have,

fZ(z) ≤
C2

d− 1

(n−K − 1)

K

(
n− 1

K

)[
2
2C2(2R)d−1πd/2

Γ(d/2)
α

]
(200)

= 2
C2

d− 1

(n−K − 1)

K

(
n− 1

K

)(
Γ(d/2)(2d−1 − 1)

√
2εR

2C2(2R)d−1πd/2

)1/2

. (201)

8.7 Technical lemmas

8.7.1 Cumulative distribution function of a binomial law

Lemma 2 (Cumulative distribution function of a binomial distribution). Let X be a random variable
following a binomial law of parameter n ∈ N and p ∈ [0, 1]. The cumulative distribution function F of X
can be expressed as Wadsworth et al. (1961):

(i)

F (k;n, p) = P(X ≤ k) =

⌊k⌋∑
i=0

(
n

i

)
pi(1− p)n−i,

(ii)

F (k;n, p) = (n− k)

(
n

k

)∫ 1−p

0

tn−k−1(1− t)kdt

= (n− k)

(
n

k

)
B(n− k, k + 1; 1− p),

with B(a, b;x) =
∫ x

t=0
ta−1(1− t)b−1dt, the incomplete beta function.

Proof. see Wadsworth et al. (1961).

8.7.2 Upper bounds for the incomplete beta function

Lemma 3. Let B(a, b;x) =
∫ x

t=0
ta−1(1− t)b−1dt, be the incomplete beta function. Then we have

xa

a
≤ B(a, b;x) ≤ xa−1

(
1− (1− x)b

b

)
,

for a > 0.
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Proof. We have

B(a, b;x) =

∫ x

t=0

ta−1(1− t)b−1dt

≤
∫ x

t=0

xa−1(1− t)b−1dt

= xa−1

∫ x

t=0

(1− t)b−1dt

= xa−1

[
(−1)(1− t)b

b

]x
0

= xa−1

[
− (1− x)b

b
+

1

b

]
= xa−1 1− (1− x)b

b
.

On the other hand,

B(a, b;x) =

∫ x

t=0

ta−1(1− t)b−1dt

≥
∫ t

t=0

xa−1dt

=

[
ta

a

]x
0

=
xa

a
− 0a

a

=
xa

a
.

8.7.3 Upper bounds for binomial coefficient

Lemma 4. For k, n ∈ N such that k < n, we have

(
n

k

)
≤
(en
k

)k
. (202)

Proof. We have,

(
n

k

)
=

n(n− 1) . . . (n− k + 1)

k!
≤ nk

k!
. (203)

Besides,

ek =

+∞∑
i=0

ki

i!
=⇒ ek ≥ kk

k!
=⇒ ek

kk
≥ 1

k!
. (204)

Hence, (
n

k

)
=

n(n− 1) . . . (n− k + 1)

k!
≤ nk

k!
≤
(en
k

)k
. (205)
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8.7.4 Inequality x ln
(
1
x

)
≤
√
x

Lemma 5. For x ∈]0,+∞[,

x ln

(
1

x

)
≤
√
x. (206)

Proof. Let,

f(x) =
√
x− x ln

(
1

x

)
(207)

=
√
x+ x ln(x). (208)

Then,

f
′
(x) =

1

2
√
x
+ lnx+ 1. (209)

And,

f
′′
(x) =

1

x
− 1

4x3/2
. (210)

We have,

f
′′
(x) ≥ 0 =⇒ 1

x
− 1

4x3/2
≥ 0

=⇒ 1

x
≥ 1

4x3/2
(211)

Since x ∈]0,+∞[,

Equation (211) =⇒ x3/2

x
≥ 1

4
(212)

=⇒
√
x ≥ 1

4
(213)

=⇒ x ≥ 1

16
. (214)

This result leads to,

x

f
′′

f
′

0 1
16 +∞

− 0 +

2 + ln( 1
16 ) + 12 + ln( 1
16 ) + 1

(215)

We have 2 + ln( 1
16 ) + 1 > 0. So f

′
(x) > 0 for all x ∈]0,∞[. Furthermore limx→0+ f(x) = 0, hence f(x) > 0

for all x ∈]0,∞[, therefore
√
x > x ln

(
1
x

)
for all x ∈]0,∞[.
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