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Theoretical and experimental study of SMOTE: limitations and comparisons of rebalancing strategies

Synthetic Minority Oversampling Technique (SMOTE) is a common rebalancing strategy for handling imbalanced data sets. Asymptotically, we prove that SMOTE (with default parameter) regenerates the original distribution by simply copying the original minority samples. We also prove that SMOTE density vanishes near the boundary of the support of the minority distribution, therefore justifying the common BorderLine SMOTE strategy. Then we introduce two new SMOTE-related strategies, and compare them with state-of-the-art rebalancing procedures. We show that rebalancing strategies are only required when the data set is highly imbalanced. For such data sets, SMOTE, our proposals, or undersampling procedures are the best strategies.

Introduction

Imbalanced data sets are a typical problem encountered practically in several applications [START_REF] He | Learning from imbalanced data[END_REF], such as fraud detection [START_REF] Hassan | Modeling insurance fraud detection using imbalanced data classification[END_REF], medical diagnosis [START_REF] Khalilia | Predicting disease risks from highly imbalanced data using random forest[END_REF] and even churn detection [START_REF] Nguyen | Comparison of two main approaches for handling imbalanced data in churn prediction problem[END_REF]. In presence of imbalanced data sets, most machine learning algorithms have a tendency to predict the majority class, therefore leading to biased predictions. Several strategies have been developed in order to handle this issue, as explained by [START_REF] Krawczyk | Learning from imbalanced data: open challenges and future directions[END_REF] and [START_REF] Ramyachitra | Imbalanced dataset classification and solutions: a review[END_REF]. All of these strategies can be split into two categories: the model-level approaches and the data-level approaches.

Model-level approaches deal with this problem by acting directly on machine learning algorithms. Such approaches contain the class weighting of the samples: higher weights are allocated to the minority samples. [START_REF] Zhu | Class weights random forest algorithm for processing class imbalanced medical data[END_REF] introduce a Random Forest based algorithm that have different weights allocated to the classes for each tree of the forest. However, model-level approaches are not agnostic to the model, which can be restrictive. In this paper, we focus on data-level approaches.

Data-level approaches can be split into two groups. All the sampling strategies that do not generate new observations in the initial set belong to this group. [START_REF] Mani | knn approach to unbalanced data distributions: a case study involving information extraction[END_REF] explain that the most used under sampling strategies are Random Under Sampling and Nearmiss under sampling. The Random Under Sampling technique produce the desired balance between classes by dropping majoring samples without any notion of order between these samples. The Nearmiss1 strategies [START_REF] Mani | knn approach to unbalanced data distributions: a case study involving information extraction[END_REF] include distinction between minority samples by ranking them using their mean distance to their nearest neighbor of the minority class. Then the ranking is used to drop the samples (from the bottom) until a given balancing ratio is reached. The main default of these under sampling strategies is the fact that they remove samples from the data set, which results in a loss of information. The second group of data-level approaches consists in all strategies that generate new synthetic samples in the minority class, therefore called synthetic approaches. The most famous strategy in this group is probably Synthetic Minority Oversampling Technique (SMOTE, see [START_REF] Chawla | Smote: synthetic minority oversampling technique[END_REF]. In SMOTE, new minority samples are generated via linear interpolation between an original sample and one of its nearest neighbor, with both of them belonging to the minority class. Other approaches are based on Generative Adversial Networks (GAN [START_REF] Islam | Gan-based synthetic brain pet image generation[END_REF], which are computationally expensive and mostly designed for specific data structures such as images. The main difficulty of these strategies is to synthesize relevant new samples, which should not be outliers or simple copies of original points.

Several papers study some specificities of the sampling strategies for imbalanced data sets and the impact of hyperparameter tuning. For example, [START_REF] Kamalov | Partial resampling of imbalanced data[END_REF] study the optimal sampling ratios for imbalanced data set when using synthetic approaches. [START_REF] Aguiar | A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework[END_REF] realize a survey on imbalance data sets in the context of online learning and propose a standardized framework in order to compare rebalancing strategies in this context. Furthermore, [START_REF] Wongvorachan | A comparison of undersampling, oversampling, and smote methods for dealing with imbalanced classification in educational data mining[END_REF] aim at comparing the synthetic approaches (Random Over Sampling, Random Under Sampling and SMOTE) in purpose of application on educational data.

Contributions We place ourselves in the framework of imbalanced classification with continuous input variables, since synthetic procedures such as SMOTE are originally designed to handle continuous variables. We first show that the points generated via SMOTE procedure with default parameters are asymptotically distributed as the minority class, when the number of minority samples increases. We also prove that, without tuning the hyperparameter K (usually set to 5), SMOTE asymptotically copies the original minority samples, therefore lacking the intrinsic variability required in any synthetic generative procedure. This highlights the importance of hyperparameter tuning in SMOTE, when the number of samples in the minority class is large enough. As a product of our analysis, we establish that SMOTE density vanishes near the boundary of the support of the minority distribution, therefore justifying the introduction of SMOTE variants such as BorderLine SMOTE strategy. Our theoretical analysis naturally leads us to introduce two SMOTE alternatives (CV-SMOTE and Multivariate Gaussian SMOTE). We compare the impact on predictive performances of several rebalancing strategies (including our proposals) on simulated and real-world data sets. We show that rebalancing strategies are required only for strongly imbalanced data sets. When such approaches are necessary, SMOTE, our proposals or undersampling strategies appear to be the best procedures.

Related works

In the synthetic approaches group, SMOTE is the central algorithm from which most of the others algorithms derive. Indeed, except the Neural-Networks based algorithms, most of the others strategies always use a variant of the linear interpolation introduced inside SMOTE procedure. Several variants try to focus on the generation of the synthetic samples near the boundary of the minority class support. The most common one is ADASYN [START_REF] He | Adasyn: Adaptive synthetic sampling approach for imbalanced learning[END_REF] whose main idea is to produce more synthetic samples via linear interpolation between samples from the minority class which are mostly surrounded by majority class samples. Borderline SMOTE approaches [START_REF] Han | Borderline-smote: a new over-sampling method in imbalanced data sets learning[END_REF] aim at generating new synthetics samples on the frontier of both classes. Another SMOTE variant focusing on borders is SVM-SMOTE [START_REF] Nguyen | Borderline over-sampling for imbalanced data classification[END_REF] whose the idea is to begin by applying a Support Vector Machine classifier to the imbalanced data. Then the linear interpolation is done on the support vector from the minority class.

Imb-learn (see [START_REF] Lemaître | Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning[END_REF] is an open source package containing python implementations of : SMOTE, ADASYN, Borderline SMOTE and SVM-SMOTE.

Others variants of SMOTE does not focus on the boundary of the minority class support, but more generally on the way of generating the new samples. For example, [START_REF] Pan | Learning imbalanced datasets based on smote and gaussian distribution[END_REF] introduce a SMOTE variant that select 3 points and interpolate inside the triangle formed by these 3 minority samples. Two-steps procedures such as DBSMOTE [START_REF] Bunkhumpornpat | Dbsmote: density-based synthetic minority over-sampling technique[END_REF] generates synthetic samples based on a preliminary procedure (DBSCAN method) are also introduced in the community. [START_REF] Chawla | Smoteboost: Improving prediction of the minority class in boosting[END_REF] introduce SMOTEBoost, a strategy that apply SMOTE before fitting a new weak classifier inside a boosting procedure.

Several works study theoretically the rebalancing strategies. The class weighting method is studied theoretically by [START_REF] King | Logistic regression in rare events data[END_REF]. [START_REF] King | Logistic regression in rare events data[END_REF] study the Random Under Sampling strategy effect on a logistic regression classifier. To the best of our knowledge, there are only few theoretical works dissecting the intrinsic machinery in SMOTE algorithm. For example, [START_REF] Elreedy | A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning[END_REF] establish the distribution of SMOTE samples based on the distribution of the original minority samples. Before that, [START_REF] Elreedy | A comprehensive analysis of synthetic minority oversampling technique (smote) for handling class imbalance[END_REF] derive the expectation and covariance matrix of the data generated by SMOTE. [START_REF] Elreedy | A comprehensive analysis of synthetic minority oversampling technique (smote) for handling class imbalance[END_REF] also highlights the effects of the input dimension, the hyperparameter K and the number of minority samples on SMOTE procedure. Results on simulated and real-world data sets show that the predictive performance of the classifier applied after SMOTE increases with the number of minority samples. Increasing the number of input Algorithm 1 SMOTE iteration.

Input: Minority class samples X 1 , . . . , X n , number K of nearest-neighbors Select uniformly X c (called central point) among {X 1 , . . . , X n }. Denote by I = X (1) (X c , ) . . . , X (K) (X c ), the K nearest-neighbor of X c (with respect to the L 2 norm). Select X k ∈ I uniformly. w ← U([0, 1]) Z ← X c + w(X k -X c ) Return Z
variables decreases SMOTE ability of regenerating the minority distribution, in terms of Total Variance Difference, Kullback-Leibler divergence and Frobenius norm. A guideline is also given : choosing K ∈ {5, 6, . . . , 10} is a good trade-off in order to be free of the high errors of large K values and limit the correlation phenomenon of small K values.

A study of SMOTE

Notations We denote by U([a, b]) the uniform distribution over [a, b]. We denote by N (µ, Σ) the multivariate normal distribution centered on µ and of covariance matrix Σ. For any set A, we denote by V ol(A), the Lebesgue measure of A. For any z ∈ R d and r > 0, we let B(z, r) be the ball centered at z of radius r. We let c d = V ol(B(0, 1)) the volume of the unit ball in R d . For any p, q ∈ N, and any z ∈ [0, 1], we denote by B(p, q; z) = z t=0 t p-1 (1 -t) q-1 dt the incomplete beta function.

SMOTE algorithm

We assume to be given a training sample composed of N independent and identically distributed pairs (X i , Y i ), where X i ∈ R d and Y ∈ {0, 1}. We consider an imbalanced problem, in which the class Y = 1 is underrepresented, compared to the class Y = 0, and thus called the minority class. We assume that we have n minority samples in our training set. In this paper, we place our theoretical and experimental studies in the context of SMOTE applied to data sets containing only continuous explanatory variables. In this section, we study the SMOTE procedure, which generates synthetic data through linear interpolations between two pairs of original samples of the minority class. SMOTE algorithm has a single hyperparameter, K which stands for the number of nearest neighbors considered when interpolating. A single SMOTE iteration is detailed in Algorithm 1. In a classic machine learning pipeline, SMOTE procedure is repeated in order to obtain a prespecified ration between the both classes before training a classifier.

Theoretical results on SMOTE

SMOTE has been shown to exhibit good performances when combined to standard classification algorithms (see for instance [START_REF] Mohammed | Improving classification performance for a novel imbalanced medical dataset using smote method[END_REF]. However, there exist only few works that aim at understanding theoretically SMOTE behavior. In this section, we assume that X 1 , . . . , X n are i.i.d samples from the minority class (that is, Y i = 1 for all i ∈ [n]), with a common density f X with bounded support, denoted by X .

Lemma 1 (Convexity). Given f X the distribution density of the minority class, with support X , for all K, n, the associated SMOTE density f Z K,n satisfies

Supp(f Z K,n ) ⊆ Conv(X ).
(1)

By construction, synthetic observations generated by SMOTE cannot fall outside the convex hull of X . Equation (1) is not an equality, as SMOTE samples are the convex combination of only two original samples. For example, in dimension two, if X is concentrated near the vertices of square, then SMOTE samples are distributed near the square edges, whereas Conv(X ) is the whole square.

SMOTE distribution has been derived in [START_REF] Elreedy | A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning[END_REF]. We build on these works and provide, in the following theorem, a different expression for the density of the data generated by SMOTE, denoted by f Z K,n . When no confusion is possible, we denote f Z K,n simply by f Z .

Theorem 3.1. Assume that X c is the central point chosen in a SMOTE iteration. Then, for all x c ∈ X , the random variable Z generated by SMOTE has a conditional density f Z K,n (.|X c = x c ) which satisfies

f Z K,n (z|X c = x c ) = (n -K -1) n -1 K 1 0 1 w d f X x c + z -x c w B (n -K -1, K; 1 -β xc,z,w ) dw, (2) 
where β xc,z,w = µ X (B (x c , ||z -x c ||/w)) and µ X is the probability measure associated to f X . Consequently, the density f Z K,n of the data generated by SMOTE is

f Z K,n (z) = (n -K -1) n -1 K xc∈X 1 0 1 w d f X x c + z -x c w × B (n -K -1, K; 1 -β xc,z,w ) f X (x c )dwdx c . (3) 
Using the following substitution w = ∥z -x c ∥/r, we have,

f Z K,n (z|X c = x c ) = (n -K -1) n -1 K ∞ r=∥z-xc∥ f X x c + (z -x c )r ∥z -x c ∥ × r d-2 B (n -K -1, K; 1 -µ X (B (x c , r))) ∥z -x c ∥ d-1 dr. ( 4 
)
Theorem 3.1 provides the expression of the density of SMOTE synthetic data unconditionally, and conditional on the central point used to generate the new observation. The expressions established in Theorem 3.1 are very similar to Theorem 1 and Lemma 1 in [START_REF] Elreedy | A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning[END_REF]. Although our proof shares the same structure as that of [START_REF] Elreedy | A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning[END_REF], our starting point is different, as we consider random variables instead of geometrical arguments. The proof of Theorem 3.1 can be found in Section 8.2.

SMOTE algorithm has only one hyperparameter K, which is the number of nearest neighbors taken into account for building the linear interpolation. By default, this parameter is set to 5. The following theorem describes the behavior of SMOTE distribution asymptotically, as K/n → 0.

Theorem 3.2. For all Borel sets B ⊂ R d , if K/n → 0, as n tends to infinity, we have

lim n→∞ P[Z K,n ∈ B] = P[X ∈ B].
(5)

The proof of Theorem 3.2 can be found in 8.3. Theorem 3.2 suggests that any choice of K such that K/n tends to zero is asymptotically correct, thus corroborating the usual practice of choosing K = 5. A close inspection of Theorem 3.1 allows us to derive more precise bounds about the behavior of SMOTE, as established in Theorem 3.3. Theorem 3.3. Assume that there exists R > 0, such that X ⊂ B(0, R). Suppose that there exists C 2 such that, for all x ∈ R d , f X (x) ≤ C 2 1 x∈X . Then, for all n ≥ K ≥ 1, for all x c ∈ X and for all α > 0, we have

P(|Z K,n -X c | ≥ α|X c = x c ) ≤ ε(n, α, K, x c ), (6) 
where

ε(n, K, x c , α) = c d R d η(α, R) exp n 3 e 1 -β xc,α K n + ln (1 -β xc,α ) , ( 7 
)
with β xc,α = µ X (B (x c , α)) > 0 and η(α, R) =      C 2 ln 2R α if d = 1, C2 d-1 2R α d-1 -1 if d > 1, 0 if α > 2R.
Consequently, if lim n→∞ K/n = 0, we have, for all x c ∈ X , Z K,n |X c = x c → x c in probability.

According to Theorem 3.3, SMOTE regenerates the original distribution at the cost of copying the original minority samples. Indeed, the probability of a SMOTE sample to be at a distance superior to α > 0 from his central point tends to 0 when K/n → 0. This means that when K/n → 0, SMOTE samples are closer to their associated central point, leading the procedure to generate new samples by copying the original ones. The proof of Theorem 3.3 can be found in 8.4.

Corollary 3.3.1. Assume that there exists R > 0, such that X ⊂ B(0, R). Suppose that there exist

C 1 , C 2 such that, for all x ∈ R d , C 1 1 x∈X ≤ f X (x) ≤ C 2 1 x∈X . Let x c ∈ o X . Let γ ∈ R. For all n/K ≥ R, we have For d = 1 and γ such that max 0, ln(4C 1 ) ln n K < γ < 1 2 + min 0, ln 3 √ 2e/C 1 ln(K/n) , (8) 
we have

P (|Z K,n -X c | ≥ (K/n) γ |X c = x c ) ≤ 4C 2 e -1 (γ + 1) 3K √ 2e exp -3 enK 2 2R.
For d > 1 and all γ such that,

max 0, ln(2C 1 c d ) d ln n K < γ < 1 2d + min   0, ln 6 √ 2e C1c d d ln(K/n)   ,
we have

P (|Z K,n -X c | ≥ (K/n) γ |X c = x c ) ≤ 2C 2 d 8d + 2 3 √ 2eK 4d+1 exp -3 √ 2enK 2 c d R d .
Through Corollary 3.3.1 the result of Theorem 3.3 is illustrated for a given value of α depending on K and n. Corollary 3.3.1 provides a characteristic distance of the synthetic samples and their associated central point. The proof of Corollary 3.3.1 can be found in 8.5. The next step of our work is to study SMOTE near the boundary of the support of the minority class. This is the purpose of Theorem 3.4 Theorem 3.4. Assume that there exists R > 0, such that X = B(0, R). Suppose that there exist C 2 such that, for all x ∈ R d , f X (x) ≤ C 2 1 x∈X . We consider 0 < ε < R. Then, for all K, n, and all z ∈ B(0, R)\B(0, R -ε), and for d > 1, we have

f Z K,n (z) ≤ C(K, n, d, C 2 )R (1/4)-d+1 ε 1/4 . (9) with, C(K, n, d, C 2 ) = 2C 2 d -1 (n -K -1) K n -1 K Γ(d/2)(2 d-1 -1) √ 2 2C 2 π d/2 1/2 .
Theorem 3.4 highlights the fact that SMOTE density vanishes near the boundary of the minority class support. The proof of Theorem 3.4 can be found in 8.6. Theorem 3.4 justifies why the community introduced variants of SMOTE that tends to generate synthetic samples on the boundary of the minority class. An example is Borderline SMOTE which was introduced by [START_REF] Han | Borderline-smote: a new over-sampling method in imbalanced data sets learning[END_REF].

Numerical illustrations

Through Section 3, we highlighted the fact that SMOTE asymptotically regenerate the distribution of the minority class, by copying the minority samples. The purpose of this section is to numerically illustrate the theoretical limitations of SMOTE procedure. We show in particular that with the default value K = 5, the SMOTE procedure generates data points that are very similar to the original data set.

Simulated data

In order to measure the similarity between any generated data set Z = {Z 1 , . . . , Z m } and the original data set

X = {X 1 , . . . , X n }, we compute C(Z, X) = 1 m m i=1 ∥Z i -X (1) (Z i )∥ 2 , ( 10 
)
where X (1) (Z i ) is the nearest neighbor of Z i among X 1 , . . . , X n . Intuitively, this quantity measures how far the generated data set is from the original observations: if the new data are copies of the original ones, this measure equals zero. We apply the following protocol: for each value of n,

1. We generate a data set X composed of n i.i.d samples X 1 , . . . , X n following a bivariate uniform distribution U([-3, 3] 2 ) (as chosen by [START_REF] Elreedy | A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning[END_REF].

2. We generate a data set Z composed of m = 1000 i.i.d new observations Z 1 , . . . , Z m by applying SMOTE procedure on the original data set X, with different values of K. We compute C(Z, X).

3. We generate a data set X composed of m = 1000 i.i.d new samples X1 , . . . , Xm , distributed as U([-3, 3] 2 ). We compute C( X, X), which is a reference value in the ideal case of new points sampled from the same distribution.

Steps 1-3 are repeated B = 75 times. The average of C(Z, X) (resp. C( X, X)) over these B repetitions is computed and denoted by C(Z, X) (resp. C( X, X)). We consider two different metrics: C(Z, X) and C(Z, X)/ C( X, X). The results are depicted in Figure 1 and Figure 2.

Results. Figure 1 depicts the quantity C(Z, X) as a function of the size of the minority class, for different values of K. The metric C(Z, X) is consistently smaller for K = 5 than for other values of K, therefore highlighting that data generated by SMOTE with K = 5 are closer to the original data sample. This phenomenon is strengthened as n increases. This is an artifact of the simulation setting as the original data samples fill the input space as n increases. C(Z, X) X)/C(X, X)

K = 5 K = n K = 0.01 × n K = 0.1 × n K = 0.3 × n K = 0.8 × n
K = 5 K = n K = 0.01 × n K = 0.1 × n K = 0.3 × n K = 0.8 × n Figure 2: Average normalized distance C(Z, X)/ C( X, X) of SMOTE samples to their nearest neighbor in the original sample, distributed as U([-3, 3] 2 ).
Figure 2 is similar to Figure 1, except that the renormalized quantity C(Z, X)/ C( X, X) is plotted as a function of n. We notice that the asymptotic for K = 5 is different since it is the only one where the distance between SMOTE data points and original data points seems not to vary with n. Besides, this distance is smaller than the other ones, thus stressing out that the SMOTE data points are very close to the original distribution for K = 5. Note that, for the other asymptotics in K, the diversity of SMOTE observations increases with n, meaning C(Z, X) gets closer from C( X, X). Besides, this diversity is asymptotically more important for K = 0.1n and K = 0.01n. This corroborates our theoretical findings (Theorem 3.2) as this asymptotics do not satisfy K/n → 0. Indeed, when K is set to a fraction of n, the SMOTE distribution does not converge to the original distribution anymore, therefore generating data points that are not simple copies of the original uniform samples.

By construction SMOTE data points are close to central points which may explain why the quantity of interest in Figure 2 is smaller than 1.

Extension to real-world data sets.

In this section, we apply SMOTE on real-world data and compare the distribution of the generated data points to the original distribution, using the metric C(Z, X)/ C( X, X).

For each value of n, we subsample n data points from the minority class. Then, 1. We uniformly split the data set into X 1 , . . . , X n/2 (denoted by X) and X1 , . . . , Xn/2 (denoted by X).

2. We generate a data set Z composed of m = n/2 i.i.d new observations Z 1 , . . . , Z m by applying SMOTE procedure on the original data set X, with different values of K. We compute C(Z, X).

3. We use X in order to compute C( X, X).

This procedure is repeated B = 100 times to compute averages values as in Section 4.1.

Results. We apply the above protocol to two real-world data sets (GA4 and Phoneme), described in Table 1. Figure 3 and Figure 4 display the quantity C(Z, X)/ C( X, X) as a function of the size n of the minority class.

As in Section 4.1, we observe in Figure 3 and Figure 4 that for the strategies, Average normalized distance C(Z, X)/ C( X increases except for SMOTE K = 5. The strategies using a value of hyperparameter K such that K/n → 0 tends to converge to a value smaller than all the strategies with K such that K/n ̸ → 0. C(Z, X)/C(X, X) Algorithm 2 Multivariate Gaussian SMOTE iteration.

K = 5 K = n K = 0.01 × n K = 0.1 × n K = 0.3 × n K = 0.8 × n
Input: Minority class samples X c , . . . , X n , number of nearest-neighbor K. Select uniformly X c (called central point), a random instance between X 1 , . . . , X n . Denote by I = X (1) (X c ) . . . , X (K) (X c ), the K nearest-neighbor of X c (minimizing L 2 norm). μ(X c ) ← 1 K+1 X k ∈I∪{Xc} X k Σ(X c ) ← 1 K+1 X k ∈I∪{Xc} (X k -μ) T (X k -μ) Sample Z ∼ N μ(x c ), Σ(x c ) Return Z
5 Predictive evaluation on real-world data sets

In this section, we first describe the different rebalancing strategies and two new ones we propose, and then describe our experimental protocol. The data sets we consider are described in Table 1. They are open source data sets for imbalanced cases from UCI Irvine (see [START_REF] Dua | Uci machine learning repository[END_REF], except for GA4, Phoneme and Credit Card.

Recall that in this paper, we focus on applying data sets containing only continuous explanatory variables. To this aim, we have removed all categorical variables in each data set.

Rebalancing strategies

Over/Under Sampling strategies Random Under Sampling (RUS) acts on the majority class by selecting uniformly without replacement several samples in order to obtain a prespecified size for the majority class.

Similarly, Random Over Sampling (ROS) acts on the minority class by selecting uniformly with replacement several samples to be copied in order to obtain a prespecified size for the minority class.

Class weight

The class weighting strategy assigns the same weight (hyperparameter of the procedure) to each minority samples. The default setting for this strategy is to choose a weight ρ such that ρn = N -n, where n and N -n are respectively the number of minority and majority samples in the data set. C(Z, X)/C(X, X)

K = 5 K = n K = 0.01 × n K = 0.1 × n K = 0.3 × n K = 0.8 × n Figure 4: Protocol real-data on GA4 data set.
NearMissOne NearMissOne is an undersampling procedure. For each sample X i in the majority class, the averaged distance of X i to its K nearest neighbors in the minority class is computed. Then, the samples X i are ordered (decreasingly) according to this averaged distance. Finally, from bottom to top, the X i are dropped until the given number/ratio is reached. Consequently, the X i with the smallest mean distance are dropped firstly.

Borderline SMOTE Borderline SMOTE 1 [START_REF] Han | Borderline-smote: a new over-sampling method in imbalanced data sets learning[END_REF] procedure works as follows. For each individual X i in the minority class, let m -(X i ) be the number of samples of the majority class among the m nearest neighbors of X i , where m is a hyperparameter. For all X i in the minority class such that m/2 ≤ m -(X i ) < m, do the following:

• Select uniformly X k among the K nearest-neighbors of X i in the minority class, and build a linear interpolation between X i and this nearest neighbor as

Z = W X i + (1 -W )X k , (11) 
where W ∼ U([0, 1]).

• Repeat Step 1 q times.

Borderline SMOTE 2 [START_REF] Han | Borderline-smote: a new over-sampling method in imbalanced data sets learning[END_REF] works exactly as Borderline SMOTE 1 except that the selected point in Step 1 is uniformly chosen among the K nearest neighbors of x i in the full original sample (including positive and negative examples). Then, the new observation Z is built as in Equation 11with W ∼ U([0, 0.5]).

Introducing new oversampling strategies

The limitations of SMOTE highlighted in Section 3 drive us to two new rebalancing strategies.

CV SMOTE We introduce a new algorithm, called CV SMOTE, that finds the best hyperparameter K among a prespecified grid via a 5-fold cross-validation procedure. The grid is composed of the set {1, 2, . . . , 15} extended with the values ⌊0.01n train ⌋, ⌊0.1n train ⌋ and ⌊ √ n train ⌋, where n train is the number of minority samples in the training set. Recall that through Theorem 3.3, we show that SMOTE procedure with the default value of hyperparameter K = 5 asymptotically copy the original samples. The idea of CV SMOTE is then to try several values of K in order to avoid copying samples and probably get better improvement of the used classifier at the following step of the machine learning pipeline. CV SMOTE is the simplest idea that the theorems drive us as solution of SMOTE limitations.

Multivariate Gaussian SMOTE(K) Now, we introduce a new oversampling strategy named Multivariate Gaussian SMOTE (MGS). In this procedure, we generate new samples from the distribution N (μ, Σ), where the empirical mean and covariance μ, Σ are estimated using the K neighbors and the central point. We detail one MGS iteration in Algorithm 2.

The idea behind MGS, is to exploit for the maximum the neighborhood of the central point. Using a multivariate gaussian distribution, which support is unbounded, reduces the risk of simply copying the original samples when K/n → 0. default hyperparameters is trained on the rebalanced training set. The performance is evaluated on the test set via the ROC AUC. This procedure is repeated 100 times and the averaged results are computed. We use the implementation of imb-learn [START_REF] Lemaître | Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning[END_REF] for the state-of-the-art strategies (see Appendix 7.1 for more details). For 6 data sets out of 11, the None strategy is the best, probably highlighting that the imbalance ratio is not high enough or the learning task not difficult enough to require a tailored rebalancing strategy. To analyze what could happen for more imbalanced data sets, we use the following protocol. We subsample the minority class for each one of the 6 data sets mentioned above, so that the resulting imbalanced ratio is set to either 10% or 1%. This subsampling strategy is applied once for each data set and each imbalance ratio in a nested fashion, so that the minority class of the 1% data set is included in the 10% data set. Data sets such that the None strategy is not the best are displayed in Table 2. Other results are presented in Table 3 in Appendix 7.2. Rebalancing methods Note that all data sets presented in Table 2 are highly imbalanced, with a ratio lower than 1% (10%, 26% and 10% for Pima, Haberman and Haberman(10%) data sets respectively). Whilst in the vast majority of scenarios, None is among the best approaches to deal with imbalanced data (see Table 3), it seems to be outperformed by dedicated rebalancing strategies for highly imbalanced data sets, presented in Table 2. Similar observations are extracted from Table 5 when using Logistic Regression. Therefore, considering only continuous input variables, and measuring the predictive performance with ROC AUC, we observe that rebalancing strategy are required only in some specific settings in which the minority class is highly underrepresented. Besides, we see that RUS strategy shows an advantage for very large data-sets, that we expect to be less sensitive to the loss of information from undersampling.

Experiments

Several seminal papers already noticed that the None strategy was competitive in terms of predictive performances. [START_REF] He | Adasyn: Adaptive synthetic sampling approach for imbalanced learning[END_REF] compare the None strategy, ADASYN and SMOTE, followed by a Decision tree classifier on 5 data sets (including Vehicle, Pima, Ionosphere and Abalone). In terms of Precision and F1 score, the None strategy is on par with the two other rebalancing methods. [START_REF] Han | Borderline-smote: a new over-sampling method in imbalanced data sets learning[END_REF] study the impact of Borderline SMOTE and others SMOTE variant on 4 data sets (including Pima and Haberman). The None strategy is competitive (in terms of F1 score) on two of these data sets.

SMOTE

We remark that the performances of CV SMOTE are comparable to that of SMOTE with the default hyperparameter setting (K = 5). This could be explained by our grid choice (which could be expanded) or by the data set characteristics. Indeed, the only data set for which we note that CV SMOTE is notably better than SMOTE is GA4, which contains the highest number of minority samples. This corresponds to our theoretical analysis (Theorem 3.3) that highlights that SMOTE, by default, tends to copy original minority samples, when the number of minority samples is large enough. Therefore, more analyses should be carried out to analyze the potential efficiency of CV SMOTE when the number of minority samples is large enough.

Multivariate Gaussian SMOTE(K)

This new strategy exhibits good predictive performances. Indeed, as shown in Table 2, MGS has the best improvement on 3 data sets. This could be explained by the Gaussian sampling of synthetic observations that allows generated data points to fall outside the convex hull of the minority class, therefore limiting the border phenomenon, established in Theorem 3.4. MGS is potentially a promising new strategy, which will be available in an open source package.

Conclusion

Our work in this paper is both theoretical and experimental. We first proved that SMOTE (with default parameter) regenerates the original distribution by simply copying the original minority samples. We also established that SMOTE density vanishes near the boundary of the support of the minority distribution, therefore justifying the introduction of SMOTE variants focusing on the border. Our experiments show that for most data sets, the None strategy seems to be competitive, at least when the minority class is well represented. While our CV SMOTE approach is not efficient in general, our MGS proposal appears to be promising, by circumventing the borderline issue of SMOTE, exhibited in Theorem 3.4.

More experiments should be carried out to understand the surprising performances of RUS, which consistently outperforms ROS, whereas the two methods are really close, as they both rely on resampling. Besides, in order to analyze MGS(K) in more details, we would like to study the impact of a renormalizing factor λ in the covariance matrix estimation, such that the last step in Algorithm 2 would turn into Z ∼ N (μ, λ Σ).

Experiments

Binary classification protocol

For each data set, the ratio hyperparameters of each rebalancing strategy are chosen so that the minority and majority class have the same weights in the training phase.The main purpose is to apply the strategies exactly on the same data points (X train ), then train the chosen classifier and evaluate the strategies on the same X test . This objective is achieved by selecting each time 4 fold for the training, apply each of the strategies to these 4 exact same fold.

The state-of-the-art rebalancing strategies(see [START_REF] Lemaître | Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning[END_REF] are used with their default hyperparameter values.

GA4 and CreditCard For the GA4 data set, a Time Series split is performed instead of a Stratified 5-fold, because of the temporality of the data. Furthermore, a group out is applied on the different client ID. This means that a client that appears in the training set (composed each time of 4 folds) is systemically deleted from the test set if it appears inside. For the CreditCard data set, a 5 fold Time Series split is performed instead of a Stratified 5-fold, because of the temporality of the data. Proof of Lemma 1. Let X be the support of P X . SMOTE generates new points by linear interpolation of the original minority sample. This means that for all x, y in the minority samples or generated by SMOTE procedure, we have (1 -t)x + ty ∈ Conv(X ) by definition of Conv(X ). This leads to the fact that precisely, all the new SMOTE samples are contained in Conv(X ). This implies Supp(P Z ) ⊆ Conv(X ).

Additional experiments

8.2 Proof of Theorem 3.1

Proof of Theorem 3.1. We consider a single SMOTE iteration. Recall that the central point X c (see Algorithm 1) is fixed, and thus denoted by x c . The random variables X (1) (x c ), . . . , X (n-1) (x c ) denote a reordering of the initial observations X-1, X 2 , . . . , X n such that

||X (1) (x c ) -x c || ≤ ||X (2) (x c ) -x c || ≤ . . . ≤ ||X (n-1) (x c ) -x c ||.
For clarity, we remove the explicit dependence on x c . Recall that SMOTE builds a linear interpolation between x c and one of its K nearest neighbors chosen uniformly. Then the newly generated point Z satisfies

Z = (1 -W )x c + W K k=1 X (k) 1 {I=k} , ( 12 
)
where W is a uniform random variable over [0, 1], independent of I, X 1 , . . . , X n , with I distributed as U({1, . . . , K}).

From now, consider that the k-th nearest neighbor of x c , X (k) (x c ), has been chosen (that is

I = k). Then Z satisfies Z = (1 -W )x c + W X (k) (13) = x c -W x c + W X (k) , (14) 
which implies

Z -x c = W (X (k) -x c ). ( 15 
)
Let f Z-xc , f W and f X (k) -xc be respectively the density functions of Z -x c , W and X (k) -x c . Let z, z 1 , z 2 ∈ R d . Recall that z ≤ z 1 means that each component of z is lower than the corresponding component of z 1 . Since W and X (k) -x c are independent, we have,

P(z 1 ≤ Z -x c ≤ z 2 ) = w∈R x∈R d f W,X (k) -xc (w, x)1 {z1≤wx≤z2} dwdx (16) = w∈R x∈R d f W (w)f X (k) -xc (x)1 {z1≤wx≤z2} dwdx (17) = w∈R f W (w) x∈R d f X (k) -xc (x)1 {z1≤wx≤z2} dx dw. (18) 
Besides, let u = wx. Then x = ( u1 w , . . . , u d w ) T .The Jacobian of such transformation equals:

∂x1 ∂u1 . . . ∂x1 ∂u d . . . . . . . . . ∂x d ∂u1 . . . ∂x d ∂u d = 1 w 0 . . . 0 . . . 1 w = 1 w d (19) 
Therefore, we have x = u/w and dx = du/w d , which leads to

P(z 1 ≤ Z -x c ≤ z 2 ) (20) = w∈R 1 w d f W (w) u∈R d f X (k) -xc u w 1 {z1≤u≤z2} du dw. (21) 
Note that a random variable Z ′ with density function

f Z ′ (z ′ ) = w∈R 1 w d f W (w)f X (k) -xc z ′ w dw (22)
satisfies, for all z 1 , z 2 ∈ R d ,

P(z 1 ≤ Z -x c ≤ z 2 ) = w∈R 1 w d f W (w) u∈R d f X (k) -xc u w 1 {z1≤u≤z2} du dw. (23) 
Therefore, the variable Z -x c admits the following density

f Z-xc (z ′ |X c = x c , I = k) = w∈R 1 w d f W (w)f X (k) -xc z ′ w dw. ( 24 
)
Since W follows a uniform distribution on [0, 1], we have

f Z-xc (z ′ |X c = x c , I = k) = 1 0 1 w d f X (k) -xc z ′ w dw. ( 25 
)
The density f X (k) -xc of the k-th nearest neighbor of x c can be computed exactly (see, Lemma 6.1 in [START_REF] Berrett | Modern k-nearest neighbour methods in entropy estimation, independence testing and classification[END_REF], that is

f X (k) -xc (u) = (n -1) n -2 k -1 f X (x c + u) µ X (B(x c , ||u||)) k-1 × 1 -µ X (B(x c , ||u||)) n-k-1 , (26) 
where

µ X (B(x c , ||u||)) = B(xc,∥u∥) f X (x)dx. ( 27 
)
We recall that B(x c , ∥u∥) is the ball centered on x c and of radius ∥u∥. Hence we have

f X (k) -xc (u) = (n -1) n -2 k -1 f X (x c + u)µ X (B(x c , ||u||)) k-1 [1 -µ X (B(x c , ||u||))] n-k-1 . (28) 
Since Z -x c is a translation of the random variable Z, we have

f Z (z|X c = x c , I = k) = f Z-xc (z -x c |X c = x c , I = k). (29) 
Injecting Equation (28) in Equation ( 25), we obtain

f Z (z|X c = x c , I = k) (30) = f Z-xc (z -x c |X c = x c , I = k) (31) = 1 0 1 w d f X (k) -xc z -x c w dw (32) = (n -1) n -2 k -1 1 0 1 w d f X x c + z -x c w µ X B x c , ||z -x c || w k-1 (33) × 1 -µ X B x c , ||z -x c || w n-k-1 dw (34)
Recall that in SMOTE, k is chosen at random in {1, . . . , K} through the uniform random variable I. So far, we have considered I fixed. Taking the expectation with respect to I, we have

f Z (z|X c = x c ) (35) = K k=1 f Z (z|X c = x c , I = k)P[I = k] (36) = 1 K K k=1 1 0 1 w d f X (k) -xc z -x c w dw (37) = 1 K K k=1 (n -1) n -2 k -1 1 0 1 w d f X x c + z -x c w µ X B x c , ||z -x c || w k-1 (38) × [1 -µ X B x c , ||z -x c || w ] n-k-1 dw (39) = (n -1) K 1 0 1 w d f X x c + z -x c w K k=1 n -2 k -1 µ X B x c , ||z -x c || w k-1 (40) × [1 -µ X B x c , ||z -x c || w ] n-k-1 dw (41) = (n -1) K 1 0 1 w d f X x c + z -x c w K-1 k=0 n -2 k µ X B x c , ||z -x c || w k (42) × 1 -µ X B x c , ||z -x c || w n-k-2 dw. (43) 
Note that the sum can be expressed as the cumulative distribution function of a Binomial distribution parameterized by n -2 and µ X (B(x c , ∥z -x c ∥/w)), so that

K-1 k=0 n -2 k µ X B x c , ||z -x c || w k 1 -µ X B x c , ||z -x c || w n-k-2 (44) =(n -K -1) n -2 K -1 B n -K -1, K; 1 -µ X B x c , ||z -x c || w , (45) 
(see Technical Lemma 2 for details). We inject Equation (45) in Equation ( 35)

f Z (z|X c = x c ) = (n -K -1) n -1 K 1 0 1 w d f X x c + z -x c w × B n -K -1, K; 1 -µ X B x c , ||z -x c || w dw. (46) 
We know that

f Z (z) = xc∈X f Z (z|X c = x c )f X (x c )dx c .
Combining this remark with the result of Equation ( 46) we get

f Z (z) = (n -K -1) n -1 K xc∈X 1 0 1 w d f X x c + z -x c w × B n -K -1, K; 1 -µ X B x c , ||z -x c || w f X (x c )dwdx c . (47) 
Link with Elreedy's formula According to the Elreedy formula

f Z (z|X c = x c ) = (n -K -1) n -1 K ∞ r=∥z-xc∥ f X x c + (z -x c )r ∥z -x c ∥ r d-2 ∥z -x c ∥ d-1 × B (n -K -1, K; 1 -µ X (B (x c , r))) dr. (48) 
Now, let r = ∥z -x c ∥/w so that dr = -∥z -x c ∥dw/w 2 . Thus,

f Z (z|X c = x c ) = (n -K -1) n -1 K 1 0 f X x c + z -x c w 1 w d-2 1 ∥z -x c ∥ (49) × B n -K -1, K; 1 -µ X B x c , z -x c w ∥z -x c ∥ w 2 dw (50) = (n -K -1) n -1 K 1 0 1 w d f X x c + z -x c w B n -K -1, K; 1 -µ X B x c , z -x c w dw. (51)
8.3 Proof of Theorem 3.2

Proof of Theorem 3.2. For any event A, B, we have

1 -P[A ∩ B] = P[A c ∪ B c ] ≤ P[A c ] + P[B c ], (52) 
which leads to

P[A ∩ B] ≥ 1 -P[A c ] -P[B c ] (53) = P[A] -P[B c ]. (54) 
By construction,

∥X c -Z∥ ≤ ∥X c -X (K) (X c )∥. (55) 
Let x ∈ X and η > 0. Let α, ε > 0. We have,

P[X c ∈ B(x, α -ε)] -P[∥X c -X (K) (X c )∥ > ε] (56) ≤ P[X c ∈ B(x, α -ε), ∥X c -X (K) (X c )∥ ≤ ε] (57) ≤ P[X c ∈ B(x, α -ε), ∥X c -Z∥ ≤ ε] (58) 
≤ P[Z ∈ B(x, α)]. (59) 
Similarly, we have

P[Z ∈ B(x, α)] -P[∥X c -X (K) (X c )∥ > ε] (60) 
≤ P[Z ∈ B(x, α), ∥X c -X (K) (X c )∥ ≤ ε] (61) 
≤ P[Z ∈ B(x, α), ∥X c -Z∥ ≤ ε] (62) ≤ P[X c ∈ B(x, α + ε)]. (63) 
Since X c admits a density, for all ε > 0 small enough

P[X c ∈ B(x, α + ε)] ≤ P[X c ∈ B(x, α)] + η, (64) 
and

P[X c ∈ B(x, α)] -η ≤ P[X c ∈ B(x, α -ε)]. (65) 
Let ε such that (64) and ( 65) are verified. According to Lemma 2.3 in [START_REF] Biau | Lectures on the nearest neighbor method[END_REF], since X 1 , . . . , X n are i.i.d., if K/n tends to zero as n → ∞, we have

P[∥X c -X (K) (X c )∥ > ε] → 0. ( 66 
)
Thus, for all n large enough,

P[X c ∈ B(x, α)] -2η ≤ P[Z ∈ B(x, α)] (67) 
and

P[Z ∈ B(x, α)] ≤ 2η + P[X c ∈ B(x, α)]. (68) 
Finally, for all η > 0, for all n large enough, we obtain

P[X c ∈ B(x, α)] -2η ≤ P[Z ∈ B(x, α)] ≤ 2η + P[X c ∈ B(x, α)], (69) 
which proves that

P[Z ∈ B(x, α)] → P[X c ∈ B(x, α)]. (70) 
Therefore, by the Monotone convergence theorem, for all Borel sets B ⊂ R d ,

P[Z ∈ B] → P[X c ∈ B]. (71) 
8.4 Proof of Theorem 3.3

Proof of Theorem 3.3. Let x c ∈ X be a central point in a SMOTE iteration. From Theorem 3.1, we have,

f Z (z|X c = x c ) = (n -K -1) n -1 K 1 0 1 w d f X x c + z -x c w B n -K -1, K; 1 -µ X B x c , ||z -x c || w dw (72) = (n -K -1) n -1 K 1 0 1 w d f X x c + z -x c w 1 {xc+ z-xc w ∈X } × B n -K -1, K; 1 -µ X B x c , ||z -x c || w dw. (73) 
Let R ∈ R such that X ⊂ B(0, R). For all u = x c + z-xc w , we have

w = ||z -x c || ||u -x c || . ( 74 
)
If u ∈ X , then u ∈ B(0, R). Besides, since x c ∈ X ⊂ B(0, R), we have ||u -x c || < 2R and

w > ||z -x c || 2R . (75) 
Consequently,

1 {xc+ z-xc w ∈X } ≤ 1 {w> ||z-xc || 2R } . (76) 
So finally

1 {xc+ z-xc w ∈X } = 1 {xc+ z-xc w ∈X } 1 {w> ||z-xc || 2R } . (77) 
Hence,

f Z (z|X c = x c ) = (n -K -1) n -1 K 1 0 1 w d f X x c + z -x c w 1 {xc+ z-xc w ∈X } 1 {w> ||z-xc || 2R } × B n -K -1, K; 1 -µ X B x c , ||z -x c || w dw (78) = (n -K -1) n -1 K 1 ||z-xc || 2R 1 w d f X x c + z -x c w × B n -K -1, K; 1 -µ X B x c , ||z -x c || w dw. ( 79 
)
Now, let 0 < α ≤ 2R and z ∈ R d such that ||z -x c || > α. In such a case, w > α 2R and:

f Z (z|X c = x c ) = (n -K -1) n -1 K 1 α 2R 1 w d f X x c + z -x c w (80) × B n -K -1, K; 1 -µ X B x c , ||z -x c || w dw.
Using Lemma 3, we have

f Z (z|X c = x c ) = (n -K -1) n -1 K 1 α 2R 1 w d f X x c + z -x c w B n -K -1, K; 1 -µ X B x c , ||z -x c || w dw (81) ≤ (n -K -1) K n -1 K 1 α 2R 1 w d f X x c + z -x c w × 1 -µ X B x c , ||z -x c || w n-K-2 1 -µ X B x c , ||z -x c || w K dw (82) ≤ (n -K -1) K n -1 K 1 α 2R 1 w d f X x c + z -x c w × 1 -µ X B x c , α w n-K-2 1 -µ X B x c , α w K dw. ( 83 
)
Recall that there is

C 2 ∈ R such that f X ≤ C 2 . Hence, for all z ∈ R d such that ||z -x c || > α, f Z (z|X c = x c ) (84) ≤ C 2 (n -K -1) K n -1 K 1 α 2R 1 w d 1 -µ X B x c , α w n-K-2 1 -µ X B x c , α w K dw (85) ≤ C 2 (n -K -1) K n -1 K 1 α 2R 1 w d [1 -µ X (B (x c , α))] n-K-2 1 -[µ X (B (x c , α))] K dw (86) ≤ C 2 (n -K -1) K n -1 K [1 -µ X (B (x c , α))] n-K-2 1 α 2R 1 w d dw (87) = C 2 n K 1 - K -1 n n -1 K [1 -µ X (B (x c , α))] n-K-2 1 α 2R 1 w d dw (88) = η(α, R) C 2 n K 1 - K -1 n n -1 K [1 -µ X (B (x c , α))] n-K-2 (89) with η(α, R) = ln 2R α if d = 1 1 d-1 2R α d-1 -1 otherwise .
Using Lemma 4, and letting β xc,α = µ X (B (x c , α)), we have

f Z (z|X c = x c ) (90) ≤ η(α, R) C 2 n K 1 - K -1 n e(n -1) K K (1 -β xc,α ) n-K-2 (91) ≤ η(α, R)C 2 n K K+1 e K 1 - K -1 n (1 -β xc,α ) n-K-2 (92) ≤ η(α, R)C 2 n K K+1 e K (1 -β xc,α ) n-K-2 (93) = C 2 η(α, R) exp n K n + (K + 1) n ln n K - K + 2 n ln(1 -β xc,α ) + ln(1 -β xc,α ) . ( 94 
)
8.5 Proof of Corollary 3.3.1

Proof of Corollary 3.3.1. Let x ∈ o X . By assumption, according to Theorem 3.3, for all n ≥ K ≥ 1, for all α > 0 such that α ≤ 2R,

P(|Z -X c | ≥ α|X c = x c ) ≤ ϵ(n, α, K, x c ) × Vol(Conv(X )), (112) 
where Vol(Conv(X )) is the volume of the convex hull of X , and

ε(n, K, x c , α) = C 2 η(α, R) exp n 3 e 1 -β xc,α K n + ln (1 -β xc,α ) , (113) 
with

β xc,α = µ X (B (x c , α)) and η(α, R) = ln 2R α if d = 1 1 d-1 2R α d-1 -1 otherwise.
Let α n = (K/n) γ , with γ > 0. By assumption, K/n tends to zero as n tends to infinity, so that lim n→∞ α n = 0.

Since x c ∈ X , for all n large enough, B(x c , α n ) ⊂ o X . Therefore, for all n large enough,

C 1 c d α d n ≤ β xc,αn = x∈B(xc,αn) f X (x)dx ≤ C 2 c d α d n , (114) 
with

c d = π d/2 /Γ d 2 + 1 . Besides, we have for all x ∈ [-∞, 1], ln(1 -x) ≤ -x.
Then, according to ( 113) and (114),

ε(n, K, x c , α n ) ≤ C 2 η(α n , R) exp n 3 e 1 -C 1 c d α d n K n -C 1 c d α d n . ( 115 
) Case d = 1. If d = 1, then ε(n, K, x c , α n ) ≤ C 2 ln 2R α n exp n 3 e 1 -C 1 c 1 α d n K n -C 1 c 1 α d n (116) ≤ C 2 ln 2R n K γ exp   n   3 e 1 -C 1 c 1 K n γ K n -C 1 c 1 K n γ     (117) ≤ C 2 ln 2R n K γ exp   n K n   3 e 1 -C 1 c 1 K n γ -C 1 c 1 K n γ-1 2     . (118) 
For this upper to tend to zero, we need to have 0 < γ < 1/2. Note that

C 1 c 1 K n γ ≤ 1 2 , ( 119 
) is equivalent to γ ≥ ln(2C 1 c 1 ) ln n K . (120) 
Thus, assuming that max 0, ln(2C

1 c 1 ) ln n K < γ < 1/2, ( 121 
)
we have

ε(n, K, x c , α n ) ≤ C 2 ln 2R n K γ exp n K n 3 √ 2e -C 1 c d K n γ . (122) 
Additionally, assuming that

C 1 c 1 K n γ-1 2 ≥ 6 √ 2e, (123) 
which is equivalent to

γ ≤ 1 2 + ln 6 √ 2e/C 1 c 1 ln(K/n) , ( 124 
) leads to ε(n, K, x c , α n ) ≤ C 2 ln 2R n K γ exp -3 √ 2enK . (125) 
So far, we have assumed that max 0, ln(2C

1 c 1 ) ln n K < γ < 1 2 + min 0, ln 6 √ 2e/C 1 c 1 ln(K/n) . (126) 
Besides, we assume that n/K ≥ R, which leads to

ε(n, K, x c , α n ) ≤(γ + 1)C 2 ln n K exp -3 √ 2enK . (127) 
Letting v = n/K, we have

ε(n, K, x c , α n ) ≤ 2C 2 v exp - 3 √ 2eKv 2 exp - 3 √ 2eKv 2 . ( 128 
) Maximizing f : v → 2A 1 v exp [-A 2 v/2] over v ∈ (0, ∞) with A 1 = (γ + 1)C 2 and A 2 = 3K √ 2e leads to ε(n, K, x c , α n ) ≤ 4A 1 eA 2 exp - 3 √ 2eKv 2 (129) 
Thus, for all n/K ≥ R and all γ such that max 0, ln(2C

1 c 1 ) ln n K < γ < 1 2 + min 0, ln 6 √ 2e/C 1 c 1 ln(K/n) , (130) 
we have

ε(n, K, x c , α n ) ≤ 4C 2 e -1 (γ + 1) 3K √ 2e exp -3 enK 2 . ( 131 
)
Since c 1 = 2, for all n/K ≥ R, and all γ such that max 0, ln(4C 1 ) ln

n K < γ < 1 2 + min 0, ln 3 √ 2e/C 1 ln(K/n) , (132) 
that is, for all R ≤ n/K.

Case d > 1. If d > 1, then ε(n, K, x c , α n ) (133) ≤ C 2 1 d -1 2R α n d-1 -1 exp n 3 e 1 -C 1 c d α d n K n -C 1 c d α d n (134) ≤ C 2 1 d -1 2R n K γ d-1 -1 exp   n   3 e 1 -C 1 c d K n γd K n -C 1 c d K n γd     (135) ≤ C 2 1 d -1 2R n K γ d-1 exp   n   3 e 1 -C 1 c d K n γd K n -C 1 c d K n γd     (136) = C 2 1 d -1 exp   (d -1) ln 2R n K γ + n   3 e 1 -C 1 c d K n γd K n -C 1 c d K n γd     (137) 
Let ε > 0 and from now γd = 1/2 + λ. Then,

ε(n, K, x c , α n ) (138) ≤ C 2 1 d -1 exp   (d -1) ln 2R n K 1 d ( 1 2 +λ) + n   3 e 1 -C 1 c d K n (1/2)+λ K n -C 1 c d K n (1/2)+λ     (139) ≤ C 2 1 d -1 exp   (d -1) ln 2R n K 1 d ( 1 2 +λ) + n K n   3 e 1 -C 1 c d K n (1/2)+λ -C 1 c d K n λ     . (140) 
For this upper to tend to zero, we need to have -1 2 < λ < 0. Note that,

C 1 c d K n (1/2)+λ ≤ 1 2 , ( 141 
) is equivalent to λ ≥ ln(2C 1 c d ) ln n K - 1 2 . (142) 
Thus, assuming that max 0, ln(2C

1 c d ) ln n K - 1 2 < λ < 0, (143) 
we have

ε(n, K, x c , α n ) (144) ≤ C 2 1 d -1 exp (d -1) ln 2R n K 1 d ( 1 2 +λ) + n K n 3 √ 2e -C 1 c d K n λ . (145) 
Additionally, assuming that

C 1 c 1 K n λ ≥ 6 √ 2e, (146) 
which is equivalent to

λ ≤ ln 6 √ 2e/C 1 c d ln(K/n) , ( 147 
) leads to ε(n, K, x c , α n ) ≤ C 2 1 d -1 exp (d -1) ln 2R n K 1 d ( 1 2 +λ) -n K n 3 √ 2e (148)
So far, we have assumed that max 0, ln(2C

1 c d ) ln n K - 1 2 < λ < min 0, ln 6 √ 2e/C 1 c d ln(K/n) . (149) 
Besides, we assume that n/K ≥ R, which leads to

ε(n, K, x c , α n ) ≤ C 2 1 d -1 exp (d -1) ln n K 1 d ( 1 2 +λ)+1 -n K n 3 √ 2e (150) = C 2 1 d -1 exp (d -1) 1 d 1 2 + λ + 1 ln n K -n K n 3 √ 2e (151) Letting v = n/K, we have ε(n, K, x c , α n ) ≤ C 2 1 d -1 exp (d -1) 1 d 1 2 + λ + 1 ln v 2 -vK 3 √ 2e . ( 152 
) Maximizing g : v → B 1 x ⌈2B2⌉ exp -3 √ 2eKx 2 with B 1 = C 2 1 d-1 and B 2 = (d -1) 1 d 1 2 + λ + 1 leads to ε(n, K, x c , α n ) ≤ B 1 4B 2 + 2 3 √ 2eK 2B2+1 exp -3 √ 2enK 2 . (153) 
Thus, for all n/K ≥ R and all γ such that max 0, ln(2C

1 c d ) ln n K - 1 2 < λ < min 0, ln 6 √ 2e/C 1 c d ln(K/n) , (154) 
which is equivalent to,

1 d max 0, ln(2C 1 c d ) ln n K < γ < 1 d 1 2 + min 0, ln 6 √ 2e/C 1 c d ln(K/n) . (155) 
Remark that, γ < 1/2 which implies,

B 2 = (d -1)(γ + 1) (156) < (d -1) 1 2 + γ (157) ≤ 3 2 (d -1) (158) ≤ 2d. ( 159 
)
On the other side, we have for all d > 1 : 1/d -1 ≤ 2/d, which leads to

B 1 = C 2 1 d -1 (160) ≤ 2C 2 d . (161) 
Finally, for all n/K ≥ R and all γ such that

1 d max 0, ln(2C 1 c d ) ln n K < γ < 1 d 1 2 + min 0, ln 6 √ 2e/C 1 c d ln(K/n) , (162) 
we have,

ε(n, K, x c , α n ) ≤ 2C 2 d 8d + 2 3 √ 2eK 4d+1 exp -3 √ 2enK 2 (163) 8.6 Proof of Theorem 3.4 Proof of Theorem 3.4. Let ε > 0 and z ∈ B(0, R) such that ∥z∥ ≥ R -ε. Let A ε = {x ∈ B(0, R), ⟨x -z, z⟩ ≤ 0}. Let 0 < α < 2R and Ãα,ε = A ε ∩ {x, ∥z -x∥ ≥ α}.
An illustration is displayed in Figure 5. We have

f Z (z) = xc∈ Ãα,ε f Z (z|X c = x c )f X (x c )dx c + xc∈ Ãc α,ε f Z (z|X c = x c )f X (x c )dx c (164) 
First term Let x c ∈ Ãα,ε . In order to have

x c + z-xc w = z + -1 + 1 w (z -x c ) ∈ B(0, R), it is necessary that -1 + 1 w ∥z -x c ∥ ≤ √ 2εR (165) 
which leads to

w ≥ 1 1 + √ 2εR ∥z-xc∥ (166) Since x c ∈ Ãα,ε , we have ∥x c -z∥ ≥ α. Thus, according to inequality (166), x c + z-xc w ∈ B(0, R) implies w ≥ 1 1 + √ 2εR α . (167) 
Recall that x c + z-xc w ∈ X . Consequently, according to Theorem 3.1, for all x c ∈ Ãα,ε ,

f Z (z|X c = x c ) (168) = (n -K -1) n -1 K 1 0 1 w d f X x c + z -x c w B n -K -1, K; 1 -µ X B x c , ||z -x c || w dw (169) ≤ C 2 (n -K -1) K n -1 K 1 1 1+ √ 2εR α 1 w d 1 -µ X B x c , α w n-K-2 1 -µ X B x c , α w K dw (170) ≤ C 2 n K 1 - K -1 n n -1 K 1 1 1+ √ 2εR α 1 w d dw (171) ≤ η(α, R) C 2 n K 1 - K -1 n n -1 K , (172) 
with

η(α, R) =      ln 1 + √ 2εR α if d = 1 1 d-1 1 + √ 2εR α d-1
-1 otherwise .

Second term According to Theorem 3.1, we have 

f Z (z|X c = x c ) = (n -K -1) n -1 K 1 0 1 w d f X x c + z -x c w × B n -K -1, K; 1 -µ X B x c , ||z -x c || w dw. ( 173 
Hence, for all w ≤ ∥z -x c ∥/2R, β xc,α (w) = 1. Plugging this equality into (173), we have

f Z (z|X c = x c ) (177) = (n -K -1) K n -1 K ∥z-xc∥/2R 0 1 w d f X x c + z -x c w (1 -β xc,α (w)) n-K-2 dw (178) + (n -K -1) K n -1 K 1 ∥z-xc∥/2R 1 w d f X x c + z -x c w (1 -β xc,α (w)) n-K-2 dw (179) = (n -K -1) K n -1 K 1 ∥z-xc∥/2R 1 w d f X x c + z -x c w (1 -β xc,α (w)) n-K-2 dw (180) ≤ C 2 (n -K -1) K n -1 K 1 ∥z-xc∥/2R 1 w d dw (181) ≤ C 2 (n -K -1) K n -1 K - 1 d -1 w -d+1 1 ∥z-xc∥/2R (182) ≤ C 2 (2R) d-1 d -1 (n -K -1) K n -1 K 1 ∥z -x c ∥ d-1 . ( 183 
)
Besides, note that, for all α > 0, we have is the surface of the S d-1 sphere. Finally, for all z ∈ X , for all α > 0, and for all K, N such that 1 ≤ K ≤ N , we have

B(z,α) 1 ∥z -x c ∥ d-1 f X (x c )dx c ( 
B(z,α) f Z (z|X c = x c )f X (x c )dx c ≤ 2C 2 2 (2R) d-1 π d/2 (d -1)Γ(d/2) (n -K -1) K n -1 K α. ( 189 
)
Final result Using Figure 5 and Pythagore's Theorem, we have a 2 ≤ √ 2εR. Let d > 1 and ϵ > 0. Then we have for all α such that α > a.

f Z (z) (190) = xc∈ Ãα,ε f Z (z|X c = x c )f X (x c )dx c + xc∈ Ãc α,ε f Z (z|X c = x c )f X (x c )dx c (191) ≤ C 2 d -1   1 + √ 2εR α d-1 -1   (n -K -1) K n -1 K + 2C 2 2 (2R) d-1 π d/2 (d -1)Γ(d/2) (n -K -1) K n -1 K α (192) = C 2 d -1 (n -K -1) K n -1 K     1 + √ 2εR α d-1 -1   + 2C 2 (2R) d-1 π d/2 Γ(d/2) α   , (193) 
But this inequality is true if α ≥ a. We know that (1 + x) d-1 ≤ (2 d-1 -1)x + 1 for x ∈ [0, 1] and d -1 ≥ 0. Then, for α such that 

√ 2εR α ≤ 1, f Z (z) (194) ≤ C 2 d -1 (n -K -1) K n -1 K (2 d-1 -1) √ 2εR α + 1 -1 + 2C 2 (2R) d-1 π d/2 Γ(d/2) α (195) ≤ C 2 d -1 (n -K -1) K n -1 K (2 d-1 -1) √ 2εR α + 2C 2 (2R) d-1 π d/2 Γ(d/2) α . (196 
Proof. We have,

n k = n(n -1) . . . (n -k + 1) k! ≤ n k k! . ( 203 
)
Besides, And,

e k = +∞ i=0 k i i! =⇒ e k ≥ k k k! =⇒ e k k k ≥ 1 k! . ( 204 
f ′′ (x) = 1 x - 1 4x 3/2 . ( 210 
)
We have, We have 2 + ln( 1 16 ) + 1 > 0. So f ′ (x) > 0 for all x ∈]0, ∞[. Furthermore lim x→0 + f (x) = 0, hence f (x) > 0 for all x ∈]0, ∞[, therefore √ x > x ln 1 x for all x ∈]0, ∞[.

f ′′ (x) ≥ 0 =⇒ 1 x - 1 4x 3/2 ≥ 0 =⇒ 1 x ≥ 1 4x
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 1 Figure 1: Average distance C(Z, X) of SMOTE samples to their nearest neighbors in the original sample, distributed as U([-3, 3] 2 ).

Figure 3 :

 3 Figure 3: Protocol real-data on Phoneme data set.

Figure 5 :

 5 Figure 5: Illustration of Theorem 3.4.

)

  Letting β xc,α (w) = µ X B x c , ||z-xc|| w , according to Lemma 3, B (n -K -1, K; 1 -β xc,α (w)) ≤ (1 -β xc,α (w)) n-K-2 K 1 -β xc,α (w) K β xc,α (w) ∈ [0, 1]. Note that, since X ⊂ B(0, R), all points x, z ∈ X satisfy ∥x -z∥ ≤ 2R. Consequently, if ∥z -x c ∥/w ≥ 2R, B(0, R) ⊂ B(x c , ∥z -x c ∥/w).

  1 r d-1 sin d-2 (φ 1 ) sin d-3 (φ 2 ) . . . sin(φ d-2 )drdφ 1 . . . dφ d-2 ,(185) where r, φ 1 , . . . , φ d-2 are the spherical coordinates. A direct calculation leads toB(z,α) 1 ∥z -x c ∥ d-1 f X (x c )dx c ≤ C 2 sin d-2 (φ 1 ) sin d-3 (φ 2 ) . . . sin(φ d-2 )dφ 1 . . . dφ d-2 2 (φ 1 ) sin d-3 (φ 2 ) . . . sin(φ d-2 )dφ 1 . . . dφ d-2(188)

  So our initial condition on α to get the upper bound of the second term is still true. Now, we choose α such that, leads to the following conditionα ≥ Γ(d/2)(2 d-1 -1) √ 2εR 2C 2 (2R) d-1 π d/2bounds for binomial coefficient Lemma 4. For k, n ∈ N such that k < n, we have

Table 1 :

 1 Description of the data sets, where n is the number of samples, and d the number of features.

		Total N	minority	d
			samples n/N	
	GA4	319 066	0.7%	7
	CreditCard	284 315	0.2%	29
	Abalone	4 177	1%	8
	Phoneme	5 404	29%	5
	Yeast	1 462	11%	8
	Pima	768	35%	8
	Wine	4 974	4%	11
	Vehicule	846	23%	18
	Ionosphere	351	36%	32
	Haberman	306	26%	3
	Breast cancer	630	36%	9

Table 2 :

 2 Random Forest ROC AUC for different rebalancing strategies and different data sets. Only datasets such that the None strategy is not among the best ones (displayed in bold) are displayed. Data sets artificially undersampled for minority class are in italics. Other data sets are presented in Table3. Mean standard deviations are computed.

	Resampling	None Class	RUS	ROS	Near	BS1	BS2 Smote	CV	MGS
	Strategy	weight			Miss1			Smote	
	GA4 (1%) (±0.004)	0.660 0.472 0.866 0.500 0.848 0.652 0.695 0.506	0.720	0.650
	CreditCard (0.2%) (±0.003) 0.939 0.938 0.975 0.941 0.906 0.945 0.945 0.954	0.954	0.950
	Abalone (1%) (±0.015)	0.697 0.702	0.719 0.712 0.570 0.712 0.742 0.756	0.750 0.799
	Phoneme (1%) (±0.021)	0.819 0.821	0.851 0.814 0.575 0.847 0.861 0.876	0.877 0.899
	Yeast (1%) (±0.019)	0.906 0.928	0.931 0.929 0.806 0.946 0.940 0.967 0.968 0.944
	Wine (4%)(±0.008)	0.819 0.815 0.846 0.810 0.748 0.827 0.780 0.828	0.822	0.822
	Pima (10%) (±0.012)	0.797 0.804	0.802 0.800 0.680 0.814 0.812 0.807	0.806 0.821
	Haberman (26%) (±0.013)	0.684 0.680	0.670 0.673 0.704 0.652 0.660 0.687	0.675	0.664
	Haberman (10%) (±0.037)	0.580 0.580	0.599 0.582 0.634 0.609 0.624 0.617	0.598	0.619

Protocol We compare the different rebalancing strategies on 11 real-world data sets, described in Table

1

. We use 80%/20% (train/test) stratified split of the data, and apply each rebalancing strategy on the training set, in order to obtain a balanced data set. A learning procedure (Logistic regression or Random Forest) with

Table 3 :

 3 Random Forest ROC AUC for different rebalancing strategies and different data sets. Only datasets such that the None strategy is on par with the best strategies are displayed. Other data sets are presented in Table2. Mean standard deviations are computed. The best strategy is highlighted in bold for each data set. CV SMOTE is not applied to data sets artifically undersampled Ionosphere(1%) and Breast Cancer (1%) due to the small number of minority class samples.

	Strategy	None	Class	RUS	ROS	Near	BS1		BS2 Smote	CV	MGS
			weight					Miss1			Smote
	Phoneme (±0.0007)	0.961	0.961	0.950 0.962 0.900 0.960 0.961 0.962 0.962 0.961
	Phoneme (10%) (±0.003)	0.957	0.957	0.936 0.957 0.649 0.957 0.957 0.958	0.959 0.961
	Pima (±0.004)	0.826 0.826	0.823 0.824 0.803 0.813 0.812 0.823	0.823	0.826
	Yeast (±0.003)	0.960	0.964 0.968 0.964 0.906 0.962 0.965 0.964	0.966	0.965
	Vehicle (±0.001)	0.994	0.994	0.990 0.995 0.924 0.995 0.994 0.994	0.994 0.994
	Vehicle (10%) (±0.003)	0.992	0.993	0.978 0.994 0.755 0.991 0.988 0.992	0.991	0.992
	Ionosphere (±0.002)	0.974 0.973	0.967 0.973 0.944 0.971 0.972 0.971	0.972	0.970
	Ionosphere (10%) (±0.008)	0.969 0.965	0.932 0.965 0.822 0.949 0.946 0.949	0.957	0.950
	Ionosphere (1%) (±0.006)	1.0	1.0	0.962	1.0		0.980	1.0	0.985	1.0	0.999
	Breast Cancer (±0.001)	0.992 0.991	0.991 0.991 0.990 0.991 0.990 0.991	0.991	0.992
	Breast Cancer (10%) (±0.002) 0.993	0.993	0.992 0.993 0.990 0.992 0.989 0.993	0.992 0.994
	Breast Cancer (1%) (±0.001)	1.0	0.999	0.999 0.999 0.999 0.999 0.999 0.999	0.999
	Table 4: Random Forest ROC AUC SMOTE strategies. The best strategy is highlighted in bold for each data
	set.									
	SMOTE		K = 5 K =	√	n K = 0.01n K = 0.1n	CV
	Strategy										Smote
	GA4 (±0.004)	0.506	0.639		0.567	0.701		0.720
	CreditCard (±0.003)	0.954	0.961		0.962	0.965		0.954
	Abalone (±0.015)	0.756	0.756	0.719	0.725		0.750
	Phoneme (±0.001)	0.962	0.961		0.962	0.960		0.962
	Pima (±0.003)	0.826	0.823		0.823	0.823		0.823
	Wine (±0.007)	0.828	0.825		0.828	0.825		0.822
	Yeast (±0.003)	0.964	0.965		0.964	0.965		0.966
	Vehicle (±0.001)	0.994	0.994	0.994	0.994		0.994
	Ionosphere (±0.002)	0.971	0.971		0.972	0.972		0.972
	Haberman (±0.013)	0.675	0.675	0.672	0.677		0.664
	Breast cancer (±0.001) 0.991	0.991		0.991	0.991		0.990

Table 5 :

 5 Logistic Regression ROC AUC. The best strategy is highlighted in bold for each data set. CV SMOTE is not applied to data sets artifically undersampled Ionosphere(1%) and Breast Cancer (1%) due to the small number of minority class samples.

	Strategy	None	Class	RUS	ROS	Near	BS1	BS2	Smote	CV	MGS
			weight			Miss1				Smote	
	GA4 (±0.001)	0.831	0.866	0.865	0.866 0.896 0.862	0.870	0.859	0.862 0.855
	CreditCard (±0.001)	0.939	0.938 0.975 0.941	0.906	0.945	0.945	0.954	0.954 0.950
	Abalone (±0.002)	0.767	0.855	0.734	0.866	0.777	0.868 0.873 0.866	0.866 0.848
	Phoneme (±0.001)	0.812 0.811	0.811	0.811	0.571	0.801	0.805	0.811	0.811 0.810
	Phoneme (10%) (±0.001)	0.809 0.806	0.805	0.806	0.431	0.801	0.805	0.805	0.805 0.805
	Phoneme (1%)(±0.009)	0.798	0.803	0.787	0.803	0.435	0.771	0.767	0.802 0.805 0.802
	Yeast (±0.001)	0.960	0.964 0.968 0.965	0.906	0.962	0.965	0.964	0.966 0.965
	Yeast (1%) (±0.015)	0.893	0.947	0.867 0.949 0.733	0.926	0.931	0.947	0.947 0.941
	Pima (±0.004)	0.830 0.832	0.823	0.826	0.812	0.819	0.819	0.825	0.825 0.826
	Pima (10%) (±0.008)	0.785	0.776	0.774	0.782	0.684	0.787 0.796 0.782	0.778 0.787
	Wine (±0.004)	0.827 0.846 0.831	0.845	0.722	0.845	0.805	0.845	0.845 0.842
	Vehicle (±0.001)	0.993 0.991	0.991	0.993	0.994	0.992	0.988	0.993	0.993 0.991
	Vehicle (10%) (±0.003)	0.994 0.995	0.989	0.994	0.983	0.994	0.989	0.994	0.994 0.994
	Ionosphere (±0.006)	0.878 0.875	0.879	0.870	0.842	0.854	0.858	0.868	0.871 0.865
	Ionosphere (10%) (±0.019)	0.950 0.947	0.925	0.943	0.848	0.936	0.938	0.946	0.951 0.932
	Ionosphere (1%) (±0.008)	0.997 0.997	0.947	0.997	0.915	0.997	0.994	0.997		0.997
	Breast Cancer (±0.001)	0.610	0.721	0.681	0.693 0.757 0.623	0.622	0.680	0.648 0.676
	Breast Cancer (10%)(±0.069) 0.576	0.657	0.652	0.659	0.589 0.669 0.647	0.658	0.665 0.654
	Breast Cancer (1%) (±0.059) 0.850	0.855 0.881 0.852	0.335	0.850	0.859	0.857		0.869
	Haberman (±0.013)	0.694	0.698	0.688	0.693 0.720 0.664	0.652	0.685	0.681 0.687
	Haberman (10%)(±0.003)	0.633	0.634	0.611	0.632	0.668	0.598	0.605	0.618	0.615 0.598

Table 6 :

 6 Logistic regression ROC AUC SMOTE strategies. The best strategy is highlighted in bold for each data set.

	SMOTE	K = 5 K =	√	n K = 0.01n K = 0.1n	CV
	Strategy						Smote
	GA4 (±0.001)	0.859	0.857	0.857	0.860	0.862
	CreditCard (±0.001)	0.954	0.961	0.961	0.965	0.954
	Abalone (±0.001)	0.866	0.866	0.867	0.868	0.824
	Phoneme (±0.001)	0.811	0.811	0.811	0.811	0.811
	Pima (±0.004)	0.825	0.824	0.824	0.825	0.825
	Wine (±0.003)	0.845	0.845	0.843	0.845	0.845
	Yeast (±0.003)	0.966	0.965	0.966	0.965	0.966
	Vehicle (±0.001)	0.992	0.992	0.993	0.992	0.993
	Ionosphere (±0.007)	0.868	0.871	0.868	0.871	0.871
	Breast cancer(±0.001) 0.680	0.668	0.682	0.674	0.648
	Haberman (±0.013)	0.685	0.687	0.688	0.689	0.681

So,

Since K ≥ 1, we have,

Using Lemma 5, we have

So finally,

Hence, for all z / ∈ B(x c , α),

Consequently,

where Vol(Conv(X )) is the volume of the convex hull of the support of the distribution of X. Since x c ∈ X , by definition of the support (see ), we know that for all ρ > 0, µ X (B(x c , ρ)) > 0. Thus,

tends to zero, as K/n tends to infinity.

Finally, for

we have, (i)

with B(a, b; x) = x t=0 t a-1 (1 -t) b-1 dt, the incomplete beta function. Proof. see [START_REF] Wadsworth | Introduction to probability and random variables[END_REF]. for a > 0.