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Abstract

Based on the proofs of the continuity of the conditional entropy by Alicki, Fannes, and
Winter, we introduce in this work the almost locally affine (ALAFF) method. This method
allows us to prove a great variety of continuity bounds for the derived entropic quantities. First,
we apply the ALAFF method to the Umegaki relative entropy. This way, we recover known
almost tight bounds, but also some new continuity bounds for the relative entropy. Subsequently,
we apply our method to the Belavkin-Staszewski relative entropy (BS-entropy). This yields novel
explicit bounds in particular for the BS-conditional entropy, the BS-mutual and BS-conditional
mutual information. On the way, we prove almost concavity for the Umegaki relative entropy
and the BS-entropy, which might be of independent interest. We conclude by showing some
applications of these continuity bounds in various contexts within quantum information theory.
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1 Introduction

Entropic quantities have proven essential in characterizing the information-processing capabilities
both of classical and quantum systems. As the real world cannot be measured to infinite precision,
such quantities need to be continuous to contain meaningful information about physical systems.
Often, however, we do not only want to know whether an entropic quantity is continuous but also
to quantify this continuity. That means we are interested in estimating for an entropic quantity f

sup{|f(ρ)− f(σ)| : ρ, σ ∈ S0, d(ρ, σ) ≤ ε}.

for some subset S0 of the quantum states and some appropriate distance measure d such as the
trace distance, for example.

Already in 1973, Fannes [30] proved that the von Neumann entropy is uniformly continuous
and gave a concrete dimension-dependent bound, which was later improved to a sharp version
in [4,64]. Similar results in the line of almost concavity for the von Neumann entropy were provided
in [50], [26], [49] or [5], among others. Another example of a concrete continuity estimate is the
Alicki-Fannes inequality for the conditional entropy [1], which was subsequently improved to an
almost tight version by Winter [88]. Applications of this kind of continuity bounds include, but
are not limited to, entanglement measures [60] and the capacities of quantum channels [52,69]. We
refer the reader to textbooks such as [87] for a thorough discussion of continuity bounds and their
applications.

The importance of the Alicki-Fannes result in [1] goes beyond its quantification of the continu-
ity of the conditional entropy, but their method and its improved versions [59, 79, 88] work quite
generally for entropic quantities. Most clearly, this has been realized by Shirokov, who has named
this approach the Alicki-Fannes-Winter method [72, 74]. We continue this line of work by gener-
alising the Shirokov approach further to what we call the almost locally affine (ALAFF) method.
The aim of this generalization is to apply it to entropic quantities beyond those derived from the
Umegaki relative entropy [83], such as the conditional entropy. In particular, we are interested in
the Belavkin-Staszewski relative entropy (BS-entropy) [13] and its derived entropic quantities. As
the Umegaki relative entropy, it generalizes the Kullback-Leibler relative entropy of classical sys-
tems [51], but it is less well studied (see [16,18,43,56,57] for some recent results). The BS-entropy
and the related family of geometric Rényi divergences have recently found an application for es-
timating channel capacities [29]. Moreover, generalizations of the mutual information and other
entropic quantities based on the BS-entropy have been defined [68,89]. The BS-mutual information
has been instrumental in proving that the mutual information in one-dimensional quantum Gibbs
states of finite-range, translation-invariant Hamiltonians decays exponentially fast [17] and that
Davies generators in one dimension which converge to those Gibbs states, in the commuting case,
satisfy a positive modified logarithmic Sobolev inequality at every temperature, and thus rapid
mixing [9, 10].

A short version of the current manuscript, with new applications in the context of quantum
entropic uncertainty relations, has been published in [19].
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2 Main results

This section summarizes the main results of this article. The focus of this work is not so much on the
continuity bounds themselves, but more on the introduction of the method which allows deriving
all of them in a systematic way (section 4). Our approach is summarized in fig. 1. For a given
divergence, in this paper either the Umegaki relative entropy [83] or the BS-entropy [13], we need to
prove two properties: its (joint) convexity and its almost (joint) concavity. Both of these properties,
under certain conditions on the remainder function, then directly translate into almost local affinity
(definition 4.5) of the entropic quantities derived from the divergence at hand on a suitably defined
subset S0 of S(H). Serving as input to the ALAFF method, the remainder estimates get translated
into continuity bounds for said quantities. The entropic quantities include, for example, versions
of the conditional entropy and the (conditional) mutual information, as defined in fig. 1. The
necessity of S0 as a restriction of S(H) becomes obvious when trying to prove continuity bounds
for the Umegaki relative entropy, for example. It is known not to be continuous on the set of
all pairs of states (ρ, σ), which makes a careful choice of S0 inevitable. To this end, we define
s-perturbed ∆-invariant convex subsets of S(H) (definition 4.3) for which we can show that the
ALAFF method works and which are general enough to capture all situations of interest. For the
formal statement of the ALAFF method, we refer the reader to theorem 4.6.

Divergence
D(·∥·)

Convexity
pD(ρ1∥σ1) + (1 − p)D(ρ2∥σ2) ≥ D(ρ∥σ)

Almost concavity
D(ρ∥σ) ≥ pD(ρ1∥σ1) + (1 − p)D(ρ2∥σ2) − f(p)

ALAFF method

Conditional
mutual information

Iρ(A : C|B) :=

Dρ(B|C) − Dρ(AB|C)

Mutual information
Iρ(A : B) :=

D(ρAB∥ρA ⊗ ρB)

Conditional divergence
Hρ(A|B) :=

−D(ρAB∥ 1A ⊗ρB)

Divergence
(fixed second argument)

|D(ρ1∥σ) − D(ρ2∥σ)|

≤ fD,2(∥ρ1 − ρ2∥1)

Divergence
(fixed first argument)

|D(ρ∥σ1) − D(ρ∥σ2)|

≤ fD,1(∥σ1 − σ2∥1)

Divergence
|D(ρ1∥σ1) − D(ρ2∥σ2)|

≤ fD(∥ρ1 − ρ2∥1, ∥σ1 − σ2∥1)

Divergence bound
D(ρ∥σ) ≤ fDB(∥ρ − σ∥1)

Proof Proof

Uniform continuity & Continuity bounds

Figure 1: A flow chart demonstrating how convexity and almost concavity of a divergence can be
used to obtain uniform continuity and explicit continuity bounds on entropic quantities derived
from that divergence. The subscripts of the functions fD,1/2 and fDB stand for divergence first,
second argument and divergence bound respectively.

Thus, we are left with proving convexity and almost concavity for the divergences we are
interested in, namely the Umegaki relative entropy (section 5) and the Belavkin-Staszewski entropy
(section 6), and deriving the precise continuity estimates. For the convexity, we can rely on well-
known results from the literature both for the Umegaki relative entropy [55] and the BS-entropy
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[43, 56]. For the Umegaki relative entropy, given by

D(ρ∥σ) := Tr [ρ(log ρ− log σ)] if kerσ ⊆ ker ρ ,

or + ∞ otherwise, we prove almost concavity in theorem 5.1 and find that it is tight. The
application of the ALAFF method then allows us to recover in section 5.2 the almost tight results
for the conditional entropy [88] and the mutual and conditional mutual information (which can be
derived from the conditional entropy [87]), but also to derive in section 5.3 new versions of what
we call divergence bounds [7,8,21,86], i.e. bounds on D(ρ||σ) in terms of 1

2∥ρ− σ∥1. Furthermore,
our technique produces a new result, which is the uniform continuity of the relative entropy itself
(in both arguments, on a suitable set S0), as well as an explicit continuity bound.

For the BS-entropy, given by

D̂(ρ∥σ) := Tr
[
ρ log(ρ1/2σ−1ρ1/2)

]
if kerσ ⊆ ker ρ ,

or +∞ otherwise, we prove the almost concavity in theorem 6.3.
The ALAFF method yields novel explicit bounds in particular for the BS-conditional entropy,

the BS-mutual and BS-conditional mutual information that we gather in section 6.2. We expect
these new continuity bounds and those provided for quantities derived from the relative entropy to
find applications in proving the continuity of various quantities in diverse fields related to quantum
information theory. In particular, we provide here a number of applications of our results in
the context of quantum hypothesis testing (section 7.1), to show that states that are hard to
discriminate have almost the same performance in terms of hypothesis testing, as well as in quantum
thermodynamics (section 7.2), to show continuity of the distillable athermality. We also reprove that
a state is an approximate quantum Markov chain if and only if it is close to being recovered by the
Petz recovery map (section 7.3), and use our most general continuity bounds for the relative entropy
to obtain bounds for the difference between the relative entropy and the BS-entropy of two quantum
states (section 7.4). Additionally, we show a new result of weak quasi-factorization for the relative
entropy, i.e. with an additive error term and no multiplicative error term (section 7.5). Finally, we
include continuity bounds for the relative entropy of entanglement as well as the analogously defined
BS-entropy of entanglement (section 7.6), and subsequently lift these results to show continuity of
the Rains information induced by the relative and the BS-entropy respectively (section 7.7).

3 Preliminaries

3.1 Notation and basic concepts

We denote a Hilbert space byH which, throughout this paper is assumed to be finite. The dimension
of such a Hilbert space will be called d and for its elements, we use |φ⟩, |ψ⟩ and |i⟩ for i ∈ N, possibly
with additional indices. If we are concerned with a bipartite or tripartite system, we will always
use capital letters in the index to identify objects associated with the respective subsystems. If we
have, for example, the bipartite space H = HA⊗HB and consider the dimension of HA, we write
dA.

The set of (bounded) linear operators on a Hilbert space H is B(H) and the subspace of positive
semi-definite operators with trace one, i.e., the quantum states or density matrices, is denoted by
S(H). If we want to restrict this set even further, we indicate this with a subindex. Thus, the set
of positive definite quantum states becomes S+(H), or if we want to restrict moreover to the set
of quantum states that have minimal eigenvalue greater than m, we write S≥m(H). On the set of

5



quantum states as well as on the set of self-adjoint operators, the relation ≤ is meant to be the
partial order in the Löwner sense. That is, ρ ≥ σ if and only if ρ− σ is positive semidefinite.

We use Tr [ · ] for the usual matrix trace and ∥ · ∥1 = Tr [| · |] and ∥ · ∥∞ to denote the trace norm
and the spectral norm on B(H), respectively. Quantum states in general are denoted by lower
Greek letters such as ρ, σ and τ , for example. For Hermitian operators in B(H) we usually use
upper Latin letters such as X,Y . For any such X, we denote by [X]+ and [X]− its positive and
negative parts, respectively.

As we later want to formally control the dependence on the states ρ and σ that are given as
arguments to the divergences, we further introduce H×H the cartesian product of the Hilbert
space H with itself. Moreover, on a bipartite system HAB = HA⊗HB, we set ρA to be the state
on HA that ρ ∈ S(HAB) is mapped to under the partial trace with respect to the subsystem B
which is a completely positive trace-preserving (CPTP) map. Furthermore, we denote by 1A the
identity matrix on A and, in a slight abuse of notation, we denote by TrA[·] both the partial trace
with respect to A as well as the complemented map on HAB by tensorizing with 1A.

3.2 Entropies and derived quantities

The von Neumann entropy of ρ ∈ S(H) is given by

S(ρ) := −Tr [ρ log(ρ)] .

For two quantum states ρ, σ ∈ S(H), their (Umegaki) relative entropy [83] is defined as

D(ρ∥σ) :=
{
Tr [ρ log ρ− ρ log σ] if kerσ ⊆ ker ρ ,

+∞ otherwise ,

and their Belavkin-Staszewski (BS) entropy [13] by

D̂(ρ∥σ) :=
{
Tr
[
ρ log ρ1/2σ−1ρ1/2

]
if kerσ ⊆ ker ρ ,

+∞ otherwise .

In the event of ρ and σ commuting, the two entropies coincide. Otherwise, the BS-entropy is strictly
larger than the relative entropy [43]. We further note that both can also be defined in terms of
positive semi-definite operators A,B (without normalisation), by just replacing ρ with A and σ
with B. We make use of this alternative definition when we define the conditional entropy and the
BS-conditional entropy, for example. Using this notation we can write the conditional entropy of ρ
as

Hρ(A|B) := S(ρAB)− S(ρB) = −D(ρAB∥1A⊗ρB) ,
with the last equality being a straightforward calculation. The subscript AB in ρAB = ρ just
emphasises the fact that ρ stems from S(HA⊗HB) and to distinguish it from its partial trace
ρB, for example. It is noteworthy that the conditional entropy admits the following variational
expression

Hρ(A|B) = max
σB∈S(HB)

−D(ρAB∥1A⊗σB). (1)

Furthermore, in a similar manner as for the conditional entropy, one obtains the representation of
the mutual information in terms of the von Neumann entropy and the conditional entropy

Iρ(A : B) := S(ρA) + S(ρB)− S(ρAB) = S(ρA)−Hρ(A|B) = D(ρAB∥ρA ⊗ ρB) .
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Finally, on a tripartite system H = HA⊗HB ⊗HC the conditional mutual information of a state
ρ ∈ S(H) is given by

Iρ(A : B|C) := S(ρAC) + S(ρBC)− S(ρC)− S(ρABC)

= Hρ(A|C)−Hρ(A|BC)
= Iρ(A : BC)− Iρ(A : C) .

(2)

The last equalities are again straightforward. One easily checks that both the mutual information
and the conditional mutual information are symmetric under the exchange of the A and B system.

Let us proceed now to introduce the analogous quantities from the BS instead of the relative
entropy. In this framework, we cannot construct them as sums and differences of von Neumann
entropies, which, for every BS-entropic quantity, gives rise to a zoo of different possible definitions.
Some of them have already appeared before in [18, 68, 89]. For a bipartite state ρ ∈ S(HA⊗HB),
inspired by the notion of conditional entropy, we define the BS-conditional entropy as

Ĥρ(A|B) := −D̂(ρAB∥1A⊗ρB) , (3)

and building on the mutual information, we define the BS-mutual information as

Îρ(A : B) := D̂(ρAB∥ρA ⊗ ρB) .

Finally, the analogue of the conditional mutual information in this setting is a more subtle matter.
Indeed, two natural ways to construct such a quantity would be either as a difference of BS-
conditional entropies or of BS-mutual information, as shown in eq. (2), which in general do not
coincide. Given ρABC ∈ S(HA⊗HB ⊗HC):

• We define the (one-sided) BS-conditional mutual information (os BS-CMI in short) by

Îosρ (A : B|C) := Ĥρ(A|C)− Ĥρ(A|BC) = D̂(ρABC∥1A⊗ρBC)− D̂(ρAC∥1A⊗ρC) . (4)

• We define the (two-sided) BS-conditional mutual information (ts BS-CMI in short) by

Îtsρ (A : B|C) := Îρ(A : BC)− Îρ(A : C) = D̂(ρABC∥ρA ⊗ ρBC)− D̂(ρAC∥ρA ⊗ ρC) .

Note that both notions are clearly non-negative, as a consequence of the data processing inequality
for the BS-entropy. In this project, we focus for simplicity on the first definition, i.e. the one-sided
one. We will therefore drop the “os” notation, as there is no possible confusion.

Let us emphasize at this stage that the difference between the aforementioned two definitions of
BS-conditional mutual information is partly related to the pathological behaviour of the BS-entropy
with respect to continuity in general, and more specifically to the fact that the BS-conditional
entropy is discontinuous on the set of positive semi-definite quantum states (cf. proposition 6.7).
We suspect that as a consequence thereof, the variational definition of the BS-conditional entropy
(generalizing eq. (1)) does not agree with the one we have given in eq. (3), namely

Ĥρ(A|B) ≤ sup
σB∈S(HB)

− D̂(ρAB∥1A⊗σB) . (5)

We have numerical results that suggest that the inequality in the eq. (5) is strict, at least in some
cases. A plot of those numerics can be found in appendix A. Moreover, we will indeed formally
show that both quantities are different in general in remark 7.17.
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4 From almost convexity to continuity bounds

As depicted in fig. 1, our approach is based on the convexity and almost concavity of a divergence.
More precisely, it is based on its joint convexity and almost joint concavity, but for the sake of
better readability, we will just speak of convexity and almost concavity.

It is immediately clear what is meant by convexity and this property is often even a defining
property of a divergence [44] or a direct consequence thereof1 [81, Proposition 4.2]. The almost
(joint) concavity, however, needs yet to be defined.

Definition 4.1 (Almost (joint) concavity of a divergence)
A divergence D(·∥·) is called almost (jointly) concave on a convex set S0 ⊆ S(H) × S(H) if, for
(ρ1, σ1), (ρ2, σ2) ∈ S0, there exists a continuous function f : [0, 1] → R with f(0) = f(1) = 0 such
that, for all p ∈ [0, 1],

D(ρ∥σ) ≥ pD(ρ1∥σ1) + (1− p)D(ρ2∥σ2)− f(p) (6)

holds. Here, ρ = pρ1 + (1− p)ρ2 and σ = pσ1 + (1− p)σ2. It is important to emphasise that f in
general depends on the states involved.

Remark 4.2 We note that the definition of almost concavity presented above is not itself a very
strong property. For example, one could just choose f to be the remainders that give equality in
eq. (6). It is the behaviour of the remainder functions that is pivotal, i.e., it becomes independent
of ρi, σi, i = 1, 2 under certain restrictions on the states, e.g. requiring that σi is a marginal of ρi.

Our approach, therefore, does not only need joint convexity but a well-behaved remainder
function. If we find such a function and combine it with the boundedness of the divergence (or
underlying entropic quantity), ALAFF directly gives uniform continuity through explicit continuity
bounds.

As we already discussed in the introduction, the predecessor of ALAFF was developed and used
by Alicki and Fannes [1], as well as Winter [88], to prove uniform continuity and give an explicit
continuity bound for the conditional entropy. Shirokov then noticed the potential beyond this
specific application and moulded a method that can be applied to functions defined on convex and
∆-invariant subsets of S(H) [72, 74]. Independently, similar techniques were already used in [59].
In short, ∆-invariance means that for two elements their normalised positive and negative part
again lies in the set (see also Definition 4.3). This definition of ∆-invariance will, however, turn
out to be a limitation when trying to prove the uniform continuity of the relative entropy, while in
the case of the BS-entropy, it is unfitting even from the beginning, i.e., even for the BS-conditional
entropy. The problem is due to ∆-invariance being a rather strong property that sets like S≥m(H)
or {(ρ, σ) : kerσ ⊆ ker ρ} do not have. Yet, those sets, or modified versions thereof, are the
relevant sets for the relative and, in particular, the BS-entropy.

In light of those problems and in an effort to make our approach as general as possible, we
propose the almost locally affine (ALAFF) method, a generalisation of the Alicki-Fannes-Winter-
Shirokov method that reduces to one implication of the former in a special case. First of all,
we define a perturbed version of the ∆-invariant subset, with the perturbation controlled by a
parameter s.

1Some authors define divergences as functions on two density operators fulfilling a data processing inequality;
however, note that convexity for a divergence implies a data processing inequality and follows from it together with
additional properties, as shown in [44, Corollary 4.7].
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Definition 4.3 (Perturbed ∆-invariant subset)
Let s ∈ [0, 1). A subset S0 ⊆ S(H) is called s-perturbed ∆-invariant, if for ρ, σ ∈ S0 with ρ ̸= σ
there exists τ ∈ S(H) such that the two states

∆±(ρ, σ, τ) = sτ + (1− s)ε−1[ρ− σ]± (7)

lie again in S0. Here ε := 1
2 ∥ρ− σ∥1 and [A]± denotes the negative and positive part of a self-

adjoint operator, respectively. For s = 0, we recover the definition of ∆-invariant subset used
in [74].

We want to give the reader some intuition about those s-perturbed ∆-invariant sets.

Remark 4.4 1. Let S0 ⊆ S(H) be s-perturbed ∆-invariant convex set. Then for t ∈ [s, 1) it
is t-perturbed ∆-invariant as well. In particular, being 0-perturbed is the strongest condition.

2. If S0 ⊆ S(H) has non-empty interior with respect to the 1-norm, then it is s-perturbed for
some s ∈ [0, 1).

3. If S0 ⊆ S(H) is s-perturbed ∆-invariant containing more than one state, then there exist
ρ, σ ∈ S0 with 1

2 ∥ρ− σ∥1 = 1− s. This follows directly from the definition.

In order to get well-behaved remainder functions, we define a stronger property that we call
“almost local affinity”.

Definition 4.5 (Almost locally affine (ALAFF) function)
Let f be a real-valued function on the convex set S0 ⊆ S(H), fulfilling

−af (p) ≤ f(pρ+ (1− p)σ)− pf(ρ)− (1− p)f(σ) ≤ bf (p) (8)

for all p ∈ [0, 1] and ρ, σ ∈ S0. The functions af : [0, 1] → R and bf : [0, 1] → R are required to
vanish as p→ 0+, to be non-decreasing on [0, 12 ], continuous in p and independent of ρ, σ ∈ S0. We
then call f an almost locally affine (ALAFF) function.

The notion of almost locally affine functions has appeared previously in the literature, also under
the name “approximate affinity” (see e.g. [20]). We can now formulate the following theorem, whose
proof is inspired by Shirokov [74].

Theorem 4.6 (Almost locally affine (ALAFF) method)
Let s ∈ [0, 1) and S0 ⊆ S(H) be an s-perturbed ∆-invariant convex subset of S(H) containing
more than one element. Let further f be an ALAFF function. We then find that f is uniformly
continuous if

Csf := sup
ρ,σ∈S0

1
2 ∥ρ−σ∥1=1−s

|f(ρ)− f(σ)| < +∞.

In this case, we have for ε ∈ (0, 1]

sup
ρ,σ∈S0

1
2 ∥ρ−σ∥1≤ε

|f(ρ)− f(σ)| ≤ Csf
ε

1− s
+

1− s+ ε

1− s
Emax
f

( ε

1− s+ ε

)
,

(9)

with

Emax
f : [0, 1) → R, p 7→ Emax

f (p) = (1− p)max

{
Ef (t)

1− t
: 0 ≤ t ≤ p

}
,

where Ef = af + bf . Note that on ε ∈ (0, 1− s] Ef and Emax
f coincide.

9



Proof. Let s ∈ [0, 1) and ε ∈ (0, 1]. Let further ρ, σ ∈ S0 with
1
2 ∥ρ− σ∥1 = ε. Then by the property

of s-perturbed ∆-invariance there exists τ ∈ S(H) such that γ± := ∆±(ρ, σ, τ) ∈ S0 defined as in
eq. (7). For every such γ± with a representation in terms of ρ, σ ∈ S0 and a τ ∈ S(H) we have
that

1− s

1− s+ ε
ρ+

ε

1− s+ ε
γ− = ω∗ =

1− s

1− s+ ε
σ +

ε

1− s+ ε
γ+ ,

which can be easily checked by inserting the explicit form of γ± and using that [ρ−σ]+− [ρ−σ]− =
ρ− σ. Now ω∗ ∈ S0 as S0 is convex, which allows us to evaluate f at ω∗ and use eq. (8) for both
of the representations we have for the state in question. This gives us

−af (p) ≤ f(ω∗)− (1− p)f(ρ)− pf(γ−) ≤ bf (p) ,

−af (p) ≤ f(ω∗)− (1− p)f(σ)− pf(γ+) ≤ bf (p) ,

where we set p = p(ε) = ε
1−s+ε for better readability. Note that p ∈ (0, 1

2−s ] ⊆ [0, 1) as ε ∈ (0, 1]
and s ∈ [0, 1) and further that p(ε) is monotone with respect to ε. We recombine the above to get

(1− p)(f(ρ)− f(σ)) ≤ p(f(γ+)− f(γ−)) + af (p) + bf (p) ,

(1− p)(f(σ)− f(ρ)) ≤ p(f(γ−)− f(γ+)) + af (p) + bf (p) .

Those two inequalities immediately give us

(1− p)|f(ρ)− f(σ)| ≤ p|f(γ+)− f(γ−)|+ (af + bf )(p) .

If we now insert Ef = af + bf , we obtain

|f(ρ)− f(σ)| ≤ p

1− p
|f(γ+)− f(γ−)|+

1

1− p
Ef (p) .

In the case that Csf is finite, we can take the supremum over all ρ, σ ∈ S0 with
1
2 ∥ρ− σ∥1 = ε of

the last equation and even extend to 1
2 ∥ρ− σ∥1 ≤ ε in two steps. The first step is upper bounding

1
1−pEf (p) with 1

1−pE
max
f (p) and the second one using that 1

1−pE
max
f (p) is engineered to be non-

decreasing on [0, 1) and thereby for the specific p = ε
1−s+ε ∈ [0, 1

2−s ] ⊂ [0, 1), is non-decreasing in ε

as well. Since the γ+ and γ− created from ρ and σ obviously fulfill γ± ∈ S0 and
1
2 ∥γ+ − γ−∥1 = 1−s,

we immediately get the upper bound in eq. (9). The reduction of Emax
f to Ef on ε ∈ (0, 1 − s]

follows immediately from Ef being non-decreasing on [0, 12 ] meaning further that Emax
f inherits the

vanishing property of Ef as p→ 0+. This directly translates into Emax
f (p(ε)) → 0 if ε→ 0+, hence

concluding the proof of uniform continuity.

The method presented in theorem 4.6 is named the “ALAFF method” to highlight the required
ALAFF property necessary, for this technique to be applicable. We will refer to this theorem by
that name in subsequent sections.

Remark 4.7 For s = 0, one recovers one implication of the method by Shirokov, i.e., the defi-
nitions for perturbed ∆-invariance and ∆-invariance coincide, Emax

f reduces to Ef on the relevant
domain ε ∈ [0, 1], and eq. (9) becomes

sup
ρ,σ∈S0

1
2 ∥ρ−σ∥1≤ε

|f(ρ)− f(σ)| ≤ C⊥
f ε+ (1 + ε)Ef

( ε

1 + ε

)

with
C0
f = sup

ρ,σ∈S0
1
2 ∥ρ−σ∥1=1

|f(ρ)− f(σ)| = sup
ρ,σ∈S0
Tr[ρσ]=0

|f(ρ)− f(σ)| =: C⊥
f ,

as states with maximal trace distance have orthogonal support.
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In the next sections, we will use theorem 4.6 together with the almost concavity of the relative
entropy and the BS-entropy, respectively, to derive a plethora of results of uniform continuity and
continuity bounds for entropic quantities defined through them. Depending on the case, we will
sometimes have to employ the whole machinery devised in theorem 4.6, whereas at other times the
simplification provided in remark 4.7 will be enough.

5 Almost concavity and continuity bounds for the Umegaki rela-
tive entropy

In this section, we apply the ALAFF method introduced in section 4 for the particular case of the
relative entropy, as well as some other entropic quantities derived from it.

All the results provided in this section are summarized in fig. 2.

Relative
entropy

D(ρ∥σ)

Convexity
pD(ρ1∥σ1) + (1 − p)D(ρ2∥σ2) ≥ D(ρ∥σ)

Almost concavity
D(ρ∥σ) ≥ pD(ρ1∥σ1) + (1 − p)D(ρ2∥σ2) − f(p)

with f(p) = h(p) 1
2
∥ρ1 − ρ2∥1 + fc1,c2

(p)

ALAFF method

theorem 4.6 and remark 4.7

Conditional
mutual information

|Iρ(A : B|C) − Iσ(A : B|C)|

≤ 2ε logmin{dA, dB}

+2(1 + ε)h
(

ε
1+ε

)
with ε ≤ 1

2
∥ρ − σ∥1

Mutual information

|Iρ(A : B) − Iσ(A : B)|

≤ 2ε logmin{dA, dB}

+2(1 + ε)h
(

ε
1+ε

)
with ε ≤ 1

2
∥ρ − σ∥1

Conditional entropy

|Hρ(A|B) − Hσ(A|B)| ≤

2ε log dA + (1 + ε)h
(

ε
1+ε

)
with ε ≤ 1

2
∥ρ − σ∥1

Relative entropy
(fixed second argument)

|D(ρ1∥σ) − D(ρ2∥σ)|

≤ ε log m̃−1
σ + (1 + ε)h

(
ε

1+ε

)
with ε ≤ 1

2
∥ρ1 − ρ2∥1

Relative entropy
(fixed first argument)

|D(ρ∥σ1) − D(ρ∥σ2)|

≤ fRE,1(∥σ1 − σ2∥1)

Relative entropy

|D(ρ1∥σ1) − D(ρ2∥σ2)|

≤ fRE(∥ρ1 − ρ2∥1, ∥σ1 − σ2∥1)

Divergence bound

D(ρ∥σ)

≤ ε log m̃−1
σ + (1 + ε)h

(
ε

1+ε

)
with ε ≤ 1

2
∥ρ − σ∥1

[55] theorem 5.1

corollary 5.7 corollary 5.6 corollary 5.5corollary 5.9corollary 5.11

theorem 5.13 corollary 5.10

Uniform continuity & Continuity bounds

Figure 2: In this flow chart we collect the main results from this chapter, starting with the almost
concavity of the relative entropy, which together with the ALAFF method outputs a collection
of continuity bounds for related entropic quantities. For the convexity and almost concavity, we
are setting ρ = pρ1 + (1 − p)ρ2 and σ = pσ1 + (1 − p)σ2, with p ∈ [0, 1]. We denote by m̃σ the
minimal non-zero eigenvalue of σ. The specific bounds obtained for the relative entropy fixing
the first argument and in the general case (modifying both arguments) are omitted due to their
technicality.
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5.1 Almost concavity for the relative entropy

The (joint) convexity of the relative entropy is a well-established result with proofs found for
example in [87]. In this section, we complement this result with almost concavity and further prove
that the bound we obtain is tight.

Theorem 5.1 (Almost concavity of the relative entropy)
Let (ρ1, σ1), (ρ2, σ2) ∈ Sker with

Sker := {(ρ, σ) ∈ S(H)× S(H) : kerσ ⊆ ker ρ}

and p ∈ [0, 1]. Then, for ρ = pρ1 + (1− p)ρ2 and σ = pσ1 + (1− p)σ2,

D(ρ∥σ) ≥ pD(ρ1∥σ1) + (1− p)D(ρ2∥σ2)− h(p)
1

2
∥ρ1 − ρ2∥1 − fc1,c2(p) . (10)

Here,
h(p) = −p log(p)− (1− p) log(1− p) ,

fc1,c2(p) = p log(p+ (1− p)c1) + (1− p) log((1− p) + pc2) ,

with the first one being the binary entropy. The constants in fc1,c2 are non-negative real numbers
and are given by

c1 :=

∞∫

−∞

dtβ0(t) Tr

[
ρ1σ

it−1
2

1 σ2σ
−it−1

2
1

]
<∞ ,

c2 :=

∞∫

−∞

dtβ0(t) Tr

[
ρ2σ

it−1
2

2 σ1σ
−it−1

2
2

]
<∞ .

Here, β0 is a probability density on R (see eq. (13) for a concrete expression). It is noteworthy that
f1,1(·) = 0 and fc1,c2(0) = fc1,c2(1) = 0.

Proof. It is clear that Sker is a convex set and that the bound holds trivially for p = 0 and p = 1.
Hence let p ∈ (0, 1) and (ρ1, σ1), (ρ2, σ2) ∈ Sker in the following. We find that

pD(ρ1∥σ1) + (1− p)D(ρ2∥σ2)−D(ρ∥σ) = −pS(ρ1)− (1− p)S(ρ2) + S(ρ)

+ (1− p)Tr [ρ2(log σ − log σ2)]

+ pTr [ρ1(log σ − log σ1)]

≤ h(p)
1

2
∥ρ1 − ρ2∥1 + fc1,c2(p) ,

where we split the relative entropies and used that the von Neumann entropy fulfils [5, Theorem
14]

S(ρ) ≤ 1

2
∥ρ1 − ρ2∥1 h(p) + pS(ρ1) + (1− p)S(ρ2) . (11)

Furthermore, we upper bound the remaining terms by fc1,c2(p), estimating the two separately. We
will only demonstrate the derivation for the second term, as it is completely analogous to the first
one. We have

pTr [ρ1(log(σ)− log(σ1))] = pTr [exp(log(ρ1))(log(σ)− log(σ1))]

≤ p log Tr [exp (log(ρ1) + log(σ)− log(σ1))]

≤ p log

∞∫

−∞

dt β0(t) Tr

[
ρ1σ

it−1
2

1 σσ
−it−1

2
1

]
.

(12)
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The first estimate follows immediately using the well-known Peierls-Bogoliubov inequality [62].
The second one involves a generalisation of the Araki-Lieb-Thirring inequality [3, 54] by Sutter et
al. [76, Corollary 3.3] with

β0(t) =
π

2

1

cosh(πt) + 1
(13)

a probability density on R. In the above steps, i.e. eq. (12), we relied on ρ1, σ1 and σ to be full
rank. If this is not the case one obtains the same result, however, the procedure is more involved.
A thorough discussion can be found in appendix B. Note here that in the most general case, ·−1

in the RHS of eq. (12) is the Moore-Penrose pseudoinverse. The trace in the integral can now be
estimated for each t by

Tr

[
ρ1σ

it−1
2

1 σσ
−it−1

2
1

]
= p+ (1− p)Tr

[
ρ1σ

it−1
2

1 σ2σ
−it−1

2
1

]
. (14)

Here, we just split σ and used that Tr [ρ1] = 1. To see that c1 < ∞, we upper bound σ2 by 1

and σ−1
1 by m̃−1

σ1 1 where m̃σ1 is the smallest non-zero eigenvalue of σ1. This can be done, since
kerσ1 ⊆ ker ρ1. We end up with c1 ≤ m̃−1

σ1 < ∞. Inserting eq. (14) into eq. (12), we obtain the
first part of fc1,c2(p) and repeating the steps for (1− p)Tr [ρ2(log(σ)− log(σ2))] the second one as
well. This concludes the proof.

We remark that eq. (10) provides a result of almost concavity for the relative entropy in the
sense of definition 4.1. Indeed, the additive “correction” term obtained for such an inequality to
hold behaves well enough, in the sense that it reduces to the previously known bounds for quantities
derived from the relative entropy, e.g. the von Neumann entropy or the conditional entropy, and it
is almost tight in general. To illustrate that, we provide now two propositions that put the almost
concavity of the relative entropy into perspective.

Proposition 5.2 (Almost concavity estimate of the relative entropy is well behaved)
The function fc1,c2 + h1

2 ∥ρ1 − ρ2∥1 obtained in theorem 5.1 is well behaved in the following sense:
For j = 1, 2 and (ρj , σj) ∈ Sker, we have the following:

1. If σ1 = σ2, then c1 = c2 = 1, resulting in fc1,c2 +
1
2 ∥ρ1 − ρ2∥1 h ≤ h.

2. If for m̃ > 0 we have m̃ρj ≤ σj, then fc1,c2 + h1
2 ∥ρ1 − ρ2∥1 ≤ fm̃−1,m̃−1 + h.

3. If H = HA⊗HB is a bipartite space and furthermore σj = d−1
A 1A⊗ρj,B, then fc1,c2 +

h1
2 ∥ρ1 − ρ2∥1 ≤ h.

4. For m1,m2 ≥ 1 we find that both p 7→ 1
1−pfm1,m2(p) and p 7→ 1

1−ph(p) are non-decreasing on
[0, 1).

We hence find that in the cases listed above the bound becomes independent of the states
and further that the remainder functions have a desirable non-decreasing property. The proof is
straightforward and can be found in appendix C.

Remark 5.3 The different cases discussed in proposition 5.2 are used in the following to find
almost concavity results with a function that does not depend on the specifics of the states involved,
as necessary for applying the ALAFF method.

• If σ1 = σ2, we are reducing eq. (10) to a result of almost concavity only in the first input. This
case was addressed in [20], where they obtained h(p) as a correction for almost concavity, a
bound we are tightening here. Moreover, this case will yield a continuity bound for the relative
entropy with fixed second input as shown in corollary 5.9.
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• Point 3 of proposition 5.2 can be interpreted as a result of almost convexity for the conditional
entropy. Moreover, it will yield a continuity bound for the conditional entropy in corollary 5.5.
Since the latter result is almost tight, this shows the good behaviour of the bound obtained in
theorem 5.1.

• Point 2 of proposition 5.2 is the most general setting for full-rank states σj, with j = 1, 2,
and will be essential for deriving the most general continuity bounds for the relative entropy
in theorem 5.13.

Finally, we conclude this subsection with some discussion of our almost concave bound.

Proposition 5.4 (Almost concavity estimate of the relative entropy is tight)
The bound presented in theorem 5.1 is tight. More specifically, there are some density operators
ρ1, ρ2, σ1, σ2 on S(H) which saturate the inequality in eq. (10).

Proof. We can assume that the dimension of the underlying Hilbert space is dH ≥ 2. We then find
two orthonormal states |0⟩ , |1⟩ ∈ H that we use to create

ρ1 := |0⟩⟨0| ,
ρ2 := |1⟩⟨1| ,
σ1 := t |0⟩⟨0|+ (1− t) |1⟩⟨1| ,
σ2 := (1− t) |0⟩⟨0|+ t |1⟩⟨1| ,

for t ∈ (0, 1). We find, as of the orthonormality, that for p ∈ [0, 1] and

ρ := pρ1 + (1− p)ρ2 ,

σ := pσ1 + (1− p)σ2 ,

the relative entropy between the states given by the convex combinations takes the value

D(ρ∥σ) = Tr [ρ log(ρ)− ρ log(σ)]

= −h(p)− p log(pt+ (1− p)(1− t))− (1− p) log((1− p)t+ p(1− t)) ,

and
D(ρ1∥σ1) = − log(t) ,

D(ρ2∥σ2) = − log(t) .

This gives us

pD(ρ1∥σ1) + (1− p)D(ρ2∥σ2)−D(ρ∥σ)

= h(p) + p log
(
p+ (1− p)

1− t

t

)
+ (1− p) log

(
(1− p) + p

1− t

t

)
.

(15)

As [ρi, σj ] = 0 for i, j = 1, 2 and further [ρiσj , σi] = 0 we find that the constants in theorem 5.1 are
given by

ci = Tr
[
ρiσ

−1
i σj

]
=

1− t

t
,

for i, j = 1, 2, i ̸= j. Since ρ1 and ρ2 orthogonal we get 1
2 ∥ρ1 − ρ2∥1 = 1. We hence obtain the

RHS of eq. (15) from the almost concavity estimate in eq. (10). This concludes the claim.
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5.2 Reduction to almost tight previously-known continuity bounds for the rel-
ative entropy

In this section, we will show that a number of almost tight previously-known continuity bounds
for quantities derived from the relative entropy can be obtained as corollaries of the results of
almost concavity in theorem 5.1 and proposition 5.2 in combination with the results concerning the
ALAFF method, i.e. theorem 4.6 and remark 4.7.

5.2.1 Uniform continuity for the conditional entropy

Let us first consider a bipartite space and the conditional entropy of a density matrix with respect
to one of the subsystems. Note that, in this case, we are able to prove a result of uniform continuity
for any positive semidefinite matrix (with trace one), but we do not require positive definiteness.
The following coincides with the result of Winter [88], which he proved to be almost tight.

Corollary 5.5 (Uniform continuity of the conditional entropy)
The conditional entropy over the bipartite Hilbert space H = HA⊗HB is uniformly continuous on
S0 = S(H) and for ρ, σ ∈ S0 with 1

2 ∥ρ− σ∥1 ≤ ε ≤ 1, it holds that

|Hρ(A|B)−Hσ(A|B)| ≤ 2ε log dA + (1 + ε)h
( ε

1 + ε

)
.

Proof. First of all, S0 is clearly 0-perturbed ∆-invariant. Setting f(·) = H·(A|B), we find that it is
ALAFF with aH·(A|B) = 0 as H·(A|B) is concave, and bH·(A|B) = h since the result in theorem 5.1
becomes independent of the states as we go to H·(A|B) using point 3 of proposition 5.2. Finally,
we find that

C⊥
f = sup

ρ,σ∈S0
Tr[ρσ]=0

|Hρ(A|B)−Hσ(A|B)| ≤ 2 log dA ,

where we used − log dX ≤ H·(X|Y ) ≤ log dX shown, for example, in [87]. Using theorem 4.6 in the
form of remark 4.7, we can infer the claimed continuity bound.

5.2.2 Uniform continuity for the mutual information

For the mutual information, it is straightforward to derive a continuity bound for such a quan-
tity just by combining the bounds of [4] and [88] for the von Neumann and conditional entropy,
respectively:

|Iρ(A : B)− Iσ(A : B)| ≤ 3ε logmin{dA, dB}+ 2(1 + ε)h
( ε

1 + ε

)
,

where ε := 1
2 ∥ρ− σ∥1. For an early version, see [41, Exercise 5.40]. The multiplicative factor in

the first term of the right-hand side was subsequently improved to 2
√
2 in [70] and to 2 in [72].

Moreover, we can adapt corollary 5.5 to obtain the following bound on the mutual information,
which coincides with the tightest previously-known continuity bound for the mutual information
(see e.g. [72]).

Corollary 5.6 (Continuity bound for the mutual information)
The mutual information on a bipartite Hilbert space H = HA⊗HB is uniformly continuous on
S0 = S(H) and for ρ, σ ∈ S0 with 1

2 ∥ρ− σ∥1 ≤ ε ≤ 1, we find that

|Iρ(A : B)− Iσ(A : B)| ≤ 2ε logmin{dA, dB}+ 2(1 + ε)h
( ε

1 + ε

)
.
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Proof. First of all, S0 is clearly 0-perturbed ∆-invariant. With f(·) = I·(A : B) = S(·A)−H·(A|B)
one can immediately conclude almost local affinity of I·(A : B) as S(·A) is concave and fulfills
eq. (11) and −H·(A|B) is almost locally affine with a−H·(A|B) = 0 and b−H·(A|B) = h. Combined
we get af = h and bf = h. We further have that

C⊥
f = sup

ρ,σ∈S0
Tr[ρσ]=0

|Iρ(A : B)− Iσ(A : B)| ≤ sup
ρ∈S0

Iρ(A : B) ≤ 2 logmin{dA, dB} ,

where we used that 0 ≤ I·(A : B) and I·(A : B) ≤ 2 logmin{dA, dB} [87]. Applying theorem 4.6 in
the form of remark 4.7, we can conclude the claim and obtain the given continuity bound.

5.2.3 Uniform continuity for the conditional mutual information

We can also provide a continuity bound for the conditional mutual information of two tripartite
states ρABC , σABC ∈ S(HA⊗HB ⊗HC) from corollary 5.5, by viewing it as the difference between
two conditional entropies. The following result coincides with the best previously-known bound for
the named quantity and appeared explicitly in [71, Lemma 4], and with a worsening of a factor 2
previously in [77] and [41, Exercise 5.41].

Corollary 5.7 (Uniform continuity of the conditional mutual information)
The conditional mutual information with respect to H = HA⊗HB ⊗HC is uniformly continuous
on S0 = S(H) and for ρ, σ ∈ S0 with 1

2 ∥ρ− σ∥1 ≤ ε ≤ 1, we find that

|Iρ(A : B|C)− Iσ(A : B|C)| ≤ 2ε logmin{dA, dB}+ 2(1 + ε)h
( ε

1 + ε

)
.

Proof. The procedure is now familiar. We first note that S0 is 0-perturbed ∆-invariant. Without
loss of generality, we can assume that dA ≤ dB and rewrite f(·) = I·(A : B|C) = H·(A|C) −
H·(A|BC). With this representation, we can immediately conclude that I·(A : B|C) is ALAFF
with af = h and bf = h. Finally, we have that

C⊥
f = sup

ρ,σ∈S0
Tr[ρσ]=0

|Iρ(A : B|C)− Iσ(A : B|C)|

≤ sup
ρ∈S0

Iρ(A : B|C)

= sup
ρ∈S0

Hρ(A|BC)−Hρ(A|C)

≤ 2 log dA = 2 logmin{dA, dB} ,

as the conditional mutual information is non-negative and again − log dX ≤ H·(X|Y ) ≤ log dX .
Using theorem 4.6 in the form of remark 4.7, we can conclude the claim and obtain the given
continuity bound.

5.3 New continuity bounds for the relative entropy

Now, we prove some new continuity bounds for further quantities derived from the relative entropy
as a consequence of the results of almost concavity in theorem 5.1 and proposition 5.2 in combination
with the results concerning the ALAFF method, i.e. theorem 4.6 and remark 4.7. All bounds in
this section can be simplified using the following lemma:

16



Lemma 5.8 Using the notations introduced in theorem 5.1 and remark 5.3, we have the following
estimates for the error bounds obtained in all results of this section:

(1 + ε)h
( ε

1 + ε

)
≤

√
2ε , (16)

lm̃ + ε

lm̃
fm̃−1 ,m̃−1

( ε

lm̃ + ε

)
≤ ε

lm̃
log m̃−1 + log

(
1 +

ε

lm̃ + ε

1

m̃

)
. (17)

Proof. The first inequality appeared in [75] before and its proof follows from some elementary
calculus. For the second inequality note that ε ∈ [0, 1] and m̃ ∈ (0, 1), it holds that lm̃ = 1− m̃ ∈
(0, 1), allowing us to estimate 1 ≤ 1

m̃ and lm̃
lm̃+ε ≤ 1. This results in:

lm̃ + ε

lm̃
fm̃−1 ,m̃−1

( ε

lm̃ + ε

)
=

ε

lm̃
log

(
ε

lm̃ + ε
+

lm̃
lm̃ + ε

1

m̃

)
+ log

(
ε

lm̃ + ε

1

m̃
+

lm̃
lm̃ + ε

)

≤ ε

lm̃
log m̃−1 + log

(
1 +

ε

lm̃ + ε

1

m̃

)
.

5.3.1 Divergence bounds for the relative entropy

In this section, we prove an upper bound on the relative entropy D(ρ∥σ) which involves the trace
norm distance of ρ and σ. The literature calls these bounds upper continuity bounds [6,67,86], for
which we would expect an upper bound of |D(ρ1∥σ1)−D(ρ2∥σ2)| in terms of the norm distance of
ρ1 and ρ2, and σ1 and σ2, respectively. We hence propose the name “divergence bound” for this
kind of bound, a fitting name, since we are relating the strength of divergence (between ρ and σ)
to a fixed distance measure (the trace norm).

We now give the divergence bound we obtain when using the convexity and almost concavity
of D(ρ∥σ) together with theorem 4.6 by going through uniform continuity of the relative entropy
in its first argument.

Corollary 5.9 (Uniform continuity of the relative entropy in the first argument)
Let σ ∈ S(H) be fixed. Then D(·∥σ) is uniformly continuous on S0 = {ρ ∈ S(H) : kerσ ⊆ ker ρ}
and, for ρ1, ρ2 ∈ S0 with 1

2 ∥ρ1 − ρ2∥1 ≤ ε ≤ 1, it holds that

|D(ρ1∥σ)−D(ρ2∥σ)| ≤ ε log m̃−1
σ + (1 + ε)h

( ε

1 + ε

)
, (18)

with m̃σ the minimal non-zero eigenvalue of σ.

Proof. S0 is clearly convex and 0-perturbed ∆-invariant as for two operators A,B, kerA∩ kerB ⊆
ker(A−B) and [A−B]± are orthogonal. We set f(·) = D(·∥σ). Using theorem 5.1 and point 1 of
proposition 5.2, we find that D(·∥σ) is ALAFF with af = h and bf = 0. At last, we have that

C⊥
f = sup

ρ1,ρ2∈S0
1
2 ∥ρ1−ρ2∥=1

|D(ρ1∥σ)−D(ρ2∥σ)| ≤ sup
ρ∈S(H)

D(ρ∥σ) ≤ log m̃−1
σ .

In the first inequality, we used that D(ρ∥σ) ≥ 0, and in the second one that m̃σρ ≤ σ hence
D(ρ∥σ) ≤ log m̃−1

σ . Using theorem 4.6 in the form of remark 4.7 concludes the claim.
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We can compare eq. (18) with the findings of [35, Eq. (43) and (44)], based on the previous [36],
where it was shown that

|D(ρ1∥σ)−D(ρ2∥σ)| ≤ max
i=1,2

log

(
1 +

∥ρ1 − ρ2∥∞
mρimσ

)
, (19)

whenever ρi > 0 and min
i=1,2

mρi > ∥ρ1 − ρ2∥∞. Here mρi is the minimal eigenvalue of ρi for i = 1, 2

and correspondingly mσ the one of σ. This expression presents the advantage with respect to
ours of depending on the operator norm of the difference of ρ1 and ρ2, instead of the trace norm.

However, when ρ1 ≈ ρ2, the upper bound in eq. (19) can be approximated by
∥ρ1−ρ2∥∞
mρimσ

, and thus

the dependence with m−1
σ is linear, instead of logarithmic as in eq. (18). Further in eq. (19) one

needs ρ1 and ρ2 to be full rank and has a condition on their minimal eigenvalues.
We can subsequently use the corollary 5.9 to prove a divergence bound for the relative entropy.

Corollary 5.10 (Divergence bound for the relative entropy)
Let ρ, σ ∈ S(H) with kerσ ⊆ ker ρ and 1

2 ∥ρ− σ∥1 ≤ ε ≤ 1, we have

D(ρ∥σ) ≤ ε log m̃−1
σ + (1 + ε)h

( ε

1 + ε

)
≤
(
1 +

log m̃−1
σ√
2

)
ε1/2 .

with m̃σ the minimal non-zero eigenvalue of σ. The second inequality follows from (16) and the
fact that ε ≤ √

ε for any ε ∈ [0, 1].

Proof. In the context of corollary 5.9, we just set ρ1 = ρ and ρ2 = σ, giving us that 1
2 ∥ρ1 − ρ2∥1 =

1
2 ∥ρ− σ∥1 ≤ ε ≤ 1. Furthermore, D(ρ2∥σ) = D(σ∥σ) = 0 and |D(ρ1∥σ)| loses the absolute value,
as D(·∥·) ≥ 0. The bound follows immediately.
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Figure 3: Two plots comparing the divergence bounds from table 1.
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Bound by not not Bound on D(ρ∥σ)
full rank ρ full rank σ

corollary 5.10 ✓ ✓ ε log m̃−1
σ + (1 + ε)h

(
ε

1+ε

)
Audenaert & Eisert

[8, Theorem 1]
✓ x (mσ + ε) log

(
mσ+ε
mσ

)
−mρ log

(
mρ+ε

mρ

)
Vershynina

[86]
x x 2ελρ

logmρ−logmσ

mρ−mσ

Bratteli &
Robinson

[21]
x x m−1

σ ∥ρ− σ∥∞

Table 1: A comparison of different divergence bounds. Here ε = 1
2 ∥ρ− σ∥1 and m· and m̃· are

the minimal and the minimal non-zero eigenvalue of the quantum state in the index, respectively.
Further λρ is the maximal eigenvalue of ρ. The bound of Audenaert & Eisert in the case mρ = 0
has to be understood as the limit mρ → +0.

There exist results on divergence bounds in the literature which predate ours. In [7, 86], the
authors present some linear bounds for the relative entropy in terms of the trace norm difference
between those states, with some multiplicative factors depending on the eigenvalues of the states
involved, whereas in [21] a similar bound is provided in terms of the operator norm of the difference
between the states. One of the bounds in [7] is further generalised in [8] and is closely related
to our bound as both of them are non-linear in the trace norm (resp. operator norm) difference
between the involved states, and show a dependence on the inverse of the minimal eigenvalue of
σ only logarithmically. This is partly an advantage over the bounds in [21, 86]. There further
exists a bound in [37, Proposition 5.81] which has an explicit dependence on the dimension in
addition to the dependence on the minimal eigenvalue of σ and therefore was not investigated. The
bound might have an advantage in low-dimensional settings. In table 1 and fig. 3 we compare the
aforementioned bounds from [8, 21, 86]. From fig. 3a it is clear that our bound, in the majority
of the cases, outperforms the bound by Vershynina and the one by Bratteli & Robinson. This is
because of the logarithmic scaling with the inverse minimal eigenvalue of σ of our bound versus the
linear scaling with the inverse minimal eigenvalue of σ of theirs. We hence reduce the discussion to
a comparison between Audenaert & Eisert’s and our bound. From the first fig. 3a and second plot
fig. 3b we conclude a slight advantage of theirs. The numerical experiments suggest, however, that
the difference between both bounds is bounded by two, hence as the minimal eigenvalue decreases
both bounds should converge asymptotically. Furthermore, our bound has the advantage that it
does not need σ nor ρ to be full rank. This fact and its simple representation might give some
advantages in applications.

5.3.2 Continuity bounds for the relative entropy

We conclude our section on continuity bounds with the most involved continuity bound until now.
It concerns the relative entropy and regards it in all its power as a function of two variables, i.e., it
constitutes a continuity bound both for the first and the second input simultaneously. This presents
some challenges that need to be dealt with, as the relative entropy exhibits discontinuity whenever
the kernel of the second input is not contained in that of the first one. To overcome these issues,
we need to employ the ALAFF method in its full generality.

In the first step, we fix the first input of the relative entropy and provide a continuity bound
for the relative entropy in the second argument.
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Corollary 5.11 (Uniform continuity of the relative entropy in the second argument)
Let ρ ∈ S(H) be fixed and 1 > m̃ > 0. Then, D(ρ∥·) is uniformly continuous on

S0 := {σ ∈ S(H) : m̃ρ ≤ σ} .

We further get that, for σ1, σ2 ∈ S0 with 1
2 ∥σ1 − σ2∥1 ≤ ε,

|D(ρ∥σ1)−D(ρ∥σ2)| ≤
ε

lm̃
log(m̃−1) +

lm̃ + ε

lm̃
fm̃−1 ,m̃−1

( ε

lm̃ + ε

)

≤ 2
ε

lm̃
log m̃−1 + log

(
1 +

ε

lm̃ + ε

1

m̃

)
,

(20)

where lm̃ = 1− m̃. The second inequality follows from (17).

Proof. We have that S0 is clearly convex as, for σ1, σ2 ∈ S0 and λ ∈ [0, 1],

λσ1 + (1− λ)σ2 ≥ λm̃ρ+ (1− λ)m̃ρ = m̃ρ ,

giving the kernel inclusion as well as the condition for the smallest eigenvalue on the support of
ρ. Furthermore, S0 is s-perturbed ∆-invariant with s = m̃. This is because one can perturb with
τ = ρ and get subminorization by m̃ρ. Employing point 2 of proposition 5.2 we further find that
f(·) = D(ρ∥·) satisfies eq. (8) with bf = 0 and af = fm̃−1,m̃−1 , hence Ef = fm̃−1,m̃−1 . Using again
proposition 5.2 (point 4, since m̃ ≤ 1) we conclude Emax

f = fm̃−1,m̃−1 . At last, we have that

Cm̃f = sup
σ1,σ2∈S0

1
2 ∥σ1−σ2∥1=1−m̃

|D(ρ∥σ1)−D(ρ∥σ2)|

≤ sup
σ∈S0

D(ρ∥σ)

≤ log(m̃−1) ,

where we used that D(ρ∥·) ≥ 0 and for the last inequality that m̃ρ ≤ σ for all σ ∈ S0. Employing
now theorem 4.6 we obtain uniform continuity and the claimed continuity bound.

As in the case of the continuity bound for the relative entropy in the first input, we can compare
eq. (20) with [35, Eq. (39) and (40)], as an extension of the previous [36], in which it was shown
that

|D(ρ∥σ1)−D(ρ∥σ2)| ≤ max
i=1,2

− log

(
1− ∥σ1 − σ2∥∞

mσi

)
, (21)

whenever min
i=1,2

mσi > ∥σ1 − σ2∥∞, where mσi is the minimal eigenvalue of σi for i = 1, 2. In the

low ε regime the bound in eq. (21) as well as the bound in eq. (20) scale linearly in m−1
σ .

In the above corollary, two choices need some more justification. The first choice is 1 > m̃ and
the second one is s = m̃. We want to put them into context by the following lemma, demonstrating
that these assumptions are necessary to obtain a non-trivial S0.

Lemma 5.12
Let ρ ∈ S(H) and s ∈ [0, 1) with rank ρ ≥ 2, further m̃ ∈ (0,∞) and

S0 := {σ ∈ S(H) : kerσ ⊆ ker ρ, m̃ρ ≤ σ} .

Then, the following is true:
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1. If 1 > m̃, then S0 is s-perturbed ∆-invariant if and only if s ≥ m̃.

2. If 1 = m̃, then S0 = {ρ}.

3. If 1 < m̃, S0 = ∅.
We will only give proof for the first one in appendix D and leave the last two for the reader.

Next, we proceed to state and prove the main result of this subsection on continuity bounds, namely
the uniform continuity bound for the relative entropy in both arguments on a suitable subspace.
Since we have already explored the cases in which we either fix the second (corollary 5.9) or first
(corollary 5.11) density operator, we now combine both results in the proof of the next theorem.

Theorem 5.13 (Uniform continuity of the relative entropy)
Let 1 > 2m̃ > 0 and

S0 = {(ρ, σ) : ρ, σ ∈ S(H), kerσ ⊆ ker ρ, 2m̃ ≤ m̃σ} ,
with m̃σ the minimal non-zero eigenvalue of σ. Then, D(·∥·) is uniformly continuous on S0 and
we find that for (ρ1, σ1), (ρ2, σ2) ∈ S0 with 1

2 ∥ρ1 − ρ2∥ ≤ ε ≤ 1 and 1
2 ∥σ1 − σ2∥1 ≤ δ ≤ 1

|D(ρ1∥σ1)−D(ρ2∥σ2)| ≤
(
ε+

δ

lm̃

)
log(m̃−1) + (1 + ε)h

( ε

1 + ε

)
+ 2

lm̃ + δ

lm̃
fm̃−1,m̃−1

( δ

lm̃ + δ

)

≤
(√

2 + log m̃−1
)
ε1/2 + 3

δ

lm̃
log m̃−1 + 2 log

(
1 +

δ

lm̃ + δ

1

m̃

)
,

(22)
with lm̃ = 1− m̃. The second inequality follows from (17) and ε ≤ √

ε for ε ∈ [0, 1].

Proof. We will prove the uniform continuity by proving that the bound eq. (22) holds. Therefore,
let (ρ1, σ1), (ρ2, σ2) ∈ S0 with 1

2 ∥ρ1 − ρ2∥ ≤ ε ≤ 1 and 1
2 ∥σ1 − σ2∥ ≤ δ ≤ 1. We define

σ =
1

2
σ1 +

1

2
σ2 , (23)

and obtain
1

2
∥σ − σ1∥1 =

1

4
∥σ1 − σ2∥1 ≤

δ

2
≤ 1 ,

1

2
∥σ − σ2∥1 =

1

4
∥σ1 − σ2∥1 ≤

δ

2
≤ 1 .

Using this, we get

|D(ρ1∥σ1)−D(ρ2∥σ2)| ≤ |D(ρ1∥σ1)−D(ρ1∥σ)|+ |D(ρ1∥σ)−D(ρ2∥σ)|+ |D(ρ2∥σ)−D(ρ2∥σ2)| .
The middle term can be bounded using corollary 5.9 and the fact that

log m̃−1
σ ≤ log(2max{m̃−1

σ1 , m̃
−1
σ2 }) ≤ log m̃−1.

One obtains
|D(ρ1∥σ)−D(ρ2∥σ)| ≤ ε log m̃−1 + (1 + ε)h

( ε

1 + ε

)
.

The other two terms are bound using corollary 5.11 and the fact that m̃ρ1 ≤ 1
2σ1 ≤ σ and m̃ρ2 ≤

1
2σ2 ≤ σ by construction of S0 and the definition of σ, respectively. We therefore obtain

|D(ρ1∥σ1)−D(ρ1∥σ)| ≤
δ

2lm̃
log(m̃−1) +

lm̃ + 2−1δ

lm̃
fm̃−1,m̃−1

( 2−1δ

lm̃ + 2−1δ

)
,

|D(ρ2∥σ)−D(ρ2∥σ2)| ≤
δ

2lm̃
log(m̃−1) +

lm̃ + 2−1δ

lm̃
fm̃−1,m̃−1

( 2−1δ

lm̃ + 2−1δ

)
.
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Combining the bounds and further using that

lm̃ + 2−1δ

lm̃
fm̃−1,m̃−1

( 2−1δ

lm̃ + 2−1δ

)
≤ lm̃ + δ

lm̃
fm̃−1,m̃−1

( δ

lm̃ + δ

)
,

we obtain the claimed bound, and thereby also uniform continuity.

Let us conclude this section by emphasizing that there might be some room for improvement
in the previous result. For instance, it should be possible to improve the interpolation between σ1
and σ2 considered in eq. (23) by optimizing over the interpolation parameter instead of setting it
to 1/2. However, we believe this would not change the appearance of the bound drastically and
thus the reason for not performing this optimization.

6 Almost concavity and continuity bounds for the Belavkin
-Staszewski entropy

Following the same lines as in the previous section, now we apply the ALAFF method introduced
in section 4 for the particular case of the BS-entropy. For that, we need to prove a result of almost
concavity for the BS-entropy, which we do in section 6.1. However, in contrast to the case of the
relative entropy, our result for the BS-entropy is not tight. We leave the discussion on the almost
concavity bound and the difficulties that appear in the BS-entropy case to the next subsection.

Subsequently, we combine our result of almost concavity for the BS-entropy with the ALAFF
method to provide certain results of uniform continuity and explicit continuity bounds for entropic
quantities derived from the BS-entropy in section 6.2. All the results provided in this section are
summarized in fig. 4.

6.1 Almost concavity for the BS-entropy

In this section we prove the almost concavity of the BS-entropy and thereby complement the
established result of convexity [56, Theorem 4.4], [44, Corollary 4.7]. We first want to give some
auxiliary results that will be needed later. The first of those concerns an operator inequality for
the term inside the trace in the definition of the BS-entropy.

Lemma 6.1
Let A1, A2 ∈ B(H) positive semi-definite, p ∈ [0, 1] and

A = pA1 + (1− p)A2.

Then
−A log(A) ≤ −pA1 log(A1)− (1− p)A2 log(A2) + hA1,A2(p)1

with hA1,A2(p) = −p log(p)Tr [A1]− (1− p) log(1− p)Tr [A2] a distorted binary entropy.

Proof. It holds that

−A log(A) + pA1 log(A1) + (1− p)A2 log(A2)

≤ ∥−A log(A) + pA1 log(A1) + (1− p)A2 log(A2)∥1 1 .
(24)

Now, since x 7→ −x log(x) is operator concave [25, Theorem 2.6], we have

−A log(A) ≥ −pA1 log(A1)− (1− p)A2 log(A2) ,
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BS
entropy

D̂(ρ∥σ)

Convexity
pD̂(ρ1∥σ1) + (1 − p)D̂(ρ2∥σ2) ≥ D̂(ρ∥σ)

Almost concavity
D̂(ρ∥σ) ≥ pD̂(ρ1∥σ1) + (1 − p)D̂(ρ2∥σ2) − f(p)

with f(p) = ĉ0(1 − δρ1ρ2 )h(p) + fĉ1,ĉ2
(p)

ALAFF method

theorem 4.6 and remark 4.7

BS-conditional
mutual information

|Îρ(A : B|C) − Îσ(A : B|C)|

≤ 2 ε l−1
m logmin{dA,

√
dABC}

+2 lm+ε
lm

(f
m−1,m−1 + m−1h)

(
ε

lm+ε

)
with lm = 1 − dHm, ε ≤ 1

2
∥ρ − σ∥1

BS-mutual information

|Îρ(A : B) − Îσ(A : B)|

≤ 2l−1
m ε(logmin{dA, dB} + logm−1)

+2 lm+ε
lm

(f
m−1,m−1 + (m−1 + 1)h)

(
ε

lm+ε

)
with lm = 1 − dHm, ε ≤ 1

2
∥ρ − σ∥1

BS-conditional entropy

|Ĥρ(A|B) − Ĥσ(A|B)| ≤

2l−1
m ε log dA + lm+ε

lm
(f

m−1,m−1

+m−1h)
(

ε
lm+ε

)
with lm = 1 − dHm, ε ≤ 1

2
∥ρ − σ∥1

BS-entropy
(fixed second argument)∣∣∣D̂(ρ1∥σ) − D̂(ρ2∥σ)

∣∣∣
≤ ε log(m−1

σ ) + (1 + ε)m−1
σ h

(
ε

1+ε

)
with ε ≤ 1

2
∥ρ1 − ρ2∥1

Divergence bound

D̂(ρ∥σ)

≤ ε log(m−1
σ ) + (1 + ε)m−1

σ h
(

ε
1+ε

)
with ε ≤ 1

2
∥ρ − σ∥1

[44, 56] theorem 6.3

corollary 6.10 corollary 6.9 corollary 6.8corollary 6.11

corollary 6.12

Uniform continuity & Continuity bounds

Figure 4: In this flow chart we collect the main results from this section, starting with the al-
most concavity for the BS-entropy, which together with the ALAFF method outputs a plethora of
continuity bounds for related entropic quantities. For the convexity and almost concavity of the
BS-entropy we are setting ρ = pρ1 + (1− p)ρ2 and σ = pσ1 + (1− p)σ2, with p ∈ [0, 1]. We denote
by mσ the minimal eigenvalue of σ. In the almost concavity bound, ĉ0 is the maximum of

∥∥σ−1
1

∥∥
∞

and
∥∥σ−1

2

∥∥
∞. Additionally, we assume in all the continuity bounds that m ≤

∥∥η−1
∥∥
∞, for η = σ, ρ.

giving us that
−A log(A) + pA1 log(A1) + (1− p)A2 log(A2) ≥ 0 ,

and hence
∥−A log(A) + pA1 log(A1) + (1− p)A2 log(A2)∥1

= Tr [−A log(A) + pA1 log(A1) + (1− p)A2 log(A2)] .
(25)

We now use the operator monotonicity of the logarithm to find

−Tr [A log(A)] = −pTr [A1 log(A)]− (1− p)Tr [A2 log(A)]

≤ −pTr [A1 log(pA1)]− (1− p)Tr [A2 log((1− p)A2)]

= −pTr [A1 log(A1)]− (1− p)Tr [A2 log(A2)] + hA1,A2(p)

Inserting this into eq. (25) and then into eq. (24) yields the claimed result.

The next auxiliary result concerns an equivalent formulation for the BS-entropy constructed
from the function x 7→ x log x and has already appeared in the literature (see e.g. [62, Eq. (7.35)]).
We include here a short proof of this result for completeness.
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Lemma 6.2
Let ρ ∈ S(H) and σ ∈ S+(H), then

D̂(ρ∥σ) = Tr
[
σ(σ−1/2ρσ−1/2) log(σ−1/2ρσ−1/2)

]
.

Proof. Slightly misusing notation, we can replace the regular log with a log that evaluates to 0 at
0 and thereby artificially add 0 to the domain. This changes neither the RHS nor the LHS but
allows us to derive

D̂(ρ∥σ) = Tr
[
ρ log(ρ1/2σ−1ρ1/2)

]
= Tr

[
log(ρ1/2σ−1/2σ−1/2ρ1/2)ρ1/2σ−1/2σ1/2ρ1/2

]

= Tr
[
ρ1/2σ−1/2 log(σ−1/2ρσ−1/2)σ1/2ρ1/2

]

= Tr
[
σ(σ−1/2ρσ−1/2) log(σ−1/2ρσ−1/2)

]
.

We used the cyclicity of the trace several times, and the well-known fact that we have f(L∗L)L∗ =
L∗f(LL∗) in case the spectrum of L∗L and LL∗ lie in the domain of f [47, Lemma 61.].

Building on the previous results from this section, we proceed to prove now the main result,
namely the almost concavity for the BS-entropy. This falls in the line of results of almost concavity
discussed in definition 4.1.

Theorem 6.3 (Almost concavity of the BS-entropy)
Let (ρ1, σ1), (ρ2, σ2) ∈ Sker,+ with

Sker,+ := {(ρ, σ) ∈ S(H)× S(H) : σ ∈ S+(H)}

and p ∈ [0, 1]. Then, for ρ = pρ1 + (1− p)ρ2, σ = pσ1 + (1− p)σ2, we have

D̂(ρ∥σ) ≥ pD̂(ρ1∥σ1) + (1− p)D̂(ρ2∥σ2)− ĉ0(1− δρ1ρ2)h(p)− fĉ1,ĉ2(p) ,

with
h(p) = −p log(p)− (1− p) log(1− p) ,

fĉ1,ĉ2(p) = p log(p+ ĉ1(1− p)) + (1− p) log((1− p) + ĉ2p) ,

δρ1ρ2 =

{
1 if ρ1 = ρ2

0 otherwise
,

and the constants

ĉ0 := max{
∥∥σ−1

1

∥∥
∞ ,
∥∥σ−1

2

∥∥
∞} ,

ĉ1 :=

∞∫

−∞

dtβ0(t)Tr
[
ρ1(ρ

1/2
1 σ−1

1 ρ
1/2
1 )

it+1
2 ρ

−1/2
1 σ2ρ

−1/2
1 (ρ

1/2
1 σ−1

1 ρ
1/2
1 )

−it+1
2

]
,

ĉ2 :=

∞∫

−∞

dtβ0(t)Tr
[
ρ2(ρ

1/2
2 σ−1

2 ρ
1/2
2 )

it+1
2 ρ

−1/2
2 σ1ρ

−1/2
2 (ρ

1/2
2 σ−1

2 ρ
1/2
2 )

−it+1
2

]
,

(26)

with the probability density β0 defined as in eq. (13).
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Proof. The formula for p = 0, 1 is trivial, hence let p ∈ (0, 1). We find that

pD̂(ρ1∥σ1) + (1− p)D̂(ρ2∥σ2)− D̂(ρ∥σ)
≤ p(D̂(ρ1∥σ1)− D̂(ρ1∥σ)) + (1− p)(D̂(ρ2∥σ2)− D̂(ρ2∥σ)) + ĉ0h(p) .

Indeed, as of lemma 6.2 and then lemma 6.1 with A1 = σ−1/2ρ1σ
−1/2, A2 = σ−1/2ρ2σ

−1/2 respec-
tively, we can prove

−D̂(ρ∥σ) = Tr
[
σ
(
−σ−1/2ρσ−1/2 log(σ−1/2ρσ−1/2)

)]

≤ pTr
[
σ
(
−σ−1/2ρ1σ

−1/2 log(σ−1/2ρ1σ
−1/2)

)]

+ (1− p)Tr
[
σ
(
−σ−1/2ρ2σ

−1/2 log(σ−1/2ρ2σ
−1/2)

)]
+ hA1,A2(p)

= −pD̂(ρ1∥σ)− (1− p)D̂(ρ2∥σ) + hA1,A2(p) .

At last we can estimate Tr [Aj ] = Tr
[
σ−1ρj

]
≤
∥∥σ−1

∥∥
∞ ≤ ĉ0 for j = 1, 2 using Hölder’s inequality,

giving us hA1,A2(p) ≤ ĉ0h(p).

We now have to estimate terms of the form D̂(ρj∥σj)− D̂(ρj∥σ) for j = 1, 2. This is done using
the Peierls-Bogoliubov inequality [62] and the multivariate trace inequalities of Sutter et al. [76]:

D̂(ρj∥σj)− D̂(ρj∥σ) = Tr
[
ρj

(
log(ρ

1/2
j σ−1

j ρ
1/2
j )− log(ρ

1/2
j σ−1ρ

1/2
j )

)]

≤ Tr
[
exp

(
log(ρj) + log(ρ

1/2
j σ−1

j ρ
1/2
j )− log(ρ

1/2
j σ−1ρ

1/2
j )

)]

≤ Tr
[
exp

(
log(ρj) + log(ρ

1/2
j σ−1

j ρ
1/2
j ) + log(ρ

−1/2
j σρ

−1/2
j )

)]

≤ log
( ∞∫

−∞

dtβ0(t)Tr
[
ρj(ρ

1/2
j σ−1

j ρ
1/2
j )

it+1
2 ρ

−1/2
j σρ

−1/2
j (ρ

1/2
j σ−1

j ρ
1/2
j )

−it+1
2

] )

=

{
log(p+ (1− p)ĉ1) j = 1

log((1− p) + pĉ2) j = 2
.

(27)
In the third line, we use that

− log(ρ
1/2
j σ−1ρ

1/2
j ) ≤ log(ρ

−1/2
j σρ

−1/2
j )

which is true since for Pρj the projection on the support of ρj , we have

Pρj (PρσPρj )
−1Pρj ≤ Pρjσ

−1Pρj ,

as x→ x−1 is operator convex and hence fulfills the Sherman-Davis inequality [25, Theorem 4.19].
Note that σ is invertible and that by (PρjσPρj )

−1 we mean the Moore-Penrose pseudoinverse. We
find

− log(ρ
1/2
j σ−1ρ

1/2
j ) = − log(ρ

1/2
j Pρjσ

−1Pρjρ
1/2
j )

≤ − log(ρ
1/2
j Pρj (PρjσPρj )

−1Pρjρ
1/2
j )

= log(ρ
−1/2
j PρjσPρjρ

−1/2
j )

= log(ρ
−1/2
j σρ

−1/2
j ) .
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The argument why the inequalities in eq. (27) hold in the case of ρj not being full rank is simpler
than in the case of the corresponding inequality for the relative entropy (cf. theorem 5.1 and
appendix B). For the BS-entropy, we can already restrict eq. (27) to the support of ρj as all operators

involved, ρj , ρ
1/2
j σ−1

j ρ
1/2
j and ρ

1/2
j σ−1ρ

1/2
j , commute with the projection onto this support. In the

last step we split σ and evaluated the first term to p in case j = 1 or the second term in case j = 2
to (1− p) and left the other one untouched, respectively. This concludes the proof.

Remark 6.4 We strongly suspect that theorem 6.3 can be improved because of two reasons. The
first one is that we would expect the results of almost concavity of the relative and the BS-entropy
to coincide in the case that the involved states commute. The reason is that in this case, both
quantities reduce to the classical relative entropy. A straightforward calculation shows that then
ĉ1 = c1 and ĉ2 = c2, hence fc1,c2 = fĉ1,ĉ2 , but h ≤ ĉ0h with equality if, and only if, σ1 and σ2 are
pure, which in addition to σ1 and σ2 being full rank means H = C.

The other reason is given by the continuity bound we obtain for the BS-conditional entropy
in corollary 6.8. Numerics suggest an almost convex bound that is independent of the minimal
eigenvalue (cf. fig. 5) if the inputs are full rank2. Hence we would also suspect that an optimal
almost concave remainder of the BS-entropy reduces to an eigenvalue independent bound in the case
of the BS-conditional entropy.

Analogous to the case of the relative entropy we provide an additional proposition to give
context to the above result, i.e. to provide simpler expressions if the involved states satisfy specific
conditions.

Proposition 6.5 (Almost concavity estimate of the BS-entropy is well behaved)
The function ĉ0h+fĉ1,ĉ2 obtained in theorem 6.3 is well behaved in the following sense: Let j = 1, 2
and (ρj , σj) ∈ Sker,+. We have the following:

1. If σ1 = σ2, then ĉj = 1, resulting in fĉ1,ĉ2 + ĉ0h = ĉ0h.

2. If the σj have a minimal eigenvalue that is bounded from below by m > 0 respectively, then
fĉ1,ĉ2 + ĉ0h ≤ fm−1,m−1 +m−1h.

3. If H = HA⊗HB is a bipartite space, ρj has a minimal eigenvalue bounded from below by
m > 0, and further σj = d−1

A 1A⊗ρj,B, then fĉ1,ĉ2 + ĉ0h ≤ fm−1,m−1 +m−1h.

4. We find for m1,m2 ≥ 1, p 7→ 1
1−pfm1,m2(p) and p 7→ 1

1−p ĉ0h(p) are non-decreasing on [0, 1).

This result should be compared to proposition 5.2, its analogue for the relative entropy. The
proof can be found in appendix E. We will use the reductions from proposition 6.5 to simplify the
terms in theorem 6.3 for the various applications presented in the subsequent section.

6.2 Continuity bounds for the BS-entropy

In this section, we will use the almost concavity for the BS-entropy from theorem 6.3 together with
the ALAFF method in its full generality.

Before we dive into the continuity and divergence bounds, we want to collect some lower and
upper estimates of entropic quantities derived from the BS-entropy (see section 3.1 for the specific
definitions).

2The full rank requirement is necessary, as we will show in proposition 6.7 that the BS-conditional entropy is
discontinuous in the presence of vanishing eigenvalues
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Proposition 6.6 (Bounds on BS-entropic quantities)
For ρ ∈ S(HA⊗HB), we find:

1. For the BS-conditional entropy:

− logmin{dA, dB} ≤ Ĥρ(A|B) ≤ log dA . (28)

2. For the BS-mutual information:

0 ≤ Îρ(A : B) ≤ logmin{dA, dB}+ logmin{
∥∥ρ−1

A

∥∥
∞ ,
∥∥ρ−1

B

∥∥
∞} , (29)

with ·−1 the Moore-Penrose pseudoinverse.

3. For ρ ∈ S(HA⊗HB ⊗HC), we find that the BS-conditional mutual information satisfies:

0 ≤ Îρ(A : B|C) ≤ logmin{d2A, dABC}.

The first two bounds are shown to be tight. For the third one, we expect that similar reasoning
should also show its tightness.

The proof can be found in appendix F. We further want to remark that the scaling of the bound
with respect to

∥∥ρ−1
A

∥∥
∞ or

∥∥ρ−1
B

∥∥
∞ is justified. The reasoning can be found in appendix F as well.

6.2.1 Uniform continuity for the BS-conditional entropy

We encounter a slight complication when it comes to the uniform continuity of the BS-conditional
entropy compared to the uniform continuity of the conditional entropy that we have covered in
corollary 5.5. This is because the almost concave bound of the BS-entropy depends on the minimal
eigenvalue of the second argument (see eq. (26)), i.e. it has to be full rank. This means the input to
the BS-conditional entropy has to be full rank as well. Although we think that the result of almost
concavity for the BS-entropy can be improved, we know that there is no extension of uniform
continuity nor continuity for the BS-conditional entropy to positive semi-definite states, as this
quantity is not continuous on those. This is the content of the next proposition. We also refer the
reader to [31, Remark 3.3] for a similar behaviour of the sharp quantum Rényi divergences.

Proposition 6.7 (Discontinuity of the BS-conditional entropy)
The BS-conditional entropy is discontinuous on the set of positive semi-definite operators over
HA⊗HB if dA, dB ≥ 2.

Proof. Since dA ≥ 2 as well as dB ≥ 2, we find orthogonal |iA⟩ ∈ HA, |iB⟩ ∈ HB, i = 0, 1. For
ε ∈ (0, 1) we then define

|εB⟩ =
√
1− ε |0B⟩+

√
ε |1B⟩ ,

which is clearly normalised. Furthermore,

ρ0 :=
1

2
(|0A⟩⟨0A|+ |1A⟩⟨1A|)⊗ |0B⟩⟨0B| ,

ρε :=
1

2
|0A⟩⟨0A| ⊗ |0B⟩⟨0B|+

1

2
|1A⟩⟨1A| ⊗ |εB⟩⟨εB| ,

The above are states and fulfil

∥ρ0 − ρε∥1 =
1

2
∥|1A⟩⟨1A| ⊗ (|0B⟩⟨0B| − |εB⟩⟨εB|)∥1

=
1

2
∥|0B⟩⟨0B| − |εB⟩⟨εB|∥1 =

√
ε .

(30)
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To see the last equality, we can identify the subspace spanned by |0B⟩ and |1B⟩ with C2 and then
get that

|0B⟩⟨0B| →
(
1 0
0 0

)
and |εB⟩⟨εB| →

(
1− ε

√
ε
√
1− ε√

ε
√
1− ε ε

)
. (31)

Calculating the eigenvalues of the difference and taking the sum of their absolute value gives 2
√
ε

and thereby eq. (30). Since clearly [ρ0,1⊗TrA[ρ0]] = 0, the BS and conditional entropy coincide
and we find

Ĥρ0(A|B) = Tr [|0B⟩⟨0B| log |0B⟩⟨0B|]

− Tr

[
1

2
(|0A⟩⟨0A|+ |1A⟩⟨1A|)⊗ |0B⟩⟨0B| log

1

2
(|0A⟩⟨0A|+ |1A⟩⟨1A|)⊗ |0B⟩⟨0B|

]

= 0− log
1

2
= log 2 .

The result for ρε cannot be calculated so easily. We have that

Ĥρε(A|B) = −1

2
Tr
[
|0B⟩⟨0B| log(|0B⟩⟨0B|1/2 (|εB⟩⟨εB|+ |0B⟩⟨0B|)−1 |0B⟩⟨0B|1/2)

]

− 1

2
Tr
[
|εB⟩⟨εB| log(|εB⟩⟨εB|1/2 (|εB⟩⟨εB|+ |0B⟩⟨0B|)−1 |εB⟩⟨εB|1/2)

]

= −1

2
log Tr

[
|0B⟩⟨0B| (|εB⟩⟨εB|+ |0B⟩⟨0B|)−1

]

− 1

2
log Tr

[
|εB⟩⟨εB| (|εB⟩⟨εB|+ |0B⟩⟨0B|)−1

]
,

(32)

where in the first equality we used that |0B⟩⟨0B| |1B⟩⟨1B| = |1B⟩⟨1B| |0B⟩⟨0B| = 0 and in the second
equality that |εB⟩⟨εB| and |0B⟩⟨0B| are rank-one projections. We find, using again the matrix
representation in eq. (31), that

(|εB⟩⟨εB|+ |0B⟩⟨0B|)−1 →
(

1 ε−1√
ε
√
1−ε

ε−1√
ε
√
1−ε

2
ε − 1

)
.

By forming matrix products and calculating the trace, we can immediately conclude that

Tr
[
|εB⟩⟨εB| (|εB⟩⟨εB|+ |0B⟩⟨0B|)−1

]
= 1 ,

Tr
[
|0B⟩⟨0B| (|εB⟩⟨εB|+ |0B⟩⟨0B|)−1

]
= 1 .

If we insert this into eq. (32), we get Ĥρε(A|B) = 0.

This previous result shows in particular that we could only expect continuity and uniform
continuity for the BS-conditional entropy on the set of full-rank states. The presence of the minimal
eigenvalue of the states in the continuity bound provided below is thus not surprising.

Corollary 6.8 (Uniform continuity of the BS-conditional entropy)
The BS-conditional entropy over the bipartite Hilbert space H = HA⊗HB is for d−1

H > m > 0
uniformly continuous on S0 = S≥m(H) and for ρ, σ ∈ S0 with 1

2 ∥ρ− σ∥1 ≤ ε ≤ 1 it holds that

|Ĥρ(A|B)− Ĥσ(A|B)| ≤ 2l−1
m ε log dA +

lm + ε

lm
(fm−1,m−1 +m−1h)

( ε

lm + ε

)
,

with lm = 1− dHm.
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Proof. We find that S0 is s-perturbed ∆-invariant with s = mdH. The justification of this choice
is completely analogous to the reasoning in lemma 5.12 with ρ = d−1

H 1, i.e. the maximally mixed

state. Furthermore, f(·) = Ĥ·(A|B) is ALAFF with af = 0 as Ĥ·(A|B) is concave, and bf =
m−1h+ fm−1,m−1 since the result in section 6.1 becomes independent of the states as we restrict to

Ĥ·(A|B) using point 3 of proposition 6.5. We further find that

Csf ≤ sup
ρ1,ρ2∈S(H)

|Ĥρ1(A|B)− Ĥρ2(A|B)| ≤ 2 log dA ,

using proposition 6.6. This allows us to apply theorem 4.6 where Emax
f coincides with Ef as of

point 4 in proposition 6.5. This concludes the claim.

Even though a continuity bound for the BS-conditional entropy can only be proven for positive
definite states, numerical simulations show us that we could expect a tighter bound on the previous
proposition coinciding with that of corollary 5.5, i.e., without the dependence on the minimal
eigenvalues of the states involved. One can find a visualisation of those numeric simulations that
underlie the conjecture in fig. 5. The possibility of obtaining such a tighter bound is left for future
work.
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Figure 5: We investigate the dependence of the almost convex remainder term of the BS-
conditional entropy on the minimal eigenvalue of the involved states. For the minimal eigenvalues
10−4, 10−8, 10−16, 10−32 we sampled five hundred pairs of qubits (ρ, σ) both of them with con-
trolled eigenvalues. We then sampled for every state pair ten values of p, the convex interpolation
parameter, and plotted the remainder. As can be seen from the plot, the remainder appears to be
independent of the minimal eigenvalue and the shape suggests a binary entropy or Gini impurity.
The result shows a similar pattern if the dimension is increased.

6.2.2 Uniform continuity for the BS-mutual information

Let us address now the case of the BS-mutual information. Since the BS-conditional entropy is a
particular case of the latter (by assuming that one of the reduced states of ρAB is maximally mixed),
the discontinuity issues presented in the previous subsection are expected to arise in the current
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one as well. More specifically, the example of discontinuity of the BS-conditional entropy presented
in proposition 6.7 also constitutes an example of discontinuity of the BS-mutual information. Thus,
we can only expect to prove uniform continuity for the BS-mutual information for full-rank states

However, there is a subtle difference between the settings of the BS-conditional entropy and
the BS-mutual information. As shown in proposition 6.6, the former is bounded between the same
values as the (usual) conditional entropy, whereas the latter presents some pathological behaviour.
Pathological in the sense that its (tight) upper bound depends on the minimal eigenvalues of
the reduced state, as shown in eq. (29). For this reason, a continuity bound for the BS-mutual
information will necessarily depend on the minimal eigenvalues of the states involved.

Corollary 6.9 (Uniform continuity for the BS-mutual information)
The BS-mutual information on a bipartite Hilbert space H = HA⊗HB is for d−1

H > m > 0
uniformly continuous on S0 = S≥m and for ρ, σ ∈ S0 with 1

2 ∥ρ− σ∥1 ≤ ε ≤ 1 we find that

|Îρ(A : B)− Îσ(A : B)| ≤ 2l−1
m ε(logmin{dA, dB}+ logm−1) +

lm + ε

lm
zm

( ε

lm + ε

)

≤ 2 logmin{dA, dB}+ 4 logm−1 + (
√
2 + 2)m−1 +

√
2

lm

√
ε ,

with lm = 1−mdH and
zm(p) = 2fm−1,m−1(p) + (m−1 + 1)h(p) .

For the second inequality, we used lemma 5.8, log(1 + x) ≤ x for 0 ≤ x, ε ≤ √
ε for ε ∈ [0, 1] and

lm ≤ lm + ε.

Proof. As in the case of the BS-conditional entropy, we find that S0 is s-perturbed ∆-invariant
with s = mdH. To conclude that Î·(A : B) is ALAFF we first note that because of the convexity
of D̂(·∥·),

Îpρ1+(1−p)ρ2(A : B) ≤ pD̂(ρ1∥ρ1,A ⊗ (pρ1,B + (1− p)ρ2,B))

+ (1− p)D̂(ρ2∥ρ2,A ⊗ (pρ1,B + (1− p)ρ2,B))

≤ pÎρ1(A : B) + (1− p)Îρ2(A : B) + h(p) .

In the last step, we used that D̂(·∥·) is monotone decreasing in its second argument, and pρ1,B ≤
pρ1,B + (1 − p)ρ2,B, (1 − p)ρ2,B ≤ pρ1,B + (1 − p)ρ2,B, respectively. Hence bf = h. We follow
similar lines to obtain af . Starting with theorem 6.3 and point 2 in proposition 6.5 using that∥∥ρ−1

A

∥∥
∞ ≤

∥∥ρ−1
AB

∥∥
∞, and analogously for ρB, we find

Îpρ1+(1−p)ρ2(A : B) ≥ pD̂(ρ1∥ρ1,A ⊗ (pρ1,B + (1− p)ρ2,B))

+ (1− p)D̂(ρ2∥ρ2,A ⊗ (pρ1,B + (1− p)ρ2,B))−m−1h(p)− fm−1,m−1(p)

≥ pÎρ1(A : B) + (1− p)Îρ2(A : B)−m−1h(p)− 2fm−1,m−1(p) .

In the last step we used again that D̂(·∥·) is monotone decreasing in its second argument and that
pρ1,AB +(1− p)ρ2,AB ≤ (p+(1− p)m−1)ρ1,AB and pρ1,AB +(1− p)ρ2,AB ≤ (m−1p+(1− p))ρ2,AB,
giving us another fm−1,m−1(p). Hence af = m−1h+2fm−1,m−1 . We conclude the proof by noticing

again that
∥∥ρ−1

A

∥∥
∞ ≤

∥∥ρ−1
AB

∥∥
∞ ≤ m−1, yielding the upper bound

Csf ≤ sup
ρ∈S0

Îρ(A : B) ≤ logmin{dA, dB}+ logm−1 .

Finally, we apply theorem 4.6 and get the claimed bounds as Ef coincides with Emax
f , due to point

4 in proposition 6.5.
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6.2.3 Uniform continuity for the BS-conditional mutual information

Next, we provide a result of uniform continuity for the BS-conditional mutual information, defined
in eq. (4). As a difference between two BS-conditional entropies, it will not present the pathological
behaviour from the BS-mutual information, as the BS-conditional entropies are bounded between
the same limits as the (usual) conditional entropies. See proposition 6.6 for the specific bounds on
all these BS-entropic quantities.

Nevertheless, the continuity bound we obtain below for the BS-conditional mutual information
also depends on the minimal eigenvalues of the states involved, as happened in the case of the
BS-conditional entropies.

Corollary 6.10 (Uniform continuity of the BS-conditional mutual information)
The BS-conditional mutual information over H = HA⊗HB ⊗HC is for d−1

H > m > 0 uniformly
continuous on S0 = S≥m(H) and for ρ, σ ∈ S0 with 1

2 ∥ρ− σ∥1 ≤ ε ≤ 1 we find that

|Îρ(A : B|C)− Îσ(A : B|C)| ≤ 2 ε l−1
m logmin{dA,

√
dABC}+ 2gm(ε)

≤ 2 logmin{dA,
√
dABC}+ 2 logm−1 + 2(

√
2 + 1)m−1

lm

√
ε ,

with lm = 1−mdH and

gm(ε) =
lm + ε

lm
(fm−1,m−1 +m−1h)

( ε

lm + ε

)
.

For the second inequality, we used lemma 5.8, log(1 + x) ≤ x for 0 ≤ x, ε ≤ √
ε for ε ∈ [0, 1] and

lm ≤ lm + ε.

Proof. We have that S0 is s-perturbed ∆-invariant using the same reasoning as in the proof of
corollary 6.8. Because of the representation Î·(A : B|C) = Ĥ·(A|C)−Ĥ·(A|BC) we can immediately
conclude that Î·(A : B|C) is ALAFF with af = fm−1,m−1+m−1h and bf = fm−1,m−1+m−1h arguing
along the same lines as in corollary 6.8. Using proposition 6.6 we can conclude

Csf ≤ sup
ρ∈S(H)

Îρ(A : B|C) ≤ 2 logmin{dA,
√
dABC} .

Applying theorem 4.6 and using point 4 of proposition 6.5 we get that Ef = Emax
f and thereby

conclude the assertion.

6.2.4 Divergence bound for the BS-entropy

We conclude this section by following the same lines as in the case of the relative entropy to
provide a divergence bound for the BS-entropy. Firstly, we will prove the uniform continuity of the
BS-entropy in the first argument and subsequently derive from that result the divergence bound.
These results should be compared to their relative entropy analogues, namely corollary 5.9 and
corollary 5.10, respectively.

Corollary 6.11 (Uniform continuity of the BS-entropy in the first argument)
Let σ ∈ S+(H) be fixed. Then D̂(·∥σ) is uniformly continuous on S0 = S(H), and for ρ1, ρ2 ∈ S0

with 1
2 ∥ρ1 − ρ2∥ ≤ ε ≤ 1 we find that

|D̂(ρ1∥σ)− D̂(ρ2∥σ)| ≤ ε log(m−1
σ ) + (1 + ε)m−1

σ h
( ε

1 + ε

)
,

with mσ the minimal eigenvalue of σ.
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Proof. The procedure is familiar. First, S0 is 0-perturbed ∆-invariant. Second f(·) = D̂(·∥σ) is
ALAFF with af = m−1

σ h and bf = 0 employing theorem 6.3 and point 1 of proposition 6.5. Further

C⊥
f ≤ sup

ρ∈S(H)
D̂(ρ∥σ) ≤ logm−1

σ

since ρ1/2σ−1ρ1/2 ≤ 1m−1
σ . Applying now remark 4.7 gives the claimed result.

Utilizing the above result we obtain a divergence bound for the BS-entropy which constitutes
the analogue to the one of the relative entropy in corollary 5.10. Note that even the divergence
bounds obtained in both cases are similar, except for the presence of a factor m−1

σ in the second
term of the bound.

Corollary 6.12 (Divergence bound for the BS-entropy)
Let ρ ∈ S(H) and σ ∈ S+(H), then for 1

2 ∥ρ− σ∥1 ≤ ε ≤ 1, we have

D̂(ρ∥σ) ≤ ε logm−1
σ + (1 + ε)m−1

σ h
( ε

1 + ε

)
,

with mσ the minimal eigenvalue of σ.

Proof. In the context of corollary 6.11, we just set ρ1 = ρ and ρ2 = σ, giving us that 1
2 ∥ρ1 − ρ2∥1 =

1
2 ∥ρ− σ∥1 ≤ ε ≤ 1. Further D̂(ρ2∥σ) = D̂(σ∥σ) = 0 and |D̂(ρ1∥σ)| loses the absolute value, as

D̂(·∥·) ≥ 0. The bound follows immediately.

With this, we conclude our section on continuity bounds for entropic quantities derived from
the BS-entropy. We have deliberately omitted the analogues of corollary 5.11 and theorem 5.13 for
the BS-entropy, due to their high technicality and the complexity of the continuity bounds that
we would obtain with our method. However, the same procedure as for the relative entropy would
give analogous continuity bounds also in this setting.

7 Applications

In this section, we use some of the previously derived bounds to provide applications in various
contexts within the field of quantum information.

7.1 Quantum hypothesis testing

In this section, we interpret our bounds in terms of hypothesis testing. Quantum state discrimina-
tion and quantum hypothesis testing are both well-studied tasks in quantum information theory.

In quantum state discrimination, you are given a source which prepares quantum states ρ1 and
ρ2 with equal probability. The task is to perform a measurement in order to identify whether the
state prepared by the source is ρ1 or ρ2. In this setting, the optimal probability of successfully
identifying the state is given in terms of the trace distance as

psucc =
1

2

(
1 +

1

2
∥ρ1 − ρ2∥1

)
(33)

using the Helstrom measurement (see textbooks such as [61]).
In quantum hypothesis testing, we consider an asymmetric setting with n copies and we are

interested in the asymptotic performance. Again, the task is to discriminate between ρ and σ, using
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a measurement {E,1−E} where 0 ≤ E ≤ 1. Upon the first outcome, the guess is ρ, and upon the
second σ. Therefore, we define the errors of the first and second kind as

α(E)n = Tr[ρ⊗n(1− E)]

and
β(E)n = Tr[σ⊗nE] .

We now want to fix the error of the first kind to be at most ε and define

βε(ρ
⊗n||σ⊗n) := min{β(E)n : α(E)n ≤ ε},

where the minimum runs over 0 ≤ E ≤ 1. Then, the quantum Stein’s lemma [45,64] states that

lim
n→∞

1

n
log[βε(ρ

⊗n||σ⊗n)] = −D(ρ||σ).

Therefore, we can interpret the continuity bound in the way that two states that are hard to
discriminate have almost the same performance in terms of hypothesis testing. We can illustrate
this with corollary 5.9, just by taking 1 + ε there to be 2psucc following eq. (33).

Corollary 7.1 Let σ ∈ S(H) be fixed, 0 < ε < 1 and let us consider a source which produces ρ1,
ρ2 with equal probability. Moreover, let p be an upper bound on the probability psucc of successfully
identifying the state. Then, the difference in the asymptotic error exponent in hypothesis testing is
bounded by

∣∣∣ lim
n→∞

1

n
log[βε(ρ

⊗n
1 ||σ⊗n)]− lim

n→∞
1

n
log[βε(ρ

⊗n
2 ||σ⊗n)]

∣∣∣ ≤ (2p− 1) log m̃−1
σ + 2p h

(2p− 1

2p

)
,

with m̃−1
σ the minimal non-zero eigenvalue of σ.

7.2 Free energy

In section 7.1, we already saw one interpretation of our results in terms of hypothesis testing. This
section gives another interpretation using the language of quantum thermodynamics.

A ubiquitous quantity in quantum thermodynamics is free energy. To define it, we need to fix
a Hamiltonian H ∈ B(H), H = H∗, and some inverse temperature β > 0. The Gibbs state of this
system, describing a quantum system in thermal equilibrium, is

ρβ(H) =
e−βH

tr[e−βH ]
.

Now, we can define the free energy as

F (ρ) = tr[Hρ]− β−1S(ρ) .

It can be related to the relative entropy as

D(ρ||ρβ(H)) = β(F (ρ)− F (ρβ(H))) , (34)

which can easily be verified by direct computation.
Inspired by quantum information theory, in particular entanglement theory, during the last years

various descriptions of quantum thermodynamics as a resource theory have emerged. Resource
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theories are described in terms of free states and free operations. In quantum thermodynamics,
the free state is ρβ(H), whereas the choices of free operations can differ. Possible choices include
the thermal operations (TO), their closure (CTO), and the Gibbs preserving covariant operations
(GPC). Instead of giving a formal definition here, we refer the reader to [34, Section II.C]. In
entanglement theory, we are interested in the distillation of EPR pairs from other states, possibly
taking many copies. In the same spirit, in quantum thermodynamics, the corresponding task is the
distillation of athermality. The asymptotic distillable athermality is quantified by the free energy
difference in eq. (34) [20, 34]. Theorem V.1 of [34] states that for the asymptotic distillation rate
of athermality

DistillF(ρ, ρβ(H)) = D(ρ||ρβ(H)) ,

where F ∈ {TO,CTO,GPC}. Again, we refer the reader to [34] for the formal definitions. Thus,
we can interpret corollary 5.9 as quantifying the continuity of distillable athermality.

Corollary 7.2 Let H be a fixed Hamiltonian with maximal eigenvalue λmax, minimal eigenvalue
λmin, and β > 0 an inverse temperature. Then, for ρ1, ρ2 ∈ S(H) such that 1

2∥ρ1 − ρ2∥1 ≤ ϵ ≤ 1,
it holds that

|DistillF(ρ1, ρβ(H))−DistillF(ρ2, ρβ(H))| ≤ ε
(
βλmax + log(Tr

[
e−βH

]
)
)
+ (1 + ε)h

( ε

1 + ε

)

≤ εβ(λmax − λmin) + ε log(d) + (1 + ε)h
( ε

1 + ε

)
,

where F ∈ {TO,CTO,GPC}.

7.3 Approximate Quantum Markov Chains

In this section, we consider a tripartite Hilbert space HABC = HA⊗HB ⊗HC and ρABC ∈
S+(HABC). We further consider the conditional mutual information of ρABC between A and C con-
ditioned on B. The well-known property of strong subadditivity of the von Neumann entropy [53]
is equivalent to the non-negativity of the conditional mutual information, which is furthermore
known [42,63] to vanish if, and only if,

ρABC = ρ
1/2
ABρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB ,

i.e., whenever ρABC is a quantum Markov chain. In particular, if we denote PB→AB(ρBC) =

ρ
1/2
ABρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB, we have

IPB→AB(ρBC)(A : C|B) = 0 .

Moreover, by the decomposition of the CMI of ρABC in terms of a difference of conditional entropies,
as well as the data processing inequality, we have

Iρ(A : C|B) = Hρ(C|B)−Hρ(C|AB) ≤ HPB→AB(ρBC)(C|AB)−Hρ(C|AB) .

Here we w.l.o.g. assumed that dA ≤ dC using the symmetry of the CMI in A and C. Therefore,
we can apply our continuity bound for the CE from corollary 5.5 (which provides, in this case, a
tighter result than corollary 5.7), cf. also [88], to obtain an upper bound on the CMI of ρABC in
terms of how far it is from being recovered with the Petz recovery map, i.e., in terms of

∥∥∥ρABC − ρ
1/2
ABρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB

∥∥∥
1
.
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A similar direction was previously explored in [77, Eq. (26)]. Note that, as a direct consequence of
corollary 5.5, we get the following bound for any state ρABC ∈ S(HABC):

Iρ(A : C|B) ≤ 2ε logmin{dA, dC}+ (1 + ε)h
( ε

1 + ε

)
,

with

ε :=
1

2

∥∥∥ρABC − ρ
1/2
ABρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB

∥∥∥
1
.

Moreover, we can use the following inequality

(1 + x)h

(
x

1 + x

)
≤

√
2x ,

for every x ∈ [0, 1], as well as the fact that, since ε ∈ [0, 1], then ε ≤ √
ε, to upper bound the CMI

of ρABC by

Iρ(A : C|B) ≤
(√

2 logmin{dA, dC}+ 1
)∥∥∥ρABC − ρ

1/2
ABρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB

∥∥∥
1/2

1
. (35)

This bound should be compared to lower bounds for the conditional mutual information. On the
one hand, Fawzi and Renner proved in [32] the following lower bound for such a quantity in terms

of the fidelity F (ρ, σ) =
∥∥√ρ√σ

∥∥2
1
:

Iρ(A : C|B) ≥ − logF (ρABC ,RB→AB(ρBC)) ,

whereRB→AB is another recovery map, the so-called rotated Petz recovery map, which was explicitly
constructed in [46]. Several results have been provided in this line in the past decade. Here we
specifically focus on [27], in which Carlen and Vershynina proved:

Iρ(A : C|B) ≥
(π
8

)4 ∥∥ρ−1
B

∥∥−2

∞
∥∥ρ−1

ABC

∥∥−2

∞

∥∥∥ρABC − ρ
1/2
ABρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB

∥∥∥
4

1
, (36)

Therefore, by combining eq. (35) with eq. (36) we obtain the following “sandwich” for the condi-
tional mutual information of a tripartite density matrix ρABC in terms of its trace distance to its
Petz recovery map:

(π
8

)4 ∥∥ρ−1
B

∥∥−2

∞
∥∥ρ−1

ABC

∥∥−2

∞

∥∥∥ρABC − ρ
1/2
ABρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB

∥∥∥
4

1

≤ Iρ(A : C|B)

≤ 2 (logmin{dA, dC}+ 1)
∥∥∥ρABC − ρ

1/2
ABρ

−1/2
B ρBCρ

−1/2
B ρ

1/2
AB

∥∥∥
1/2

1
.

In particular, this implies that a state ρABC ∈ S(HA⊗HB ⊗HC) is an approximate quantum
Markov chain [75] (i.e. Iρ(A : C|B) < ϵ) if, and only if, it is close to its reconstructed state under
the Petz recovery map. This idea was used in [48] to prove that a Gibbs state of a one-dimensional
local Hamiltonian is an approximate quantum Markov chain, and subsequently, in [40] to provide
an estimate on the time it takes for a Markovian evolution of a density matrix to become an
approximate quantum Markov chain. Moreover, a similar inequality has recently been employed
in [78] to study the decay of the CMI for purely generated finitely correlated states.
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7.4 Difference between relative entropy and BS-entropy

It is well-known that the BS-entropy is an upper bound on the Umegaki relative entropy [43,56,62],
i.e., that

D(ρ||σ) ≤ D̂(ρ||σ) ,
and they coincide if and only if ρ and σ commute (see, e.g., [45] and [43, Proposition 4.7]). In this
section, our aim is to quantify how large the difference between the two divergences can become.
We start with two upper bounds on D̂(ρ||σ) in terms of D(ρ||σ).

Proposition 7.3 Consider two positive definite states ρ, σ ∈ S+(H). Then, the following inequal-
ity holds:

D̂(ρ∥σ) ≤ D(ρ∥σ) +m−1 ∥ρ− σ∥∞ ,

where m is the minimal eigenvalue of σ.

Proof. We can upper bound the difference between the entropies by

D̂(ρ∥σ)−D(ρ∥σ) = Tr
[
ρ
(
log(ρ1/2σ−1ρ1/2)− log ρ+ log σ

)]

= −D
(
ρ
∥∥∥exp

{
log σ + log(ρ1/2σ−1ρ1/2)

})

≤ log Tr
[
exp

{
log σ + log(ρ1/2σ−1ρ1/2)

}]

≤ log Tr
[
σρ1/2σ−1ρ1/2

]
,

where we have used the non-negativity for the relative entropy of density matrices and Golden-
Thompson inequality [33,80]. Next, we can write

Tr
[
σρ1/2σ−1ρ1/2

]
= Tr

[
σρ1/2(σ−1 − ρ−1)ρ1/2

]
+ 1 .

Therefore, using log(x+ 1) ≤ x, we have

D̂(ρ∥σ)−D(ρ∥σ) ≤ Tr
[
σρ1/2(σ−1 − ρ−1)ρ1/2

]
.

Now, we can use the following expression for invertible matrices X and Y :

X−1 − Y −1 = Y −1(Y −X)X−1

Then,

Tr
[
σρ1/2(σ−1 − ρ−1)ρ1/2

]
= Tr

[
σρ−1/2(ρ− σ)σ−1ρ1/2

]

≤ ∥ρ−1/2(ρ− σ)σ−1ρ1/2∥∞
≤
∥∥σ−1

∥∥
∞ ∥ρ− σ∥∞ ,

by [15, Proposition IX.1.1] and Hölder’s inequality.

The previous proposition provides a general upper bound for the distance between both entropies
in terms of the spectral norm and the minimal eigenvalue of the second input. This is valid for any
pair of states but does not yield any further information on specific pairs with better conditions.
Alternatively, we can prove the following bound, from which it is obvious that D(ρ||σ) = D̂(ρ||σ)
if ρ and σ commute.

36



Proposition 7.4 Consider two positive definite states ρ, σ ∈ S+(H). Then, the following inequal-
ity holds:

D̂(ρ∥σ) ≤ D(ρ∥σ) + f([ρ1/2, σ−1/2])

where the last term is given by

f([ρ1/2, σ−1/2]) :=
∥∥∥
[
ρ1/2, σ−1/2

]∥∥∥
2

∞
+ 2

∥∥∥
[
ρ1/2, σ−1/2

]∥∥∥
∞
.

In particular, whenever ρ and σ commute, f vanishes.

Proof. The proof proceeds in the same way as for proposition 7.3 until

D̂(ρ∥σ)−D(ρ∥σ) ≤ Tr
[
σρ1/2(σ−1 − ρ−1)ρ1/2

]
.

Let us define now
η := σ1/2ρ1/2σ−1ρ1/2σ1/2 .

Then,

Tr
[
σρ1/2(σ−1 − ρ−1)ρ1/2

]
= Tr [η − σ] .

Introducing ρ gives

Tr [η − σ] = Tr [η − σ + ρ− ρ] = Tr [η − ρ] + Tr [ρ− σ] = Tr [η − ρ] ≤ ∥η − ρ∥1 .
Moreover, as appears in [18, Remark 2.2], the right-hand side above can be estimated by

∥η − ρ∥1 ≤
∥∥∥
[
ρ1/2, σ−1/2

]∥∥∥
2

∞
+ 2

∥∥∥
[
ρ1/2, σ−1/2

]∥∥∥
∞
.

This concludes the proof of the proposition.

Finally, we want to compare our previous bounds, proven using inequalities such as Golden-
Thompson or Hölder, with those we could obtain by means of our continuity bounds, as the BS-
entropy can, in particular, be regarded as a relative entropy. For that, we can also apply the
continuity bound we derived in theorem 5.13.

Corollary 7.5 Let ρ ∈ S(H), σ ∈ S+(H) and m̃ such that d−1
H > 2m̃ > 0 and the minimal

eigenvalue of σ is lower bounded by 2m̃. Let

σ−
1
2 ρσ−

1
2 =

k∑

i=1

λiPi

be the spectral decomposition with eigenvalues λi and projections Pi. Define density matrices

p =
k∑

i=1

λitr[σPi]
Pi

tr[Pi]
, q =

k∑

i=1

tr[σPi]
Pi

tr[Pi]
.

Then, for 1
2 ∥ρ− p∥ ≤ ε ≤ 1 and 1

2 ∥σ − q∥1 ≤ δ ≤ 1, it holds that

|D̂(ρ∥σ)−D(ρ∥σ)| ≤
(
ε+

δ

lm̃

)
log m̃−1 + (1 + ε)h

( ε

1 + ε

)
+ 2

lm̃ + δ

lm̃
fm̃−1,m̃−1

( δ

lm̃ + δ

)
, (37)

with lm̃ = 1−m̃. In particular, if [ρ, σ] = 0, ε and δ can be taken as 0 such that the RHS of eq. (37)
is zero.

Moreover, we can further simplify the previous bound to

|D̂(ρ∥σ)−D(ρ∥σ)| ≤ (
√
2− log m̃)

√
ε+ 3

log m̃−1

1− m̃
δ + 2 log

(
1 +

δ

1− m̃+ δ

1

m̃

)
. (38)
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Proof. Our argument is a slight variation of Matsumoto’s minimal reverse test [56] (see also [43]).
We can write the BS-entropy as the relative entropy of two commuting density matrices

D̂(ρ∥σ) = D(p∥q),

since we can verify with pi = λitr[σPi], qi = tr[σPi] that

D(p∥q) =
k∑

i=1

Tr

[
Pi

Tr [Pi]
pi

(
log

pi
Tr [Pi]

− log
qi

Tr [Pi]

)]

=
k∑

i=1

pi (log pi − log qi)

=
k∑

i=1

λitr[σPi] log λi

= Tr
[
σσ−

1
2 ρσ−

1
2 log(σ−

1
2 ρσ−

1
2 )
]

= Tr
[
ρ log(ρ

1
2σ−1ρ

1
2 )
]
.

Obviously, if m is the minimal eigenvalue of σ, then qi
Tr[Pi]

≥ m for all i ∈ {1, . . . , k}. Thus, the

assertion follows from theorem 5.13. Moreover, it is clear that if [ρ, σ] = 0 there is a unitary U
which diagonalizes ρ and σ simultaneously such that ρ = p and σ = q.

Finally, the last simplification from eq. (38) is a direct consequence of theorem 5.13 and
lemma 5.8.

7.5 Weak quasi-factorization of the relative entropy

Results of quasi-factorization for a divergence allow us to split such a divergence in a bipartite space
in terms of the sum of two “conditional” divergences on subsystems and a multiplicative error term
that is related to the correlations between both subsystems on the second input of the divergences.
A weak version of such a result presents instead an additive error term.

More specifically, it was proven in [23] that, given a bipartite space HAB = HA⊗HB and
ρAB, σAB ∈ S(HAB), the following inequality holds:

D(ρAB∥σAB) ≤
1

1− 2 ∥h(σAB)∥∞
[DA(ρAB∥σAB) +DB(ρAB∥σAB)] , (39)

with
h(σAB) := σ

−1/2
A ⊗ σ

−1/2
B σABσ

−1/2
A ⊗ σ

−1/2
B − 1AB ,

and
DX(ρAB∥σAB) := D(ρAB∥σAB)−D(ρXc∥σXc) , for X = A,B ,

whenever ∥h(σAB)∥∞ < 1/2. Note that the term ∥h(σAB)∥∞ provides a measure of how far
σAB is from being a tensor product between A and B. This result, and subsequent extensions
with additional conditions on σAB, are expected to find applications on various tasks in quantum
information theory, and in particular, have proven to be essential for some recent proofs of positivity
of modified logarithmic Sobolev inequalities (MLSIs) for quantum Markov semigroups modelling
thermal dissipative evolutions on quantum spin systems [9–11, 24]. It is important to remark that
eq. (39) is equivalent to a generalization of the property of superadditivity of the relative entropy,
as shown in [22].
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In [18], some authors of the current manuscript tried to extend the previous result for the
Umegaki relative entropy to the BS-entropy framework. However, we showed that the BS-entropy
cannot satisfy a property of superadditivity, which makes it impossible to obtain a quasi-factorization
for the BS-entropy in the spirit of eq. (39) without an additive error term. Instead, we proved a
result of weak quasi-factorization, from which we recovered eq. (39) if the marginals of ρAB and σAB
commute. Here, we can prove another result along these lines as a consequence of our continuity
bound for the relative entropy. Indeed, as a consequence of theorem 5.13, we obtain the following
result of quasi-factorization for the relative entropy with an additive error term.

Corollary 7.6 (Weak quasi-factorization for the relative entropy)
Given ρAB, σAB ∈ S(HA⊗HB) such that ker(σX) ⊂ ker(ρX) for X = A,B,AB, we have:

D(ρAB∥σAB) ≤ DA(ρAB∥σAB) +DB(ρAB∥σAB) + ξRE(ρAB, σAB) ,

with

ξRE(ρAB, σAB) :=
(√

2− log m̃
)√

ε+ 3
log m̃−1

lm̃
δ + 2 log

(
1 +

δ

lm̃ + δ

1

m̃

)
,

where m̃ = 1
2 min

{∥∥σ−1
A ⊗ σ−1

B

∥∥−1

∞ ,
∥∥σ−1

AB

∥∥−1

∞

}
, ε = ε(ρAB) =

1
2 ∥ρAB − ρA ⊗ ρB∥1 and δ = δ(σAB) =

1
2 ∥σAB − σA ⊗ σB∥1.

Proof. The difference between the relative and the two conditional entropies can be written as

D(ρAB∥σAB)−DA(ρAB∥σAB)−DB(ρAB∥σAB) = −D(ρAB∥σAB) +D(ρA ⊗ ρB∥σA ⊗ σB) .

Therefore, we can apply theorem 5.13 to obtain a continuity bound for the difference between the
last two relative entropies, obtaining

|D(ρAB∥σAB)−D(ρA ⊗ ρB∥σA ⊗ σB)|

≤
(
ε+

δ

lm̃

)
log(m̃−1) + (1 + ε)h

( ε

1 + ε

)
+ 2

lm̃ + δ

lm̃
fm̃−1,m̃−1

( δ

lm̃ + δ

)
,

with

ε :=
1

2
∥ρAB − ρA ⊗ ρB∥1 , δ :=

1

2
∥σAB − σA ⊗ σB∥1 ,

and lm̃ = 1− m̃, for m̃ = 1
2min

{∥∥σ−1
A ⊗ σ−1

B

∥∥−1

∞ ,
∥∥σ−1

AB

∥∥−1

∞

}
. Moreover, we can apply the simplifi-

cation of theorem 5.13 using lemma 5.8. We then have

|D(ρAB∥σAB)−D(ρA ⊗ ρB∥σA ⊗ σB)| ≤
(√

2− log m̃
)√

ε+ 3
log m̃−1

lm̃
δ + 2 log

(
1 +

δ

lm̃ + δ

1

m̃

)
,

concluding thus the proof.

Note that, even though there is a caveat in this result in the form of an additive error term,
which prevents it from being useful to prove the positivity of MLSIs, it presents the advantage
with respect to eq. (39) that there is no multiplicative error term in this case, which might be of
more interest for some other contexts, such as for entropy accumulation [58] or in the line of the
applications given by the Brascamp-Lieb dualities [14].
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7.6 Minimal distance to separable states

In this section, we show how to reprove the continuity bounds for the relative entropy of entangle-
ment in [88] from the ALAFF method and how this strategy generalizes if we quantify the minimal
distance to the set of separable states in terms of the BS-entropy instead.

Let C ⊂ S(H) be a compact convex subset of the set of quantum states with at least one positive
definite state. We can define the minimal distance to C in terms of the relative entropy as

DC(ρ) := inf
γ∈C

D(ρ∥γ).

As explained in [88], the fact that C contains a positive definite state guarantees that DC(ρ) <∞ for
all ρ ∈ S(H). Moreover, the infimum is attained, as follows from the fact that the relative entropy
is lower semi-continuous [62] and Weierstrass’ theorem on extreme values of such functions [2,
Theorem 2.43]. Examples of C include SEPAB, the set of separable states for systems A, B, and

{d−1
A 1A ⊗ σB : σB ∈ S(HB)},

which yields DC(ρAB) = −Hρ(A|B)+log dA. The quantity DSEPAB
is known as the relative entropy

of entanglement [84,85]. It constitutes a tight upper bound on the distillable entanglement [65,85].
This is the quantity we focus on for now.

Lemma 7.7 Let C ⊂ S(H) be a compact convex set containing at least one positive definite state.
Then, DC is convex on S(H).

Proof. This follows directly from the joint convexity of the relative entropy.

In order to apply the ALAFF method, we need to prove almost concavity next.

Lemma 7.8 Let C ⊂ S(H) be a compact convex set containing at least one positive definite state.
Moreover, let ρ1, ρ2 ∈ S(H) and p ∈ [0, 1]. Then,

DC(pρ1 + (1− p)ρ2) ≥ pDC(ρ1) + (1− p)DC(ρ2)− h(p).

Proof. We can use the almost concavity of the relative entropy. Let τ the state that achieves the
infimum in DC(pρ1 + (1− p)ρ2). By theorem 5.1 and point 1 of proposition 5.2, we obtain that

DC(pρ1 + (1− p)ρ2) ≥ pD(ρ1∥τ) + (1− p)D(ρ2∥τ)− h(p)

≥ pDC(ρ1) + (1− p)DC(ρ2)− h(p) ,

which is the assertion.

Finally, we need the following estimate:

Lemma 7.9 Let H = HA ⊗HB. It holds that

sup
ρ,σ∈S(H)

1
2
∥ρ−σ∥1=1

|DSEPAB
(ρ)−DSEPAB

(σ)| ≤ logmin{dA, dB}.

Proof. Without loss of generality, let dA ≤ dB. For a pure state |ψ⟩ with Schmidt decomposition∑dA
i=1 λi |iA⟩ ⊗ |iB⟩, let

τψ =
1

dA

dA∑

i=1

|iA⟩⟨iA| ⊗ |iB⟩⟨iB| .
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This state is manifestly separable. Then,

sup
ρ,σ∈S(H)

1
2
∥ρ−σ∥1=1

|DSEPAB
(ρ)−DSEPAB

(σ)| ≤ sup
|ψ⟩⟨ψ|∈S(H)

D(|ψ⟩⟨ψ| ∥τψ)

= log dA .

In the first inequality, we have used that DSEPAB
is positive and convex.

This allows us to prove via the ALAFF method a continuity bound for the relative entropy of
entanglement:

Theorem 7.10 For ε ∈ [0, 1] and H = HA⊗HB, it holds that for ρ, σ ∈ S(H) with 1
2 ∥ρ− σ∥1 ≤ ε

|DSEPAB
(ρ)−DSEPAB

(σ)| ≤ ε logmin{dA, dB}+ (1 + ε)h

(
ε

1 + ε

)
.

Proof. This follows from remark 4.7, using lemma 7.7, lemma 7.8, point 4 of proposition 5.2, and
lemma 7.9.

theorem 7.10 recovers the bound [88, Corollary 8], proven with very similar methods, which
improved over the earlier bound in [28]. The interest of executing the proof here is that a similar
strategy will give us bounds on a BS-entropy version of the relative entropy of entanglement, as we
will show now. We define

D̂C(ρ) = inf
γ∈C

D̂(ρ∥γ) ,

which measures how far ρ is from C in terms of the BS-entropy. The infimum is attained as
the BS-entropy is also lower semi-continuous [57, Section 10]. Convexity follows again from the
joint-convexity of the BS-entropy.

Lemma 7.11 Let C ⊂ S(H) be a compact convex set containing at least one positive definite
state. Then, D̂C is convex on S(H).

Almost concavity requires more work in this case.

Lemma 7.12 Let C ⊂ S(H) be a compact convex set containing the maximally mixed state.
Moreover, let ρ1, ρ2 ∈ S(H), p ∈ [0, 1), and d ∈ N, d ≥ 2 the dimension of H. Then,

D̂C(pρ1 + (1− p)ρ2) ≥ pD̂C(ρ1) + (1− p)D̂C(ρ2)− gd(p).

Here, gd(p) :=
d

p1/d
h(p)− log(1− p1/d) for p ∈ (0, 1) and gd(0) := 0.

Proof. In order to apply the almost concavity of the BS-entropy, we need to control the minimal
eigenvalue of τ , the best approximation of ρ = pρ1 + (1 − p)ρ2 in C. To this end, we will use a
strategy inspired by [28]. Let τs be the state achieving the infimum in

inf
τ∈C

D̂
(
ρ
∥∥∥ sτ + (1− s)

1

d

)

for some s ∈ (0, 1) which we will specify later. Clearly,

D̂C(ρ) ≤ D̂
(
ρ
∥∥∥ sτs + (1− s)

1

d

)
.
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Furthermore, with τ̂ a state such that D̂C(ρ) = D̂(ρ∥τ̂),

D̂
(
ρ
∥∥∥ sτs + (1− s)

1

d

)
≤ D̂

(
ρ
∥∥∥ sτ̂ + (1− s)

1

d

)

≤ D̂C(ρ)− log s ,

as sτ̂ + (1 − s)1d ≥ sτ̂ and the logarithm is operator monotone. Since D̂C(ρ) < ∞ we have
ker τ̂ ⊆ ker ρ, thus, we can restrict τ̂ to the support of ρ, where τ̂ is positive definite. Combining
this bound with theorem 6.3, we infer

D̂C(pρ1 + (1− p)ρ2) ≥ D̂
(
pρ1 + (1− p)ρ2

∥∥∥sτs + (1− s)
1

d

)
+ log s

≥ pD̂C(ρ1) + (1− p)D̂C(ρ2)−
d

1− s
h(p) + log s.

Here, we have used point 1 of proposition 6.5. Finally, we have to choose s such that d
1−sh(p)− log s

goes to zero for p → 0+ and is non-decreasing on p ∈ [0, 1/2]. It turns out that s = 1 − p1/d is a
convenient choice, see lemma G.1 and lemma G.2.

Remark 7.13 Note that we could have substituted gd in lemma 7.12 by a symmetrized version

g̃d(p) :=

{
gd(p) p ∈ [0, 1/2]

gd(1− p) p ∈ [1/2, 1]

in order to obtain

D̂C(pρ1 + (1− p)ρ2) ≥ pD̂C(ρ1) + (1− p)D̂C(ρ2)− g̃d(p)

for all p ∈ [0, 1] and g̃d(0) = g̃d(1) = 0. For the ALAFF method with s = 0, however, it is only
relevant what happens on [0, 1/2].

The final estimate we need in order to apply the ALAFF method is proven in a very similar
way as lemma 7.9.

Lemma 7.14 Let H = HA ⊗HB. It holds that

sup
ρ,σ∈S(H)

1
2
∥ρ−σ∥1=1

|D̂SEPAB
(ρ)− D̂SEPAB

(σ)| ≤ logmin{dA, dB}.

Proof. Without loss of generality, let dA ≤ dB. For a pure state |ψ⟩ with Schmidt decomposition∑dA
i=1 λi |iA⟩ ⊗ |iB⟩, let again

τψ =
1

dA

dA∑

i=1

|iA⟩⟨iA| ⊗ |iB⟩⟨iB| ,

which is a separable state. Then,

sup
ρ,σ∈S(H)

1
2
∥ρ−σ∥1=1

|D̂SEPAB
(ρ)− D̂SEPAB

(σ)| ≤ sup
|ψ⟩⟨ψ|∈S(H)

D̂(|ψ⟩⟨ψ| ∥τψ)

= log dA .

In the above inequality, we have used that D̂SEPAB
is positive and convex. Note that |ψ⟩ is in the

support of τψ.
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Theorem 7.15 For ε ∈ [0, 1], H = HA⊗HB, and dAB ∈ N, dAB ≥ 2, it holds that for ρ, σ ∈ S(H)
with 1

2 ∥ρ− σ∥1 ≤ ε

|D̂SEPAB
(ρ)− D̂SEPAB

(σ)| ≤ ε logmin{dA, dB}+ (1 + ε)gdAB

(
ε

1 + ε

)
.

Here, gd(p) :=
d

p1/d
h(p)− log(1− p1/d) for p ∈ (0, 1) and gd(0) = 0.

Proof. As shown in lemma G.3, it holds that gd(p)/(1− p) is non-decreasing on [0, 1] for all d ∈ N,
d ≥ 2. Thus, the assertion follows from remark 4.7 using lemma 7.11, lemma 7.12 with lemma G.1
and lemma G.2, and lemma 7.14.

To end this section, let us investigate the choice

C0 := {d−1
A 1A ⊗ σB : σB ∈ S(HB)}.

From the discussion after eq. (5), we know that

Ĥρ(A|B) ≤ sup
σB∈S(HB)

− D̂(ρAB∥1A⊗σB) =: Ĥvar
ρ (A|B) ,

but equality does not hold in general. This is different from the Umegaki relative entropy, where the
conditional entropy coincides with its variational expression. Nonetheless, we obtain a continuity
bound for Ĥvar

ρ (A|B) from the approach in this section.

Corollary 7.16 Let H = HA ⊗ HB. For ε ∈ [0, 1] and dAB ∈ N, dAB ≥ 2, it holds that for
ρ, σ ∈ S(H) with 1

2 ∥ρ− σ∥1 ≤ ε

|Ĥvar
ρ (A|B)− Ĥvar

σ (A|B)| ≤ 2ε log dA + (1 + ε)gdAB

(
ε

1 + ε

)
.

Here, gd(p) :=
d

p1/d
h(p)− log(1− p1/d) for p ∈ (0, 1) and gd(0) = 0.

Proof. It holds that for ρ, σ ∈ S(H) with 1
2 ∥ρ− σ∥1 ≤ ε

|Ĥvar
ρ (A|B)− Ĥvar

σ (A|B)| = |D̂C0(ρ)− D̂C0(σ)| ,
since the normalization does not matter. Thus to apply ALAFF, we need to bound

sup
ρ,σ∈S(H)

1
2
∥ρ−σ∥1=1

|D̂C0(ρ)− D̂C0(σ)| .

Using eq. (28) and the fact that D̂C0(ρ) ≥ 0 for all states ρ, we obtain

sup
ρ,σ∈S(H)

1
2
∥ρ−σ∥1=1

|D̂C0(ρ)− D̂C0(σ)| ≤ sup
ρ∈S(H)

−Ĥvar
ρ (A|B) + log dA

≤ 2 log dA .

The assertion follows from combining the above with lemma 7.11, lemma 7.12 with lemma G.1 and
lemma G.2, and lemma G.3 to apply remark 4.7.

Remark 7.17 Note that the findings of corollary 7.16 and proposition 6.7 provide a formal proof
that Ĥρ(A|B) and Ĥvar

ρ (A|B) are different in general. Indeed, while we have just shown that the lat-
ter quantity is continuous on S(H) as a consequence of the results of this section, in proposition 6.7
we showed that the former quantity is in general discontinuous on S(H).
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7.7 Rains information

Inspired by the Rains bound from entanglement theory [66], for any divergence D, the generalized
Rains bound of a quantum state ρAB ∈ S(HA⊗HB) was defined in [82] by

R(ρAB) := min
σAB∈PPT′(A:B)

D(ρAB∥σAB) ,

where the minimization is taken over the Rains set

PPT′(A : B) :=
{
σAB : σAB ≥ 0,

∥∥∥σTBAB
∥∥∥
1
≤ 1
}
.

Where ·TB denotes the partial transpose in the B-system. This definition can be easily extended
to channels in the following way. For a quantum channel TA′→B : S(HA⊗HA′) → S(HA⊗HB),
we define

R(T ) := max
ρA∈S(HA)

R(TA′→B(ϕAA′)) ,

for ϕAA′ a purification of ρA. In particular, for the Umegaki relative entropy, we introduce the
Rains information as

R(T ) := max
ρA∈S(HA)

min
σAB∈PPT′(A:B)

D(TA′→B(ϕAA′)∥σAB) ,

as well as the BS-Rains information by

R̂(T ) := max
ρA∈S(HA)

min
σAB∈PPT′(A:B)

D̂(TA′→B(ϕAA′)∥σAB) .

In the rest of the subsection, we will drop the subindex from the channels whenever it is clear
in which systems they act. In [29], it was proven that the latter two quantities constitute upper
bounds to the quantum capacity of a quantum channel. Indeed, the following inequality holds for
any channel T :

Q(T ) ≤ R(T ) ≤ R̂(T ) .

Moreover, the BS-Rains information is a limit of Rains informations induced by α-geometric Rényi
divergences, which can be written as single-letter formulas and computed via a semidefinite program
(SDP), as shown in [29]. The study of these quantities is therefore of great interest for application
in the context of strong converses of quantum capacities of channels.

Here, as a consequence of corollary 5.9 and corollary 6.11, respectively, we can provide continuity
results for both the Rains information and the BS-Rains information, respectively, following the
lines of theorem 7.10. Beforehand, we need to justify that both quantities are well-defined, i.e.,
that each of these quantities is attained at a certain ρA ∈ S(HA) and σAB ∈ PPT′(A : B), and thus
the minimum and maximum in their definitions are properly written. For that, note that we are
first taking an infimum on the second input over the compact set PPT′(A : B). Then, the infimum
is attained and the expression obtained is a continuous function, as we will show below in eq. (41).
Next, we perform an optimization problem on the first input over another compact set, namely
S(HA). Thus, that supremum is also attained and both Rains informations are well defined.

From now on, for simplicity and for similarity with the quantities introduced in the previous
section, given ρAB ∈ S(HA⊗HB), let us define

DPPT′(A:B)(ρAB) := min
σAB∈PPT′(A:B)

D(ρAB∥σAB) .
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Then, it is clear that we can rewrite, for a quantum channel T : S(HA⊗HA′) → S(HA⊗HB),

R(T ) := max
ρA∈S(HA)

DPPT′(A:B)(T (ϕAA′)) ,

for ϕAA′ a purification of ρA. The next step before applying the ALAFF method is bounding the
difference between two Rains informations of two quantum channels. For that, we will use the 1 → 1
norm of the difference between channels. Let us recall that for T : S(HA⊗HA′) → S(HA⊗HB) a
quantum channel, its 1 → 1 norm is given by

∥T∥1→1 := max
η:∥η∥1≤1

∥T (η)∥1 .

For TA′→B, the 1 → 1 norm coincides with the diamond norm. Now, as a consequence of lemma 7.9
and theorem 7.10 from the previous section, we can derive the following continuity bound for the
Rains information.

Theorem 7.18 For ε ∈ [0, 1] and T 1
A′→B, T

2
A′→B : S(HA⊗HA′) → S(HA⊗HB) two quantum

channels with 1
2∥T 1

A′→B − T 2
A′→B∥1→1 ≤ ε, we have:

|R(T 1
A′→B)−R(T 2

A′→B)| ≤ ε logmin{dA, dB}+ (1 + ε)h
( ε

1 + ε

)
. (40)

Proof. Let us drop the subscripts from the channels for ease of notation. Firstly, note that SEPAB ⊂
PPT′(A : B). Therefore,

R(T ) = max
ρA∈S(HA)

DPPT′(A:B)(T (ϕAA′)) ≤ max
ρA∈S(HA)

DSEPAB
(T (ϕAA′)) .

Hence, in general

max
ρAB , σAB∈S(HAB)
1
2
∥ρAB−σAB∥1=1

|DPPT′(A:B)(ρAB)−DPPT′(A:B)(σAB)| ≤ max
ρAB∈S(HAB)

DPPT′(A:B)(ρAB)

≤ max
ρAB∈S(HAB)

DSEPAB
(ρAB)

≤ logmin{dA, dB} ,

(41)

where in the last inequality we have used lemma 7.9. Following the lines of theorem 7.10, we have
for ρAB, σAB ∈ S(HA⊗HB) with

1
2∥ρAB − σAB∥1 ≤ ε the following continuity bound:

|DPPT′(A:B)(ρAB)−DPPT′(A:B)(σAB)| ≤ ε logmin{dA, dB}+ (1 + ε)h
( ε

1 + ε

)
.

Note that since PPT′(A : B) does not only contain states, but also subnormalized states, lemma 7.7
and lemma 7.8 are not directly applicable. One can however verify that the corresponding state-
ments for PPT′(A : B) still hold using the same arguments. For simplicity, let us denote

b(ε) := ε logmin{dA, dB}+ (1 + ε)h
( ε

1 + ε

)
.

To estimate an upper bound on the difference that appears in eq. (40), first note that, given
T 1, T 2 : S(HA⊗HA′) → S(HA⊗HB) two quantum channels with 1

2

∥∥T 1 − T 2
∥∥
1→1

≤ ε, and
ρA ∈ S(HA) with ϕAA′ a purification of it, we have

1

2

∥∥T 1(ϕAA′)− T 2(ϕAA′)
∥∥
1
≤ 1

2

∥∥T 1 − T 2
∥∥
1→1

≤ ε .
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Consider now ρ1, ρ2 ∈ S(HA) with respective purifications ϕ1AA′ , ϕ2AA′ , the states in which the
respective maxima of R(T 1) and R(T 2) are attained. Then, we clearly have, for i, j = 1, 2 and
i ̸= j,

|R(T j)−DPPT′(A:B)(T
i(ϕjAA′))| = |DPPT′(A:B)(T

j(ϕjAA′))−DPPT′(A:B)(T
i(ϕjAA′))| ≤ b(ε) ,

and thus,
R(T i) ≥ DPPT′(A:B)(T

i(ϕjAA′)) ≥ R(T j)− b(ε) .

Therefore, we can conclude
|R(T 1)−R(T 2)| ≤ b(ε) ,

and consequently

|R(T 1)−R(T 2)| ≤ ε logmin{dA, dB}+ (1 + ε)h
( ε

1 + ε

)
.

In a similar way, we can also prove uniform continuity and provide explicit continuity bounds
for the BS-Rains information. Analogously to what we have done above for the Rains information,
we can define for ρAB ∈ S(HA⊗HB) the following quantity:

D̂PPT′(A:B)(ρAB) := min
σAB∈PPT′(A:B)

D̂(ρAB∥σAB) ,

and thus, we can rewrite, for a quantum channel T : S(HA⊗HA′) → S(HA⊗HB),

R̂(T ) := max
ρA∈S(HA)

D̂PPT′(A:B)(T (ϕAA′)) ,

for ϕAA′ a purification of ρA. We can finally use lemma 7.14 and theorem 7.15 from the previous
section, for the BS-entropy, to obtain a continuity bound for the BS-Rains information. However,
the bound obtained, as well as the procedure employed to derive it, are a straightforward combi-
nation of the strategies of the continuity bound for the Rains information theorem 7.18 and the
continuity bound for the BS-entropy of entanglement from theorem 7.15. Therefore, we omit it, to
avoid unnecessary repetitions.

Theorem 7.19 For ε ∈ [0, 1] and T 1
A′→B, T

2
A′→B : S(HA⊗HA′) → S(HA⊗HB) two quantum

channels with 1
2∥T 1 − T 2∥1→1 ≤ ε, we have:

|R̂(T 1)− R̂(T 2)| ≤ ε logmin{dA, dB}+ (1 + ε)gdAB

( ε

1 + ε

)
,

where gd(t) :=
d
t1/d

h(t)− log(1− t1/d).

8 Outlook

In this paper, we have introduced a generalisation of the Alicki-Fannes-Winter method by Shirokov
and applied it to derive results of uniform continuity and explicit continuity bounds for divergences.
We gave this generalisation the name ALAFF (cf. theorem 4.6) after the functions to which it
applies (almost locally affine functions). The method allows deriving various continuity bounds
for entropic quantities, by simply proofing (joint) convexity and almost (joint) concavity of the
underlying divergence.
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In particular, in the current paper, we have applied our ALAFF method to the specific cases
of the Umegaki and the Belavkin-Staszewski relative entropies. For both of them, we have proven
results of almost concavity (for the Umegaki case, our result is shown to be tight), and these,
together with the well-known results of convexity for these quantities, have yielded a plethora of
results of continuity bounds for both the Umegaki and BS-entropies, as well as for many other
quantities derived from them. In particular, our results recover the previously known almost tight
continuity bounds for the conditional entropy and the (conditional) mutual information.

A natural question arises from the findings of this paper: Is our method applicable to any other
family of divergences? We expect this to be the case, since, as shown in section 2, our method
only requires almost concavity and convexity (already known for divergences) in order to work.
Therefore, a result of almost concavity with a “well-behaved” correction factor would be enough
for the ALAFF method and is expected to exist, for families such as the α-sandwiched Rényi
divergences or the α-geometric Rényi divergences, as they converge to the quantities studied in this
paper. This possibility will be explored in a future manuscript.

Let us conclude this section, and our paper, with some analysis of the results obtained here. For
both the Umegaki and the BS-entropies, we have presented results of almost concavity in order to
provide some continuity bounds. However, while for the former (cf. theorem 5.1) we have shown that
the result is tight, for the latter (cf. theorem 6.3) we are certain that there is room for improvement.
Indeed, our almost concavity bound for the BS-entropy depends on the minimal eigenvalues of some
of the states involved even in the simplified case of the BS-conditional entropy. In such a case,
numerical simulations, as well as analytical proof, have shown us that there is a universal bound
for the BS-conditional entropy of a state which is independent of the state involved. Therefore, we
would expect an almost convexity result for the BS-conditional entropy being independent of the
states involved, and this is clearly not the case at the moment. Nevertheless, there is no doubt that
the BS-entropy, and quantities derived from it, are “pathological” in some sense. First of all, we
have shown that the BS-conditional entropy exhibits discontinuities in the presence of vanishing
eigenvalues (cf. proposition 6.7), as opposed to the conditional entropy, which behaves well in that
setting. This motivates the idea that the minimal eigenvalue of the involved states should appear
in the most general bounds of almost concavity and continuity. Additionally, we can compare some
upper bounds of some entropic quantities derived from the Umegaki and the BS-entropy:

• For the relative entropy, we have the following 3 bounds:

−Hρ(A|B) ≤ log dA , Iρ(A : B) ≤ 2 logmin{dA, dB} , D(ρ∥σ) ≤ log m̃−1
σ .

• For the BS-entropy, we have the following 3 bounds (cf. proposition 6.6):

−Ĥρ(A|B) ≤ log dA , Îρ(A : B) ≤ log dAm̃
−1
(ρA) , D̂(ρ∥σ) ≤ logm−1

σ .

In the above m·, m̃· denote the minimal respectively minimal non-zero eigenvalue of the state in
the index. It is remarkable that for the conditional and BS-conditional entropy and the mutual
information, there appears no dependence on the minimal eigenvalue of the argument, whilst for
the BS-mutual information this is the case.

Moreover, let us recall that, from the discussion in remark 7.17, we know that the conditional
BS-entropy and its variational counterpart are different because the latter is continuous on S(H)
and the former is not. One could wonder whether the same difference appears for the BS-mutual
information. Analogously to the case of the (Umegaki) mutual information, we could define four
possible versions of such a notion by optimizing over one marginal, both or none. Remarkably, we
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find that, when optimizing over both marginals, we have, assuming w.l.o.g. dA ≤ dB,

Îvarρ (A : B) := inf
σA,σB

D̂(ρAB∥σA ⊗ σB) ≤ log dA − Ĥvar
ρ (A|B) ≤ 2 logmin{dA, dB} .

Comparing this bound to the one shown above for Îρ(A : B), which we prove to be tight in
proposition 6.6, we realize that the BS-mutual information and its variational counterpart (with
optimization over both marginals) are also different in general.

To conclude, the literature concerning continuity bounds for entropic quantities is much broader
than the results collected here. For Rényi and Tsallis entropies, many results concerning their
continuity can be derived from other techniques, such as majorization flows, and can be found in
texts such as [37–39]. Additionally, some of these results for the von Neumann entropy, Rényi
and Tsallis entropies, as well as their classical counterparts, can be extended to energy-constrained
systems in infinite dimensions, as shown in [12], [88] (see also the recent [73]). We leave for future
work the possibility of extending the results presented here to a similar framework.
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would like to thank Álvaro Alhambra for pointing them to [34]. The authors also express their
thanks to Ludovico Lami and Marco Tomamichel for spotting an error in Lemma 5.8 of an earlier
version of the paper. A.B. acknowledges financial support from the European Research Council
(ERC Grant Agreement No. 81876) and VILLUM FONDEN via the QMATH Centre of Excellence
(Grant No.10059). A.P.H acknowledges financial support from the Spanish Ministerio de Ciencia
e Innovación (grant PID2020- 113523GB-I00) and Comunidad de Madrid (grant QUITEMAD-
CMS2018/TCS-4342). This work was partially funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project-ID 470903074 – TRR 352.

References

[1] R. Alicki and M. Fannes. Continuity of quantum conditional information. J. Phys. A: Math.
Gen., 37(5):L55–L57, 2004. 3, 8

[2] C. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis: A Hitchhiker’s Guide.
Springer Berlin, Heidelberg, third edition, 2006. 40

[3] H. Araki. On an inequality of Lieb and Thirring. Lett. Math. Phys., 19:167–170, 1990. 13

[4] K. M. R. Audenaert. A sharp continuity estimate for the von Neumann entropy. J. Phys. A:
Math. Theor., 40(28):8127, 2007. 3, 15

[5] K. M. R. Audenaert. Quantum skew divergence. J. Math. Phys., 55:112202, 2014. 3, 12

[6] K. M. R. Audenaert and N. Datta. α-z-Rényi relative entropies. J. Math. Phys., 56:022202,
2015. 17

[7] K. M. R. Audenaert and J. Eisert. Continuity bounds on the quantum relative entropy. J.
Math. Phys., 46(10):102104, 2005. 5, 19

[8] K. M. R. Audenaert and J. Eisert. Continuity bounds on the quantum relative entropy — II.
J. Math. Phys., 52:112201, 2011. 5, 18, 19

48
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A Numerical investigation of the variational definition of the BS-
conditional entropy

0 200 400 600 800 1000
sample

−0.2

0.0

0.2

0.4

0.6

m
a
g
n

it
u

d
e
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Figure 6: The red line is the BS-conditional entropy defined via the partial trace evaluated at ρAB.
The dots are the BS-entropy between the state ρAB and 1A⊗σB with σB ∈ S(HB) sampled at
random. The orange dots are the cases when the −D̂(ρAB∥1A⊗σB) exceeds Ĥ(A|B)ρ. We sampled

a total of 100.000 pairs of ρAB and σB and evaluated both Ĥ(A|B)ρ and −D̂(ρAB∥1A⊗σB). Only
a tenth of all samples were kept in addition to the ones that violated the bound. Those were
then plotted in ascending order w.r.t the magnitude of their BS-conditional entropy. We further
controlled the minimal eigenvalue and set HA⊗HB = C2⊗C2 to reduce the risk of numerical
flaws.

B Supplements to the proof of theorem 5.1

We will now show that the result of the inequality in eq. (12) is still true, even if ρ1, ρ2, σ1, σ2 are
not full rank. We have that

kerσ ⊆ kerσ1 ⊆ ker ρ1.

If kerσ ⊊ ker ρ1 we set

Π̃ρ1 := Pker ρ1∩(kerσ)⊥ , Πρ1 :=
∥∥∥Π̃ρ1

∥∥∥
−1

1
Π̃ρ1 ,

and if kerσ ⊊ kerσ1,

Π̃σ1 := Pkerσ1∩(kerσ)⊥ , Πσ1 :=
∥∥∥Π̃σ1

∥∥∥
−1

1
Π̃σ1 ,

normalised projections on the spaces in the index. Both of the latter are quantum states and fulfil

Πρ1ρ1 = ρ1Πρ1 = 0, Πσ1σ1 = σ1Πσ1 = 0, Πσ1ρ1 = ρ1Πσ1 = 0 . (42)
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For 1 > ε > 0 and 1 > δ > 0, let

ρ1,ε =

{
εΠρ1 + (1− ε)ρ1 if kerσ ⊊ ker ρ1

ρ1 if kerσ = ker ρ1
,

σ1,δ =

{
δΠσ1 + (1− δ)σ1 if kerσ ⊊ kerσ1

σ1 if kerσ = kerσ1
.

We then have that ker ρ1,ε = kerσ1,δ = kerσ. This means, however, considering Tr [ρ1,ε(log σ − log σ1,δ)]
we can reduce to the subspace where they are all full rank. We then apply the Peierls-Bogoliubov
inequality [62] and the multivariant trace inequality by Sutter et al. [76, Corollary 3.3]

Tr [ρ1,ε(log σ − log σ1,δ)] ≤ log Tr [exp (log(ρ1,ε) + log(σ)− log(σ1,δ))]

≤ log

∞∫

−∞

dt β0(t) Tr

[
ρ1,εσ

it−1
2

1,δ σσ
−it−1

2
1,δ

]
.

(43)

Both of the traces on the LHS and RHS of eq. (43) can without change be extended to the full
Hilbert space again. Next, we take limits on both sides of the inequality and in doing so recover
the claim. We first note that the limit ε→ 0 requires no more argument as both sides are linear in
ε. Hence, we get

Tr [ρ1(log σ − log σ1,δ)] ≤ log

∞∫

−∞

dt β0(t) Tr

[
ρ1σ

it−1
2

1,δ σσ
−it−1

2
1,δ

]
. (44)

The limit δ → 0 on the other hand is, in the case of kerσ ⊊ kerσ1, a little more involved. Due to
the orthogonality in eq. (42) we cannot only split up the logarithm but also eliminate terms. More
specifically, we have

log σ1,δ = log(δΠσ1) + log((1− δ)σ1) ,

where the logarithms in the RHS have to be understood as living in the support of the respective
argument (and complemented with zeros in the rest). Hence, we obtain for the LHS of eq. (44)

Tr [ρ1(log σ − log σ1,δ)] = Tr [ρ1(log σ − log(δΠσ1 + (1− δ)σ1))]

= Tr [ρ1(log σ − log((1− δ)σ1)] + Tr [ρ1 log(δΠσ1)]

= Tr [ρ1(log σ − log((1− δ)σ1)]

= Tr [ρ1(log σ − log σ1] + log(1− δ) .

Moreover, for the RHS of eq. (44) we use that

σz1,δ = δzΠzσ1 + (1− δ)zσz1 ,
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for any z ∈ C, where the last exponential has to be understood again in the support of the respective
argument. Thus, we obtain

Tr

[
ρ1σ

it−1
2

1,δ σσ
−it−1

2
1,δ

]
= (1− δ)−1Tr

[
ρ1σ

it−1
2

1 σσ
−it−1

2
1

]

+ (1− δ)
it−1
2 δ

−it−1
2 Tr

[
ρ1σ

it−1
2

1 σΠ
−it−1

2
σ1

]

+ δ
it−1
2 (1− δ)

−it−1
2 Tr

[
ρ1Π

it−1
2

σ1 σσ
−it−1

2
1

]

+ δ−1Tr

[
ρ1Π

it−1
2

σ1 σΠ
−it−1

2
σ1

]

= (1− δ)−1Tr

[
ρ1σ

it−1
2

1 σσ
−it−1

2
1

]
.

Taking the limit δ → 0 now directly follows from the continuity of the logarithm. We thereby
conclude

pTr [ρ1(log(σ)− log(σ1))] ≤ p log

∞∫

−∞

dt β0(t) Tr

[
ρ1σ

it−1
2

1 σσ
−it−1

2
1

]
,

for σ1, σ2, ρ1 not full rank.

C Proof of proposition 5.2

We first of all note that for all ρ1, ρ2 ∈ S(H) we have 1
2 ∥ρ1 − ρ2∥1 ≤ 1, hence as a direct consequence

fc1,c2 +
1
2 ∥ρ1 − ρ2∥1 h ≤ fc1,c2 + h. We therefore will drop the 1

2 ∥ρ1 − ρ2∥ in front of the h here
already.

1. If σ1 = σ2 =: σ, we find for j = 1, 2 that

cj =

∞∫

−∞

dtβ0(t)Tr
[
ρjσ

it−1
2 σσ

−it−1
2

]
=

∞∫

−∞

dtβ0(t)Tr [ρj ] = 1.

The reduction of fc1,c2 + h to h then happens because log(p + (1 − p)) = log(1) = 0 gives
fc1,c2 = 0.

2. With j, k = 1, 2, j ̸= k and m̃ρj ≤ σj , we find

σ
it−1
2

j ρjσ
−it−1

2
j ≤ σ

it−1
2

j m̃−1σjσ
−it−1

2
j ≤ m̃−1Pσj ≤ m̃−1 1

where Pσj is the projection onto the support of σj . We therefore find

cj ≤
∞∫

−∞

dtβ0(t)m̃
−1Tr [σk] = m̃−1 .

By the monotonicity of the logarithm, we obtain fc1,c2 ≤ fm̃−1,m̃−1 and hence fc1,c2 + h ≤
fm̃−1,m̃−1 + h.
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3. For j, k = 1, 2, j ̸= k we have

cj =

∞∫

−∞

dtβ0(t)Tr
[
ρj,AB(1A⊗ρj,B)

it−1
2 1A⊗ρk,B(1A⊗ρj,B)

−it−1
2

]

=

∞∫

−∞

dtβ0(t)Tr

[
ρj,AB 1A⊗(ρ

it−1
2

j,B ρk,Bρ
−it−1

2
j,B )

]

=

∞∫

−∞

dtβ0(t)Tr

[
ρj,B(ρ

it−1
2

j,B ρk,Bρ
−it−1

2
j,B )

]

=

∞∫

−∞

dtβ0(t)Tr [ρk,B] = 1.

We used that the functional calculus has the property that f(A ⊗ B) = f(A) ⊗ f(B) for A,
B self-adjoint, as can easily be verified by direct computation, and that the trace is cyclic.
This gives us fc1,c2 = f1,1 = 0 which concludes the claim.

4. The derivative of p 7→ 1
1−ph(p) at p ∈ (0, 1) is − log(p)

(1−p)2 ≥ 0, which proves the second assertion.

For p 7→ 1
1−pfm1,m2(p) =

p
1−p log(p+m1(1− p)) + log(1− p+m2p) we use similar reasoning.

First we use that m2 ≥ 1 hence log(1− p+m2p) = log(1 + (m2 − 1)p) is monotone in p, i.e.
in particular non-decreasing. Second we note that p 7→ p

1−p log(p +m1(1 − p)) is monotone
in p, because forming the derivative at p ∈ (0, 1), we get

1

(1− p)2

( p

p+ (1− p)m1
+ log(p+m1(1− p))− p

)

≥ 1

(1− p)2

( p

p+ (1− p)m1
+
p+ (1− p)m1 − 1

p+m1(1− p)
− p
)

=
1

(1− p)2

(m1(1− p) + 2p− 1

p+ (1− p)m1
− p
)

=
1

(1− p)2

(m1(1− p) + 2p− 1− p(p+ (1− p)m1)

p+ (1− p)m1

)

=
1

(1− p)2

((m1 − 1)(p− 1)2

p+ (1− p)m1

)

≥ 0 .

We used that for x ≥ 1, log(x) ≥ x−1
x (this can be seen by taking the derivative and realizing

that both sides coincide for x = 1) and m1 ≥ 1. This concludes the claim.

D Proof of lemma 5.12

We first show that for s ≥ m̃, S0 is s-perturbed ∆-invariant. For that purpose let σ1, σ2 ∈ S0, then
we find

∆±(σ1, σ2, ρ) = sρ+ (1− s)[σ1 − σ2]± ≥ m̃ρ,

which immediately gives the kernel inclusion as well as the condition to be lower bounded by m̃ρ.
Therefore, ∆±(σ1, σ2, τ) ∈ S0 which makes S0 an s-perturbed ∆-invariant set. We show the other
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direction by contrapositive. Let s < m̃. Since m̃ < 1 and rank ρ ≥ 2 we find an ε > 0 and two
orthonormal |0⟩ , |1⟩ ∈ supp ρ, such that m̃ρ < ρ− ε

2 |i⟩⟨i| for i = 0, 1. We then have that

σ1 = ρ+
ε

2
|0⟩⟨0| − ε

2
|1⟩⟨1|

σ2 = ρ− ε

2
|0⟩⟨0|+ ε

2
|1⟩⟨1|

manifestly are contained in S0. Furthermore, 1
2 ∥σ1 − σ2∥1 = ε and

ε−1[σ1 − σ2]+ = |0⟩⟨0|
ε−1[σ1 − σ2]− = |1⟩⟨1|

.

We will now show that there exists no τ ∈ S(H) such that ∆±(σ1, σ2, τ) ∈ S0 again, meaning S0 is
not s-perturbed ∆-invariant. Assume there is an operator τ ≥ 0 such that ∆±(σ1, σ2, τ) ∈ S0 we
then would have

|0⟩⟨0|⊥∆+(σ1, σ2, τ) |0⟩⟨0|⊥ = |0⟩⟨0|⊥ sτ |0⟩⟨0|⊥ ≥ m̃ |0⟩⟨0|⊥ ρ |0⟩⟨0|⊥

|1⟩⟨1|⊥∆−(σ1, σ2, τ) |1⟩⟨1|⊥ = |1⟩⟨1|⊥ sτ |1⟩⟨1|⊥ ≥ m̃ |1⟩⟨1|⊥ ρ |1⟩⟨1|⊥
(45)

where |i⟩⟨i|⊥ := Pρ − |i⟩⟨i| for i = 0, 1. Here Pρ is the projection on the support of ρ. We further
used ∆±(σ1, σ2, τ) ≥ m̃ρ as ∆±(σ1, σ2, τ) are in S0 by assumption. To fulfil eq. (45) we clearly
need to choose s > 0 and since s < m̃ we directly obtain the conditions

|0⟩⟨0|⊥ τ |0⟩⟨0|⊥ ≩ |0⟩⟨0|⊥ ρ |0⟩⟨0|⊥ and |1⟩⟨1|⊥ τ |1⟩⟨1|⊥ ≩ |1⟩⟨1|⊥ ρ |1⟩⟨1|⊥ .

This gives us,

Tr [τ ] ≥ Tr
[
|0⟩⟨0|⊥ τ |0⟩⟨0|⊥ + |0⟩⟨0| τ |0⟩⟨0|

]
= Tr

[
|0⟩⟨0|⊥ τ |0⟩⟨0|⊥ + |0⟩⟨0| |1⟩⟨1|⊥ τ |1⟩⟨1|⊥ |0⟩⟨0|

]

> Tr
[
|0⟩⟨0|⊥ ρ |0⟩⟨0|⊥ + |0⟩⟨0| |1⟩⟨1|⊥ ρ |1⟩⟨1|⊥ |0⟩⟨0|

]
= Tr

[
|0⟩⟨0|⊥ ρ |0⟩⟨0|⊥ + |0⟩⟨0| ρ |0⟩⟨0|

]

= Tr [Pρρ] = Tr [ρ] = 1,

where we used that |0⟩ and |1⟩ are orthogonal, hence |0⟩⟨0| |1⟩⟨1|⊥ = |1⟩⟨1|⊥ |0⟩⟨0| = |0⟩⟨0| and
|0⟩⟨0|2 = |0⟩⟨0| , (|0⟩⟨0|⊥)2 = |0⟩⟨0|⊥. We thus conclude τ ̸∈ S(H) proving the claim.

E Proof of proposition 6.5

1. If σ1 = σ2 = σ, then for j = 1, 2

ĉj =

∞∫

−∞

dtβ0(t)Tr
[
ρj(ρ

1/2
j σ−1ρ

1/2
j )

it+1
2 ρ

−1/2
j σρ

−1/2
j (ρ

1/2
j σ−1ρ

1/2
j )

−it+1
2

]

=

∞∫

−∞

dtβ0(t)Tr [ρj ] =

∞∫

−∞

dtβ0(t) = 1

which gives us immediately fĉ1,ĉ2 + ĉ0h = ĉ0h.
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2. For j, k = 1, 2 with j ̸= k we first have σk ≤ m−1σj giving us

ĉj ≤
∞∫

−∞

dtβ0(t)Tr
[
ρj(ρ

1/2
j σ−1

j ρ
1/2
j )

it+1
2 ρ

−1/2
j m−1σjρ

−1/2
j (ρ

1/2
j σ−1

j ρ
1/2
j )

−it+1
2

]

= m−1

∞∫

−∞

dtβ0(t)Tr [ρj ] = m−1 .

Since ĉ0 ≤ m−1 and because the logarithm is monotone this immediately gives fĉ1,ĉ2 + ĉ0h ≤
fm−1,m−1 +m−1h.

3. The proof is along the same lines as the one for 2., however with σj = d−1
A 1A⊗ρj,B. We just

have to show that the minimal eigenvalue of σj is bounded from below by m. We use that
TA : τ 7→ d−1

A 1A⊗τB is a conditional expectation and that d−1
A 1A⊗τB is full rank if τ was

full rank [25, Theorem 4.13]. This means, however,

(d−1
A 1A⊗ρj,B)−1 = TA(ρj)

−1 ≤ TA(ρ
−1
j ) ,

where we used [25, Theorem 4.16]. This gives us

∥∥(d−1
A 1A⊗ρj,B)−1

∥∥
∞ ≤

∥∥TA(ρ−1)
∥∥
∞ ≤

∥∥ρ−1
∥∥
∞ ≤ m−1 . (46)

Hence, we have that
∥∥(d−1

A ⊗ ρj,B)
−1
∥∥−1

∞ the minimal eigenvalue of d−1
A ⊗ρj,B is bounded from

below by m. From here on the proof is analogous to the one in 2. We obtain fĉ1,ĉ2 + ĉ0h ≤
fm−1,m−1 + ĉ0h and again use eq. (46) to get fm−1,m−1 + ĉ0h ≤ fm−1,m−1 +m−1h.

4. The proof is completely analogous to the one in 4. of appendix C.

F Proof of proposition 6.6

1. We begin with the BS-conditional information. The upper bound on Ĥ·(A|B) can be obtained
by

Ĥρ(A|B) = −D̂(ρAB∥d−1
A 1A⊗ρB) + log dA ≤ log dA .

where we used the non-negativity of D̂(·∥·) on quantum states. The bound is attained if one
inserts the maximally mixed state, i.e., ρAB = d−1

AB 1AB. For the lower bound we use that

−D̂(·∥·) is jointly concave and TrA[·] linear which means without loss of generality one can
assume ρ to be pure, i.e., a rank one projection. Then

Ĥ|ψ⟩⟨ψ|(A|B) = −D̂(|ψ⟩⟨ψ| ∥1A⊗PB) = −Tr
[
|ψ⟩⟨ψ| log |ψ⟩⟨ψ|1/2 (1A⊗P−1

B ) |ψ⟩⟨ψ|1/2
]

= − log Tr
[
|ψ⟩⟨ψ| (1A⊗P−1

B )
]
= − log Tr

[
PBP

−1
B

]
,

with PB = TrA[|ψ⟩⟨ψ|]. Employing the Schmidt decomposition to |ψ⟩⟨ψ| we find that

PB =

d∑

i=1

λ2iPi
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with Pi orthogonal rank one projections on HB, λ
2
i > 0 and

d∑
i=1

λ2i = 1. Further d ≤
min{dA, dB} the Schmidt rank. This gives us that

Tr
[
PBP

−1
B

]
=

d∑

i=1

λ2iλ
−2
i = d ≤ min{dA, dB}.

Through monotonicity of the logarithm, we obtain the lower bound, i.e.,

Ĥρ(A|B) ≥ − logmin{dA, dB}.
This bound is attained for ρ a pure state with full Schmidt rank, which can directly be seen
from the above calculations.

2. We now tackle the BS-mutual information. The lower bound, i.e. Îρ(A : B) ≥ 0, is a direct
consequence of the data processing inequality [44]. Applying TrA[ · ], we find

Îρ(A : B) = D̂(ρAB∥ρA ⊗ ρB) ≥ D̂(ρB∥ρB) = 0.

To proof the upper bound, we w.l.o.g assume that
∥∥ρ−1

A

∥∥
∞ ≤

∥∥ρ−1
B

∥∥
∞. We then use that

ρA⊗ρB ≥
∥∥ρ−1

A

∥∥−1

∞ PρA ⊗ρB, where PρA is the projection to the support of ρA. This gives us

Îρ(A : B) = D̂(ρAB∥ρA ⊗ ρB) ≤ D̂(ρAB∥PρA ⊗ ρB) + log
∥∥ρ−1

A

∥∥
∞

= D̂(ρAB∥1A⊗ρB) + log
∥∥ρ−1

A

∥∥
∞ = −Ĥρ(A|B) + log

∥∥ρ−1
A

∥∥
∞

≤ logmin{dA, dB}+ log
∥∥ρ−1

A

∥∥
∞

≤ logmin{dA, dB}+ logmin{
∥∥ρ−1

A

∥∥
∞ ,
∥∥ρ−1

B

∥∥
∞}

In the second equality we used that (ker ρA) ⊗ HB ⊆ ker ρAB, so extending PρA to 1A has
no effect. With the next example, we will see that the bound is tight and scales with
logmax{

∥∥ρ−1
A

∥∥
∞ ,
∥∥ρ−1

B

∥∥
∞} in some cases. For that purpose let dA ∈ N, dA ≥ 2 and a

bipartite space HA⊗HB with HA having dimension dA and HB dimension dB = dA + 1.
Furthermore, let ε ∈ (0, 1). We then consider sets of orthonormal vectors {|iA⟩}dAi=1 ⊂ HA,

{|iB⟩}dAi=1 ⊂ HB and define

|ψ⟩ :=
dA−1∑

i=1

√
ε

dA − 1
|iA⟩ ⊗ |iB⟩+

√
1− ε |(dA)A⟩ ⊗ |(dA)B⟩ =

dA∑

i=1

√
λi |iA⟩ ⊗ |iB⟩ .

with the λi defined accordingly. We find that

ρA := TrB[|ψ⟩⟨ψ|] =
dA∑

i=1

λi |iA⟩⟨iA| ,

ρB := TrA[|ψ⟩⟨ψ|] =
dA∑

i=1

λi |iB⟩⟨iB| ,

and the Moore-Penrose pseudoinverse (in the case of ρA it is an inverse)

ρ−1
A =

dA∑

i=1

λ−1
i |iA⟩⟨iA| ,

ρ−1
B =

dA∑

i=1

λ−1
i |iB⟩⟨iB| .
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We find

Tr
[
|ψ⟩⟨ψ| ρ−1

A ⊗ ρ−1
B

]
=
∑

i,j,k,l

√
λi
√
λj

λkλl
⟨iA|kA⟩ ⟨kA|jA⟩ ⟨iB|lB⟩ ⟨lB|jB⟩

=
∑

i,j,k,l

√
λi
√
λj

λkλl
δikδkjδilδlj

=
∑

i

1

λi
=

(dA − 1)2

ε
+

1

1− ε
,

with which, as |ψ⟩⟨ψ| is a rank one projection

Î|ψ⟩⟨ψ|(A : B) = Tr
[
|ψ⟩⟨ψ| log(|ψ⟩⟨ψ|1/2 ρ−1

A ⊗ ρ−1
B |ψ⟩⟨ψ|1/2)

]

= logTr
[
|ψ⟩⟨ψ| ρ−1

A ⊗ ρ−1
B

]

= log(
(dA − 1)2

ε
+

1

1− ε
) ≥ log(

(dA − 1)2

ε
) .

We directly obtain
∥∥ρ−1

A

∥∥
∞ =

∥∥ρ−1
B

∥∥
∞ = dA−1

ε and by construction dA < dB, hence the
bound in eq. (29) gives

Î|ψ⟩⟨ψ|(A : B) ≤ log(
dA(dA − 1)

ε
) . (47)

We first note that for ε = 1 − 1
dA

we get equality in eq. (47). What is, however, more
interesting is the fact that

log(
(dA − 1)2

ε
) ≤ Î|ψ⟩⟨ψ|(A : B) ≤ log(

dA(dA − 1)

ε
) ,

with ∣∣∣ log(dA(dA − 1)

ε
)− log(

(dA − 1)2

ε
)
∣∣∣ = log(

dA
dA − 1

) .

I.e., the error of the bound is of order log( dA
dA−1) independent of the ε. This means, that the

scaling behaviour of the bound, in terms of the minimal non-zero eigenvalue of ρA and ρB
respectively is the best one can do.

3. The lower bound of the BS-CMI is again a consequence of the data processing inequality.
The upper bound is a direct consequence of the bounds obtained for the BS-conditional
information due to the definition of the conditional mutual information in eq. (4)

Îρ(A : B|C) = Ĥρ(A|C)− Ĥρ(A|BC)
≤ log dA + logmin{dA, dBC}
= logmin{d2A, dABC} .

We expect that the tightness of such a bound can be proven in a similar way to the one for
the BS-mutual information.

G Behavior of gd

In this section, we study the function gd(p) := d
p1/d

h(p) − log(1 − p1/d) for p ∈ (0, 1) and a fixed

d ∈ N, d ≥ 2. This function appears in some of the continuity bounds in section 7.6.
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Lemma G.1 Let d ∈ N, d ≥ 2. Then, limp→0+ gd(p) = 0. In particular, gd is continuous on
p ∈ [0, 1).

Proof. Since limp→0+ log(1 − p1/d) = 0, we can focus on d
p1/d

h(p). The assertion follows from

applying L’Hospital’s rule twice. Indeed,

lim
p→0+

d

p1/d
h(p) = lim

p→0+

d(log(1− p)− log(p))

p1/d−1/d

= lim
p→0+

d(−(1− p)−1 − p−1)

(1− d)p1/d−2/d2

= lim
p→0+

d3

d− 1

(
p2−1/d

1− p
+ p1−1/d

)

= 0.

Continuity, therefore, follows from the definition of the function.

Lemma G.2 Let d ∈ N, d ≥ 2. Then, the function gd is non-decreasing on [0, 1/2].

Proof. We can differentiate gd(p) on (0, 1/2). This yields

∂

∂p
gd(p) =

1

p1/d

(
p2/d−1

d(1− p1/d)
+ (d− 1 + p−1) log(1− p)− (d− 1) log(p)

)

=:
1

p1/d
g′d(p) . (48)

We will now show monotonicity in d of g′d(p) for all p ∈ (0, 1/2). This will allow us to show the
non-negativity of eq. (48) on (0, 1/2) only for d = 2 and conclude it for all d ≥ 2. We have

∂

∂d
g′d(p) =

p2/d−1
(
d(p1/d − 1) + (p1/d − 2) log(p)

)

d3(p1/d − 1)2
+ log(1− p)− log(p) .

The above is non-negative for p ∈ (0, 1/2), if

(2− p1/d) log
1

p
≥ d(1− p1/d) ⇔

(
1 +

1

1− p1/d
)
log

1

p
≥ d

One obtains the last inequality by substitution of p = edt with t ∈ (−∞, − log(2)
d ) giving us

−dt
(
1 +

1

1− et
)
≥ d ⇔ −t

(
1 +

1

1− et
)
≥ 1

which is true for t ∈ (−∞, 0) hence in particular on (−∞,− log(2)
d ). We thereby have that for d ≥ 2

p ∈ (0, 1/2) g′d(p) ≥ g′2(p). It is straightforward to see that g′2(p) ≥ 0 on p ∈ (0, 1/2). This finally
lets us conclude the claim that gd(p) is non-decreasing on p ∈ [0, 1/2] as gd(p) is continuous on
[0, 1/2] by lemma G.1.

Lemma G.3 Let d ∈ N, d ≥ 2. Then, the function p 7→ gd(p)/(1− p) is non-decreasing on [0, 1).
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Proof. The argument follows similar lines as the one in lemma G.2. We first note that p 7→ 1
1−p is

non decreasing on [0, 1/2) and p 7→ gd(p) is as well, as proven in lemma G.2. Hence p 7→ 1
1−pgd(p)

is non decreasing on [0, 1/2]. What now remains to show is that it is non-decreasing on [1/2, 1).
We can differentiate the function on the interval [1/2, 1) and obtain

∂

∂x

gd(x)

1− x

∣∣∣
x=p

=
1

1− p

(
dp−1/dh(p)− log(1− p1/d)

1− p

+
p1/d−1

d(1− p1/d)
− p−1/dp−1h(p) + dp−1/d(log(1− p)− log(p))

)
.

≥ 1

1− p

(
p−1/dh(p)

(
1

1− p
− 1

p

)
+ (d− 1)p−1/d

(
h(p)

1− p
+ log(1− p)

)

+p−1/d log(1− p)− log(1− p1/d)

1− p

)

≥ 0 .

The last inequality holds since p ≥ 1
2 and d ≥ 2 hence

1

1− p
− 1

p
≥ 0 ,

h(p)

1− p
+ log(1− p) ≥ 0 ,

p−1/d log(1− p)− log(1− p1/d)

1− p
≥ 0 .

To see the last inequality, one can verify that p−1/d ≤ 1/(1−p) in this regime and that log(1−p) ≥
log(1− p1/d). Thus p 7→ gd(p)

1−p is non-decreasing on [1/2, 1), which concludes the proof.
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