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I. INTRODUCTION

Entropic quantities are essential in order to understand processes both in classical and quantum information theory. Examples include (conditional) entropy, (conditional) mutual information, and many others. In applications, one often needs to bound these quantities in terms of a metric distance to nearby states that can be evaluated more easily. Therefore, continuity bounds for entropic quantities have become indispensable tools in quantum information theory. They take the form of a bound on sup{|g(ρ)g(σ)| : ρ, σ ∈ S 0 , d(ρ, σ) ≤ ǫ}.

Here, g is the entropic quantity of interest, S 0 is a suitable subset of the set of quantum states S(H) in a finite-dimensional Hilbert space, and d is a metric on S(H).

Bounds of this form have a long history. In 1973, Fannes [START_REF] Fannes | A continuity property of the entropy density for spin lattice systems[END_REF] proved uniform continuity bounds for the von Neumann entropy, which were sharpened in [START_REF] Audenaert | A sharp continuity estimate for the von Neumann entropy[END_REF], [START_REF] Petz | Quantum Information Theory and Quantum Statistics[END_REF]. Later Alicki and Fannes proved an inequality for the conditional entropy [START_REF] Alicki | Continuity of quantum conditional information[END_REF], which Winter improved in [START_REF] Winter | Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints[END_REF] to an almost tight version.

As realized by Shirokov [START_REF] Shirokov | Advanced Alicki-Fannes-Winter method for energyconstrained quantum systems and its use[END_REF], [START_REF]Continuity of characteristics of composite quantum systems: a review[END_REF], the proof by Winter and related versions [START_REF] Mosonyi | On the quantum Rényi relative entropies and related capacity formulas[END_REF], [START_REF] Synak-Radtke | On asymptotic continuity of functions of quantum states[END_REF] do not only work for the conditional entropy but can be generalized and made applicable to a great variety of entropic quantities. Shirokov coined it the Alicki-Fannes-Winter (AFW) method. The present article continues along this line of work, further generalising the method. Our aim is to go beyond entropic quantities derived from the Umegaki relative entropy [START_REF] Umegaki | Conditional expectation in an operator algebra IV. Entropy and information[END_REF], defined as D(ρ σ) := Tr[ρ(log ρlog σ)] for quantum states ρ, σ such that ker σ ⊆ ker ρ and +∞ otherwise, and to be able to prove continuity bounds for entropic quantities derived from the Belavkin-Staszewski relative entropy (BS-entropy) [START_REF] Belavkin | C * -algebraic generalization of relative entropy and entropy[END_REF] as well. The BS-entropy is defined as D(ρ σ) := Tr[ρ log(ρ 1/2 σ -1 ρ 1/2 )]

for quantum states ρ, σ such that ker σ ⊆ ker ρ and +∞ otherwise. Both Umegaki's relative entropy and BS-entropy reduce to the classical Kullback-Leibler relative entropy [START_REF] Kullback | On information and sufficiency[END_REF] if the quantum states commute, but the BS-entropy is much less studied [START_REF] Hiai | Different quantum f -divergencies and the reversibility of quantum operations[END_REF]- [START_REF]A new quantum version of f -divergence[END_REF]. Recently, there has been renewed interest in the BS-entropy and its properties [START_REF] Bluhm | A strengthened data processing inequality for the Belavkin-Staszewski relative entropy[END_REF], [START_REF] Bluhm | Weak Quasi-Factorization for the Belavkin-Staszewski relative entropy[END_REF] because of its applications to channel capacities [START_REF] Fang | Geometric Rényi divergence and its applications in quantum channel capacities[END_REF] and quantum manybody systems [START_REF] Bluhm | Exponential decay of mutual information for Gibbs states of local Hamiltonians[END_REF]- [START_REF]Rapid thermalization of spin chain commuting Hamiltonians[END_REF]. In the latter applications, the authors make use of the BS-mutual information

I ρ (A : B) := D(ρ AB ρ A ⊗ ρ B ),
which is defined as the mutual information, but replacing the Umegaki relative entropy by the BS-entropy. Other entropic quantities derived from the BS-entropy have been considered in [START_REF] Scalet | Computable Rényi mutual information: Area laws and correlations[END_REF], [START_REF] Zhai | Belavkin-Staszewski relative entropy, conditional entropy, and mutual information[END_REF].

In Section II, we introduce our method. First, we choose a quantum relative entropy D(ρ σ), for example, the Umegaki relative entropy. Then, we prove that it is almost concave, i.e., -f (p) ≤ D(ρ p σ p ) -pD(ρ 0 σ 0 ) -(1p)D(ρ 1 σ 1 ) ≤ 0 for ρ p = pρ 0 + (1p)ρ 1 , σ p = pσ 0 + (1p)σ 1 , with ρ 0 , ρ 1 , σ 0 , σ 1 ∈ S(H), p ∈ [0, 1] and a proper function f .

For suitably chosen subsets of the set of quantum states which we call perturbed ∆-invariant subsets, the almost concavity of the quantum relative entropy translates into the almost local affinity (c.f. Definition 2.1) of derived entropic quantities g, i.e.,

-a g (p) ≤ g(pρ + (1 -p)σ) -pg(ρ) -(1 -p)g(σ) ≤ b g (p)
for functions a g , b g . That means that the entropic quantity is close to being convex and concave. Our method allows us to convert the almost local affinity into uniform continuity bounds on the entropic quantities g, where the continuity bounds are given in terms of how close the entropic quantity is to being convex and concave:

sup ρ,σ∈S0 d(ρ,σ)≤ǫ |g(ρ) -g(σ)| ≤ C(ε; a g , b g ).
This is illustrated in Figure 1. Restriction to perturbed ∆invariant subsets is vital to the proof of the AFW method and the well-known discontinuities of the Umegaki as well as the Belavkin-Staszewski relative entropies further make it necessary to use the more general perturbed property instead of the original ∆-invariance presented in [START_REF]Continuity of characteristics of composite quantum systems: a review[END_REF].
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Fig. 1. The proof of convexity and concavity of a divergence gives, through our method, a variety of continuity bounds for entropic quantities derived from that divergence. It further allows concluding continuity bounds for the divergence itself. In the above figure, we depicted the scheme and listed quantities that our approach produces results for.

While the primary focus lies on the introduction of a method to derive uniform continuity bounds in a unified manner, we showcase its usefulness by first applying it to the Umegaki relative entropy in Section III-A and then to the BS-entropy in Section III-B. We begin by establishing almost concavity of the relative entropies and then present the various continuity bounds that follow from our method for each entropy separately.

We continue with Section IV, where we use the obtained bounds to derive results in various contexts within quantum information theory, namely new entropic uncertainty relations, continuity of optimized quantities and robustness of the set of approximate quantum Markov chains. Finally, we conclude in Section V with a short discussion and an outlook.

II. METHOD

Our method derives continuity bounds for functions from the quantum states to the reals, such as quantities based on a relative entropy (e.g. conditional entropy, mutual information, and ρ → D(ρ σ) with fixed σ). However, it should be noted that the method is not limited to this specific setting.

The method is based on two main ingredients. First, the boundedness of the function on a set of quantum states, and second a property called almost local affinity (as defined in Definition 2.1). We mentioned earlier that for quantities related to a relative entropy, almost local affinity can be obtained from the convexity and almost concavity of this relative entropy, provided the almost concave remainder is "well-behaved". This means that under the reduction from the relative entropy to the entropic quantity of choice (possibly also restricting the set of input states), the almost concave bound of the divergence becomes independent of the input state.

Before giving the main theorem, we will introduce two definitions that are necessary for its formalisation. The first is the concept of almost local affinity. Definition 2.1 (Almost locally affine): Let f be a realvalued function on the convex set S 0 ⊆ S(H). We say that f is almost locally affine, if there exist continuous functions a f , b f : [0, 1] → R, which are non decreasing on [0, 1 2 ], vanish as p → 0 + and satisfy

-a f (p) ≤ f (pρ+(1-p)σ)-pf (ρ)-(1-p)f (σ) ≤ b f (p) (1)
for all p ∈ [0, 1] and ρ, σ ∈ S 0 .

In the introduction, we mentioned the perturbed ∆-invariant subsets. This property, together with convexity, constitutes a constraint to the domain of the entropic quantity investigated. The property is needed, as it guarantees that for two elements of a set, two interpolation states, or "intermediate states" are as well contained in the set. [START_REF] Bluhm | Continuity of quantum entropic quantities via almost convexity[END_REF], if for all ρ, σ ∈ S 0 with ρ = σ, there exists a state τ such that both states

Definition 2.2 (Perturbed ∆-invariant): A set S 0 ⊆ S(H) is called perturbed ∆-invariant with perturbance parameter t ∈ [0,
∆ ± (ρ, σ, τ ) = tτ + (1 -t)ε -1 [ρ -σ] ± ,
lie in S 0 . In the above ε = 1 2 ρσ 1 , and [ • ] ± denote the positive and negative parts of a self-adjoint operator, respectively. For t = 0, this definition reduces to that in [START_REF]Continuity of characteristics of composite quantum systems: a review[END_REF]. Now that we have introduced all the necessary definitions, we can formulate the method.

Theorem 2.1: Let S 0 ⊆ S(H) be a perturbed ∆-invariant, convex subset of S(H) containing more than one element, and let f be an almost locally affine (ALAFF) function. If the function f satisfies

C t f := sup ρ,σ∈S 0 1 2 ρ-σ 1 =1-t |f (ρ) -f (σ)| < +∞ . ( 2 
)
then it is uniformly continuous, and we have for all ε ∈ (0, 1]

sup ρ,σ∈S 0 1 2 ρ-σ 1 ≤ε |f (ρ) -f (σ)| ≤ C t f ε 1 -t + 1 -t + ε 1 -t E max f ε 1 -t + ε , (3) 
where

E max f : [0, 1) → R, p → E max f (p) = (1 -p) max E f (s) 1 -s : 0 ≤ s ≤ p .
Here we defined E f = a f + b f (c.f. Definition 2.1). Note that for ε ∈ (0, 1t] E f and E max f coincide.

III. RELATIVE ENTROPIES

The natural method to derive the almost local affinity property of entropic quantities relies on having "well-behaved" almost concave bounds for the relative entropy D(ρ σ) they are subordinate to. A divergence D(ρ σ) is called almost (jointly) concave on a convex subset S 0 ⊂ S(H) × S(H) if for every (ρ j , σ j ) ∈ S 0 (j = 0, 1) there is a function f (p) such that for every p ∈ [0, 1]

-f (p) ≤ D(ρ p σ p ) -pD(ρ 0 σ 0 ) -(1 -p)D(ρ 1 σ 1 ) ≤ 0 ,
where ρ p := pρ 0 + (1p)ρ 1 and σ p := pσ 0 + (1p)σ 1 . The well-known (joint) convexity of the Umegaki [START_REF] Wilde | Quantum Information Theory[END_REF] and BS [START_REF] Matsumoto | Reverse test and characterization of quantum relative entropy[END_REF], [START_REF] Hiai | Quantum f -divergences and error correction[END_REF] relative entropies ensures that the inequality on the righthand-side holds. Our main results provide a remainder f (p) involving the function

f α1,α2 (p) = p log(p + (1 -p)α 1 ) + (1 -p) log((1 -p) + pα 2 ) .
Here, α 1 and α 2 are scalar constants defined in terms of the states ρ j , σ j via the map

α(O, P, Q) := +∞ -∞ dtβ 0 (t) tr OP 1+it 2 QP 1-it 2 .
In the above O, P, Q are positive semi-definite operators (exponentiation and inverses are restricted to the support), and β 0 (t)dt is a suitable probability measure on R, see [START_REF] Bluhm | Weak Quasi-Factorization for the Belavkin-Staszewski relative entropy[END_REF]. Theorem 3.1: The Umegaki relative entropy D(• •) is almost concave on the subset S 0 ⊂ S(H) × S(H) of all pairs (ρ, σ) such that ker ρ ⊂ ker σ with remainder function

f (p) = h(p) 1 2 ρ 1 -ρ 2 1 + f c1,c2 (p) , (4) 
where

c 1 = α(ρ 1 , σ -1 1 , σ 2 ) and c 2 = α(ρ 2 , σ -1 2 , σ 1 )
. As for the BS-relative entropy, we require that the second input state belongs to the set S + (H) of full-rank states.

Theorem 3.2: The BS-relative entropy

D(• •) is almost concave on S 0 = S(H) × S + (H) with remainder function f (p) = h(p)(1 -δ ρ1ρ2 ) c 0 + f c1, c2 (p) ,
where δ ρ1,ρ2 ∈ {0, 1} is one if and only if ρ 1 = ρ 2 , and

c 0 = max { σ -1 1 ∞ , σ -1 2 ∞ } , c 1 = α(ρ 1 , ρ 1/2 1 σ -1 1 ρ 1/2 1 , ρ -1/2 1 σ 2 ρ -1/2 1
) ,

c 2 = α(ρ 2 , ρ 1/2 2 σ -1 2 ρ 1/2 2 , ρ -1/2 2 σ 1 ρ -1/2 2 
) .

The expressions for f (p) and f (p) simplify in some particular cases.

Special cases

Umegaki BS-entropy

p = 0, 1 f (p) = 0 f (p) = 0 σ = σ 1 = σ 2 f (p) = h(p) f (p) = c 0 h(p) H = H A ⊗ H B σ i = (ρ i ) A ⊗ 1 B f (p) = h(p) f (p) = c 0 h(p) i = 1, 2 +f ĉ0,ĉ0 (p) 

A. Umegaki Relative Entropy

The estimate given in Theorem 3.1 is tight: if dim(H) ≥ 2, and we fix two orthonormal pure states |0 , |1 in H and any t ∈ (0, 1), then the states ρ

0 := |0 0|, ρ 1 := |1 1|, σ 0 := t|0 0| + (1 -t)|1 1| and σ 1 := (1 -t)|0 0| + t|1 1| satisfy that for every p ∈ [0, 1] f (p) = pD(ρ 0 σ 0 ) + (1 -p)D(ρ 1 σ 1 ) -D(ρ p σ p ) ,
where f (p) is given in [START_REF] Petz | Quantum Information Theory and Quantum Statistics[END_REF].

Combining Theorems 3.1 and 2.1, we can provide estimates for the uniform continuity of D(• σ) on the set of states ρ with ker σ ⊂ ker ρ. As a consequence, we obtain that for ρ, σ as before, denoting ε := 1 2 ρσ 1 ≤ 1 and r(ε

) := (1 + ε)h(ε/(1 + ε)) it holds that D(ρ σ) ≤ ε log m -1 σ + r(ε) ≤ 1 + log m -1 σ √ 2 √ 2ε , (5) 
where m σ is the minimal non-zero eigenvalue of σ. Let us remark that alternative estimates of D(ρ σ) have been provided before [START_REF] Audenaert | Continuity bounds on the quantum relative entropy -II[END_REF]- [START_REF] Vershynina | Upper continuity bound on the quantum quasi-relative entropy[END_REF], all requiring that σ has full rank, in contrast to the above result. Moreover, the logarithmic scaling with m -1 σ in (5) improves the linear dependence that appears in the results by Bratteli-Robinson [START_REF] Bratteli | Operator algebras and quantumstatistical mechanics II. Equilibrium states[END_REF] and Vershynina [START_REF] Vershynina | Upper continuity bound on the quantum quasi-relative entropy[END_REF]. Numerical simulations show, however, a slight advantage of the estimate by Audenaert-Eisert [START_REF] Audenaert | Continuity bounds on the quantum relative entropy -II[END_REF].

Combining Theorems 3.2 and 2.1 we also deduce continuity estimates for well-known entropic quantities derived from the Umegaki relative entropy. Let us recall the definitions and describe the corresponding bounds. For a state on a bipartite system ρ ∈ S(H A ⊗ H B ) the conditional entropy (CE) is given by

H ρ (A|B):= -D(ρ AB 1 A ⊗ ρ B ) = max σB ∈S(HB ) -D(ρ AB 1 A ⊗ σ B ) ,
and the mutual information (MI) by

I ρ (A : B) := D(ρ AB ρ A ⊗ ρ B ) = S(ρ A ) -H ρ (A|B) .
For a state on a tripartite system ρ ∈ S(H A ⊗ H B ⊗ H C ) the conditional mutual information (CMI) is defined as

I ρ (A : B|C) = H ρ (A|C) -H ρ (A|BC) .
Fixed ρ, σ ∈ S(H) and ε with ρσ 1 /2 ≤ ε ≤ 1 and r(ε) as above, we have the following estimates:

Entropic Quantity Upper Bound CE: |H ρ (A|B) -H σ (A|B)| 2ε log d A + r(ε) MI: |I ρ (A : B) -I σ (A : B)| CMI: |I ρ (A : B|C) -I σ (A : B|C)| 2ε log min{d A , d B } +2r(ε)
Notice that the estimate on the conditional entropy coincides with the result of Winter [START_REF] Winter | Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints[END_REF] which he proved to be almost tight. As for the MI and the CMI, the estimates coincide with the tightest previously known results, see e.g. [START_REF] Shirokov | Advanced Alicki-Fannes-Winter method for energyconstrained quantum systems and its use[END_REF] and [START_REF] Shirokov | Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy[END_REF]Lemma 4], respectively.

Our method also allows us to derive continuity bounds for D(ρ •) on the set of states σ with ker σ ⊂ ker ρ and mρ ≤ σ for 1 > m > 0. For such a case, we need the full scope of the method and get a rather involved continuity bound, which can with ε = 1 2 σ 1σ 2 be simplified to the following expression

|D(ρ σ 1 ) -D(ρ σ 2 )| ≤ 2ε l m log m -1 + log 1 + ε l m + ε 1 m . (6)
This, jointly with the aforementioned continuity bound for D(• σ), provides continuity bounds for the relative entropy in the same regimes mentioned above. We can derive, with

ε = 1 2 ρ 1 -ρ 2 , δ = 1 2 σ 1 -σ 2 the following |D(ρ 1 σ 1 ) -D(ρ 2 σ 2 )| ≤ ( √ 2 + log m -1 )ε 1/2 + 3δ l m log m -1 + 2 log 1 + δ l m + δ 1 m .
This is, as far as we know, the first continuity bound for the relative entropy in both inputs existing in the literature.

B. Belavkin-Staszewski Relative Entropy

In contrast to the case of relative entropy, the estimate in Theorem 3.2 is not tight. Indeed, the BS and the Umegaki relative entropies for commuting states coincide. However, f (p) does not reduce to f (p) in this case, since c j = ĉj for j = 1, 2, but ĉ0 is larger than one if H = C. This is strong evidence for the existence of an improved bound.

Combining Theorems 3.2 and 2.1, we can again prove continuity and divergence bounds for entropic quantities related to the BS-relative entropy. Here again, the full scope of the method is needed, since former quantities are discontinuous for positive semi-definite states. Let us recall the main definitions and some subtle differences with respect to their counterparts. The BS-conditional entropy is defined for a state on a bipartite system ρ ∈ S(H A ⊗ H B ) as

H ρ (A|B) := -D(ρ AB 1 A ⊗ ρ B ) .
This quantity is discontinuous on S(H) and not only do numerics indicate that it differs from the variational definition

H var ρ (A|B) = sup σB ∈S(HB ) -D(ρ AB 1 A ⊗ σ B ) ,
where H ρ (A|B) ≤ H var ρ (A|B), but we are further able to proof that H var ρ (A|B) is continuous on S(H) (see Section IV-B). The BS-mutual information is defined as

I ρ (A : B) := D(ρ AB ρ A ⊗ ρ B )
and again differs from the variational definition

I var ρ (A : B) := inf σA⊗σB ∈S(HA ⊗ HB ) D(ρ AB σ A ⊗ σ B ) .
Indeed, I ρ (A : B) may scale with ρ - 

I ρ (A : B|C) = H ρ (A|C) -H ρ (A|BC) . Fixed 0 < m < d -1
H and states ρ, σ with minimal eigenvalues ≥ m and ε := 1 2 ρσ 1 , we have the following estimates: Entropic Quantity Upper Bound BS-CE:

| H ρ (A|B) -H σ (A|B)| BS-MI: | I ρ (A : B) -I σ (A : B)| BS-CMI: | I ρ (A : B|C) -I σ (A : B|C)| C √ ε m(d -1 H -m) (C : absolute constant)
Although the BS-conditional entropy is discontinuous on the set of positive semi-definite operators, numerics suggest that a bound independent of the minimal eigenvalues of the (fullrank) states might be feasible, or even an almost convexity estimate for the BS-conditional entropy also independent of these minimal eigenvalues. This would also yield an improved bound for the BS-CMI.

For the BS-mutual information, however, we know that a continuity bound will depend on the minimal eigenvalues of the states, since I ρ (A : B) itself may scale with ρ -1

A ∞ , as we mentioned before.

IV. APPLICATIONS

The results of almost concavity for the Umegaki and BS relative entropies, as well as the continuity bounds from the previous section, find a plethora of applications in the context of quantum information theory. Here, we show three families of applications: Obtaining new entropic uncertainty relations, deriving continuity of optimized quantities and showing the robustness of the set of approximate quantum Markov chains.

A. Entropic uncertainty relations

Let us consider a system A and two POVMs X := {X x } x∈X and Y := {Y y } y∈Y . Let us further assume the presence of side information M which might help to better predict the outcomes of X and Y. Then, for any bipartite state ρ AM ∈ S(H A ⊗ H M ), the following inequality holds [START_REF] Frank | Extended quantum conditional entropy and quantum uncertainty inequalities[END_REF]:

H(X|M ) (ΦX⊗idM )(ρ) + H(Y |M ) (ΦY⊗idM )(ρ) ≥ -ln c + H(A|M ) ρ , (7) 
where c = max x,y {tr(X x Y y )} and Φ Z is given for Z ∈ {X, Y} by

Φ Z (ρ A ) := z∈Z tr(ρ A Z z )|z z| Z . (8) 
This is known as an entropic uncertainty relation. Some references exploring similar inequalities are [START_REF] Berta | The uncertainty principle in the presence of quantum memory[END_REF] for the special case of measurements in two orthonormal bases and [START_REF] Maasen | Generalized entropic uncertainty relations[END_REF] for the case without a memory. We also refer the reader to the review [START_REF] Coles | Entropic uncertainty relations and their applications[END_REF] as well as to [START_REF] Gao | Uncertainty principle for quantum channels[END_REF] for a more in detail discussion of the setting and related topics.

In this paper, we consider two von Neumann algebras N X and N Y such that N X , resp. N Y , is diagonal in some orthonormal basis |e z | for Z ∈ {X , Y}. We further consider the algebra M = C1 ℓ ⊗ B(H M ) and the associated map

E M ⊗ id M = 1 dA 1 A ⊗ Tr A [•], for d A the dimension of H A .
In this setting, a similar inequality to Eq. ( 7) was proven in [START_REF] Bardet | Approximate tensorization of the relative entropy for noncommuting conditional expectations[END_REF], where c was given by

c := d A max x,y | e (X )
x |e (Y)

y | 2 . (9) 
Here, as a consequence of our continuity bound from Eq. ( 6), we can prove the following result, which can be viewed as a new entropic uncertainty relation.

Corollary 1: In the conditions above, the following inequality holds for any ρ AM ∈ S(H AM ):

H(X|M ) (EX ⊗idM )(ρAM ) + H(Y |M ) (EY ⊗idM )(ρAM ) ≥ -ξ RE + H(A|M ) ρAM , (10) 
where

ξ RE := 2 log m -1 + m -1 1 -m x max y 1 d A -| e (X ) x |e (Y) y | 2 1/2 , (11) 
for m given by:

m := min 1 (d A ) 2 , 1 d A min x,y | e (X ) x |e (Y) y | 2 . (12) 

B. Continuity of optimized quantities

Given C ∈ S(H) a compact, convex subset of the set of quantum states with at least one positive definite state, we can define the minimal distance to C in terms of a relative entropy D(• •) as follows:

D C (ρ) := inf γ∈C D(ρ γ). (13) 
The fact that C contains a positive definite state guarantees that D C (ρ) < ∞ for all ρ ∈ S(H) (cf. [START_REF] Winter | Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints[END_REF]), and the infimum is attained due to the lower semi-continuity of the relative entropy [START_REF] Ohya | Quantum Entropy and Its Use, ser. Texts and Monographs in Physics[END_REF] and Weierstrass' theorem [START_REF] Aliprantis | Infinite Dimensional Analysis: A Hitchhiker's Guide[END_REF]Theorem 2.43]. A prominent example of such a C includes SEP AB , the set of separable states for systems A, B. For C as above, we can prove the following results of almost local affinity for the Umegaki relative entropy

-h(p) ≤ D C (pρ + (1 -p)σ) -pD C (ρ) -(1 -p)D C (σ) ≤ 0 ,
and for the BS-entropy

-g d (p) ≤ D C (pρ + (1 -p)σ) -p D C (ρ) -(1 -p) D C (σ) ≤ 0 , with g d (p) := d p 1/d h(p) -log(1 -p 1/d
) for p ∈ (0, 1) and g d (0) := 0. These inequalities, jointly with Theorem 2.1, allow us to prove uniform continuity and derive continuity bounds for any quantity defined as D C (ρ) and D C (ρ), with C as above.

In particular, we recover the previously known bound for the relative entropy of entanglement from [START_REF] Winter | Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints[END_REF]Corollary 8]:

|D SEP AB (ρ) -D SEP AB (σ)| ≤ ε log min{d A , d B } + r(ε) .
Moreover, we show that H var ρ (A|B) is continuous in S(H), as opposed to H ρ (A|B), which is only continuous in S + (H). Following an analogous procedure, we obtain additional continuity bounds for both the Rains and the BS-Rains information.

C. Approximate Quantum Markov Chains

Consider a tripartite Hilbert space H ABC = H A ⊗H B ⊗H C , ρ ABC ∈ S(H ABC ) a positive state on it, and the conditional mutual information of ρ ABC between A and C conditioned on B. This CMI vanishes if, and only if, it coincides with its Petz recovery [START_REF] Petz | Monotonicity of quantum relative entropy revisited[END_REF] 

ρ ABC = ρ 1/2 AB ρ -1/2 B ρ BC ρ -1/2 B ρ 1/2 AB , (14) 
i.e., whenever ρ ABC is a quantum Markov chain. As a consequence of our continuity bounds, we can obtain a robustness result for the condition of the quantum Markov chain, namely, we can show that a ρ ABC has a "small" CMI if, and only if, it is close to its Petz recovery. More specifically, combining the continuity bound for the CMI from Section III-A with the findings of [START_REF] Carlen | Recovery map stability for the data processing inequality[END_REF], we have

π 8 4 ρ -1 B -2 ∞ ρ -1 ABC -2 ∞ ρ ABC -ρ 1/2 AB ρ -1/2 B ρ BC ρ -1/2 B ρ 1/2 AB 4 1 ≤ I ρ (A : C|B) ≤ 2(log min{d A , d C } + 1) ρ ABC -ρ 1/2 AB ρ -1/2 B ρ BC ρ -1/2 B ρ 1/2 AB 1/2 1 .

V. CONCLUSION

In this work, we have introduced a new method to derive uniform continuity bounds for various entropic quantities arising from quantum divergences. We have then applied this method to the Umegaki relative entropy and the BS-entropy. Finally, we have applied the new bounds to prove new entropic uncertainty relations, continuity of optimized quantities and robustness of approximate quantum Markov chains.

While for the Umegaki relative entropy, our bounds recover previous results which are known to be almost tight, there is evidence that our bounds for the entropic quantities arising from the BS-entropy can be improved. First, if ρ and σ commute, Umegaki and BS-relative entropy coincide, and so should their continuity bounds. However, our bounds do not have this property. Moreover, numerics suggest that the bound for the BS-conditional entropy should be independent of the minimal eigenvalues of the state, such that our bounds can likely be improved. On the other hand, the BS-conditional entropy exhibits discontinuities for singular states, such that possible eigenvalue-independent continuity bounds can only hold on the set of full-rank states. This behaviour is different from the behaviour of the usual conditional entropy. It is therefore important to better understand the pathologies arising from the definition of the BS-entropy compared to the Umegaki relative entropy. We leave these improvements for future work.

Our method is not limited to the relative entropies studied in this article but works more generally for all almost concave quantum divergences. Therefore, it is natural to ask whether this method can work for quantities such as Tsallis entropies, different variants of Rényi entropies (Petz [START_REF] Ohya | Quantum Entropy and Its Use, ser. Texts and Monographs in Physics[END_REF], sandwiched [START_REF] Müller-Lennert | On quantum Rényi entropies: A new generalization and some properties[END_REF], geometric [START_REF] Fang | Geometric Rényi divergence and its applications in quantum channel capacities[END_REF]), and many more. We are exploring these directions in a subsequent project.

A. Proof of Theorem 2.1

Let t ∈ [0, 1) and ε ∈ (0, 1]. Let further ρ, σ ∈ S 0 with 1 2 ρσ 1 = ε. By the property of perturbed ∆invariance there exists at least one τ ∈ S(H) such that γ ± := ∆ ± (ρ, σ, τ ) ∈ S 0 . Now for every such γ ± we have that

ω = 1 -t 1 -t + ε ρ + ε 1 -t + ε γ - = 1 -t 1 -t + ε σ + ε 1 -t + ε γ + ,
which can be easily checked by inserting the explicit form of γ ± and using that

[ρ -σ] + -[ρ -σ] -= ρ -σ.
We get that ω ∈ S 0 , since S 0 is convex, which allows us to evaluate f at ω and use Eq. ( 1) for both of the representations of ω. This gives us

-a f (p) ≤ f (ω) -(1 -p)f (ρ) -pf (γ -) ≤ b f (p) , -a f (p) ≤ f (ω) -(1 -p)f (σ) -pf (γ + ) ≤ b f (p) ,
where we set p = p(ε) = ε 1-t+ε for better readability. Note that p ∈ (0, 1 2-t ] ⊆ [0, 1) as ε ∈ (0, 1] and t ∈ [0, 1) and further that p(ε) is monotone with respect to ε. We recombine the above to get

(1 -p)(f (ρ) -f (σ)) ≤ p(f (γ + ) -f (γ -)) + a f (p) + b f (p) , (1 -p)(f (σ) -f (ρ)) ≤ p(f (γ -) -f (γ + )) + a f (p) + b f (p) .
Those two inequalities immediately give us

(1 -p)|f (ρ) -f (σ)| ≤ p|f (γ + ) -f (γ -)| + (a f + b f )(p) . If we now insert E f = a f + b f , we obtain |f (ρ) -f (σ)| ≤ p 1 -p |f (γ + ) -f (γ -)| + 1 1 -p E f (p) .
In the case that

C t f is finite, we have |f (γ + )-f (γ -)| ≤ C t f as γ ± ∈ S 0 and fulfil 1 2 γ + -γ -1 = 1 -t.
This allows us to take the supremum over all ρ, σ ∈ S 0 with 1 2 ρσ 1 = ε and even extend to 1 2 ρσ 1 ≤ ε in two steps. In the first step we bound 1 1-p E f (p) from above with 1 1-p E max f (p). In the second step, we use that 1 1-p E max f (p) is engineered to be non-decreasing on [0, 1). Hence for the specific p = p(ε) ), it is non-decreasing in ε as well. This gives us the upper bound in Eq. (3) at last. The reduction of E max 1 2 ]. Hence, E max f inherits the vanishing property as p → 0 + , which translates to E max f (p(ε)) → 0 if ε → 0 + . Thus we conclude uniform continuity.

= ε 1-t+ε ∈ [0, 1 2-t ] ⊂ [0, 1
f to E f on ε ∈ (0, 1 -t] E max f is due to E f being non-decreasing on [0,

B. Proof of Theorem 3.1

It is clear that S 0 is a convex set and that the bound holds trivially for p = 0 and p = 1. Hence let p ∈ (0, 1) and (ρ 1 , σ 1 ), (ρ 2 , σ 2 ) ∈ S 0 in the following. We find that

pD(ρ 1 σ 1 ) + (1 -p)D(ρ 2 σ 2 ) -D(ρ σ) = -pS(ρ 1 ) -(1 -p)S(ρ 2 ) + S(ρ) + (1 -p) tr[ρ 2 (log σ -log σ 2 )] + p tr[ρ 1 (log σ -log σ 1 )] ≤ h(p) 1 2 ρ 1 -ρ 2 1 + f c1,c2 (p) , (15) 
where we split the relative entropies and used that the von Neumann entropy fulfils [START_REF] Audenaert | Quantum skew divergence[END_REF]Theorem 14]

S(ρ) ≤ 1 2 ρ 1 -ρ 2 1 h(p) + pS(ρ 1 ) + (1 -p)S(ρ 2 ) . ( 16 
)
Furthermore, we upper bound the remaining terms by f c1,c2 (p), estimating the two separately. We will only demonstrate the derivation for the second term, as it is completely analogous to the first one. We have

p tr[ρ 1 (log(σ) -log(σ 1 ))] = p tr[exp(log(ρ 1 ))(log(σ) -log(σ 1 ))] ≤ p log tr[exp(log(ρ 1 ) + log(σ) -log(σ 1 ))] ≤ p log ∞ -∞ dt β 0 (t) tr ρ 1 (σ -1 1 ) 1+it 2 σ(σ -1 1 ) 1-it 2 . (17) 
The first estimate follows immediately using the well-known Peierls-Bogolubov inequality [START_REF] Ando | Hölder type inequalities for matrices[END_REF]. The second one involves a generalisation of the Araki-Lieb-Thirring inequality [START_REF] Araki | On an inequality of Lieb and Thirring[END_REF], [START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities[END_REF] by Sutter et al. [START_REF] Sutter | Multivariate trace inequalities[END_REF]Corollary 3.3] with

β 0 (t) = π 2 1 cosh(πt) + 1 (18) 
a probability density on R. In the above steps, i.e. [START_REF] Bluhm | A strengthened data processing inequality for the Belavkin-Staszewski relative entropy[END_REF], we relied on ρ 1 , σ 1 and σ to be full rank. If this is not the case one can also rigorously obtain the same result taking into account the supporting subspaces, however, the procedure is more involved. We restrict to the full-rank setting for the sake of clarity. Note here that in the most general case • -1 in the RHS of ( 17) is the Moore-Penrose pseudoinverse. The trace in the integral can now be estimated for each t by

tr[ρ 1 (σ -1 1 ) 1+it 2 σ(σ -1 1 ) 1-it 2 ] = p + (1 -p) tr[ρ 1 (σ -1 1 ) 1+it 2 σ 2 (σ -1 1 ) 1-it 2 ] . (19) 
Here, we just split σ and used the cyclicity of the trace to get rid of the unitary. To see that c 1 < ∞, we upper bound σ 2 by 1 and σ -1 1 by m -1 σ1 1 where m σ1 is the smallest non-zero eigenvalue of σ 1 . This can be done, since ker σ 1 ⊆ ker ρ 1 . We end up with c 1 ≤ m -1 σ1 < ∞. Inserting ( 19) into [START_REF] Bluhm | A strengthened data processing inequality for the Belavkin-Staszewski relative entropy[END_REF], we obtain the first part of f c1,c2 (p) and repeating the steps for (1p) tr[ρ 2 (log(σ)log(σ 2 ))] the second one as well. This concludes the proof.

C. Proof of Theorem 3.2

We next give some auxiliary results that will be needed later. The first of those concerns an operator inequality for the term inside the trace in the definition of the BS-entropy.

Lemma A.1:

Let A 1 , A 2 ∈ B(H) positive semi-definite, p ∈ [0, 1] and A := pA 1 + (1 -p)A 2 . Then -A log(A) ≤ -pA 1 log(A 1 ) -(1 -p)A 2 log(A 2 ) + h A1,A2 (p)1 with h A1,A2 (p) = -p log(p) tr[A 1 ] -(1 -p) log(1 -p) tr[A 2 ]
a distorted binary entropy.

Proof: It holds that

-A log(A) + pA 1 log(A 1 ) + (1 -p)A 2 log(A 2 ) (20) 
≤ -A log(A) + pA 1 log(A 1 ) + (1 -p)A 2 log(A 2 ) 1 1 .
Now, since x → -x log(x) is operator concave [48, Theorem 2.6], we have

-A log(A) ≥ -pA 1 log(A 1 ) -(1 -p)A 2 log(A 2 ) ,
giving us that

-A log(A) + pA 1 log(A 1 ) + (1 -p)A 2 log(A 2 ) ≥ 0 ,
and hence

-A log(A) + pA 1 log(A 1 ) + (1 -p)A 2 log(A 2 ) 1 (21) = tr[-A log(A) + pA 1 log(A 1 ) + (1 -p)A 2 log(A 2 )] .
We now use the operator monotonicity of the logarithm to find

-tr[A log(A)] = -p tr[A 1 log(A)] -(1 -p) tr[A 2 log(A)] ≤ -p tr[A 1 log(pA 1 )] -(1 -p) tr[A 2 log((1 -p)A 2 )] = -p tr[A 1 log(A 1 )] -(1 -p) tr[A 2 log(A 2 )] + h A1,A2 (p) 
Inserting this into [START_REF] Bardet | Entropy decay for Davies semigroups of a one dimensional quantum lattice[END_REF] and then into (20) yields the claimed result.

The next auxiliary result concerns an equivalent formulation for the BS-entropy constructed from the function x → x log x.

Lemma A.2: [37, Eq. (7.35)] Let ρ ∈ S(H) and σ ∈ S + (H), then

D(ρ σ) = tr[σ(σ -1/2 ρσ -1/2 ) log(σ -1/2 ρσ -1/2 )]. (22)
Building on the previous results from this section, we proceed to prove the main result, namely the almost concavity for the BS-entropy. Let (ρ 1 , σ 1 ), (ρ 2 , σ 2 ) ∈ S(H) × S(H) + , p ∈ [0, 1] and consider ρ :

= pρ 1 + (1 -p)ρ 2 , σ := pσ 1 + (1 -p)σ 2 .
The formula for p = 0, 1 is trivial, hence let p ∈ (0, 1). We find that

p D(ρ 1 σ 1 ) + (1 -p) D(ρ 2 σ 2 ) -D(ρ σ) ≤ p( D(ρ 1 σ 1 ) -D(ρ 1 σ)) + (1 -p)( D(ρ 2 σ 2 ) -D(ρ 2 σ)) + ĉ0 h(p) . (23) 
Indeed, as of Lemmas A.2 and then A.1 with

A 1 = σ -1/2 ρ 1 σ -1/2 , A 2 = σ -1/2 ρ 2 σ -1/2 respectively, we can prove -D(ρ σ) = tr[σ -σ -1/2 ρσ -1/2 log(σ -1/2 ρσ -1/2 ) ] ≤ p tr[σ -σ -1/2 ρ 1 σ -1/2 log(σ -1/2 ρ 1 σ -1/2 ) ] +(1 -p) tr[σ -σ -1/2 ρ 2 σ -1/2 log(σ -1/2 ρ 2 σ -1/2 ) ] +h A1,A2 (p) = -p D(ρ 1 σ) -(1 -p) D(ρ 2 σ) + h A1,A2 (p) .

At last we can estimate tr[A

j ] = tr[σ -1 ρ j ] ≤ σ -1
∞ ≤ ĉ0 for j = 1, 2 using Hölder's inequality, giving us h A1,A2 (p) ≤ ĉ0 h(p).

We now have to estimate terms of the form D(ρ j σ j ) -D(ρ j σ) for j = 1, 2. This is done using the Peierls-Bogolubov inequality [START_REF] Ando | Hölder type inequalities for matrices[END_REF] and the multivariate trace inequalities of Sutter et al. [START_REF] Sutter | Multivariate trace inequalities[END_REF]:

D(ρ j σ j ) -D(ρ j σ) = tr[ρ j log(ρ 1/2 j σ -1 j ρ 1/2 j ) -log(ρ 1/2 j σ -1 ρ 1/2 j ) ] ≤ tr[exp log(ρ j ) + log(ρ 1/2 j σ -1 j ρ 1/2 j ) -log(ρ 1/2 j σ -1 ρ 1/2 j ) ] ≤ tr[exp log(ρ j ) + log(ρ 1/2 j σ -1 j ρ 1/2 j ) + log(ρ -1/2 j σρ -1/2 j ) ] ≤ log α ρ j , ρ 1/2 j σ -1 j ρ 1/2 j , ρ -1/2 j σρ -1/2 = log(p + (1 -p)ĉ 1 ) j = 1 log((1 -p) + pĉ 2 ) j = 2 . ( 24 
)
In the third line, we use that

-log(ρ 1/2 j σ -1 ρ 1/2 j ) ≤ log(ρ -1/2 j σρ -1/2 j
) which is true since for P ρ the projection on the support of ρ, we have P ρ (P ρ σP ρ ) -1 P ρ ≤ P ρ σ -1 P ρ , as x → x -1 is operator convex and hence fulfills the Sherman-Davis inequality [START_REF] Carlen | Trace inequalities and quantum entropy: An introductory course[END_REF]Theorem 4.19]. Note that σ is invertible and that by (P ρ σP ρ ) -1 we mean the Moore-Penrose pseudoinverse. We find

-log(ρ 1/2 j σ -1 ρ 1/2 j )= -log(ρ 1/2 j P ρ σ -1 P ρ ρ 1/2 j ) ≤ -log(ρ 1/2 j P ρ (P ρ σP ρ ) -1 P ρ ρ 1/2 j ) = log(ρ -1/2 j P ρ σP ρ ρ -1/2 j ) = log(ρ -1/2 j σρ -1/2 j
) .

The argument why the inequalities in [START_REF] Zhai | Belavkin-Staszewski relative entropy, conditional entropy, and mutual information[END_REF] hold in the case of ρ j not being full rank is simpler than in the case of the corresponding inequality for the Umegaki relative entropy. For the BS-entropy, we can already restrict [START_REF] Zhai | Belavkin-Staszewski relative entropy, conditional entropy, and mutual information[END_REF] to the support of ρ j as all operators involved, ρ j , ρ 1/2 j σ -1 j ρ 1/2 j and ρ

1/2 j σ -1 ρ 1/2 j , commute with the projection onto this support. In the last step we split σ and evaluated the first term to p in case j = 1 or the second term in case j = 2 to (1p) and left the other one untouched, respectively. This concludes the proof.

D. Proof of Corollary 1

First, note that, given ρ AM ∈ S(H AM ), for Z ∈ {X , Y} the following holds:

H(Z|M ) (EZ ⊗idM )(ρAM ) = -D (E Z ⊗ id M )(ρ AM ) 1 A d A ⊗ ρ M + log d A ,
and (E M ⊗id M )(ρ AM ) = 1A dA ⊗ρ M . Moreover, by [49, Lemma 3.4],

D (E Z ⊗ id M )(ρ AM ) (E M ⊗ id M )(ρ AM ) = D ρ AM (E M ⊗ id M )(ρ AM ) -D ρ AM (E Z ⊗ id M )(ρ AM ) .
Therefore, we have

H(X|M ) (EX ⊗idM )(ρAM ) + H(Y |M ) (EY ⊗idM )(ρAM ) = D ρ AM (E X ⊗ id M )(ρ AM ) + D ρ AM (E Y ⊗ id M )(ρ AM ) -2D ρ AM (E M ⊗ id M )(ρ AM ) + 2 log d A .
Additionally, it is not difficult to see that

D ρ AM ((E X • E Y ) ⊗ id M )(ρ AM ) = D ρ AM (E X ⊗ id M )(ρ AM ) + D (E X ⊗ id M )(ρ AM ) ((E X • E Y ) ⊗ id M )(ρ AM ) ≤ D ρ AM (E X ⊗ id M )(ρ AM ) + D ρ AM (E Y ⊗ id M )(ρ AM ) ,
also as a consequence of [START_REF] Junge | Stability of logarithmic Sobolev inequalities under a noncommutative change of measure[END_REF]Lemma 3.4] for the first equality and the data-processing inequality for the relative entropy. Furthermore, by Eq. ( 6), we have

D ρ AM 1 A d A ⊗ ρ M -D ρ AM ((E X • E Y ) ⊗ id M )(ρ AM ) ≤ -2 log m + 1 m 1 -m 1 A d A ⊗ ρ M -((E X • E Y ) ⊗ id M )(ρ AM ) 1/2 1 ,
Note that we can rewrite the last term on the right-hand side as:

1 A d A ⊗ ρ M -((E X • E Y ) ⊗ id M )(ρ AM ) 1 = ((E M -E X • E Y ) ⊗ id M )(ρ AM ) 1 ,
A similar term was computed e.g. in [START_REF] Bardet | Approximate tensorization of the relative entropy for noncommuting conditional expectations[END_REF]Section 4.1]. Following analogous ideas, we have: 

((E X • E Y ) ⊗ id M )(ρ AM ) = x,
This concludes the proof.

  denote by E Z the Pinching map onto the diagonal spanned by |e

1 = 1 ≤ 2 ,

 112 x | ⊗ e (Y) y |ρ AM |e (Y) y , and(E M ⊗ id M )(ρ AM ) = 1 d A x,y |e (X ) x e (X ) x | ⊗ e (Y) y |ρ AM |e (Y) M -E X • E Y ) ⊗ id M )(ρ AM ) e (Y) y |ρ AM |e (Y) y e (X ) x |e (Y) y | 2 e (Y) y |ρ AM |e (Y)Additionally, note that forΦ ∈ B(H A ), (E X • E Y )d A ⊗ ρ M ≤ e 2 log dA 1 A d A ⊗ ρ M .Therefore, since m should satisfy mρ AM ≤ ((E X • E Y ) ⊗ id M )(ρ AM ) and mρ AM ≤ 1A dA ⊗ ρ M , then it can be taken to bem := min 1 (d A ) 2 ,

  For a tripartite state ρ ∈ S(H A ⊗ H B ⊗ H C ) the BS-conditional mutual information is defined by

1 A ∞ and ρ -1 B ∞ , whereas I var ρ (A : B) is bounded by 2 log min{d A , d B }, just like I ρ (A : B).
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