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Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal-(T -) invariant (helical) 3D TCIstermed higher-order TCIs (HOTIs)-the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), "spin-Weyl" semimetals, and T -doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate that β-MoTe2 realizes a spin-Weyl state and that α-BiBr hosts both 3D QSHI and T-DAXI regimes.

Introduction

In recent years, the study of topological phases of matter in solid-state materials has largely focused on their anomalous gapless boundary states [13]. 2D and 3D topological insulators (TIs), for example, exhibit timereversal-(T -) symmetry-protected 1D helical modes and 2D Dirac cones on their boundaries [14][15][16][17][18], respectively. While this focus on gapless boundary states has been validated by remarkable transport and spectroscopy experiments [19][20][21], and has revealed promising avenues for chemical applications [22,23] and interface spintronics [24,25], it also has drawbacks.

In particular, in 3D symmetry-protected topological crystalline insulators (TCIs), gapless boundary states only appear on 2D surfaces that preserve specific crystal symmetries, and the surface states on the remaining crystal facets are generically gapped [9,[26][27][28]. The limitations of anomalous gapless boundary states as experimental signatures of bulk topological phases are further compounded in the class of 3D TCIs that have become known as higher-order TCIs (HOTIs), in which most-if not all-of the 2D surface states are gapped, and the 1D hinges (edges) between gapped surfaces bind gapless chiral or helical modes [1][2][3][4]29]. In HOTIs, the specific configuration of hinge states can provide an indicator of the bulk topology, but only in system geometries with unrealistically high symmetry (i.e. where the entire crystallite exhibits perfect point group symmetry) [30,31] [see Fig. 1(a,b)]. For the subset of Tbroken HOTI phases with chiral hinge modes and relevant SOC, this issue has been overcome by recognizing that spinful chiral HOTIs are magnetic axion insulators (AXIs) [1,30,32,33]. Magnetic AXIs, like 3D TIs, are characterized by a bulk topological axion angle θ = π (where θ is defined modulo 2π) [34][35][36][37], leading to a quantized E • B bulk magnetoelectric response and anomalous quantum Hall states with half-integer Chern numbers on gapped surfaces as a consequence of the 2D surface parity anomaly. Importantly, the quantized bulk magnetoelectric response of AXIs can be experimentally measured without invoking gapless boundary states. For example, FIG. 1. Spin-resolving helical higher-order topological crystalline insulators. (a) A helical higher-order topological crystalline insulator (HOTI) cut into a finite geometry with perfect spatial inversion (I) symmetry. In (a), the configuration of intrinsic 1D helical hinge modes indicates the bulk topology [1][2][3][4]. (b) A helical HOTI in a more realistic sample geometry [2] featuring irregular surfaces and broken global I symmetry. The hinge modes in (b) originate from extrinsic sample details and surface physics, and are indistinguishable from the extrinsic helical modes of bulk-trivial materials [5,6]. By computing the gaugeinvariant spin-spectrum [7] (see Fig. 2 and SN 2B), the bulk electronic structure of a helical HOTI with I and time-reversal (T ) symmetries can be further classified into one of three spin-stable phases (SN 4D). (c) The 3D QSHI regime of a helical HOTI, which is constructed by layering 2D TI (QSHI) states with the same spin Hall response [8]. The 3D QSHI state in (c) hence exhibits an extensive bulk spin Hall conductivity per unit cell (see Refs. [9][10][11] and SN 4D). In each half of the spin spectrum, a 3D QSHI carries the topology of a 3D QAHI, as indicated by the partial weak Chern numbers ν ± z in (c) [see SN 4C3]. (d) The spin-Weyl-semimetal [DSTI [12]] regime of a helical HOTI, which is constructed by superposing two 3D TIs with gapless bulk spin spectra featuring chirally-charged nodal degeneracies that we term spin-Weyl points [red and blue circles in (d), see SN 2E]. (e) The T-DAXI regime of a helical HOTI, which is constructed by superposing time-reversed spin-polarized magnetic AXIs. Each half of the spin spectrum in (e) is topologically equivalent to a magnetic AXI with an I-quantized partial axion angle θ ± = π, implying a topological bulk spin-magnetoelectric response. The gapped surfaces of T-DAXIs bind anomalous halves of T -invariant 2D TIs with odd spin Chern numbers C s -formed from summing anomalous surface states with half-integer partial Chern numbers C ± and T -related spin-orbital textures-as a consequence of a novel 2D surface partial parity anomaly (SN 5E).

the quantized value θ = π was measured (in the units of the fine-structure constant) through optical experiments performed on 3D TIs with magnetically gapped surface Dirac cones [38,39].

Using the theoretical methods of Topological Quantum Chemistry [32,40,41] and symmetry-based indicators (SIs) [8,12,42], researchers have performed highthroughput [43][44][45][46][47] and exhaustive [48] searches for 3D topological materials, yielding thousands of candidate TIs and TCIs. These computational investigations have revealed candidate helical HOTI phases in readily accessible materials, including rhombohedral bismuth [2], α-BiBr [6,10], and the transition-metal dichalcogenides MoTe 2 and WTe 2 [49], in turn motivating experimental efforts to observe nontrivial topology in these materials [50][51][52][53][54]. However in HOTIs, the bulk topological spectral flow cannot be inferred by observing gapless surface states in photoemission experiments, because the surface states are gapped on most (if not all) 2D surfaces of 3D HOTI phases [1][2][3][4]29]. Experimental investigations of helical HOTIs have therefore instead largely focused on scanning-tunneling microscopy (STM) and ballistic supercurrent signatures of 1D helical "hinge" channels. Unfortunately, the configuration of hinge states in a given material is highly dependent on sample details [Fig. 1(b)], and hinge-state-like 1D gapless modes can also originate from crystal defects, or even manifest in materials that are topologically trivial in the bulk [5,6]. To better understand the existing experimental data and provide a road map for real-world applications of the topological materials identified in Refs. [43][44][45][46][47][48], it is crucial to elucidate the geometry-independent bulk signatures of newly discovered helical TCI and HOTI phases, analogous to the characterization of chiral HOTIs as AXIs. Bulk topological invariants like the axion angle θ are typically robust to boundary details and disorder [55,56], and hence predictive under more realistic material conditions.

In this work we perform extensive numerical inves-tigations to, for the first time, unravel the bulk and surface theories of helical HOTIs, and their connection to boundary-insensitive physical observables. Unlike 2D Chern insulators and 3D TIs, we find that the electromagnetic response of helical HOTIs does not depend solely on the electronic band topology, but also depends on additional details of the spin-orbital texture of the occupied bands. We start from the projected spin operator P sP introduced by Prodan in Ref. [7], where P projects onto a set of occupied bands, and s is a choice of spin direction. Building on Ref. [7] and the crystallographic splitting theorem of Ref. [57], we show that topologically nontrivial T -invariant insulators with relevant spin-orbit coupling (SOC) have topologically nontrivial spin-resolved bands.

We theoretically introduce and numerically implement a gauge-invariant (nested) Wilson loop (non-Abelian Berry phase) method [9,28,30,58] for computing crystalsymmetry-protected, spin-resolved band topology in Tinvariant insulators [see Sections 3 and 4 of the Supplementary Notes (SN 3 and 4)]. The extensive toy-model and real-material spin-resolved and nested Wilson loop calculations in this work (see SN 3,4,5,8,9,and 10) were performed using the freely accessible Python package nested and spin resolved Wilson loop [59], which was previously implemented and utilized for the preparation of Refs. [30,60], and was then greatly refined and extended to spin-resolved calculations for the present work. In SN 2C, we crucially demonstrate that gaps in the spectrum of P sP , termed the spin spectrum, are perturbatively robust to deformations of the spin-orbital texture of the occupied bands, leading to a controlled notion of "spin-stable" band topology in which spin-resolved bulk topological invariants remain quantized under symmetric deformations that neither close an energy gap nor a spin gap in the P sP spectrum. To provide positionspace physical intuition for our spin-resolved Wilson loop calculations, we introduce a spin-resolved layer construction method [8,32,41] for enumerating and classifying 3D symmetry-protected, spin-gapped topological states. In SN 3H, we also introduce a formulation of a spin-resolved entanglement spectrum, which we prove to be homotopic to the spectrum of the spin-resolved Wilson loop. Through our numerical calculations, we find that helical HOTIs necessarily fall into one of three regimes of spin-stable topology, each of which is characterized by a distinct spin-electromagnetic response. Previous studies have recognized that helical TCI phases may realize layered quantum spin Hall states in which each unit cell contributes a nonzero spin Hall conductivity [9][10][11], and we accordingly find that some helical HOTIs for particular spin resolution directions s [such as α-BiBr for s z spins, see SN 10B] realize these 3D quantum spin Hall insulator (QSHI) states [Fig. 1(c)]. However, we also discover two additional spin-stable regimes of Iand T -protected helical HOTIs, which are both physically distinguishable from each other, and from 3D QSHIs (SN 4D).

First, we find that helical HOTIs may exhibit (for some or all spin resolution directions) a gapless P sP spectrum in which the spin-gap closing points form "spin-Weyl fermions" that act as monopoles of spin-resolved partial Berry curvature [65], a quantity that derives from the partial polarization (Berry phase) introduced by Fu and Kane in Ref. [66] [see Fig. 1(d) and SN 2E, 3E, and 3F].

In SN 3E and 3F, we show that all 3D TI phases realize spin-resolved spin-Weyl states, and in SN 2G, we demonstrate that spin-Weyl points in the P sP spectrum can be converted into Weyl points in the energy spectrum by a strong Zeeman field, leading to the presence of topological Fermi-arc surface states. Through ab-initio calculations, we demonstrate in SN 9 that for all choices of s in P sP , the candidate HOTI β-MoTe 2 realizes a spin-Weyl semimetal state. We further show that in the representative case of s ∝ s x + s z , the spin gap of β-MoTe 2 closes at only 8 spin-Weyl points, which give rise to Fermi arcs on the experimentally accessible (001)-surface under a strong (x + ẑ)-directed Zeeman field (see Ref. [49] and SN 9C).

Most intriguingly, we discover a final regime for helical HOTIs in which the bands within each sector of P sP exhibit the same topology as a magnetic AXI. By applying nested Wilson-loop and hybrid-Wannier methods for computing θ [30,33] to the spin spectrum of helical HOTIs, we specifically uncover the existence of a previously unrecognized T -doubled AXI (T-DAXI) state characterized by bulk nontrivial partial axion angles θ ± = π [Fig. 1(e) and SN 4D and 4E]. We implement a spinresolved variant of the local Chern marker [67,68] to demonstrate that the gapped surfaces of T-DAXIs bind anomalous halves of 2D TI states as a consequence of a novel T -invariant partial parity anomaly (SN 5E). The T-DAXI regime hence provides the first theoretical description of a helical HOTI that is free from the requirement of perfect global crystal symmetry: in T-DAXIs, I symmetry pins θ ± = π deep in the bulk leading to a topological contribution to the bulk spin-magnetoelectric response, and 1D helical modes appear on surface (and hinge) domain walls between gapped facets hosting topologically distinct halves of 2D TI states. Crucially, while the spin-Weyl semimetal, QSHI, and T-DAXI spin-resolutions of a helical HOTI can be deformed into each other by closing a spin gap without closing an energy gap, we will show below that they cannot be deformed into insulators with trivial spin-stable topology without closing an energy gap.

Lastly, we remarkably discover that the T-DAXI state-as well as the aforementioned 3D QSHI stateare both realized in the quasi-1D candidate HOTI α-BiBr. Through ab-initio calculations detailed in SN 10, we specifically find that α-BiBr hosts a spin gap for nearly all spin resolution directions, which interpolates between a wide 3D QSHI regime centered around s z and a narrower (but still significant and numerically stable, see SN 10B) T-DAXI regime centered around s x . To provide physical signatures of the spin-gapped states in α-BiBr, we then in SN 10C use a Wannier-based tight-binding [61] or "Kane-Mele-like" [14]) spin-orbit coupling (SOC). In (a), separate Chern numbers C ↑,↓ can be defined for the sz =↑, ↓ occupied states. The sum C ↑ +C ↓ indicates the topological coefficient of (b) the Hall response [Eq. (1)], whereas the difference C ↑ -C ↓ indicates the topological coefficient of (c) the spin Hall response [Eq. ( 3)] [62][63][64]. (d) A 2D insulator with sz-breaking (e.g. Rashba [15]) SOC. Though the sz spin Hall conductivity is no longer quantized in (d), the existence of a topological contribution [σ s H ] topological to the (nonquantized) bulk sz spin Hall response can still be inferred from the quantized partial Chern numbers C ± of spectrally isolated groupings of bands in the spin spectrum of the matrix P sP with s = sz [7] [see Eq. ( 5) and SN 3C]. Crucially, perturbative deformations to the system correspond to perturbative deformations of the spin spectrum (SN 2C). This facilitates introducing a finer notion of spin-stable topological phases in which the spin-resolved band topology of the P sP spectrum indicates the existence of bulk topological contributions to (non-quantized) spin-electromagnetic response effects, which cannot be removed without closing gaps in the energy or spin spectra. For example, because the sz-nonconserving P szP spin spectrum in (d) is adiabatically related to the sz-conserving P szP spectrum in (a) without closing an energy or spin gap, then C ↑ = C + and C ↓ = C -. model to compute the bulk intrinsic contribution to the (non-quantized) spin Hall conductivity of α-BiBr (per unit cell) within its 3D QSHI and T-DAXI regimes. Our calculations reveal a highly anisotropic bulk spin Hall response in α-BiBr that is nearly quantized within the 3D QSHI regime (s z spins) and nearly vanishing within the T-DAXI regime (s x spins), in close agreement with the bulk spin-resolved topology (partial Chern numbers).

Results

The Spin Spectrum and Spin-Stable Topology: Spin-resolved band topology and its relationship to spinelectromagnetic response effects can most straightfor-wardly be understood in 2D insulators. To begin, we consider a 2D spinful (fermionic), noninteracting insulator lying in the xy-plane with s = s z spin-rotation symmetry (i.e. U(1) spin symmetry, in addition to the U(1) charge conservation symmetry [69]). We emphasize that the simultaneous requirements of charge and s z spin conservation symmetries do not require SOC to vanish, or to even be small. Instead, s z symmetry only enforces that s z -nonconserving (e.g. Rashba [15]) contributions to the SOC vanish, whereas s z -conserving (e.g. "Ising" [61] or "Kane-Mele-like" [14]) SOC may be arbitrarily large. In the band structure of the 2D insulator, each occupied Bloch eigenstate is an eigenstate of s z , allowing separate Berry connections, curvatures, and Chern numbers C ↑,↓ to be defined for the occupied states [Fig. 2(a)]. The total (charge) Hall conductivity, which characterizes the transverse voltage generated under an applied current [Fig. 2(b)], is given by:

σ H = e 2 h C, (1) 
where C is the total Chern number:

C = C ↑ + C ↓ . (2) 
Similarly, for each spin direction s, a separate spin Hall conductivity σ s H [62] can be defined to characterize the transverse s-polarized spin separation generated under an applied current [Fig. 2(c)]. For the above example of an insulator with s z -conservation symmetry, the s = s z spin Hall conductivity is given by:

σ s H = ℏ 2 e h C ↑ -C ↓ , (3) 
motivating the definition of a spin Chern number:

C s = C ↑ -C ↓ . (4) 
2D insulators with C ̸ = 0 are termed quantum Hall states [70], and insulators with C = 0, C s ̸ = 0 are termed quantum spin Hall states [63,64].

As crucially emphasized by Kane and Mele [14,15], s z symmetry is typically broken in real materials by the presence of multiple microscopic (e.g. simultaneous Ising and Rashba) contributions to SOC, because crystal and T symmetries alone cannot enforce a U(1) spin conservation symmetry, such as s z . Without s z symmetry, the spin Hall conductivity is no longer quantized and cannot be computed through Eq. (3), because states can no longer by labeled by the spin eigenvalues s z =↑, ↓. However, it is known that as perturbatively weak s znonconserving SOC is introduced, the intrinsic bulk contribution to the spin Hall response does not instantaneously vanish, but instead remains perturbatively close to the value given by Eq. ( 3) [71].

To deduce the existence of a bulk topological contribution to σ s H for each spin direction s = s • n, Prodan introduced the projected spin operator P sP [7], which in this work represents a shorthand expression for the matrix:

P sP ≡ P (k) (s • n) P (k), (5) 
where P (k) is the projector onto an energetically isolated (typically occupied) set of electronic states at the crystal momentum k (see SN 2B). The eigenvalues of P sP are gauge invariant and as functions of k form the spin spectrum, a physically meaningful characterization of the occupied states that is complementary to the electronic structure [Fig. 2(d)]. When a given s is a conserved symmetry (whether or not s-preserving SOC is present), the eigenvalues of P sP in the occupied subspace are pinned to ±1, and in insulators with compensated numbers of s =↑, ↓ electrons and negligible s-nonconserving SOC, the eigenvalues of P sP are separated at all k points by a spin gap ∆ s ≈ 2. Importantly, as s-nonconserving SOC is introduced and s-rotation [e.g. s z ] symmetry relaxed, the eigenvalues of P sP do not fluctuate wildly, but instead, as shown in SN 2C, perturbatively deviate from ±1. This can be contrasted with a similar quantity, the non-Abelian Wilson loop (holonomy) matrix computed in the direction of a reciprocal lattice vector G [9,28,30,58]:

W 1,k,G = k+G←k q P (q), (6) 
for which the (hybrid Wannier) spectrum need not adiabatically change under small perturbations to the system Hamiltonian, because W 1,k,G is non-local in k (see SN 2C).

It was previously recognized in Ref. [7] that even in a system without s z symmetry, the Chern numbers of spectrally isolated bands in the P s z P spin spectrum remain gauge-invariant quantities, and can be numerically computed. In particular, if there exists a spin gap between the spin bands with P s z P eigenvalues closer to ±1 [Fig. 2(d)], then one may compute the gaugeinvariant, spin-resolved partial Chern numbers C ± of the bands within each half of the spin spectrum. The partial Chern numbers C ± importantly allow one to define the s z spin Chern number [72]-even when s z is no longer conserved-by generalizing Eq. (4) to the spin spectrum band topology:

C s = C + -C -. (7) 
Though Eq. (7) no longer indicates the coefficient of a quantized spin Hall response away from the limit of s z symmetry, C s ̸ = 0 still indicates the existence of a bulk topological contribution to σ s H (for s z spins). Furthermore, the intrinsic bulk spin Hall conductivity σ s H may even lie close to the quantized topological value given by Eq. ( 3) if s z -breaking SOC is relatively weak (see SN 3C and 7B).

In an isolated 2D insulator with spinful T symmetry, C + = -C -, such that C = 0, and C s mod 2 = 0 for all choices of spin direction s. While C s can be changed by 2 through spin band inversions between the upper and lower spin bands at a single k point in the spin spectrum, T symmetry enforces that spin band inversions occur in pairs at ±k or in crossings with quadratic dispersion at time-reversal-invariant k (TRIM) points, such that C s mod 4 cannot change without closing a gap in the energy spectrum (see SN 3C and Ref. [7]). The spin spectrum hence also facilitates an alternative definition of the 2D Z 2 invariant in T -symmetric insulators: in crystal momentum (k) space. The 3D TI in (a) can be re-expressed as a helical Thouless pump between a 2D TI (orange plane) and a trivial insulator [17,18,30,35]. Because a 3D TI is a strong, isotropic topological phase, then we may choose the pumping parameter in (a) to be kz without loss of generality. (b) The P sP spin spectrum [Eq. ( 5)] of the 3D TI in (a) is gapless for all choices of s = s • n (e.g. sz). In each half of the 3D Brillouin zone (BZ) in (b), the spin spectrum specifically exhibits Weyl-like [65] nodal degeneracies with a net-odd partial chiral charge, which we term "spin-Weyl fermions" (see SN 2E, 3E, and 3F). for all s for which P sP exhibits a spin gap such that C ± (and hence C s ) are well defined. Eq. ( 8) is consistent with the crystallographic splitting theorem of Ref. [57], and further implies that C s can still be nonzero in a Tinvariant insulator with z 2 = 0. More generally, in SN 3G we show that a "fragile" TCI, which has a less robust form of topology than stable topological phases like 2D Z 2 TIs [30,73], can still carry a nonzero C s , and hence have a nonvanishing bulk topological contribution to its (non-quantized) spin Hall response. Our calculations in SN 4E also imply that spin bands in the P sP spectrum can exhibit a novel form of spin-resolved fragile topology. Lastly, unlike the 2D Z 2 invariant [15], C s remains welldefined when T symmetry is broken (SN 3C). We will shortly exploit the robustness of C s under T -breaking potentials to analyze the topology of 3D insulators, in which k-space surfaces away from TRIM points can be treated as 2D systems with broken T symmetry [60].

z 2 = C s 2 mod 2, (8) 
In this work, we more generally recognize the partial Chern numbers C ± to be members of a larger class of spin-resolved topological invariants that are stable to deformations that close neither an energy gap nor a spin gap. Given a 3D insulator that respects the symmetries of a nonmagnetic space group G, the spin bands specifi-cally respect the symmetries of, and can carry topological invariants protected by, the magnetic space subgroup M ⊂ G for which each element m ∈ M commutes with the spin operator s in P sP . Building off of tremendous recent progress enumerating SIs and Wilson-loop indicators for spinful magnetic topological phases [30,32,41], we resolve the spin-stable topology of 3D TIs and helical HOTIs by applying the existing magnetic topological classification to the spin bands of P sP . To compute spin-resolved topological invariants, we theoretically introduce and numerically implement spin-resolved generalizations of the (nested) Wilson loop matrix [Eq. (6), see SN 3B and 4B, as well as Ref. [59]]. We further introduce in SN 3H a spin-resolved generalization of the entanglement spectrum [58], which we show to be homotopic to the spin-resolved Wilson spectrum. Using P sP and spin-resolved Wilson loops, we discover several previously unrecognized, experimentally detectable features of well-studied 3D insulators, including spin-Weyl points in 3D TIs and nontrivial partial axion angles in helical HOTIs, which we will explore in detail below.

Spin-Weyl Fermions in 3D TIs: 3D TIs have previously been linked to spin-orbital textures through their anomalous Dirac-cone surface states. Previous ex-perimental investigations have specifically shown that the surface states of 3D TIs exhibit helical spin textures [20,21] and can efficiently convert charge current to magnetic spin torque [24,25]. In this work, we find that 3D TIs additionally exhibit unremovable bulk spin textures, which are revealed by analyzing the connectivity and topology of the spin bands in P sP . We specifically find that 3D TIs must carry gapless spin spectra for all choices of s in P sP . As we will show below, absent additional symmetries, the P sP spectrum of a 3D TI generically exhibits an odd number of Weyl-fermionlike touching points between the ±-sector spin bands in each half of the 3D BZ, where each 3D nodal point acts as a source or sink of partial Berry curvature (SN 2E, 3E, and 3F).

To see that 3D TIs for all s must exhibit gapless P sP spectra featuring nodal degeneracies with nontrivial chiral charge-which we term "spin-Weyl" points-we first note that the momentum-space band structure of a 3D TI can be re-expressed as a helical Thouless pump of a 2D TI [17,18,30,35]. Taking k z to be equivalent to the Thouless pumping parameter, the occupied bands in one T -invariant BZ plane must be equivalent to a 2D TI [k z = 0 in Fig. 3(a)], and must be equivalent to a 2D trivial insulator in the other T -invariant, k z -indexed BZ plane [k z = π in Fig. 3(a)]. Through Eqs. (7) and (8) and the constraint from T symmetry that C + = -C - (SN 3C), this implies that for the occupied bands of the 3D TI in Fig. 3:

C ± mod 2 = 1 at k z = 0, (9) 
and:

C ± mod 2 = 0 at k z = π, (10) 
for all choices of s in P sP . Crucially, unlike the Z 2 invariant for 2D TIs, the partial Chern numbers C ± remain well-defined when T is broken in 2D BZ planes away from k z = 0, π [7]. Eqs. (9) and (10) hence imply that C ± must each change by odd numbers across each half of the 3D BZ, which can only occur if the ±-sector spin bands in the spin spectrum meet in nodal degeneracies with nontrivial (partial) chiral charges [Fig. 3(b)]. Absent additional symmetries, nodal degeneracies with nontrivial chiral charge manifest as 3D conventional Weyl fermions with charge ±1 [13,65]. We therefore, in this work, refer to nodal points in the P sP spectrum with nontrivial partial chiral charges as spin-Weyl fermions, such that a spin-resolved 3D TI realizes a spin-Weyl semimetal phase.

Because a maximally spin-gapped P sP spectrum indicates the absence of s-nonconserving spin texture in the occupied bands (SN 2B), then the existence of unavoidable spin-Weyl points in 3D TIs implies that the occupied bands exhibit an unremovable spin texture. Like a Weyl semimetal state, a spin-Weyl semimetal state also exhibits forms of topological surface Fermi arcs. In the spin-Weyl state, the spin Fermi arcs either manifest as arc-like states along the entanglement cut in the spinresolved entanglement spectrum (SN 3H), or as topological surface Fermi arcs in the energy spectrum under a large external Zeeman field, which we will explore in greater detail in the Experimental Signatures and Discussion section. Lastly, because the occupied energy bands in a portion of the BZ in a spin-Weyl state must necessarily exhibit C s ̸ = 0, then a finite sample of a spin-Weyl state, such as a 3D TI, may exhibit an extensive (though non-quantized) spin Hall conductivity.

Partial Axion Angles in Helical HOTIs: Having deduced the spin-resolved topology of 2D and 3D TIs, we will next analyze the spin-resolved topology and response of helical HOTIs. In studies to date, there exist three competing theoretical constructions of an Iand T -protected helical HOTI state:

1. Orbital-double (superpose two identical copies of)

an Iand T -symmetric 3D TI to form a so-called "doubled-strong TI" (DSTI) [12].

2. Stack Iand T -symmetric 2D TIs with the same spin-orbital textures to form a layer construction with two identical 2D TIs per cell separated by a half-lattice translation [8,32,41].

3. T -double (superpose two time-reversed copies of) an I-symmetric magnetic AXI [30,49].

As we will show below, the three constructions of a helical HOTI in fact represent families of spin-resolved states with distinct spin-stable topology and distinct physical signatures. In order, the three constructions above correspond to a spin-Weyl semimetal with an even number of spin-Weyl points per half BZ [Fig. This result can most succinctly be understood through the language of SIs. An Iand T -symmetric HOTI is characterized by vanishing weak SIs and a nonvanishing Z 4 -valued strong SI z 4 = 2, where z 4 is defined by promoting the Z 2 -valued strong Fu-Kane parity (I) criterion for 3D TIs to a Z 4 invariant that further distinguishes between uninverted and doubly inverted bands [4,8,12,18,32,41,49]:

z 4 = 1 4 ka∈TRIMs n a + -n a -mod 4, (11) 
where n a + (n a -) is the number of occupied Bloch states at the TRIM point k a with positive (negative) parity eigenvalues. Eq. (11) was originally obtained by performing combinatorics on the elementary (trivial) bands allowed in the nonmagnetic Shubnikov space group (SSG) P 11 ′ (# 2.5), which is generated by I, T , and 3D lattice translation symmetries [4,8,12,32,41,49].

Importantly, when spin-resolving an insulator with the symmetries of SSG P 11 ′ (# 2.5), for any choice of spin direction s in P sP [Eq. (5)], the spin bands will respect the symmetries of magnetic SSG P 1 (# 2.4), which is the subgroup of SSG P 11 ′ (# 2.5) generated by breaking 7), each 2D TI layer carries the same even-integer sz spin Chern number C s mod 4 = 2 [Eq. (8)], resulting in a 3D QSHI state with a non-quantized (but generically nonvanishing) sz spin Hall conductivity per bulk unit cell. However if the 2D TI layers in (a) have oppositely signed partial Chern numbers that are identical in magnitude, (c) the system instead realizes a T-DAXI state with a vanishing bulk sz spin Chern number and I-quantized nontrivial partial axion angles θ ± = π (SN 4E). By closing and reopening the P szP spin gap, the QSHI insulator in (b) can be deformed into the T-DAXI in (c) via an intermediate spin-Weyl semimetal regime. Crucially, this deformation-which changes the bulk topological contribution to the spin-electromagnetic response for sz spins-must close an sz spin gap, but need not close an energy gap. (d) Numerical workflow employed in this study to compute θ ± . We specifically extract θ ± by theoretically elucidating and numerically implementing a spin-resolved generalization of the nested Wilson loop method for computing θ that was previously introduced in Ref. [30]. Documentation and details for accessing our freely available (spin-resolved) nested Wilson loop code are provided in SN 4E and 10B and Ref. [59].

T while preserving I and 3D lattice translations [32,41]. This can be seen by recognizing that {s, T } = 0 and [s, I] = 0 for all possible spin resolution directions s.

Because P sP splits the occupied bands in a T -invariant insulator into halves, then the spin bands in each of the ± spin sectors will therefore each inherit half of the parity eigenvalues of the occupied bands of the original Tinvariant insulator (see SN 4D).

In magnetic SSG P 1 (# 2.4) there is also a Z 4 -valued strong SI: z4 = 1 2 ka∈TRIMs n a +n a -mod 4, (12) in which the prefactor of 1/2 differs from the prefactor of 1/4 in Eq. ( 11) because spinful T symmetry forces states to form Kramers pairs at the TRIM points in nonmagnetic SSG P 11 ′ (# 2.5). For a helical HOTI with z 4 = 2, the spin bands in each ± sector will therefore carry the partial SI z4 = 2. In magnetic SSG P 1 (# 2.4) (see SN 4D and Refs. [32,41]), z4 = 2 can indicate Weyl-semimetal states with even numbers of Weyl points in each half BZ, 3D quantum anomalous Hall states, and AXI states-exactly in correspondence with the possible spin-resolved topological states of a helical HOTI [Fig. 1(c-e)]. Importantly, it is possible for snonconserving SOC to drive spin band inversions and change the spin-stable topology without closing an energy gap. However, because the ±-sector spin bands are related by T (SN 2B), and because [T , I] = 0, then a spin band inversion unaccompanied by an energy band inversion cannot change the value of z4 , and therefore cannot trivialize the spin-resolved topology of a helical HOTI. This represents the 3D generalization of the statement that the spin Chern number C s of a 2D TI can be changed without closing an energy gap, but cannot go to zero without closing an energy gap or breaking T symmetry [i.e. (C s /2) mod 2 = 1 for all s in a 2D TI state, see Ref. [7] and the text preceding Eq. ( 8)].

Having established the spin-resolved partial SIs of a helical HOTI, we will now more closely analyze each family of spin-stable topological states in its spin resolution. Earlier, we showed that a spin-resolved 3D TI for all s necessarily has an odd number of spin-Weyl points in each half of the BZ, absent symmetries beyond I and T [Fig. 3(b) and SN 3E and 3F]. Building on this result, because the DSTI construction of a helical HOTI consists of superposing (orbital-doubling) two identical 3D TIs [12], it follows that a spin-resolved DSTI realizes for all s a spin-Weyl semimetal state with an even number of spin-Weyl points per half BZ [Fig. 1(d)]. Like an energy-band Weyl semimetal state, a spin-Weyl state also exhibits topological Fermi arcs, which can be detected in the spin-resolved entanglement spectrum (SN 3H), or in the surface energy spectrum in the presence of a large Zeeman field (SN 2G). We will shortly demonstrate in the Experimental Signatures and Discussion section that the candidate helical HOTI β-MoTe 2 [46,49] realizes a spin-Weyl semimetal state with an even number of spin-Weyl points per half BZ for all choices of spin direction s in P sP , and hence lies in the DSTI regime of a helical HOTI (see SN 9B for further calculation details).

We will next consider two cases of spin-stable resolutions of helical HOTIs that can be formally expressed using a spin-resolved variant of the layer construction method for enumerating and analyzing symmetryprotected topological states [8,32,41]. Given an SSG, a symmetry-protected topological state is considered to be layer-constructable if its momentum-space band topology can be completely captured in a system composed of flat, parallel layers of lower-dimensional topological states that are placed a manner in which their boundary states are pairwise gapped while preserving all system symmetries. For T -invariant 3D TCI phases, the building blocks of layer constructions are 2D TIs and mirror TCIs [8,32,41]. In nonmagnetic SSG P 11 ′ (# 2.5) the layer construction of a helical HOTI consists of one Isymmetric 2D TI at the origin of the unit cell [the Iinvariant z = 0 plane in Fig. 4(a)] and one I-symmetric 2D TI in a real-space plane separated by a half-lattice translation from the origin [the I-invariant z = 1/2 plane in Fig. 4(a)].

In this work, we introduce a finer distinction for layer constructions in which the spin-orbital textures of the layers, and hence their spin-resolved topology, become additional knobs in the layer construction method. To formulate these spin-resolved layer constructions, we begin by considering a 3D SSG that additionally carries at least one conserved spin direction s at all points in space (e.g. s = s z symmetry). Formally, the full symmetry group of SSG symmetries and at least U(1) spin symmetry is isomorphic to a (nonmagnetic) "spin space group" [74]. The spin space groups are generally suitable for classifying the symmetry and topology of spin-wave excitations (magnons), for which minimal models represent a realistic approximation. However, the spin space groups are largely unsuitable for characterizing the electronic structure of solid-state materials, in which perfect spin-rotation symmetries are broken by phenomenologically distinct, symmetry-allowed contributions to the SOC, such as Ising and Rashba potentials [15,32,41,61]. With this in mind, we next introduce s-nonconserving SOC to break the conserved spin symmetry, but not in a manner strong enough to close a spin gap within any of the system layers. Hence, we may still classify the layer construction using the partial Chern numbers C ± of the occupied bands within each layer.

The simplest spin-resolved layer construction of a helical HOTI is one in which each 2D TI layer is spin-gapped for a spin direction s and carries the same spin-orbital texture, such that the ±-sector spin bands within each layer carry the same partial Chern numbers [Fig. 4(b)]. Through the definition of the 2D Z 2 invariant in Eq. (8), this implies that each layer carries the same spin Chern number satisfying C s mod 4 = 2. Because each unit cell carries a non-vanishing spin Chern number, then a helical HOTI constructed from identical 2D TI layers realizes a 3D QSHI state with an intrinsic bulk spin Hall response per unit cell that is nonvanishing (though also generically non-quantized due to the presence of snonconserving SOC). 3D QSHI states were previously predicted in the hourglass TCI KHgSb [9], distorted square-net compounds [11], and in the helical HOTI α-BiBr [10]. Indeed, our spin-resolved topological analysis of α-BiBr, detailed below and in SN 10, reveals that α-BiBr realizes a 3D QSHI state with a large bulk spin gap over a wide range of spin resolution directions.

However in this work, we recognize the existence of a second possible spin-resolved layer construction of an Iand T -symmetric helical HOTI. Instead of placing spingapped (for a spin direction s) 2D TI layers with the same partial Chern numbers in each I-invariant plane, we alternatingly place layers with oppositely signed odd partial Chern numbers that are identical in magnitude [Fig. 4(c)]. In this case, the total spin Chern number within each unit cell vanishes. However, this does not imply a trivial spin-electromagnetic response. Instead we recognize that per ± spin sector, the layer construction in Fig. 4(c) is identical to that of an I-protected magnetic AXI (see Supplementary Figure 19 and Refs. [32,33,41]). This implies that taken per ± sector (which reduce to the ↑, ↓ spin sectors in the limit of perfect s spin-rotation symmetry), the system carries an I-quantized partial axion angle θ ± = π, even though the total (charge) axion angle is trivial θ mod 2π = 0. Unlike the standard axion angle θ, which can be quantized by either I or T , the partial axion angles θ ± are quantized by I and exchanged (with a relative sign) by the action of T (θ ± → -θ ∓ under T , see SN 4D). In the same sense that the standard axion angle θ represents the 3D generalization of the 1D Berry phase (charge polarization) [35][36][37], the partial axion angles θ ± therefore represent the 3D generalizations of the 1D partial Berry phases (polarization) introduced by Fu and Kane in Ref. [66]. We term the new spin- [75] and because C + mod 2 = 1 in 2D TIs [7], the data in (a,b) indicate that the T -invariant gapped surfaces of T-DAXIs are not trivial, but rather carry anomalous halves of 2D TI states in a realization of a novel partial parity anomaly (SN 4D3). Importantly, perfect global I symmetry is not required to quantize θ ± = π in the bulk and realize anomalous surface halves of 2D TI states. To illustrate this, in (c) we show schematic layer constructions of a finite T-DAXI slab. [(c), upper schematic] An I-symmetric slab corresponding to the partial Chern number distribution in (a,b). [(c), lower schematic] The T-DAXI slab from the upper panel in (c). Adding an extra (non-anomalous) layer with C s = 2 (C + = 1) to the top surface of the system breaks global I symmetry, yielding a slab with a vanishing total spin Chern number. However because each surface still carries an anomalous half of a 2D TI, each surface under an applied magnetic field still exhibits an intrinsic (non-quantized) spin Hall response unaccompanied by a bulk response, resulting overall in a 3D spin-magnetoelectric effect (see SN 7C and Refs. [31,76]).

stable state characterized by θ ± = π the T-DAXI regime of a helical HOTI. To numerically verify the existence of I-quantized partial axion angles in the T-DAXI state, we applied the nested Wilson loop method for computing θ previously introduced in Ref. [30] to the spin spectrum of a modified (s z -nonconserving) implementation of the helical HOTI model formulated in Ref. [49] (see also Ref. [59]). As shown in Fig. 4(d) and documented in SN 4E, the I-symmetric nested spin-resolved Wilson spectrum exhibits odd chiral winding, indicating that θ ± = π. Through extensive nested spin-resolved Wilson loop calculations (see SN 10B), we find that the candidate helical HOTI α-BiBr realizes not only the aforementioned 3D QSHI state, but also the T-DAXI state introduced in this work.

In 3D AXIs, the bulk axion angle θ = π also has a deep relation to the physics and response of 2D surfaces. Specifically in isolated 2D systems, the parity anomaly dictates that there cannot exist an odd number of symmetry-stabilized twofold Dirac cones [28,35,70].

However the parity anomaly is circumvented on 2D interfaces (domain walls) between 3D insulators with θ = π (e.g. 3D TIs) and insulators with θ = 0 (typically the vacuum). Under the preservation of specific surface (interface) symmetries (such as T ), this leads to an odd number of symmetry-stabilized surface Dirac cones [17,18,30,33].

However, if the 2D surface does not preserve enough symmetries, then it becomes gapped. Crucially, this does not imply that the 2D surface is trivial. As the lowenergy 2D surface theory of a 3D θ = π phase originates from an unpaired, parity-anomaly-violating twofold Dirac cone (integer quantum Hall critical point), then the 2D surface of a 3D TI or AXI, when gapped, realizes an anomalous (noninteracting) half quantum Hall state [18,35]. In helical HOTIs, the gapped 2D surfaces are T -invariant, and hence have vanishing Hall conductivities [see the text preceding Eq. ( 8)]. One might therefore believe that the gapped 2D surfaces of helical HOTIs are trivial, or possibly carry integer 2D TI states, because a portion of the edges (hinges) between gapped HOTI surfaces exhibit 1D helical modes [Fig. 1(a,b)]. However, our discovery of I-quantized bulk partial axion angles θ ± = π in the T-DAXI state suggests that instead, each partial axion angle contributes a half-integer partial Chern number to each gapped 2D surface. This implies that each 2D surface of a T-DAXI (with θ ± = π obtained for a fixed spin direction s) hosts a T -invariant gapped state with an odd spin Chern number (C s mod 2 = 1), a value that cannot be realized in an isolated T -invariant noninteracting insulator with a spin gap (see Ref. [75] and SN 3C). Each gapped surface of a T-DAXI is hence equivalent to an anomalous half of an isolated 2D TI as a consequence of a novel partial parity anomaly. To numerically verify the existence of a surface partial parity anomaly in T-DAXIs, we implemented a spin-resolved partial variant of the position-space layer-resolved Chern number [36,37,77] (see SN 5 for calculation details). As shown in Fig. 5(a), the layer-resolved partial Chern number vanishes on the average in the bulk of a T-DAXI, and indeed saturates at anomalous half-integer values on its gapped surfaces.

We can draw several connections between the anomalous surfaces of T-DAXIs and previous works. First, anomalous halves of 2D TI states were previously predicted to occur on the top and bottom surfaces of weak TIs [78]; here, we recognize anomalous half 2D TI states to be more general features of helical HOTIs in the T-DAXI regime. Though T-DAXIs and globally Isymmetric models of spin-gapped weak TIs (with odd total numbers of 2D TI layers) both exhibit anomalous surface half 2D TI states, they are still distinguishable via bulk spin Hall measurements, provided that the intrinsic spin Hall response is dominated by the bulk topological contribution. Specifically, in weak TIs with a gap in P sP for a spin direction s, the topological contribution to the spin Hall conductance of a finite sample (for s-polarized spins) is extensive and carries a nonvanishing weight in each bulk unit cell. Conversely in a T-DAXI with a P sP gap for a spin direction s, the topological contribution to the spin Hall conductivity vanishes in the bulk and only manifests (anomalously) on 2D surfaces, and is hence independent of sample thickness [Fig. 5(a,b)]. A magnetic field applied to a T-DAXI will therefore induce a (non-quantized) spin Hall response (for s-polarized spins) on spatially separated (opposing) surfaces. If the spin Hall responses on the opposing surfaces are oppositely signed [which necessarily breaks global I symmetry, see Fig. 5(c) and Ref. [38]], the magnetic field will generate a spin separation with both a transverse and a parallel component with respect to the field. We term the novel response originating from the field-parallel spin separation the 3D spin-magnetoelectric effect. As we have only demonstrated the existence of the spinmagnetoelectric effect through layering and Thoulesspump arguments (SN 3G and 4D), a linear-response formulation of the spin-magnetoelectric effect in the presence of s-nonconserving SOC remains an exciting and urgent direction for future study.

The anomalous odd spin Chern number of the gapped surfaces of the T-DAXI state is also reminiscent of 3D bosonic TIs, for which each 2D surface carries an odd Chern number, a value that is anomalous because isolated 2D bosonic systems without topological order are required to have even Chern numbers [79,80]. Additionally, 3D symmetry-protected topological phases with anomalous 2D quantum spin Hall surface responses have been proposed in field-theoretic investigations, but were not previously associated to helical HOTIs [76]. Lastly, the gapless surface theories of other T -invariant 3D TCI phases, like twofold-rotation-anomaly TCIs (two twofold Dirac cones) [3,32,41] and the nonsymmorphic Dirac insulator (one fourfold Dirac cone) [28] can be deformed into the gapped surface theory of a helical HOTI by lowering the surface crystal symmetry without breaking T . This suggests that the symmetry-enhanced fermion doubling theorems circumvented in these TCI phases, which were deduced from crystal-symmetry constraints on band connectivity, may be expressible in the language of quantum field theory through the partial parity anomaly identified in this work.

Discussion

We conclude by discussing experimental signatures of spin-resolved band topology and avenues for future study. First, in SN 2G, we show that the spin bands of a spin-Weyl semimetal state computed for a spin direction s = s• n [Figs. 1(d) and 3] exhibit connectivity and topology related to that of the energy bands (in each spin sector) when a large Zeeman field B is applied parallel to s (B ∥ n). To explore the relationship between the energy and spin spectrum in a realistic spin-Weyl state, we performed ab-initio calculations on the layered transitionmetal dichalcogenide β-MoTe 2 [Fig. 6(a,c), see SN 9A for calculation details]. Previous theoretical works have predicted that β-MoTe 2 realizes an Iand T -protected helical HOTI phase [46,49], and previous experimental works have observed signatures of hinge-state-like 1D gapless channels in STM [50] and in supercurrent oscillation [51] probes of MoTe 2 . Through extensive spin-gap minimization calculations detailed in SN 9B, we find that for all choices of spin direction s, β-MoTe 2 realizes a spin-Weyl semimetal state with an even number of spin-Weyl nodes in each half of the BZ. For the particularly simple case in which s is chosen to be:

s xz = 1 √ 2 (s x + s z ) , (13) 
we specifically find that the spin spectrum is gapped along all high-symmetry lines [Fig. 6 overall, β-MoTe 2 lies in the DSTI regime of a helical HOTI state (see SN 3E, 4D, and 9B).

When we theoretically apply a (very) large Zeeman field B ∥ s xz (|B| = 100eV) to our Wannier-based tightbinding model of β-MoTe 2 , we observe that the spin-Weyl nodes continuously evolve into bulk Weyl nodes at energies E ≈ ±|B|, as shown in Fig. 7(a,b) for energies close to -|B|. The presence of Weyl nodes in the energy spectrum implies that the surface spectrum computed at the energy of the Weyl nodes should exhibit topological surface Fermi arcs. Focusing on the experimentally accessible (001)-surface of β-MoTe 2 (see Ref. [49] and SN 9C), we compute the surface Green's function in the presence of a strong (x + ẑ)-directed Zeeman field [Fig. 7(c)]. Consistent with our predictions, we observe topological surface Fermi arcs crossing the bulk (indirect) gap [Fig. 7(d)].

To observe and characterize spin-gapped phases under real-material conditions, we next perform a detailed analysis of the (spin-resolved) topology and spinelectromagnetic response of the quasi-1D candidate HOTI α-BiBr [Fig. 8(a,b,c), see SN 10 calculation details] [6,10], for which angle-resolved photoemission spectroscopy (ARPES) and STM experiments have revealed signatures of 1D helical hinge states that persist to room temperature [53,54]. Prior to computing the spin- resolved topology of α-BiBr, we first probe its (hybrid) Wannier spectrum by computing the Iand T -symmetric nested Wilson loop of the occupied bands (SN 10B).

Our nested Wilson loop calculations on α-BiBr reveal the characteristic higher-order (nested Wilson) spectral flow of a helical HOTI. This finding itself represents a significant result, as nested Wilson loop calculations on ab-initio-derived electronic structures remain exceedingly rare, with a noteworthy previous example being the identification of a non-symmetry-indicated helical HOTI state in noncentrosymmetric (I-broken) γ-MoTe 2 via a pattern of helical nested Wilson loop flow similar to that in α-BiBr (but protected by distinct symmetries, as α-BiBr is centrosymmetric) [49].

We next compute the spin gap for α-BiBr over the complete range of spin resolution directions s. Unlike previously for β-MoTe 2 (SN 9B), we find that α-BiBr is spin-gapped for nearly all spin resolution directions (SN 10B). In particular, when restricting s to lie in the xz-plane [perpendicular to the y-directed chains in its crystal structure, see Fig. 8(a)], we observe that the spin gap in α-BiBr only closes in four extremely narrow spingapless (spin-Weyl) regions, which are indicated in green in Fig. 8(d). We observe that the s z spin gap in α-BiBr is large (∆ sz ≈ 0.93, ≈ 46% of the maximal value ∆ s = 2), and is much larger than the s x spin gap (∆ sx ≈ 0.26). This is consistent with earlier first-principles investigations of α-BiBr, which found the spin-electromagnetic (Rashba-Edelstein) response of its (010)-surface states to be strongly polarized in the z-direction relative to the x-direction [10]. We further find that overall, the global spin gap in α-BiBr peaks at a similarly large value (∆ s ≈ 0.95) and lies within ≈ 3 degrees of the a 3 ∥ c lattice vector [Fig. 8(a)], indicating that the bulk spinorbital texture in α-BiBr is dominated by contributions that are almost entirely polarized along the c-axis. As discussed earlier, similar SOC textures that are polarized along a high-symmetry (out-of-plane) crystallographic axis in 2D materials have been termed Ising SOC [61]. The appearance of a large bulk spin gap nearly locked to a crystallographic axis in α-BiBr [Fig. 8(d)] suggests that it would be intriguing to investigate the microscopic mechanism of the SOC in α-BiBr in future theoretical studies, and to study the spin-resolved response of α-BiBr in future photoemission and transport experiments, which may exhibit an unusually high degree of spin polarization relative to other strongly spin-orbit-coupled 3D materials.

Through (nested) spin-resolved Wilson loop calculations detailed in SN 10B, we find that the four spingapped regions in the spin-resolved topological phase diagram of α-BiBr [Fig. 8(d)] respectively correspond to two wide ν ± z = ∓2 3D QSHI regions [see Fig. 1(c)] with large spin gaps centered around s = ±s z , and two narrower ν ±

x,y,z = 0, θ ± = π T-DAXI regions with relatively smaller spin gaps centered around s = ±s x . For completeness, we note that because spins lying in the xz-plane are left invariant under the E • B-odd C 2y × T antiunitary rotation symmetry of α-BiBr (see SN 10A), then the nontrivial partial axion angles θ ± = π in the T-DAXI regime of α-BiBr in Fig. 8(d) could alternatively be interpreted as quantized by the "rotation-anomaly" symmetry C 2y × T , rather than I [3,30].

To demonstrate physical signatures of nontrivial spinresolved topology in α-BiBr, we next compute the intrinsic bulk spin Hall conductivity (per unit cell) in the . This result suggests a highly anisotropic spin Hall response in α-BiBr that interpolates between a large, extensive bulk contribution for s z spin transport to a small, surface-dominated contribution for s x spin transport. Given that α-BiBr is readily synthesizable [53,54], the anisotropic spin-electromagnetic response predicted in this work should be accessible through straightforward (inverse) spin Hall measurements that are achievable within a short timeframe.

In addition to the spin Hall response of QSHI states [Fig. 2(c)] and Zeeman-induced surface Fermi arcs in spin-Weyl states (Fig. 6), spin-resolved topology may be experimentally accessed through terahertz measurements of the spin-magnetoelectric response of helical HOTIs in the T-DAXI regime, such as α-BiBr for s ≈ s x -polarized spins [see Fig. 5(b,c), Fig. 8(d), and SN 10B]. A spin imbalance at the surface of a T-DAXI will yield a nonquantized charge (electromagnetic) Hall response due to a lack of compensation between states with opposite partial Chern numbers. As depicted in Fig. 1(e), when s-nonconserving SOC is weak, we can describe the surface of a helical HOTI in the T-DAXI regime in terms of a massive fourfold Dirac cone (two bands per spin) with weak spin mixing [28,49]. In this scenario, the spin-up surface bands hence carry an anomalous Chern number 1/2 + n, and the spin-down surface bands correspondingly carry an anomalous Chern number -1/2-n, where n ∈ Z. Selectively depopulating one spin species will hence yield a surface Fermi surface with a nonvanishing anomalous Hall conductivity [37]. By analogy with previous optical experiments performed on 3D TIs with magnetically gapped surface states [38,39], a surface anomalous Hall conductivity can be measured through the Kerr and Faraday rotation of a terahertz probe.

A spin imbalance on the gapped surface of a T-DAXI can either be realized through selective excitation across the surface band gap using circularly polarized light (similar to optical experiments performed on monolayer transition-metal dichalcogenides and associated heterostructures [81]), or by spin injection using an adjoining magnetic transducer layer [82]. We expect the measured Faraday and Kerr rotation to vary linearly with the induced spin imbalance. Given that both the surface and the bulk are gapped, a spin-magnetoelectric response controlled by a spin imbalance could enable electric-fieldtunable terahertz and infrared polarization modulators with nearly perfect transmission.

Furthermore, we note that the spin spectrum itself could be directly probed through generalizations of spin-ARPES (S-ARPES). Typical S-ARPES resolves the spin polarizations of individual bands, which are related to diagonal matrix elements of the P sP operator. S-ARPES experiments have previously been performed on the candidate spin-Weyl semimetal β-MoTe 2 identified in this work [83], and should be revisited in the context of spinresolved topology. To fully resolve the spin spectrum experimentally, the off-diagonal matrix elements of P sP between occupied states must also be measured. However, this would would require measuring the spin-dependent transition probability between pairs of occupied states. While such a measurement is currently beyond existing photoemission methods, recent proposals on double and pair photoemission spectroscopy [84,85] may provide a promising and exciting path forward, provided that they can be developed with Mott-or very low energy electrondiffraction-based spin detection.

Further material candidates in the T-DAXI, spin-Weyl semimetal, or 3D QSHI regimes may be identifiable among centrosymmetric, exfoliable materials with narrow band gaps and the SIs of a helical HOTI [see SN 4D and the text surrounding Eq. ( 11)], such as ZrTe 2 [48]. Dimensional reduction through exfoliation, as well as substitutional doping (i.e. Br/I, Zr/Hf, and Se/Te) to tune SOC can be explored to open a gap at the Fermi level in metallic material candidates. Surface passivation can also be explored to drive insulating behavior in metallic candidate materials, similar to the case of Al on Bi 2 Te 3 [86]. Though we have largely focused on solid-state realizations of spin-resolved topology, cold atoms have recently been employed to mimic 2D QSHI phases [87], and hence may also serve as promising platforms for engineering the 3D T-DAXI states identified in this work.

Finally, our findings suggest several intriguing future directions. We have introduced a predictive framework for linking novel low-energy response theories to gaugeinvariant quantities obtained from real-material calculations. Despite our progress unraveling the bulk and surface theories of Iand T -symmetric helical HOTIs, and despite other promising early efforts [88,89], there remain numerous other noninteracting TCI phases-such as SU(2)-doubled magnetic AXIs [31,49] and fourfoldrotation-anomaly TCIs like SnTe [1,3]-for which the bulk response theories are largely unknown. Additionally, while we focused on resolving band topology through the spin degree of freedom, the methods introduced in this work can straightforwardly be extended to sublattice (pseudospin), orbital, and layer degrees of freedom to predict new valleytronic and layertronic effects, such as valley-and spin-resolved generalizations of the layer Hall response recently observed in the antiferromagnetic AXI MnBi 2 Te 4 [90]. The (inverse) spin Hall effect is also measurable in magnetic systems [62], and is arguably richer in magnets because it can be coupled to switchable magnetic order [91]. Therefore, it stands as an exciting future direction to determine whether there exist 3D magnetic materials that exhibit the axionic (inverse) spin-magnetoelectric responses introduced in this work, as well as to determine how the spin-magnetoelectric responses of such magnetic materials relate to recently introduced theories of magnetoelectric multipoles [92,93]. Furthermore, using the position-space formulations of the partial Chern numbers and partial axion angles (via layered partial Chern numbers), one can straightforwardly extend the spin-resolved topological quantities introduced in this work to the interacting setting using twisted spin boundary conditions [7,72]. Lastly, the spin-resolved generalizations of the axion angle and parity anomaly numerically identified in this work may also admit analytic descriptions in the languages of Berry connections and quantum field theory, which we hope to explore in future studies.

Methods

We here summarize the properties of the projected spin operator and the construction of spin-resolved and nested spin-resolved Wilson loops. We further provide a brief summary of the computation of layer-resolved partial Chern numbers and summarize our implementation of the Kubo formula for computing the spin-Hall conductivity. Lastly, we review the methods used for our ab-initio calculations of the electronic and spin spectrum of β-MoTe 2 and α-BiBr. Complete details of our research methodology can be found in the extensive Supplementary Notes.

Summary of Properties of the Projected Spin

Operator: Consider a 2N × 2N matrix Bloch Hamiltonian H(k). H(k) acts on a Hilbert space consisting of N spin-degenerate orbitals per unit cell (see SN 2A). Letting the Pauli matrices σ i act on the spin degrees of freedom, we can define the spin operators

s i ≡ σ i ⊗ I N , (14) 
where I N is the N × N identity matrix acting in the orbital subspace of the entire Hilbert space (including both occupied and unoccupied states). Letting P (k) represent the projector onto a set of "occupied" energy eigenstates at k, we can then form the projected spin operator

P sP ≡ P (k)n • sP (k), (15) 
for any choice of unit vector n (see SN 2B). For notational convenience, we have frequently throughout this work suppressed the k-dependence of P sP when our discussion applies to both finite and infinite systems. When we are considering translationally-invariant systems, the projection operator P is taken to be a 2N × 2N kdependent matrix where 2N is the number of spinful orbitals within each unit cell. The spin operator s i is hence a k-independent 2N × 2N matrix. When we are considering finite systems with open boundary conditions, the projection operator P and the spin operator s i are both taken to be 2N × 2N k-independent matrices, where 2N is the number of spinful orbitals in the entire finite system.

In SN 2 we prove that the spectrum of the projected spin operator P sP is gauge-invariant and changes continuously under perturbations of the Hamiltonian. This implies that the spectrum of P sP is a well-defined and perturbatively robust physical object in an insulator or for energetically isolated bands. For either the occupied bands of an insulator, or more generally a set of energetically isolated bands, we can write the projector P (k) as

P (k) = P + (k) + P -(k), (16) 
where P + (k) is the projection operator onto a subset of P sP eigenstates with largest eigenvalue, and P -(k) is the projector onto the remaining P sP eigenstates. For the spin-compensated systems considered in this work, we have typically taken the rank of P + (k) to be equal to the rank of P -(k), such that the decomposition in Eq. ( 16) partitions the occupied states into two equal sets. We then define a spin gap to exist when, for every k, the smallest P sP eigenvalue for states in the image of P + (k) is distinct from the largest P sP eigenvalue for states in the image of P -(k). Summary of the Spin-Resolved and Nested Spin-Resolved Wilson Loop Methods: For systems with a spin gap, we can use the projection operators P + (k) and P -(k) to define Wilson loops. Specifically, we can write the matrix of P ± (k) in the tight-binding Hilbert space in a basis of eigenstates |u ± n,k ⟩ of P sP as

[P ± (k)] = N ± occ n=1 |u ± n,k ⟩⟨u ± n,k |, (17) 
where the square brackets indicate that [P ± (k)] is a 2N × 2N matrix. The occupied-space matrix projector [P (k)] is then equal to

[P + (k)] + [P -(k)] where [P + (k)][P -(k)] = 0.
The corresponding holonomy matrix for [P ± (k)] starting at a base point k and continuing along a straight-line path to k + G (where G is a primitive reciprocal lattice vector)-which we term the P ± -Wilson loop matrix (or the spin-resolved Wilson loop matrix, see SN 3B)-is then given by the path-ordered product

[W ± 1,k,G ] m,n = ⟨u ± m,k+G | k+G←k q [P ± (q)] |u ± n,k ⟩. ( 18 
)
In SN 3 we show that [W ± 1,k,G ] is a unitary matrix with eigenvalues e i(γ ± 1 ) j,k,G . From this, we define the partial Chern numbers C ± to respectively be equal to the winding numbers of j (γ ± 1 ) j,k,G as functions of momenta perpendicular to G (see SN 3C for further details).

Going further, we can write the eigenvectors of

[W ± 1,k,G ] as [ν ± j,k,G ] m , which satisfy [W ± 1,k,G ][ν ± j,k,G ] = e i(γ ± 1 ) j,k,G [ν ± j,k,G ]. (19) 
In the Bloch basis, we can then express the P ± -Wannier band eigenstates as

|w ± j,k,G ⟩ = N ± occ m=1 [ν ± j,k,G ] m |u ± m,k ⟩. ( 20 
)
If there is a gap between the eigenvalues e i(γ ± 1 ) j,k,G , we can choose a subset j = 1, . . . N ± W of Wilson loop eigenstates on which to form the P ± -Wannier band projector

[ P ± G (k)] = N ± W j=1 |w ± j,k,G ⟩⟨w ± j,k,G |. (21) 
Lastly from Eq. ( 21), we then define the nested spinresolved Wilson loops as the holonomy matrices that correspond to the P ± -Wannier band projectors [

P ± G (k)]. Concretely, the nested spin-resolved Wilson loop matrix [W ± 2,k,G,G ′ ] (see SN 4B) is given by [W ± 2,k,G,G ′ ] i,j = ⟨w ± i,k+G ′ ,G |   k+G ′ ←k q [ P ± G (q)]   |w ± j,k,G ⟩. (22) 
In SN 4C, we further show that the spectrum of the nested spin-resolved Wilson loop defines the nested partial Chern numbers, by analogy to the partial Chern numbers defined above in the text following Eq. (18).

Summary of the Layer-Resolved Partial Chern Number Calculation Method: We begin by considering a 3D system with the primitive Bravais lattice vectors {a j , a l , a i }. We next cut our system into a slab geometry with N i unit cells (slab layers) along the (now-finite) a i direction, while keeping the system infinite along a j and a l . We take there to be N sta = 2N orb tight-binding basis states per unit cell, where the factor of 2 accounts for the on-site (internal) spin-1/2 degree of freedom. In this basis, the spin operator oriented in a spin direction n is defined as s ≡ n • σ ⊗ I N orb ⊗ I Ni , where the Pauli matrices σ act on the spin-1/2 degree of freedom, and where I N orb and I Ni are identity matrices that respectively act on the orbital and unit cell (layer) degrees of freedom. We next denote the projection operator onto the occupied energy bands of the finite slab at the 2D crystal momentum k = (k j , k l ) as P (k). The projector P (k) can then be decomposed using the projected spin operator P sP via Eq. ( 16).

Using each projector P ± (k), we next obtain the partial Chern number of the finite 2D slab through (see SN 3C)

C ± jl = -i 2π dk Tr P ± (k) ∂P ± (k) ∂k j , ∂P ± (k) ∂k l , (23) 
where the integral in k is performed over the 2D BZ of the slab, and where the matrix trace (Tr) is performed over both the N i unit cells (layers) and the 2N orb tightbinding basis states per unit cell. Using Eq. ( 23), we may further define a layer-resolved partial Chern number C ± jl (n i ) by expanding the matrix trace in the tightbinding basis and then re-summing (tracing) only over the degrees of freedom within each layer (see SN 5D for further details). The layer-resolved partial Chern number C ± jl (n i ) specifically quantifies how the partial Chern number of a 2D slab is distributed over the N i unit cells (layers) in the finite slab, and can be viewed as the spinresolved generalization of the well-established positionspace (layer-resolved) Chern number [36,37,77].

Spin-Hall Conductivity: As detailed in SN 7, the spin conductivity tensor σ s,i µν parametrizes the linear response of the spin current J s,i to an applied DC electric field E via

⟨J s,i µ ⟩ = ν σ s,i µν E ν . (24) 
Here µ and ν index spatial coordinates, and i = x, y, z indexes the spin direction. The spin conductivity can then be evaluated using the standard Kubo formula

σ s,i µν = lim ϵ→0 ∞ 0 dt⟨ J s,i µ (t), X ν (0) ⟩e -ϵt , (25) 
where X ν is the ν component of the position operator (which couples to the external electric field in the Hamiltonian), the time-dependence of operators is evaluated in the Heisenberg picture using the unperturbed (E = 0) Hamiltonian H 0 , and the average is computed with respect to the unperturbed ground state. We next define the spin current operator to be

J s,i µ = ∂ ∂t X µ s i = i H 0 , X µ s i . (26) 
From Eqs. ( 25) and ( 26), we then define the spin Hall conductivity to be the antisymmetric part of the spin conductivity tensor. To numerically evaluate Eq. ( 25) for a tight-binding model, we work in a hybrid Wannier basis following the approach of Ref. [94]. For a semi-infinite 3D system consisting of a finite number of 2D layers, this also allows us to define a layer-resolved spin Hall conductivity as the integrand of Eq. ( 25) before taking the sum over layers (see SN 7C).

Ab-Initio Calculation Details: We here detail our first-principles (DFT) calculations for β-MoTe 2 and α-BiBr. First, as detailed in SN 9, our first-principles calculations for β-MoTe 2 were performed within the DFT framework using the projector-augmented wave (PAW) method [95,96] as implemented in the Vienna ab-initio simulation package (VASP) [97,98]. In our DFT calculations for β-MoTe 2 , we adopted the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation exchange-correlation functional [99], and SOC was incorporated self-consistently. The cutoff energy for the plane-wave expansion was 400 eV, and 0.03 × 2π Å-1 k-point sampling grids were used in the self-consistent process.

To analyze the spin-resolved band topology, we constructed a symmetric, Wannier-based tight-binding model fit to the electronic structure of β-MoTe 2 obtained from our DFT calculations. We constructed symmetric Wannier functions for the bands near the Fermi energy E F in β-MoTe 2 by using the Wannier90 package [100] for the Mo 4d and the Te 5p orbitals, and then performing a subsequent SG symmetrization using WannierTools [101]. We denote the Hamiltonian of the Wannier-based tight-binding model as [H MoTe2 ]. The single-particle Hilbert space of [H MoTe2 ] consists of 44 spinful Wannier functions per unit cell; the Bloch Hamiltonian [H MoTe2 (k)] is therefore an 88 × 88 matrix. To reduce the computational resources required for our spinresolved and Wilson loop calculations, we next truncated [H MoTe2 ] to only contain hopping terms with an absolute magnitude greater than or equal to 0.001eV. We have confirmed that this truncation affects neither the band ordering nor the qualitative features of the band structure near the Fermi energy in β-MoTe 2 (see SN 9A for complete calculation details).

Next, as detailed in SN 10, our first-principles calculations for α-BiBr were also performed within the DFT framework using the PAW method [95,96] as implemented in VASP [97,98]. In our DFT calculations for α-BiBr, we similarly adopted the PBE generalized gradient approximation exchange-correlations functional [99], and SOC was also incorporated self-consistently. The cutoff energy for the plane-wave expansion was 400eV, and 0.03 × 2π Å-1 k-point sampling grids were used in the self-consistent process.

To analyze the spin-resolved band topology of α-BiBr, we next constructed a symmetric, Wannier-based tightbinding model fit to the electronic structure of α-BiBr obtained from our DFT calculations. We specifically constructed symmetric Wannier functions for the bands near E F in α-BiBr by using the Wannier90 package [100] for the Bi 6p and the Br 4p orbitals, and then performing a subsequent SG symmetrization using Wannier-Tools [101]. We denote the tight-binding Hamiltonian of the Wannier-based tight-binding model as H BiBr . The single-particle Hilbert space of H BiBr consists of 48 spinful Wannier functions per primitive (unit) cell; the Bloch Hamiltonian [H BiBr (k)] is therefore a 96 × 96 matrix, To reduce the computational resources required for our spinresolved and Wilson loop tight-binding calculations, we then truncated [H BiBr (k)] to only contain hopping terms with an absolute magnitude greater than or equal to 0.001eV. We have confirmed that the truncated Wannierbased tight-binding model exhibits the same band ordering and qualitative features as the first-principles electronic structure of α-BiBr (see SN 10A for complete calculation details).

Data Availability

The data supporting the theoretical findings of this study are available within the paper and as code examples in the nested and spin resolved Wilson loop [59] repository. All first-principles calculations were performed using CIF structure files with the experimental lattice parameters, which can be obtained from the Inorganic Crystal Structure Database (ICSD) [102] using the accession numbers provided in SN 8.

Code Availability

The spin-resolved tight-binding and (nested) Wilson loop calculations in this work were performed using the freely available Python package nested and spin resolved Wilson loop [59], which represents an extension of the PythTB opensource Python tight-binding package [103] that was implemented and utilized for the preparation of Refs. [30,60], and was then greatly expanded for the present work. rent with the preparation of this work, a bulk spinmagnetoelectric response and anomalous surface halves of 2D TI states were detected in helical HOTIs in Ref. [31] through numerical studies of the charge and spin bound to threaded magnetic flux. During the preparation of this work, spin-resolved topology was also explored in 2D antimonene and bismuthene [104,105]. Additionally, during the preparation of this work, a semiclassical treat-ment of a spinor-axion response was explored in relation to HOTIs in Ref. [106]. After the initial submission of this work, nontrivial (pseudo)spin-resolved partial axion angles were also identified in magnetic helical TCIs in Ref. [107] by implementing the method proposed in the present work. Lastly, after the submission of this work, the spin texture of α-BiBr was measured through spin-ARPES experiments [108], and showed close agreement with the DFT-based spin gap calculations performed in this work. 

SUPPLEMENTARY NOTES 1. INTRODUCTION TO THE SUPPLEMENTARY NOTES

In this section, we provide a guide to the Supplementary Notes, and summarize the main results of this work. We begin in Supplementary Note (SN) 2 with a discussion of the general properties of projected spin operators, building on the formalism introduced by Prodan in Supplementary Reference (SRef.) [1]. In SN 2 A, we first review the notation that we will use for states and operators in tight-binding models. The tight-binding models that we consider in this work include both physically motivated toy models as well as systematically constructed, Wannierbased tight-binding truncations that reproduce a set of bands in a real material. Next, in SN 2 B, we introduce the projected spin operator P sP . We show how the projected spin operator can be defined in terms of a projector onto a set of "occupied" (Bloch) states and a choice of spin direction s = s • n. For periodic systems, we introduce the spin band structure (spin spectrum), which we define through the gauge-invariant eigenvalues of the projected spin operator. We examine constraints imposed on the spin operator and the spin spectrum by time-reversal and crystal symmetries, and provide a precise definition of a spin gap in the spin spectrum. In SN 2 C, we show how to compute changes to the spin band structure order by order in perturbations to the Hamiltonian. This expansion establishes the spin band structure as a well-defined, perturbatively-robust physical object in an insulator given a choice of spin direction. In particular in SN 2 C, we show that perturbations to the Hamiltonian induce smooth and bounded changes to the spin band structure. Building from this result, we then show in SN 2 D that the smallest nontrivial eigenvalue of the projected spin operator-which determines the spin gap in the presence of bulk inversion and time-reversal symmetries-places a bound on the relaxation time for spin-flip excitations in an insulating material.

Exploiting the fact that the energy and spin gaps are robust to perturbations, we continue in SN 2 E by defining the concept of spin-resolved band topology, beginning with an explicit calculation of the spin band structure for a simple model of a three-dimensional (3D) inversion-and time-reversal-symmetric topological insulator (TI). We review the notion of spin-resolved partial Berry curvature as a 2D extension of the partial polarization introduced in SRefs. [1,2]. This allows us to introduce in SN 2 E a formulation of partial Chern numbers, defined as the Chern numbers computed separately for the spin bands in each half of a gapped spin spectrum. We next argue that in a 3D insulator, there can exist linearly-dispersing, twofold degeneracies in the spin spectrum-which we term spin-Weyl nodes-that act as monopole sources of partial Chern number. Spin-Weyl nodes are hence analogous to (energy) Weyl nodes, which act as monopole sources of ordinary (total, i.e. charge) Chern number. We then prove that 3D TIs must generically have an odd number of spin-Weyl nodes in their spin band structures in each half of the Brillouin zone (BZ).

In SN 2 F, we next explore how entanglement between spin and orbital degrees of freedom can affect the spin band structure, focusing on the effect of the choice of spin direction s in P sP . Then, in SN 2 G, we derive a relationship between the spin band structure and the (energy) band structure in the presence of a strong Zeeman field. We rigorously show that the band structure for a spectrally flattened Hamiltonian in the presence of a strong Zeeman field is adiabatically deformable to the spin band structure. Going further, we argue that in many cases, we can extend the correspondence and link the spin band structure to the energy spectrum without spectral flattening, allowing us to relate the topology and connectivity of bands in the spin spectrum to the topology and connectivity of bands in the energy system for an insulator in the presence of a strong Zeeman field. Using this result, we argue in SN 2 G that a 3D TI (spin-Weyl semimetal) in a strong Zeeman field will generically have low-energy Weyl nodes in the energy spectrum, which can be adiabatically connected to spin-Weyl nodes in the spin band structure.

In SN 3 we continue our study of the topology of spin bands by introducing a general formalism for computing spin-resolved topological invariants. We begin in SN 3 A with a short review of the ordinary Wilson loop (non-Abelian Berry phase) for a set of occupied states [3][4][5]. Then, in SN 3 B we use the spin band structure to define a spinresolved Wilson loop for systems with a spin gap, where the "occupied" states are taken to be the spin bands in one half of the spin spectrum of an insulator with a spin gap. Crucially, our formalism for spin-resolved topology does not require the system to carry a conserved spin direction (i.e. s z symmetry); the notion of spin-resolved band topology introduced in this work remains valid when spin-conservation symmetry is broken by spin-orbit coupling (SOC), which typically cannot be neglected in real materials [6]. In SN 3 C we show how the partial Chern numbers first introduced in SN 2 E can be computed from the eigenphases of the spin-resolved Wilson loop. Making contact with prior work, we then show how the partial Chern numbers computed in this work can be used to compute the spin Chern numbers introduced in SRefs. [1,2,7]. By applying our definition of the partial Chern number to the Kubo formula for spin Hall conductivity, we further show that nontrivial partial Chern numbers indicate the presence of an intrinsic, topological contribution to the spin Hall conductivity, even in systems where spin conservation is (weakly) broken by SOC.

Having established a formal definition for the spin-resolved Wilson loop, we next consider several illustrative examples of band topology identifiable from spectral flow in the (first) spin-resolved Wilson loop. In SN 3 D, we begin by applying our spin-resolved Wilson loop formalism to the case of 2D time-reversal-invariant TIs. We specifically review the results of SRef. [1], in which it was shown that the partial Chern numbers of the occupied bands of an insulator can only change by even integers when a spin gap closes, noting that spin gap closures are typically unaccompanied by energy gap closures. Using this result, we demonstrate that in the presence of time-reversal symmetry, the parity of the partial Chern number cannot change without closing an energy gap, and hence provides an alternative definition of the Kane-Mele Z 2 index for 2D insulators with spinful time-reversal symmetry. In SN 3 E and 3 F we next compute the spin-resolved Wilson loops for models of a time-reversal-invariant 3D TI both with and without spatially inversion symmetry. We numerically confirm the presence of an odd number of spin-Weyl nodes in each half of the BZ, consistent with the theoretical result established in SN 2 E. We additionally numerically demonstrate that the spin-Weyl nodes act as sources and sinks of partial Berry curvature. In SN 3 G, we next examine the spin-resolved Wilson loops of the model of a 2D fourfold-rotation-and time-reversal-symmetric fragile topological insulator first introduced in SRef. [8]. We demonstrate that the topologically fragile model has a nonzero even partial Chern number, which we find to be stable to the addition of trivial bands to P sP (bands with vanishing partial Chern numbers), provided that the spin gap remains open as the trivial bands are coupled to the system. This motivates introducing a refined notion of band topology for bands within the spin spectrum, which we term "spin-stable" topology. Systems with inequivalent spin-stable topology have spin band structures that cannot be adiabatically deformed into each other without breaking a symmetry or closing either an energy gap or a spin gap. As we show in SN 3 G, this definition is physically motivated, as systems with distinct spin-stable topology exhibit different spin-electromagnetic responses, even if they share the same electronic band topology without spin resolution. In SN 3 H, we then formulate a notion of a spin-resolved entanglement spectrum by restricting the projector onto the lower (or upper) spin bands to one half of a system in position space. We show that this particular formulation of the spin entanglement spectrum is homotopic to the spectrum of the spin-resolved Wilson loop taken in the direction perpendicular to the position-space bipartition. We demonstrate this concretely by computing the spin entanglement spectrum for a 2D TI (which features chiral modes in the entanglement spectrum), a 3D TI (which features Fermi arcs in the entanglement spectrum emanating from spin-Weyl nodes), and the spin-stable 2D fragile model from SRef. [8] (which features a pair of chiral modes signifying an even partial Chern number). Our results are also relevant to ongoing experimental efforts exploring the interplay between spin and topology in quantum materials [9][10][11][12].

In SN 4, we use the projected spin operator to study crystal-symmetry-protected, spin-stable topology in 3D insulators, which we accomplish by computing nested Wilson loops. We begin in SN 4 A by reviewing the nested Wilson loop formalism of SRefs. [13][14][15]. We review how the Wilson loop matrix from SN 3 A defines a set of Wannier bands and show that if there is a gap in the Wilson loop spectrum, we can compute a second (nested) Wilson loop by projecting onto a subset of the Wannier bands. We pay particular attention to the numerical subtleties involved in calculating the projector onto subsets of Wannier bands, and introduce a robust method for computing the nested Wilson loop in tight-binding models. In SN 4 B we define a nested spin-resolved Wilson loop by first identifying the eigenstates of the spin-resolved Wilson loop as spin-resolved Wannier bands (i.e. the Wannier bands of the Wilson loop computed using the spin bands of P sP ). We then define the nested spin-resolved Wilson loop as the Wilson loop computed for a projector onto a subset of the spin-resolved Wannier bands.

We continue in SN 4 C by discussing general properties of nested (spin-resolved) Wilson loops and the relationship between the nested (spin-resolved) Wilson spectrum and (spin-stable) bulk topology. In SN 4 C 1 and 4 C 2, we establish that in systems with an energy gap and a (spin-resolved) Wannier gap, the nested (partial) Wilson loop eigenvalues can have nonzero winding numbers as functions of at most one crystal momentum. This result, which was implicit in SRefs. [15,16], allows us to define a nested (partial) Chern number independent of the base point used to define the nested Wilson loop. Using this result, in SN 4 C 3 we show that the sum of the nested (partial) Chern numbers over all sets of (spin-resolved) Wannier bands gives the weak (partial) Chern number of the occupied bands. In SN 4 C 4 we specialize to systems with both inversion and time-reversal symmetry. We show that for insulators with these symmetries, the nested partial Chern number can only change by an even number when a gap in the spin-resolved Wannier spectrum closes and reopens (provided that the spin gap and energy gap remain open). We then relate this result to established topological phases, most notably the topological crystalline insulating states that have become known as higher-order TIs (HOTIs) .

We next consider the position-space implications of our nested (spin-resolved) Wilson loop calculations. In SN 4 D we formulate a precise relationship between the nested spin-resolved Wilson loop and a novel notion of spin-resolved layer constructions of 3D spin-stable topological phases, generalizing the approach of SRefs. [33,[42][43][44]. We specifically show that the layer constructions for spin-stable topological phases with inversion and time-reversal symmetry can be obtained from the layer constructions for magnetic topological insulators with inversion symmetry, which were previously discussed in SRefs. [43][44][45][46]. We show how spin-stable topology refines the standard classification of topological phases by focusing on the representative example of a helical HOTI, a phase of matter whose boundary-independent bulk characterization and response have eluded earlier investigations [47][48][49][50]. A boundary-independent characterization of helical HOTIs is urgently needed to better understand ongoing experimental and theoretical studies [19,, whose results prior to this study could only be interpreted through the language of 1D helical hinge modes, which manifest in configurations dependent on sample details and surface physics. In SN 4 D, we show that there exist two physically distinguishable spin-stable, spin-resolved layer-constructable topological phases that can both be adiabatically connected to the layer construction of a helical HOTI. The first spin-stable, spin-gapped layer-constructable state is a 3D quantum spin Hall insulator (QSHI) [75], which has an extensively large topological contribution to the spin Hall conductivity in a finite sample. Previous investigations have recognized the possibility of 3D QSHI states in time-reversal-invariant 3D topological crystalline phases [75,76].

However, there also exists a second, previously unrecognized spin-stable and spin-gapped helical HOTI formed from a time-reversal-doubled magnetic axion insulator. The time-reversal-doubled axion insulator (T-DAXI) state can specifically be viewed as a superposition of two magnetic axion insulators, where each magnetic axion insulator originates from bands within each half of the spin spectrum (i.e. two superposed magnetic axion insulators with timereversed spin-orbital textures). We relate this result to the case of a 3D TI or magnetic axion insulator, which are both characterized by quantized magnetoelectric theta angles θ = π (where θ is defined modulo 2π) [15,16,31,34,[36][37][38][39][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96]. In particular, θ transforms like E • B, where E is the electric field and B is the magnetic field, and is hence quantized by any symmetry, such as inversion or time-reversal, that takes E • B → -E • B. Using this well-established classification of axionic insulators, we demonstrate in SN 4 D that the spin bands in each half of the spin spectrum in a T-DAXI are characterized by a novel topological quantity: a nontrivial partial axion angle θ ± = π. In the case of the T-DAXI regime of an inversion-and time-reversal-protected helical HOTI, we find that θ ± are individually quantized by inversion symmetry, and related by time-reversal. We conclude SN 4 D by showing that the adiabatic deformation between a T-DAXI and a 3D QSHI involves an intermediate spin-stable (but spin-gapless) phase with an even number of spin-Weyl points in each half of the BZ; we show that this "spin-Weyl semimetal" regime is equivalent to the "doubled strong TI" (DSTI) construction of a helical HOTI introduced in SRef. [17]. In SN 4 E, we confirm our theoretical analysis by numerically computing the nested spin-resolved Wilson loops for the model of a 3D helical HOTI introduced in SRef. [15]. We first show that the simple eight-band model exhibits a novel form of "spin-fragile" Wilson loop winding, which implies the existence of 2D insulators with fragile spin-resolved band topology. We then add trivial bands to the model and explicitly compute the partial axion angles θ ± using a spinresolved generalization of the nested Wilson loop indicator for θ introduced in SRef. [15]. We find that the 3D helical HOTI model introduced in SRef. [31] indeed resides in the T-DAXI regime, and demonstrate that its bulk-quantized partial axion angles remain nontrivial in the presence of spin-nonconserving SOC. The calculations detailed in SN 4 E -as well as the other extensive toy-model and real-material spin-resolved and nested Wilson loop calculations in this work -were performed using the freely accessible Python package nested and spin resolved Wilson loop [97], which was previously implemented and utilized for the preparation of SRefs. [8,15], and was then greatly refined and extended to spin-resolved calculations for the present work.

In SN 5, we next return to position space to further explore the surfaces of the T-DAXI state uncovered in this work. We begin in SN 5 A by reviewing the local marker formulation of the Chern number first introduced in SRefs. [98,99]. The Chern marker is specifically a position-space density for the Chern number in two dimensions, and gives a local contribution to the Hall conductivity. In SN 5 B we use the projected spin operator to define a partial Chern marker by evaluating the Chern marker for the bands in half of the spin spectrum in an insulator with a spin gap [1,[100][101][102][103][104]. The partial Chern marker gives the local contribution to the topological part of the spin Hall conductivity, building on the discussion in SN 3 D. For 3D systems, we then review in SN 5 C the construction of the layer-resolved Chern number introduced in SRefs. [36,105]. For a quasi-2D slab of an insulating material, it was specifically shown in SRefs. [36,105] that the layer-resolved Chern number gives the contribution of each layer of the slab to the total Chern number of the slab. For 3D quantum anomalous Hall insulators the layer-resolved Chern number is a nonzero (integer) constant in each layer, while for magnetic axion insulators it is zero (on average) in the bulk of the slab and quantized to half integers on the top and bottom surfaces; this reflects the half-quantized Hall conductivity at a boundary where the magnetoelectric θ angle changes by π, and represents a manifestation of the parity anomaly [36,77,79,105,106].

Building on established results for magnetic axion insulators, in SN 5 D, we then formulate a layer-resolved partial Chern number for insulators with a spin gap. For a quasi-2D slab of an insulating material with a spin gap, the layer-resolved partial Chern number gives the contribution of each layer of the slab to the partial Chern number of the full slab. In SN 5 E, we next numerically demonstrate that for a helical HOTI in the T-DAXI regime, the layer-resolved partial Chern number is zero (on average) in the bulk of the slab and quantized to half integers on the top and bottom surfaces. This is consistent with the fact that the partial axion angles θ ± introduced in SN 4 D each change by π at the boundary between a T-DAXI and the vacuum. This implies that each 2D surface of a 3D T-DAXI carries an anomalous half of the partial Chern number (and half the topological contribution to the spin Hall conductivity) of an isolated (lattice-regularized) 2D TI, representing a manifestation of a novel spin-resolved "partial" parity anomaly. The partial parity anomaly identified in this work is closely related to, and provides a deeper theoretical understanding of, the symmetry-enhanced fermion doubling theorems for topological crystalline insulator surface states formulated in SRefs. [20,43,44,107] using the constraints imposed by crystal symmetry on noninteracting 2D lattice (tight-binding) models. Specifically, the gapless surface theories for the nonsymmorphic Dirac insulator introduced in SRef. [107] and the "rotation-anomaly" topological crystalline insulators introduced in SRefs. [20,43,44] can be deformed to the gapped surface theories of inversion-and time-reversal-symmetric helical HOTIs by relaxing surface crystal symmetries [31], indicating a close relationship between the symmetry-enhanced fermion doubling theorems introduced in those works and the partial parity anomaly introduced in this work.

In SN 6, we next provide detailed proofs of the action of symmetries on the spin-resolved Wilson spectrum. We specifically provide a comprehensive discussion of the action of inversion and time-reversal symmetry on (spin-resolved) Wilson loops and nested (spin-resolved) Wilson loops.

Next, in SN 7 we review the theory of intrinsic spin Hall conductivity, and draw a connection between spin-resolved topology and the intrinsic bulk and surface spin Hall conductivity in spin-stable topological phases. First in SN 7 A we review the computational implementation of the Kubo formula for the intrinsic spin Hall conductivity, building on the formalism of SRef. [108]. With the general formalism developed, in SN 7 B we apply our tools to compute the intrinsic spin Hall conductivity of the spin-stable 2D fragile model from SRef. [8] (analyzed in SN 3 G). We show numerically that the intrinsic spin-s z Hall conductivity is given to leading order by the spin Chern number, with corrections that grow perturbatively in the strength of spin-s z nonconserving SOC. Finally, in SN 7 C we define a layer-resolved spin Hall conductivity for three-dimensional systems. We compute the layer-resolved spin Hall conductivity for the model of a T-DAXI analyzed in SN 5, where we show that the anomalous half-integer partial Chern numbers at the surface of a T-DAXI imply an anomalously (approximately) half-quantized surface spin Hall conductivity. We thus connect spin-resolved topology to experimentally-relevant transport coefficients in spin-gapped states.

Crucially, the spin-resolved topological machinery introduced in this work can be applied to ab-initio calculations of real materials, where we provide a brief summary in SN 8. To demonstrate this, in SN 9, we first analyze the spin-resolved topology of β-MoTe 2 , which was identified in SRefs. [31,50] as a candidate helical HOTI. Starting with a symmetric, Wannier-based tight-binding model obtained from ab-initio calculations (SN 9 A), we compute the spin band structure and spin-resolved Wilson loops for β-MoTe 2 . We specifically in SN 9 B compute the spin spectrum for all possible spin orientations s = s • n in the projected spin operator P sP . We find that for all choices of s, β-MoTe 2 is spin-gapless with an even number of spin-Weyl nodes in each half of the BZ. To elucidate physical signatures of the gapless spin spectrum in β-MoTe 2 , we next compute the bulk energy spectrum for β-MoTe 2 in the presence of a strong Zeeman field directed parallel to the spin direction s ∝ s x + s z , for which β-MoTe 2 exhibits a particularly simple spin spectrum. We observe that in the presence of a large (x + ẑ)-directed Zeeman field, β-MoTe 2 exhibits Weyl nodes in the energy spectrum that lie at almost the same locations, and carry the same chiral charges, as the spin-Weyl nodes in the spin spectrum in the absence of a magnetic field, providing further support for the analysis in SN 2 G. Lastly, we compute the surface spectral function for a finite slab of β-MoTe 2 in the presence of a strong Zeeman field to verify the presence of topological Fermi-arc surface states originating from the field-induced Weyl nodes, which hence serve as physical signatures of the bulk spin-Weyl semimetal state.

Finally, in addition to β-MoTe 2 , we also in SN 10 analyze the spin-resolved topology and physical observables of α-BiBr. Previous theoretical studies [50,52,53] have identified α-BiBr as a rare bulk-insulating candidate helical HOTI (i.e. one without bulk electron and hole pockets, in contrast to β-MoTe 2 ). α-BiBr is also readily experimentally synthesized, and has exhibited signatures of 1D helical hinge modes in numerous spectroscopic and transport experiments [64-66, 68, 72, 109-113]. We use first-principles calculations to construct a symmetric, Wannier-based tight-binding model of α-BiBr as detailed in SN 10 A. We then in SN 10 B use our Wannier-based tight-binding model of α-BiBr to compute the spin gap over the full range of spin resolution directions n. Unlike β-MoTe 2 , we discover that α-BiBr is spin-gapped over a large range of spin-resolution directions n. Continuing in SN 10 B, we then compute the spin-resolved Wilson loops, nested Wilson loops, and nested spin-resolved Wilson loops for α-BiBr within the spin-gapped regions of its P sP spectra. We remarkably find that α-BiBr realizes all three spin-resolved regimes of a helical HOTI, specifically interpolating as a function of n between 3D QSHI states and the spin-Weyl and T-DAXI spin-stable states introduced in this work. α-BiBr hence represents the first known realization of a material with nontrivial, gauge-invariant partial axion angles θ ± = π. To provide physical signatures of the spin-resolved topology in α-BiBr, we lastly in SN 10 C compute the bulk spin Hall conductivities of α-BiBr in its 3D QSHI and T-DAXI regimes. We find that the intrinsic bulk contribution to the spin Hall conductivity exhibits remarkably good agreement with the spin-resolved topology in α-BiBr, and specifically takes on nearly quantized (nearly vanishing) values in its spin-stable 3D QSHI (T-DAXI) states.

PROJECTED SPIN OPERATORS, SPIN SPECTRA, AND SPIN GAPS

In this section, we will review the properties of the projected spin operator that are necessary to analyze spin resolved (higher-order) topology. First, in SN 2 A we will introduce the tight-binding notation used throughout this work. In SN 2 B we will review general properties of the projected spin operator. In SN 2 C we will prove that the spectrum of the spin operator changes continuously under perturbations to the Hamiltonian. In SN 2 D we will show how the eigenvalues of the projected spin operator impact physical observables. Moving to topology, in SN 2 E we will analytically compute the spin spectrum for a simple model of a 3D topological insulator. In SN 2 F we will show how entanglement between spin and orbital degrees of freedom can impact the spin spectrum. Finally, in SN 2 G we will show how the spin spectrum is related to the band structure (electronic energy spectrum) for a system in a strong Zeeman field.

A. Tight-Binding Notation

In this section we provide the notation for our tight-binding models. The second-quantized Fourier-transformed Hamiltonian for an (infinite or periodic) system with discrete translation symmetry is given by

H = k,α,β c † k,α [H(k)] α,β c k,β , (2.1) 
where [H(k)] is the first-quantized Bloch Hamiltonian matrix, k is the crystal momentum, the summation over k is within the first BZ of the crystal, and

c † k,α = 1 √ N R e ik•(R+rα) c † R,α , (2.2) 
c k,α = 1 √ N R e -ik•(R+rα) c R,α , (2.3) 
where N is the number of unit cells, c † R,α and c R,α are the creation and annihilation operators of the (spinful) orbital labeled by α in the unit cell R, and r α is the position of the (spinful) orbital labeled by α within unit cell R. The actual position of the (spinful) orbital created by c † R,α is thus R + r α . Discrete translation symmetry implies that the Hamiltonian in Supplementary Equation (SEq.) (2.1) is invariant if we shift the summation over k by a reciprocal lattice vector G. In particular, we have

H = k,α,β c † k+G,α [H(k + G)] α,β c k+G,β (2.4) 
= k,α,β c † k,α e iG•rα [H(k + G)] α,β e -iG•r β c k,β (2.5) = k,α,β c † k,α [H(k)] α,β c k,β , (2.6) 
which implies that

e iG•rα [H(k + G)] α,β e -iG•r β = [H(k)] α,β . (2.7) 
Defining the unitary matrix [V (G)] with matrix elements

[V (G)] α,β ≡ δ αβ e iG•rα , (2.8) 
we see that the electron operators c † k,α satisfy the boundary condition

c † α,k+G = c † β,k [V (G)] βα . Similarly, the Bloch Hamiltonian matrix [H(k)] satisfies [V (G)][H(k + G)][V (G)] -1 = [H(k)].
(2.9)

Therefore, upon a shift of k → k + G, [H(k)] transforms according to the following boundary condition 

[H(k + G)] = [V (G)] -1 [H(k)][V (G)], ( 2 
|u n,k+G ⟩ = [V (G)] -1 |u n,k ⟩ . (2.12)
As shown in SRefs. [4,14], such boundary conditions lead to the identification of the phases of the Wilson loop eigenvalues as the actual localized positions of (hybrid) Wannier functions within a unit cell.

B. Properties of the Projected Spin Operator

In this section, we derive several useful properties of the projected spin operator. Consider a 2N × 2N matrix Bloch Hamiltonian H(k). H(k) acts on a Hilbert space consisting of N spin-degenerate orbitals per unit cell. Letting the Pauli matrices σ i act on the spin degrees of freedom, we can define the spin operators

s i ≡ σ i ⊗ I N , (2.13) 
where I N is the N × N identity matrix acting in the orbital subspace of the entire Hilbert space (including both occupied and unoccupied states). In this work we will be considering the band topology of the occupied states in spinful insulators; following SRefs. [1,7,[START_REF] Prodan | Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells[END_REF] we will show that the eigenstates of the spin operator projected to the occupied bands provide a refinement of the usual notion of band topology. To formulate this precisely, let P (k) represent the projector onto a set of "occupied" energy eigenstates at k. We can then form the projected spin operator

P sP ≡ P (k)n • sP (k), (2.14) 
for any choice of unit vector n. SEq. (2.14) defines the projected spin operator for both infinite periodic and finite systems, where for finite systems k indexes only the periodic directions in the BZ (i.e. for a system finite in three spatial directions with open boundary conditions, there is no k dependence). For notational convenience, we will suppress the k-dependence of P sP when our discussion applies to both finite and infinite systems. When we are considering translationally-invariant systems, the projection operator P will be a 2N × 2N k-dependent matrix where 2N is the number of spinful orbitals within the unit cell. The spin operator s i will be a k-independent 2N × 2N matrix. When we are considering finite systems with open boundary conditions, the projection operator P and the spin operator s i will both be 2N × 2N k-independent matrices, where 2N is the number of spinful orbitals in the entire finite system. For periodic systems, the spectrum of P sP forms a set of well-defined bands; from SEq. (2.12) we have that

P (k + G)sP (k + G) = V -1 (G)P (k)[V (G)sV -1 (G)]P (k)V (G). (2.15) 
For the spectrum of P sP to be periodic, we must have

[V (G), s] = 0. (2.16) 
Physically, this means that basis orbitals come in time-reversed pairs with opposite spins. This is consistent with the fact that the Hilbert space of a solid derives from pairs of orbitals at the same position with opposite spins (i.e. atomic orbitals), and so the periodicity constraint in SEq. (2.16) does not place any unreasonable constraints on the classes of systems we consider in this work. In particular, SEq. (3.11) must hold for time-reversal invariant systems. We can thus compute the P sP spectrum for any approximate model of a material [i.e. from a density functional theory (DFT) calculation] provided the Hilbert space of the model is consistent with SEq. (2.16).

We will now derive several properties of the spectrum of P sP that will be useful for the remainder of this work. Because (n • s) 2 = I 2N , we know that the eigenvalues of n • s are all ±1. This places several constraints on the eigenvalues of P sP . First, consider an eigenstate |ψ⟩ of P sP with eigenvalue λ, such that 

P |ψ⟩ = |ψ⟩, (2.17 
⟨ϕ 1 |ϕ 2 ⟩ = ⟨ϕ 1 |s 2 |ϕ 2 ⟩ = (⟨ϕ 1 |s) (s|ϕ 2 ⟩) (2.29) = (|α 1 |⟨ψ 1 | -λ 1 ⟨ϕ 1 |) (|α 2 ||ψ 2 ⟩ -λ 2 |ϕ 2 ⟩) (2.30) = |α 1 ||α 2 |⟨ψ 1 |ψ 2 ⟩ -|α 1 |λ 2 ⟨ψ 1 |ϕ 2 ⟩ -λ 1 |α 2 |⟨ϕ 1 |ψ 2 ⟩ + λ 1 λ 2 ⟨ϕ 1 |ϕ 2 ⟩ (2.31) = λ 1 λ 2 ⟨ϕ 1 |ϕ 2 ⟩, (2.32) 
where we have used ⟨ψ 1 |ψ 2 ⟩ = 0, ⟨ψ 1 |ϕ 2 ⟩ = 0, and ⟨ϕ 1 |ψ 2 ⟩ = 0. This then implies that

(1 -λ 1 λ 2 ) ⟨ϕ 1 |ϕ 2 ⟩ = 0. (2.33)
Since both λ 1 and λ 2 are non-unit P sP eigenvalues, we have |λ

1 λ 2 | = |λ 1 ||λ 2 | < 1 such that 1 -λ 1 λ 2 ̸ = 0. This then implies that ⟨ϕ 1 |ϕ 2 ⟩ = 0, (2.34)
which is the desired result. It will often be helpful to consider the matrix elements of P sP between the N occ states in the image of P . Choosing a basis {|n⟩ |n = 1 . . . N occ } for the image of P , we can introduce the N occ × N occ reduced spin matrix

[s reduced ] m,n = ⟨m|s|n⟩, (2.35) 
where N occ is the number of states in the image of P , which in many realistic calculations corresponds to the number of occupied valence bands (ignoring core states). The nonzero eigenvalues of [s reduced ] are in one-to-one correspondence with the nonzero eigenvalues of P sP . However, P sP will have more zero eigenvalues than [s reduced ], because the zero eigenspace of P sP includes all states in the image of Q. Since these additional zero eigenvalues provide no new information, we will see in SN 3 and 4 that it is often advantageous to diagonalize [s reduced ] to determine the spin spectrum. Throughout this work we will use interchangeably the terms "reduced s eigenvalues", namely the eigenvalues of the matrix [s reduced ], "P sP eigenvalues" where we will ignore the zero P sP eigenvalues arising from states in the image of Q, and "(projected) spin eigenvalues". In addition, for a translationally invariant system, we will call the P sP eigenvalues as a function of crystal momentum k the "spin (s) band structure".

Going further, for each eigenvalue λ of P sP with |λ| < 1, we can explicitly reconstruct two eigenstates of s. This will be important when we consider systems with SOC. In particular, combining SEqs. (2.20) For the bulk of this work, we will be primarily interested in time-reversal invariant systems, with time-reversal operator T satisfying -k). Combining the constraints on P sP from I and T then implies that for a system with inversion and (spinful) time-reversal symmetry, the eigenvalues of P (k)sP (k) come in ±λ pairs. In other words, the spectrum of P sP has an effective "chiral" symmetry if the bulk has IT symmetry, which is demonstrated in SFig. 1(c). 1. Example of spin band structures for 1D systems with (a) inversion (I), (b) time-reversal (T ), and (c) IT symmetry. The number of occupied energy bands is assumed to be 2, hence all of (a), (b), and (c) contain two spin bands. We denote the set of P sP eigenvalues at crystal momentum k as {λn(k)} where n = 1, 2. In (a) the P sP eigenvalues satisfy {λn(k)} = {λn(-k)} due to I symmetry. In (b) the P sP eigenvalues satisfy {λn(k)} = {-λn(-k)} due to T symmetry. Finally, in (c) the P sP eigenvalues satisfy {λn(k)} = {-λn(k)} due to the combination of I and T symmetry. In all cases, there is a gap at every k between the two spin bands, and so the spin gap is open in (a), (b), and (c). In particular, (b) shows that for a system with time-reversal symmetry only, the spin gap can be open throughout the BZ even though the spin bands cross zero, as long as there is no degeneracy between the 1 2 rank[P (k)] spin bands with largest spin eigenvalue, and the 1 2 rank[P (k)] spin bands with smallest spin eigenvalue. In contrast, for a system with IT symmetry, the spin gap is open if and only if there is no degeneracy of spin bands at zero P sP eigenvalues, as shown in (c), such that rank[P+(k)] = rank[P-(k)] = 1 2 rank[P (k)]. P+(k) and P-(k) in (c) are defined to be the projectors onto the positive and negative eigenspace of P (k)sP (k), respectively. In addition, since we have {λn(k)} = {-λn(k)} in (c), the corresponding spin band structure has an effective "chiral" symmetry.

T 2 = -I 2N . Since T s i T -1 = -s i , time-reversal symmetry requires that T P (k)(n•s)P (k)T -1 = -P (-k)sP (-k). In particular, if P (k)sP (k)|ψ⟩ = λ|ψ⟩, then P (-k)sP (-k)T |ψ⟩ = -λT
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To use P sP to define partial topological invariants, i.e. topological invariants for spectrally isolated P sP eigenstates [2], we would like to divide the occupied states into two groups based on their P sP eigenvalues. Inversion and time-reversal symmetry give us two natural ways to do this. For systems with time-reversal and inversion symmetry, we can define the spin gap at each crystal momentum k as ∆ s (k) ≡ min |ψ⟩∈Image[P (k)] |⟨ψ|P (k)sP (k)|ψ⟩|. Using the Rayleigh characterization of eigenvalues [START_REF] Stone | Mathematics for Physics: A Guided Tour for Graduate Students[END_REF], we see that ∆ s (k) ≡ |λ min (k)|, where λ min (k) is the eigenvalues of P (k)sP (k) with the smallest absolute value. When the spin gap is open, ∆ s (k) > 0 and we can partition P (k) = P + (k) + P -(k) for all momenta k, where P ± (k) projects respectively onto the positive (negative) eigenspace of P (k)sP (k). We remark that this process of decomposing the occupied space into spin-resolved sectors through P (k) = P + (k) + P -(k) is closely related to the sublattice or spin sector resolution employed in SRefs. [START_REF] Zhang | Hidden spin polarization in inversion-symmetric bulk crystals[END_REF][START_REF] Yuan | Uncovering hidden spin polarization of energy bands in antiferromagnets[END_REF][START_REF] Wang | Ising Superconductivity and Its Hidden Variants[END_REF] to analyze "hidden" spin-orbital textures. For systems with time-reversal and inversion symmetry, we have immediately that rank[P + (k)] = rank[P -(k)] = 1 2 rank[P (k)] when the spin gap is open. This definition of the spin gap corresponds to placing the "spin Fermi energy" globally at zero, and demanding that no spin bands cross it, see for instance SFig. 1(c). Even without inversion symmetry, we have that for an insulating T -invariant system there are an even number of spin bands. We can for such systems define P + to be the projector onto the rank(P )/2 spin bands with the largest spin eigenvalues, and P -to be the projector onto the rank(P )/2 spin bands with the smallest spin eigenvalues. We then say that a spin gap is open when there is no degeneracy between states in Image(P + ) and states in Image(P -) at any k. Note that for systems with both inversion and time-reversal symmetry, this construction of P + and P -coincides with that of the previous paragraph. Analogous to direct gaps in band structures, it is possible that with T symmetry alone a spin gap can be opened even if a spin band crosses zero, see for instance SFig. 1(b). From this construction, it follows that

T P ± (k)T -1 = P ∓ (-k).
(2.37)

For simple models with additional emergent symmetries at low energies (for example the approximate chiral symmetry in graphene [START_REF] Semenoff | Condensed-matter simulation of a three-dimensional anomaly[END_REF] and polyacetylene [START_REF] Niemi | Fermion number fractionization in quantum field theory[END_REF], or valley conservation in twisted bilayer systems [START_REF] Bistritzer | Moiré butterflies in twisted bilayer graphene[END_REF]) there are several additional properties of P sP that we can exploit. First, consider insulating models with a unitary chiral symmetry ΠH(k)Π -1 = -H(k). In this case P (k) projects onto the set of eigenstates with negative energies. In such a system, we have that P (k)sP (k) = ΠQ(k)Π -1 sΠQ(k)Π -1 . If, furthermore, [Π, s] = 0, then this implies that P (k)sP (k) and Q(k)sQ(k) are isospectral. To be more specific, if |ψ⟩ ∈ Image[P (k)] is an eigenstate of P (k)sP (k) with eigenvalue λ, then Π|ψ⟩ ∈ Image[Q(k)] is an eigenstate of Q(k)sQ(k) with the same eigenvalue λ. Combining this with SEq. (2.28), we see that chiral symmetry forces every non-unit eigenvalue λ of P (k)sP (k) to have a partner -λ. The spin gap in a chiral-symmetric system with [Π, s] = 0 can then only close when a pair of P (k)sP (k) eigenvalues crosses 0. This implies that rank[P + (k)] = rank[P -(k)] at k points that do not have P (k)sP (k) eigenvalues with modulus 1 for a model of an insulator with chiral symmetry.

On the other hand, since

0 = Tr[s] = Tr[(P + Q)s(P + Q)] (2.38) = Tr[P sP ] + Tr[QsQ], (2.39) 
where we have used P Q = 0 and the cyclic property of trace, we can obtain 

n Q + -n Q -= -n P + -n P -. (2.41) 
Furthermore, if we denote rank (P ) and rank (Q) as r P and r Q respectively, using the fact that there is a one-to-one correspondence between the eigenstates of P sP and QsP with non-unit eigenvalues, it can be shown that

n Q + + n Q --n P + + n P -= r Q -r P . (2.42)
In other words, the total number of eigenvalues of P sP and QsQ with modulus 1 will be differ by rank(P )rank(Q). Combining SEqs. (2.41)-(2.42), we can show that

n Q + = 1 2 (r Q -r P ) + n P -, (2.43 
)

n Q -= 1 2 (r Q -r P ) + n P + . (2.44) 
Crucially, SEqs. (2.43)-(2.44) are generic statements independent of the symmetries of the system. Notice that, unlike the case for non-unit eigenvalues, there is no one-to-one correspondence between the eigenstates of P sP and QsQ with eigenvalues of modulus 1. This can be understood from the fact that n

Q + + n Q -is not necessarily equal to n P + + n P -,
as is demonstrated in SEq. (2.42). For an insulator with a unitary chiral symmetry Π satisfying [Π, s] = 0, if we define P and Q as the projectors to all the negative and positive energy eigenstates respectively, we necessarily have rank (P ) = rank (Q) such that according to SEqs. (2.43)-(2.44) we obtain

n Q + = n P -, (2.45 
)

n Q -= n P + . (2.46)
From the perspective of non-unit P (k)sP (k) eigenvalues, chiral (Π) and IT symmetry act in the same way provided [Π, s] = 0: they both map one state |ψ⟩ ∈ Image[P (k)] with eigenvalue λ to another state | ψ⟩ ∈ Image[P (k)] with eigenvalue -λ. However, Π and IT are fundamentally different symmetries: Π is a unitary symmetry while IT is an antiunitary symmetry. For example, a nearest-neighbor model of graphene in the presence of a Zeeman field without SOC [START_REF] Wallace | The Band Theory of Graphite[END_REF] has a Π symmetry with [Π, s] = 0, while the Kane-Mele model [6] has I, T , and thus IT symmetries. Our discussion about how unitary chiral symmetry constrains the P sP spectrum is not just applicable to model systems. Recently, the method of topological quantum chemistry [START_REF] Bradlyn | Topological quantum chemistry[END_REF] has been used to identify stoichiometric crystalline materials with (nearly) flat bands [START_REF] Cȃlugȃru | General construction and topological classification of crystalline flat bands[END_REF][START_REF] Regnault | Catalogue of flat-band stoichiometric materials[END_REF][START_REF] Chiu | Fragile topology in line-graph lattices with two, three, or four gapped flat bands[END_REF][START_REF] Ogata | Methods for constructing parameter-dependent flat-band lattices[END_REF][START_REF] Rhim | Classification of flat bands according to the band-crossing singularity of bloch wave functions[END_REF][START_REF] Leykam | Artificial flat band systems: from lattice models to experiments[END_REF][START_REF] Addison | Flat bands arising from spin-orbit assisted orbital frustration[END_REF]. These materials usually have a bipartite lattice, and have exact or approximate chiral symmetry. Although the application of our method to extract out spin-resolved topology in such materials is beyond the scope of this paper, we expect that the study of spin-resolved topology in spin-orbit coupled stoichiometric solid state materials with (nearly) flat bands, as well as generalizations to sublattice-resolved topology, will be a fruitful direction to explore. Specifically, our approach can be generalized to any operator which, like s, has eigenvalues ±1 only. As such, our methods can be applied to analyze orbital-or sublattice-resolved topology as well.

If the Bloch Hamiltonian H(k) can be written in "Dirac form"

H(k) = ϵ(k) i di (k)Γ i (2.47)
with {Γ i , Γ j } = 2δ ij and i [ di (k)] 2 = 1, then we can oftentimes analytically compute the spectrum of P sP . For a Dirac model [SEq. (2.47)], the projector P (k) onto the valence bands has the explicit form

P (k) = 1 2 (I 2N - i di (k)Γ i ) (2.48) 
such that

P (k)sP (k) = 1 4   s - i {s, d i (k)Γ i } + i,j d i (k)d j (k)Γ i sΓ j   .
(2.49)

While SEq. (2.49) can be efficiently computed for models with small Hilbert spaces, if we are only interested in the non-unit (|λ| ̸ = 1) eigenspace of P (k)sP (k) we can simplify the computation even further by considering Let us now introduce

P (k)sP (k) -Q(k)sQ(k) = - 1 2 i d i (k) {s, Γ i } . ( 2 
P ↑ = 1 2 (1 + s), (2.53) 
P ↓ = 1 2 (1 -s), (2.54) 
which project onto spin-up and spin-down eigenstates, respectively. Inserting s = P ↑ -P ↓ into SEq. (2.52), we find

P sP -QsQ = {P ↑ -P ↓ , 1/2 + P } (2.55) = P ↓ (1 -2P )P ↓ -P ↑ (1 -2P )P ↑ , (2.56) 
where we have used the fact that 1 = P ↑ + P ↓ . Let us introduce the spin-projected correlation matrices

C ↑ = P ↑ P P ↑ , (2.57) 
C ↓ = P ↓ P P ↓ .
(2.58)

Then we see that

P sP -QsQ = P ↓ (1 -2C ↓ )P ↓ -P ↑ (1 -2C ↑ )P ↑ .
(2.59)

The quantity C ↑ was previously introduced in SRefs. [START_REF] Fukui | Entanglement Chern Number for an Extensive Partition of a Topological Ground State[END_REF][START_REF] Araki | Entanglement Chern Number of the Kane-Mele Model with Ferromagnetism[END_REF][START_REF] Araki | Entanglement Chern number for three-dimensional topological insulators: Characterization by Weyl points of entanglement Hamiltonians[END_REF] to study "spin entanglement cuts" in topological insulators. Here we see that C ↑ is directly related to the projected spin operator; in SN 2 G we will show that P sP and P ↑ -2C ↑ are in fact isospectral.

C. Effects of Perturbations on the Spin Gap

In this section, we examine the effects of perturbations δH(k) on the spectrum of P (k)sP (k). It is crucial to establish the perturbative stability of the P (k)sP (k) spectrum in order to define a robust notion of (partial) topology of the P (k)sP (k). In particular, we will establish in this section that the spin spectrum changes smoothly and continuously in response to perturbations of the Hamiltonian (e.g. in response to an external magnetic field or perturbations to the form of SOC). To do so, we first need to understand the effect of a perturbation δH(k) on the projector P (k). Let us denote H(k) = H 0 + δH, and P (k) = P 0 + δP . Assume also that the states in the image of P 0 are separated by an energy gap ∆ from states in the image of Q 0 , and that the perturbation δH is sufficiently weak that no new degeneracies are created between P sP bands. In this case, we can express the projector P in terms of a contour integral

P = - 1 2πi Γ dE H 0 + δH -E ≡ - 1 2πi Γ G(E)dE, (2.60) 
where the integral is taken around a contour Γ in the complex plane that encloses all of energies E - i of the states in the image of P 0 , and none of the energies E + i of the states in the image of Q 0 . Notice that E - i and E + i are all of the eigenvalues of the unperturbed Hamiltonian H 0 . The resolvent (single-particle Green's function) G(E) satisfies the Dyson equation

δH = G -1 (E) -G -1 0 (E), (2.61) 
where the unperturbed resolvent is

G 0 (E) = 1 H 0 -E . (2.62)
Solving the Dyson equation, we find

G(E) = G 0 (1 -δHG) = G 0 (1 + δHG 0 ) -1 = G 0 ∞ n=0 (-1) n (δHG 0 ) n . (2.63)
This series expansion gives us a perturbation series for the projection operator

P = ∞ n=0 P n , (2.64) 
P n = (-1) n+1 1 2πi dEG 0 (E)[δHG 0 (E)] n . (2.65)
By inserting a complete set of states, each term P n can be computed by elementary contour integration. For instance, the first-order correction P 1 takes the form

P 1 = 1 2πi dE 1 H 0 -E δH 1 H 0 -E = 1 2πi dE nm |ψ n ⟩⟨ψ n |δH|ψ m ⟩⟨ψ m | (E n -E)(E m -E) , (2.66) 
where the sum runs over all eigenstates of H 0 whose eigenvalues are denoted as E n . We can evaluate the contour integral in SEq. (2.66) by first noting that if |ψ n ⟩ and |ψ m ⟩ are both unoccupied states or both occupied states, then the contour integral vanishes. In the former case, P 0 |ψ n ⟩ = P 0 |ψ m ⟩ = 0 and all poles lie outside the contour of integration. In the latter case both poles are inside the integration contour, but have residue equal in magnitude and opposite in sign. Also, in the latter case, even though we will encounter E n = E m when n = m and when there are degenerate energy eigenvalues, the function 1/(E n -E) 2 has a second order pole and so its residue still vanishes.

With this restriction, we can use the residue theorem to evaluate the contour integral to find

P 1 = - nm |ψ n ⟩⟨ψ n | (Q 0 δHP 0 -P 0 δHQ 0 ) |ψ m ⟩⟨ψ m | E n -E m .
(2.67)

Given an M -th order approximation P = M n=0 P n to P , we can construct the M -th order perturbed projected spin operator P sP = M n=0 M m=n P n sP M -m . We can then use standard perturbation theory to look at corrections to the eigenvalues λ = λ 0 + λ 1 + • • • + λ M of P sP .

As a concrete example, let us consider the first-order correction to a non-degenerate eigenvalue λ of P sP . Let |ψ⟩ denote the corresponding unperturbed normalized eigenstate of P 0 sP 0 satisfying P 0 sP 0 |ψ⟩ = λ 0 |ψ⟩ and P 0 |ψ⟩ = |ψ⟩. Then, from the non-degenerate perturbation theory, the first-order correction λ 1 to λ 0 is ⟨ψ| (P 1 sP 0 + P 0 sP 1 ) |ψ⟩, such that

λ 1 = ⟨ψ|P 1 s|ψ⟩ + ⟨ψ|sP 1 |ψ⟩ (2.68) = |α|(⟨ψ|P 1 |ϕ⟩ + ⟨ϕ|P 1 |ψ⟩), (2.69) 
where |α| = 1 -|λ 0 | 2 , |ϕ⟩ is constructed using SEqs. (2.20) and (2.24), and we have used the fact that P 1 is block-off-diagonal [see SEq. (2.67)]. Simplifying further, we find

λ 1 = -|α| n∈unocc m∈occ ⟨ϕ|ψ n ⟩⟨ψ n |δH|ψ m ⟩⟨ψ m |ψ⟩ + ⟨ψ|ψ m ⟩⟨ψ m |δH|ψ n ⟩⟨ψ n |ϕ⟩ E n -E m . (2.70)
In particular, it can be shown that if |λ 0 | = 1, the first-order correction vanishes, namely λ 1 = 0. From this viewpoint, a completely spin-polarized state |ψ⟩ satisfying P 0 |ψ⟩ = |ψ⟩, P 0 sP 0 |ψ⟩ = ±|ψ⟩, and in fact s|ψ⟩ = ±1|ψ⟩, is more robust against perturbation compared with those states |ψ⟩ with |λ 0 | < 1. Let us specialize to a mathematically interesting case where δH = g n • s = gs for some small coupling constant g. In this case, we can apply the Cauchy-Schwarz inequality to derive the bound

|λ 1 | ≤ 2 |g| ∆ (1 -∆ 2 s ), (2.71) 
where ∆ is the smallest energy gap, ∆ s is the eigenvalue of P 0 sP 0 with smallest absolute value, and we have made use of the fact that |α| ≤ 1 -∆ 2 s . In particular, SEq. (2.71) shows that a Zeeman field produces perturbatively controllable changes to projected spin eigenvalues. Notice that we have assumed in the above derivation that we are considering states at a specific momentum k. Therefore, the above δH = gs can come from a T -breaking k-independent Zeeman field interaction such as δH(k) = gs, or from a T -invariant k-dependent SOC such as δH(k) = g sin (k x )s. This shows that small changes to the SOC strength in a system produce parametrically small changes to the spin band structure. Physically, this means that any (topological) quantity computed from the spin band structure will be a continuous function of the SOC strength. We note that the k-local perturbative stability of the P sP spectrum stands in contrast to the effect of perturbations on the Wilson loop (non Abelian Berry phase) spectrum. Recall (as we will review in SN 3 A) that the Wilson loop can be expressed as a product of projectors along a closed k-path. From our perturbative series [SEq. (2.65)] for the changes to the projector, we then have that the eigenvalues of the Wilson loop depend on the perturbations to the Hamiltonian at every k along the path. This significantly complicates the study of stability of gaps in the Wilson loop spectrum.

For completeness, here we prove SEq. (2.71) which states that for a perturbation δH = gs at a given k point, the first-order correction to the spectrum of P 0 sP 0 has a controlled upper bound. In other words, the P 0 sP 0 spectrum will be stable against spin-dependent perturbations to the Hamiltonian. Assuming that there is an energy gap ∆ > 0 between the unoccupied and occupied states such that |E n -E m | ≥ ∆ for n ∈ unocc and m ∈ occ, we have, from SEq. (2.70), that

|λ 1 | ≤ |α||g| ∆ n∈unocc m∈occ (⟨ϕ|ψ n ⟩⟨ψ n |s|ψ m ⟩⟨ψ m |ψ⟩ + ⟨ψ|ψ m ⟩⟨ψ m |s|ψ n ⟩⟨ψ n |ϕ⟩) , (2.72) 
where we have substituted δH = gs. Using the triangle inequality and the definitions of |ψ⟩ and |ϕ⟩ which are related to each other through SEq. (2.25) and are eigenstates of P 0 sP 0 and Q 0 sQ 0 respectively, we have

|λ 1 | ≤ 2|α||g| ∆ |⟨ϕ| s |ψ⟩| . (2.73)
Using our expression in SEq. (2.25) for the action of s on |ψ⟩, we yield

|λ 1 | ≤ 2 |α| 2 |g| ∆ = 2 |g| ∆ • (1 -|λ 0 | 2 ), (2.74) 
where we have also used |α| = 1 -|λ 0 | 2 . Finally, letting ∆ s ≥ 0 be the absolute value of the smallest-magnitude eigenvalue of the unperturbed P 0 sP 0 spectrum (such that |λ 0 | ≥ ∆ s ), we have

|λ 1 | ≤ 2 |g| ∆ (1 -∆ 2 s ). (2.75)
We then see that all of the perturbation strength |g|, energy gap ∆, and the absolute value of the smallest-magnitude unperturbed projected spin eigenvalue ∆ s contribute to the upper bound of |λ 1 |. We note that ∆ s only coincides with the spin gap at a given k point when the system has both inversion and time-reversal symmetry. Importantly, the upper bound of |λ 1 | is linearly dependent on |g|, which means that one can make |λ 1 | as small as possible by decreasing |g|. In other words, the correction to the P 0 sP 0 spectrum is controllable and there is no instability where a small value of |g| will induce a dramatic change of |λ 1 |. In practice, this means that if a spin gap is open-i.e. if it is possible to divide the spin bands into two disconnected sets-then the spin gap cannot close under infinitesimally small perturbations to the Hamiltonian. In conclusion, the spin gap is stable against perturbations. Before moving on, let us note that we can reformulate our perturbation theory for P sP in an illuminating way. In particular, we see that corrections to the projected spin eigenvalues emerge from perturbative corrections to the projection operator. An alternative way of developing the perturbative expansion of the projection operator is in terms of the Schrieffer-Wolff transformation [START_REF] Schrieffer | Relation between the Anderson and Kondo Hamiltonians[END_REF][START_REF] Winkler | Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems[END_REF][START_REF] Bravyi | Schrieffer-Wolff transformation for quantum many-body systems[END_REF]. Typically, the Schrieffer-Wolff transformation is used to find a canonical transformation S that block diagonalizes the Hamiltonian, i.e. such that

e S (H 0 + δH)e -S = P 0 H ef f P 0 + Q 0 H ef f Q 0 .
(2.76)

The transformation S can be found perturbatively by expanding the left hand side of SEq. (2.76), and recursively eliminating off-diagonal terms. As a consequence of our definition in SEq. (2.60) for the projection operator, we also have that e -S P 0 e S = P.

(2.77)

Expanding both sides of SEq. (2.77), we recover our perturbative expansion of the projection operator. In particular, we can rewrite SEq. (2.67) as

P 1 = [P 0 , S 1 ], (2.78) 
where

S 1 = - nm |ψ n ⟩⟨ψ n |Q 0 δHP 0 + P 0 δHQ 0 |ψ m ⟩⟨ψ m | E m -E n (2.79)
is the standard form of the leading order term in the Schrieffer-Wolff transformation [START_REF] Winkler | Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems[END_REF].

While the Schrieffer-Wolff computation of corrections to P is equivalent to our perturbative expansion in SEq. (2.65), it allows us to recast the computation of the perturbed spin spectrum in terms of computing modifications to P sP itself. In particular, so long as we are concerned only with finding the eigenvalues of P sP , we can note that P sP = e -S P 0 e S se -S P 0 e S , (2.80) which implies that P sP is isospectral to the operator P 0 e S se -S P 0 . This allows us to compute corrections to the P sP spectrum without computing corrections to the energy eigenstates directly. The Schrieffer-Wolff approach is particularly well suited to analyzing perturbations to spin-conserving models that do not modify the energy spectrum, such as the changes to the spin quantization axis considered in SRef. [1] to demonstrate that the spin Chern number is a Z 2 invariant (we will review this argument in detail in SN 3 C). Here we describe two examples upon which the above reformulation based on Schrieffer-Wolff transformation can be useful. Recall that the spin quantization axis of a system can be fixed by several effects. For example, a strong external Zeeman field can (nearly) fix the spin quantization axis to be aligned with the field. If the Zeeman field undergoes a slow precession, the spin quantization axis will also rotate. In addition, the spin quantization axis can also be fixed due to crystalline anisotropy. For example, recent experiments on WTe 2 have identified a fixed spin quantization axis parallel to a high-symmetry crystallographic direction lying in a mirror plane [START_REF] Zhao | Determination of the Spin Axis in Quantum Spin Hall Insulator Candidate Monolayer WTe2[END_REF][START_REF] Garcia | Canted Persistent Spin Texture and Quantum Spin Hall Effect in WTe2[END_REF][START_REF] Kurebayashi | Magnetism, symmetry and spin transport in van der Waals layered systems[END_REF]. Therefore, for such systems, a structural distortion can change the spin quantization axis. Finally, we note that there exists a diagrammatic method [START_REF] Bravyi | Schrieffer-Wolff transformation for quantum many-body systems[END_REF] for computing S to arbitrary orders in perturbation theory, both for single-particle and many-body Hamiltonians. These diagrammatic methods can be leveraged for the analysis of P sP , though we leave this as a task for future work.

D. A Physical Interpretation of the Spin Gap

In this section, we provide a physical interpretation of the spin gap for systems with IT symmetry. Let us consider a situation where we have an insulating, inversion and time-reversal invariant system. At t = 0 we perform a quench by turning on a weak Zeeman field, δH = B n • sδ(t). This will create some density of excited states, and this density can be measured either through angle-resolved photoemission spectroscopy (ARPES), or by allowing the system to relax back to the ground state |Ψ 0 ⟩ and collecting the photons and phonons that are emitted in the process. The density of excited states will be proportional to the transition rate out of the ground state, which is given to lowest order in perturbation theory by

Γ ex = n>0 B 2 |⟨Ψ n |s|Ψ 0 ⟩| 2 , (2.81) 
where |Ψ n ⟩ are the many-body eigenstates of the system. For a non-interacting system with discrete translation symmetry whose eigenstate |Ψ n ⟩ can be written as a Slater determinant of single-particle states, we can rewrite SEq. (2.81) as

Γ ex = B 2 k Tr (P (k)sQ(k)sP (k)) , (2.82) 
where the summation of k is within the BZ. Note that the trace in SEq. (2.82) is bounded by the maximum and minimum values of |α| 2 = 1 -|λ| 2 , defined in SEq. (2.23). Dividing by volume to obtain an intensive quantity, we have

1 -λ 2 max ≤ 1 B 2 N e Γ ex ≤ 1 -λ 2 min , (2.83) 
where λ max and λ min are respectively the largest and smallest absolute values of all the [s reduced ] [as defined in SEq. (2.35)] eigenvalues in the BZ, and N e is the number of electrons in the system. We note that when obtaining λ max and λ min in SEq. (2.83) only the eigenstates of P (k)sP (k) that are in the image of P (k) are considered. Although there may be technical challenges in disentangling the spin Zeeman interaction used here from an orbital Zeeman interaction (which could lead to the formation of Landau levels), we still see that the spin gap ∆ s = λ min controls the upper bound on the creation of excited states. This shows that the spin gap-and more generally the smallest-magnitude projected spin eigenvalue-place bounds on experimental observables, and are thus measurable in principle.

E. Explicit Calculations for a 3D Topological Insulator Model

In this section, we will compute the spectrum of P (k)sP (k) for the Bernevig-Hughes-Zhang (BHZ) model of a 3D TI [79,[START_REF] Bernevig | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[END_REF][START_REF] Fu | Topological Insulators in Three Dimensions[END_REF][START_REF] Fu | Topological insulators with inversion symmetry[END_REF]. We will show analytically that the spin gap generically closes at isolated degeneracies with a linear dispersion reminiscent of Weyl fermions. In SN 3 we will show that these "spin-Weyl nodes" are a general feature in the P sP spectrum of 3D topological insulators.

Let us start with the Bernevig-Hughes-Zhang (BHZ) model in three dimensions,

H 0 (k) = τ x i σ i sin k i + (3 -m - i cos k i )τ z , (2.84) 
where τ i are Pauli matrices acting on the orbital degrees of freedom. This model has I symmetry, T symmetry, and octahedral symmetries generated by fourfold rotations C 4i about the three Cartesian axes and a threefold rotation C 31 about the x + ŷ + ẑ cubic diagonal. These symmetries are represented by

[I] = τ x , (2.85) [T ] = iσ y K, (2.86) 
[C 4i ] = exp -i π 4 σ i , (2.87) 
[C 31 ] = exp -i π 3 √ 3 (σ x + σ y + σ z ) , (2.88) 
where K is the complex conjugation operation. The Hamiltonian H 0 (k) satisfies

[I]H 0 (k)[I] -1 = H 0 (-k), (2.89) 
[T ]H 0 (k)[T ] -1 = H 0 (-k), (2.90) [C 4i ]H 0 (k)[C 4i ] -1 = H 0 (C 4i k), (2.91) 
[C 31 ]H 0 (k)[C 31 ] -1 = H 0 (C 31 k) (2.92)
where C 4i k denotes the vector k rotated by π/4 radians about k i , and

C 31 (k x , k y , k z ) = (k y , k z , k x ). For 0 < m < 2
this model represents a strong topological insulator, while for m < 0 it represents a trivial insulator. Because H 0 is written in Dirac form [SEq. (2.47)] [79], we can directly compute the non-unit spectrum of P sP via SEq. (2.50). We find

P sP -QsQ = - 1 ϵ(k) i τ x ni sin k i + (3 -m - i cos k i )n • στ z , (2.93) 
where we have introduced the band energy

ϵ(k) = i sin 2 k i + (3 -m - i cos k i ) 2 .
(2.94)

We would like to identify points at which the spin gap closes. Because SEq. (2.93) determining the spectrum of P sP consists of anticommuting matrices, we see that the spin gap closes when the following two conditions are simultaneously satisfied:

i ni sin k i = 0, (2.95) (3 -m - i cos k i ) = 0. (2.96)
Note that in the topologically trivial phase, m < 0 and so the second equation is never satisfied. Thus, in the topologically trivial phase the BHZ model has a spin gap for all k. In the topologically nontrivial phase, we see that the first constraint [SEq. (2.95)] defines an open surface containing origin and extending to the boundaries of the Brillouin zone, while the second constraint [SEq. (2.96)] defines a closed surface surrounding the origin. These surfaces will intersect on a closed one-dimensional curve, along which the spin gap closes. For sufficiently small m, we can expand the constraint equations to lowest order in k to find that the spin gap closes on a circle of radius √ 2m centered at the origin and oriented normal to the vector n. As we can see from SEq. (2.93), the null eigenvectors of P sP -QsQ are fourfold degenerate, implying that the null eigenvectors of P sP are twofold degenerate along this curve.

Note, however, that these twofold degenerate zeros of P sP are not perturbatively stable; the spin gap closes along a closed curve due to the residual symmetries of the model. To break these symmetries while preserving inversion and time-reversal symmetry, we can add to H 0 the perturbation

H 1 = η i mi sin k i τ y , (2.97) 
where m is a unit vector such that m × n ̸ = 0. The combined Hamiltonian H 0 + H 1 is still of Dirac form, but with a modified band energy

ε(k) = i sin 2 k i + η 2 ( i mi sin k i ) 2 + (3 -m - i cos k i ) 2 . (2.98) 
Recomputing P sP -QsQ = -1/(2ε){s, H 0 + H 1 }, we find

P sP -QsQ = - 1 ε(k) i τ x ni sin k i - η ε(k) i τ y (n • σ) mi sin k i - 1 ε(k) (3 -m - i cos k i )n • στ z . (2.99)
Since this is still given as the sum of three anticommuting terms, we see that the spin gap closes only when each of the three terms is individually equal to zero. In addition to the constraints in SEqs. (2.95) and (2.96), we have the additional constraint that

i mi sin k i = 0. (2.100)
This defines a third surface in the Brillouin zone, which is open and contains the origin. Furthermore, the restriction n × m ̸ = 0 ensures that this surface is independent from the one defined in SEq. (2.95). These three surfaces will generically intersect at a set of isolated points. For small m, we can again expand our constraint equations to find that the spin gap closes at two points, which lie at the intersection of a sphere of radius √ 2m, and the line through the origin parallel to n × m. These are perturbatively stable fourfold degeneracies in the spectrum of P sP -QsQ, and hence correspond to twofold-degenerate Weyl nodes in the spectrum of P sP . Just like Weyl nodes in the energy spectrum of a Hamiltonian, these "spin-Weyl nodes" are stable to perturbations of the Hamiltonian (by virtue of our results in SN 2 C establishing that the P sP spectrum varies continuously when the Hamiltonian is perturbed).

The fact that P sP has at least one Weyl node in each half of the BZ for the Iand T -symmetric 3D TI can also be established on topological grounds. Consider two parallel T -invariant planes in the BZ, defined as planes with constant k i = 0 and k i = π for one choice of i = 1, 2, 3. Furthermore, assume that P sP is gapped on both planes. Then we can compute the partial Chern numbers C -(k i = 0) and C -(k i = π) of the projector P -(k) onto the states with negative P sP eigenvalue in each of these planes. As shown in SRefs. [1,7] (and as we will review in SN 3), C -(k i = 0, π) mod 2 gives the value of the Kane-Mele invariant ν 2d (k i = 0, π) in each plane. Since our entire system is a 3D TI, we must have that |ν 2d (k i = 0)ν 2d (k i = π)| = 1. This implies that the partial Chern numbers C -(k i = 0) and C -(k i = π) must differ by an odd integer. Since we can define the partial Chern numbers C -(k i ) for any constant-k i plane in the 3D BZ provided that the spin gap in the 2D plane is opened, and since C -(k i ) is an integer, this means that for some non-T -invariant plane the partial Chern number must cease to be well-defined, which can only happen when the spin gap closes at a spin-Weyl point. Furthermore, the integer change in partial Chern number of the N occ /2 lower spin bands corresponds to the chiral charge of the spin-Weyl point. We will later demonstrate this numerically in SN 3 E for a 3D TI with inversion symmetry, and in SN 3 F for a 3D TI without inversion symmetry, using our spin-resolved Wilson loop formalism.

F. Effects of Spin-Orbital Entanglement on the Spin Spectrum

In elucidating the properties of the projected spin operator P sP developed in SN 2 B, we did not need to make a specific choice for the spin direction n in s = n • s. We can then ask the following question: for a system with a spin gap for a given n, must there be a spin gap for other spin directions? In this section we will answer this question in the negative by giving explicit examples. We will see shortly that although the spin operator s acts as the identity in the orbital subspace, the orbital components of the occupied wave functions are also important when determining the P sP spectrum. In particular, entanglement between the spin and orbital degrees of freedom in the wave function can force the spin gap to close for certain choices of n. Let us consider the following two 4 × 4 Hamiltonians

H 1 = τ z σ 0 , (2.101) H 2 = τ y σ z , (2.102) 
where the Pauli matrices τ µ and σ ν act on orbital and spin degrees of freedom, respectively. τ 0 and σ 0 are both 2 × 2 identity matrices. Both H 1 and H 2 have energies (-1, -1, +1, +1), and both are invariant under spinful T symmetry represented by

[T ]H 1 [T ] -1 = σ y H * 1 σ y = H 1 , (2.103) [T ]H 2 [T ] -1 = σ y H * 2 σ y = H 2 .
(2.104)

We now compute the reduced spin matrix defined in SEq. (2.35) for both H 1 and H 2 . We take for our occupied states the two states with negative energy in both cases. To be explicit, the two states with energy eigenvalues -1 are given by

|1⟩ = 0 1 ⊗ 1 0 , |2⟩ = 0 1 ⊗ 0 1 for H 1 , (2.105) 
|1⟩ = 1 √ 2 1 -i ⊗ 1 0 , |2⟩ = 1 √ 2 1 i ⊗ 0 1 for H 2 .
(2.106)

The first vector in each tensor product corresponds to the orbital (τ ) degree of freedom, and the second vector in each tensor product corresponds to the spin (σ) degree of freedom. Notice that the negative energy eigenstates of This difference in the orbital part of the eigenfunctions is crucial in determining the spin spectrum. To see this, recall that the spin operator s is defined as s ≡ τ 0 σ, where σ = σ • n and n is a unit vector in 3D [see SEq. (2.13)]. The reduced spin matrix from SEq. (2.35), in the two-dimensional space of states with -1 energy eigenvalues, is then given by 

H
[s reduced ] 2×2 = ⟨1|s|1⟩ ⟨1|s|2⟩ ⟨2|s|1⟩ ⟨2|s|2⟩ = ⟨1|τ 0 σ|1⟩ ⟨1|τ 0 σ|2⟩ ⟨2|τ 0 σ|1⟩ ⟨2|τ 0 σ|2⟩ = ⟨1 τ |τ 0 |1 τ ⟩⟨1 σ |σ|1 σ ⟩ ⟨1 τ |τ 0 |2 τ ⟩⟨1 σ |σ|2 σ ⟩ ⟨2 τ |τ 0 |1 τ ⟩⟨2 σ |σ|1 σ ⟩ ⟨2 τ |τ 0 |2 τ ⟩⟨2 σ |σ|2 σ ⟩ (2.
H1 H2 s = τ0σx (-1, +1) (0, 0) s = τ0σy (-1, +1) (0, 0) s = τ0σz (-1, +1) (-1, +1)
Supplementary Table 1. The two eigenvalues of the reduced spin matrices in SEqs. (2.108)-(2.109) with n = x, ŷ, and ẑ in the occupied (negative energy) subspace of eigenstates of H1 and H2.

all of n = x, ŷ, and ẑ for the eigenvectors in SEq. (2.105) of H 1 . In fact, since the reduced spin matrix for H 1 is σ = σ • n, as shown in SEq. (2.108), no matter what direction n we choose, the occupied subspace of H 1 has a nonzero spin gap. However, in the case of H 2 , we find that although the spin gap is open for n = ẑ, the spin gap is closed for n = x and ŷ. This is because when n = x and ŷ, the reduced spin matrices in SEq. (2.109) are zero matrices, and thus the two eigenvalues of the reduced spin operator are degenerate and equal to 0. From the above example, we have demonstrated that although the spin gap in the occupied space is open for one choice of n, it is not guaranteed that the spin gap will be open for other choices of n. In particular we have seen that entanglement between spin and orbital degrees of freedom plays a crucial role in determining the spin gap.

We thus see that whether or not there is a spin gap for a particular choice of direction n depends on the microscopic details of the spin-orbit interaction. Concretely, H 2 from SEq. (2.102) can be viewed as the spin-orbit contribution to a Bloch Hamiltonian at a time-reversal-invariant crystal momentum (TRIM). We see that the entanglement between spin and orbital degrees of freedom in the eigenstates [SEq. (2.106)] results in a preferred choice of direction n = ẑ along which the spin gap is maximal. We will revisit this discussion for more realistic spin and orbital textures in SN 9 and 10, in which we compute the spin spectrum of the candidate higher-order topological insulators (HOTIs) β-MoTe 2 [31,50] and α-BiBr [50,52,53]. In SN 9 and 10, we will specifically respectively demonstrate that while β-MoTe 2 does not exhibit a spin gap for any choice of spin direction, α-BiBr exhibits a spin gap for multiple choices of n, including a large (∆ s ∼ 1 in unit of ℏ/2) spin gap for n = ẑ.

G. (Spin) Band Structure in a Strong Zeeman Field

In this section, we will show that the partial band topology topology of the spin band structure is intimately connected to the electronic band topology of an insulator in a strong Zeeman field. To see this, let us consider a spinful, noninteracting electron system with the Hamiltonian

H = H 0 -gµ B |B|s + V 0 , (2.110) 
where H 0 determines the band structure in the absence of external perturbations, B is the external magnetic field, g is the spin g-factor (where we take g > 0 for simplicity), µ B is the Bohr magneton, s = B • s is the spin component along the magnetic field direction, and V 0 is a scalar potential which we will use to manipulate the Fermi level. If we take

V 0 = gµ B |B|, (2.111) 
then we can rewrite SEq. (2.110) as

H = H 0 + gµ B |B|P ↓ , (2.112) ≡ H 0 + δH (2.113)
where P ↓ is the projection operator onto the negative eigenspace of s from SEq. (2.54). For this choice of V 0 , the combined effects of the Zeeman and scalar potentials are then to energetically penalize spin-down electrons, while leaving spin-up electrons unaffected. This has particularly stark consequences in the limit gµ B |B| → ∞. In this limit, we can view δH as the unperturbed Hamiltonian, and treat H 0 as the perturbation. Since δH pushes spin-down electrons up to negative energy, the projector onto the low energy subspace of δH is given by SEq. (2.53). We then have that to first order in perturbation theory

H ≈ δH + P ↑ H 0 P ↑ .
(2.114)

In particular, since δHP ↑ = 0, energies in the low-energy P ↑ subspace are completely determined by

H low = P ↑ H 0 P ↑ . (2.115)
This means that the effect of δH as gµ B |B| → ∞ is to project H 0 onto the spin-up subspace.

Let us now focus on the low-energy P ↑ subspace. Introducing a set of eigenstates |nk⟩ and energies ϵ nk for H 0 , we can re-express SEq. (2.115) as

H low = nk ϵ nk P ↑ |nk⟩ ⟨nk| P ↑ .
(2.116)

To make further progress, let us assume that H 0 has a gapped spectrum. By an appropriate shift of the zero of energy at each k, we can ensure for convenience that the gap is centered at zero, such that states with ϵ nk > 0 are above the gap (unoccupied), and states with ϵ nk < 0 are below the gap (occupied). Before turning on a Zeeman field, we can spectrally flatten H 0 to have the form

H 0 (k) → Q(k) -P (k) (2.117)
where we have introduced the projectors P (k) and Q(k) onto the occupied and unoccupied space of H 0 at each k respectively. In this case, H low becomes

H low → n∈unocc P ↑ |nk⟩ ⟨nk| P ↑ - n∈occ P ↑ |nk⟩ ⟨nk| P ↑ (2.118) = k P ↑ Q(k)P ↑ -P ↑ P (k)P ↑ , (2.119) 
Note that P ↑ P (k)P ↑ is exactly the spin-projected correlation matrix of SRef. [START_REF] Fukui | Entanglement Chern Number for an Extensive Partition of a Topological Ground State[END_REF], and P ↑ Q(k)P ↑ is the analogous operator for the unoccupied states. Next, we can express P and Q in terms of eigenstates of P sP and QsQ. In particular, using the results of SN 2 B, we can write

P (k) = |λ k |̸ =1 |λ k ⟩ ⟨λ k | + i |+ik⟩ ⟨+ik| + |-ik⟩ ⟨-ik| , (2.120) 
where |λ k ⟩ are the eigenstates of P sP with eigenvalue λ k ̸ = ±1, and |±ik⟩ are the eigenstates of P sP with eigenvalue ±1. As shown in SN 2 B, the eigenstates |λ k ⟩ are in one-to-one correspondence with eigenstates

|ϕ(λ k )⟩ = Qs |λ k ⟩ ⟨λ k | sQs |λ k ⟩ = Qs |λ k ⟩ 1 -λ 2 k (2.121)
of QsQ with eigenvalue -λ. This means we can also write 

Q(k) = |λ k |̸ =1 |ϕ(λ k )⟩ ⟨ϕ(λ k )| + ĩ + ĩk + ĩk + -ĩk -ĩk , (2.122 
P ↑ |λ k ⟩ = 1 + λ k 2 |λ k ⟩ + 1 -|λ k | 2 2 |ϕ(λ k )⟩ (2.123) P ↑ |ϕ(λ k )⟩ = 1 -λ k 2 |ϕ(λ k )⟩ + 1 -|λ k | 2 2 |λ k ⟩ (2.124) P ↑ |+ik⟩ = |+ik⟩ (2.125) 
P ↑ + ĩk = + ĩk (2.126) P ↑ |-ik⟩ = P ↑ -ĩk = 0. ( 2 
P ↑ [Q(k) -P (k)]P ↑ = |λ k |̸ =1 -λ k 1 + λ k 2 |λ k ⟩ + 1 -λ k 2 |ϕ(λ k )⟩ 1 + λ k 2 ⟨λ k | + 1 -λ k 2 ⟨ϕ(λ k )| + ĩ + ĩk + ĩk - i |+ik⟩ ⟨+ik| . (2.128)
Note that we can define |ϕ(+1)⟩ ≡ 0 and |ϕ(-1 k )⟩ ≡ + ĩk , and that this is consistent with SEqs. (2.20)-(2.27), which allows us to write

P ↑ [Q(k) -P (k)]P ↑ = λ k -λ k 1 + λ k 2 |λ k ⟩ + 1 -λ k 2 |ϕ(λ k )⟩ 1 + λ k 2 ⟨λ k | + 1 -λ k 2 ⟨ϕ(λ k )| (2.129) ≡ λ k -λ k |ψ k ⟩ ⟨ψ k | . (2.130)
Since the states |ψ k ⟩ are orthonormal, we see that the spectrum of P ↑ [Q(k) -P (k)]P ↑ coincides with the spectrum {λ k } of the reduced spin operator [SEq. (2.35)], modulo the number of +1 eigenvalues corresponding to exact spinup eigenstates of Q, and also modulo the number of -1 eigenvalues corresponding to exact spin-down eigenstates of P . Furthermore, recall that the spectrum of P (k)sP (k) restricted to the occupied states coincides with the spectrum of the reduced spin operator. This means that the low energy spectrum of a system with spectrally flat H 0 [SEq. (2.117)] in a strong Zeeman field coincides with the nontrivial spectrum of P (k)sP (k). As a side-effect, also note that

P ↑ [Q(k) -P (k)]P ↑ = P ↑ [1 -2P (k)]P ↑ = P ↑ -2C ↑ is
directly related to the spin-projected correlation matrix of SRefs. [START_REF] Fukui | Entanglement Chern Number for an Extensive Partition of a Topological Ground State[END_REF][START_REF] Araki | Entanglement Chern Number of the Kane-Mele Model with Ferromagnetism[END_REF][START_REF] Araki | Entanglement Chern number for three-dimensional topological insulators: Characterization by Weyl points of entanglement Hamiltonians[END_REF]; SEq. (2.130) hence shows then that there is a one-to-one correspondence between P sP eigenvalues and C ↑ eigenvalues (modulo the number of states at the accumulation point λ k = -1).

We can go further to relate the topology of P sP bands and C ↑ bands if there is a spin gap. In this case, we can spectrally flatten SEq. (2.129) by spectrally flattening P (k)sP (k), taking λ k → -1 continuously for the bands below the spin gap and λ k → +1 continuously for states above the spin gap, while leaving the eigenstates |λ k ⟩ and |ϕ(λ k )⟩ unchanged. The states |ψ k ⟩ change continuously under this deformation, yielding

P ↑ [Q(k) -P (k)]P ↑ ∼ below λ k |ϕ(λ k )⟩ ⟨ϕ(λ k )| - above λ k |λ k ⟩ ⟨λ k | , (2.131) 
where above λ k is a sum is over λ k in the upper spin bands, and below λ k is a sum over λ k in the lower spin bands. Finally, we see that

above λ k |λ k ⟩ ⟨λ k | = P + , (2.132) below λ k |ϕ(λ k )⟩ ⟨ϕ(λ k )| = Q + , (2.133) 
where P + is the projector onto the upper spin bands in the occupied subspace, and Q + is the projector onto the upper spin bands in the unoccupied subspace. This means that for systems with a spin gap, the topological properties of P ↑ [Q(k) -P (k)]P ↑ bands coincide with the topological properties of the spin band structure. Finally, we would like to determine the extent to which we can relate the topological properties of P ↑ [Q(k)-P (k)]P ↑ bands to the topological properties of H low directly. In general, we cannot do this: the process of projecting H into the P ↑ subspace does not commute with the spectral flattening process-gaps in the spectrum can close in H low as we spectrally flatten H. However, for inversion symmetric systems, the theory of symmetry indicators can provide more information. In particular, as long as inversion eigenvalues of the occupied bands are not exchanged with inversion eigenvalues of the unoccupied bands at TRIM points as we deform H low → P ↑ [Q(k) -P (k)]P ↑ , then we know that the symmetry-indicated topology of H low and P ↑ [Q(k) -P (k)]P ↑ will coincide. We expect that for any inversionsymmetric topological system derived from a band-inverted semiconductor with weak spin orbit coupling, there will be a spin gap for some spin direction at all TRIM points. In these cases, applying a Zeeman field along or near that given spin direction will not invert the lowest spin band inversion eigenvalues, and hence will allow us to deduce the H low band topology from the P sP band topology. Note, furthermore, that if H 0 is a T -invariant insulator, then both H low and P sP respect the symmetries of a magnetic space group. Since the symmetry indicators of the magnetic space groups are fully enumerated [43][44][45][46][START_REF] Xu | High-throughput calculations of magnetic topological materials[END_REF], we can extend this logic to say that the magnetic symmetry indicated topology of H low and P sP will coincide.

As an example, we can apply this logic to 3D strong topological insulators. As discussed in SN 2 E, the P sP spectrum for a 3D TI has an odd number of spin-Weyl points per half BZ. This implies that under the influence of a strong Zeeman field, the low energy Hamiltonian H low will have an odd number of Weyl points per half BZ in its spectrum. This means that for a semi-infinite slab of an inversion-symmetric 3D TI under the influence of a strong Zeeman field, we expect to find Fermi arcs connecting the surface projections of these Weyl points. Although we can only rigorously establish the existence of Weyl points in H low for inversion-symmetric systems with a spin gap, we expect that these results will hold even without inversion symmetry, due to the topological stability of Weyl points (i.e., the improbability of Weyl points annihilating as we adiabatically deform the spectrum of H low to that of P sP ). We will show that this intuition is justified in SN 9 by considering the candidate higher-order topological insulator β-MoTe 2 [31,50] in the presence of a strong Zeeman field. We will specifically show that β-MoTe 2 is a spin-Weyl semimetal for all choices of spin direction, with detectable Fermi arcs on the (001) surface in the presence of a strong Zeeman field. Furthermore, we also show that α-BiBr is a spin-Weyl semimetal for a neighborhood of spin directions surrounding s y in SN 10.

SPIN-RESOLVED WILSON LOOPS

In this section, we will show how the projected spin operator can be used to formulate a refined notion of band topology. We will start in SN 3 A by reviewing the definition of the Wilson loop (non-Abelian Berry phase), and its application to computing topological invariants of bands in the image of a projector P (k). Next, in SN 3 B we will show that for systems with a spin gap, we can extend the definition of the Wilson loop to compute Berry phases for P sP eigenstates, which we term spin-resolved Wilson loop. This will allow us to introduce spin-resolved topological invariants, which classify bands that cannot be deformed into each other without closing either an energy gap or a spin gap. We then study some generic properties of the spin-resolved Wilson loops, and relate their spectral flows to the 2D Kane-Mele Z 2 invariant and the topological contribution to the spin Hall conductivity, in SN 3 C. We will then present examples of spin-resolved topology in two (SN 3 D) and three (SN 3 E and 3 F) dimensions. We will explore the connection between spin-resolved and fragile topology in SN 3 G. Finally, in SN 3 H we will generalize the correspondence between Wilson loops and the entanglement spectrum to spin-resolved Wilson loops.

A. P -Wilson Loop

We denote [P (k)] as the matrix projector to a set of N occ occupied states of the Bloch Hamiltonian matrix [H(k)], namely

[P (k)] = Nocc n=1 |u n,k ⟩ ⟨u n,k | , (3.1) 
where |u n,k ⟩ is defined in SEq. (2.11), and n denotes the band index. Notice that we can choose any set of occupied bands as long as there is a finite gap between the energy E n,k of the occupied bands from the others for all k. We work in a truncated tight-binding Hilbert space with N sta = 2N orb states per unit cell, where 2 accounts for the spin degrees of freedom and N orb is the number of orbitals (for example s and p orbitals). Such a truncation can always be obtained for a real material through, e.g. Wannierization of a topologically trivial subset of electronic states in an ab-initio calculation [START_REF] Mostofi | wannier90: A tool for obtaining maximally-localised Wannier functions[END_REF]. We denote by [P (k)] the 2N orb × 2N orb matrix representation of P (k). Similarly, our Bloch eigenstates |u n,k ⟩ are 2N orb -component vectors in the tight-binding basis states. The P -Wilson loop matrix for the holonomy starting at base point k and going along a straight path to k + G where G is a primitive reciprocal lattice vector is given by [3,4,[START_REF] Fidkowski | Model Characterization of Gapless Edge Modes of Topological Insulators Using Intermediate Brillouin-Zone Functions[END_REF] [

W 1,k,G ] m,n = ⟨u m,k+G | k+G←k q [P (q)] |u n,k ⟩ = ⟨u m,k | [V (G)] k+G←k q [P (q)] |u n,k ⟩ , (3.2) 
where both m and n are the indices of occupied eigenvectors, the [V (G)] matrix is defined in SN 2 A, and

k+G←k q [P (q)] (3.3) ≡ lim N →∞ [P (k + G)][P (k + N -1 N G)] . . . [P (k + 1 N G)][P (k)]. (3.4)
The eigenvalues of the

P -Wilson loop matrix [W 1,k,G ] [SEq. (3.2)],
which is an N occ × N occ matrix, are of the unimodular form exp{i(γ 1 ) j,k,G } where j = 1 . . . N occ index the N occ eigenvalues. We call the set {(γ 1 ) j,k,G } as P -Wannier bands (or simply Wannier bands) because {(γ 1 ) j,k,G } tells us the positions of the hybrid Wannier functions, which are localized along the lattice vector a dual to G; to be specific the hybrid Wannier functions are localized at a • (γ 1 ) j,k,G /2π. The P -Wilson loop eigenphases {(γ 1 ) j,k,G } are the Berry phases of the N occ occupied states for the closed loop in k-space parallel to G. If we write the base point k = d j=1 kj 2π G j where d is the spatial dimension of the system, and if we choose the closed loop holonomy to be along G i with base point k, then {(γ 1 ) j,k,Gi } will be independent of the component k i = k • a i where {a i } is the set of position-space lattice vectors dual to the reciprocal lattice vectors {G j } such that a i • G j = 2πδ ij [START_REF] Bradlyn | Lecture Notes on Berry Phases and Topology[END_REF]. In addition, to directly specify the holonomy in SEq. (3.2), we will sometimes call {(γ 1 ) j,k,G } as a function of k the G-directed P -Wannier bands (or simply G-directed Wannier bands), where j labels the band index. The symmetry-protected spectral flow of the eigenphases {(γ 1 ) j,k,G } is a powerful tool for diagnosing the nontrivial topology of energy bands [3-5, 76, 107, 145, 147-153]. In SN 6 A and 6 C we prove the constraints on the values of the P -Wilson loop eigenphases at different k points due to inversion and time-reversal symmetries, respectively.

B. P±-Wilson Loop

We would now like to formulate a definition of a Wilson loop applicable to spin bands. Recall from SEq. (2.35) that we can introduce the reduced spin matrix

[s reduced (k)] m,n = ⟨u m,k | s |u n,k ⟩ = ⟨u m,k | n • s |u n,k ⟩ (3.5)
where n is a unit vector, s is the spin operator from SEq. (2.13), m and n index the occupied states (i.e. states in the image of occupied-space projector [P (k)]), and where we have made the k dependence explicit. Suppose that a spin gap is open (see SN 2 B), such that we can divide the eigenvalues of [s reduced (k)] into two disjoint groups labeled by ±,

[s reduced (k)] ũ± n,k = λ ± n,k ũ± n,k , (3.6) 
where we have for all k, n and m that λ + n,k > λ - m,k . We refer to {λ ± n,k } as the upper and lower P sP bands, respectively. We denote by N + occ the number of upper spin bands, and by N - occ the number of lower spin bands. We necessarily have N + occ + N - occ = N occ . Furthermore, since a spin gap is open, N + occ and N - occ are independent of k. Recall from SN 2 B that in a system with T symmetry, it is possible to choose the upper and lower spin bands such that

N + occ = N - occ = N occ /2.
Additionally, in a system with both I and T symmetry, we can choose the upper and lower spin bands to satisfy λ + n,k > 0 and λ - m,k < 0, respectively. In terms of spinful orbital basis states, we can re-express ũ± n,k as

u ± n,k = Nocc m=1 [ũ ± n,k ] m |u m,k ⟩ , (3.7) 
where

[ũ ± n,k ] m is the m th component of the n th N occ -component eigenvector ũ± n,k and |u m,k ⟩ is the 2N orb -component eigenvectors for the occupied bands of [H(k)].
We can also derive the boundary condition for u ± n,k as follows. Upon a shift k → k + G, we have

[s reduced (k + G)] m,n (3.8) = ⟨u m,k+G | s |u n,k+G ⟩ (3.9) = ⟨u m,k | [V (G)]s[V (G)] -1 |u n,k ⟩ , (3.10) 
where the [V (G)] matrix is defined in SN 2 A. If we assume that our orbital truncation is such that time-reversed pairs of orbitals are located at the same position (this is always possible, as it is true of atomic orbitals), we can factorize

[V (G)] into [V (G)] = σ 0 ⊗ [ V (G)] where [ V (G)] is a unitary N orb × N orb matrix (recall that 2N orb is the dimension of the Hilbert space of [H(k)]) with matrix element [ V (G)] α, β = δ α β e iG•r α .
Notice that the indices α and β both range from 1 . . . N orb and r α is the position of the orbital labeled by α. From this we can show that the matrix spin operator s is invariant under a unitary transformation of

[V (G)] [V (G)]s[V (G)] -1 (3.11) = σ 0 ⊗ [ V (G)] (n • σ ⊗ I N orb ) σ 0 ⊗ [ V (G)] -1 (3.12) = n • σ ⊗ I N orb = s. (3.13) This implies [s reduced (k + G)] m,n = [s reduced (k)] m,n , (3.14) 
and the boundary condition for ũ± n,k can be chosen as

ũ± n,k+G = ũ± n,k , (3.15 
)

such that the component [ũ ± n,k ] m in SEq. (3.7) has the same boundary condition [ũ ± n,k+G ] m = [ũ ± n,k ] m .
We now define the projectors onto the upper and lower spin bands as

[P ± (k)] = N ± occ n=1 u ± n,k u ± n,k . (3.16) 
The occupied space matrix projector [P (k)] is then equal to

[P + (k)] + [P -(k)] where [P + (k)][P -(k)] = 0.
The corresponding holonomy matrix starting at base point k and going along a straight line path to k + G for [P ± (k)], which we term the P ± -Wilson loop matrix (or the spin-resolved Wilson loop matrix), is given by

[W ± 1,k,G ] m,n = u ± m,k+G k+G←k q [P ± (q)] u ± n,k = u ± m,k [V (G)] k+G←k q [P ± (q)] u ± n,k , (3.17) 
where k+G←k q

[P ± (q)] (3.18) ≡ lim N →∞ [P ± (k + G)][P ± (k + N -1 N G)] . . . [P ± (k + 1 N G)][P ± (k)], (3.19) 
and we have used the fact that, since

|u n,k+G ⟩ = [V (G)] -1 |u n,k ⟩ (see SN 2 A) and [ũ ± n,k+G ] m = [ũ ± n,k ] m , we have the boundary condition for |u ± n,k ⟩ as u ± n,k+G = Nocc m=1 [ũ ± n,k+G ] m |u m,k+G ⟩ (3.20) = Nocc m=1 [ũ ± n,k ] m [V (G)] -1 |u m,k ⟩ (3.21) = [V (G)] -1 Nocc m=1 [ũ ± n,k ] m |u m,k ⟩ (3.22) = [V (G)] -1 u ± n,k . (3.23) 
The P ± -Wilson loop matrices [W ± 1,k,G ] [SEq. (3.17)] are N + occ × N + occ and N - occ × N - occ unitary matrices respectively. We can write the eigenvalues of [W ± 1,k,G ] as exp i(γ ± 1 ) j,k,G where j = 1 . . . N ± occ index the N ± occ eigenvalues. We call the set {(γ ± 1 ) j,k,G } as P ± -Wannier bands (or spin-resolved Wannier bands) because {(γ ± 1 ) j,k,G } tells us the positions of spin-resolved hybrid Wannier functions formed from the subspace of upper (+) or lower (-) spin bands; the spinresolved hybrid Wannier functions are localized along the lattice vector dual to G. Similar to the eigenphases of the ordinary Wilson loops [W 1,k,G ], the eigenphases {(γ ± 1 ) j,k,G } are invariant with respect to gauge transformations that do not change the boundary conditions on the Bloch wave functions. This follows from SEq. (2.16) as well as the definition in SEq. (3.7) of the P sP eigenstates. The eigenphases {(γ ± 1 ) j,k,G } of the P ± -Wilson loop matrix are the Berry phases of the P ± -subspace of the N occ occupied states for the closed loop in k-space parallel to G. Again, if we write the base point k = d j=1 kj 2π G j where d is the spatial dimension of the system, and if we choose the closed loop holonomy to be along G i with base point k, then {(γ ± 1 ) j,k,Gi } will be independent of the component k i = k • a i where {a i } is the set of position-space lattice vectors dual to the reciprocal lattice vectors {G j } such that a i • G j = 2πδ ij [START_REF] Bradlyn | Lecture Notes on Berry Phases and Topology[END_REF]. In addition, to directly specify the holonomy in SEq. (3.17), we will throughout this work refer to {(γ ± 1 ) j,k,G } as a function of k as the G-directed P ± -Wannier bands (or G-directed spin-resolved Wannier bands), where j labels the band index. Similar to the case of G-directed P -Wannier bands we may deduce the topological properties of the system by computing the spectral flow of {(γ ± 1 ) j,k,G }. In SN 6 E and 6 G we prove the constraints on the values of the P ± -Wilson loop eigenphases at different k points due to inversion and time-reversal symmetries, respectively. In the next SN 3 C we will discuss some general properties of spectral flow in the P ± -Wilson loop.

C. Spectral Flow of the P±-Wilson Loop

In this section we discuss some general properties of the spectral flow of the P ± -Wilson loop eigenphases γ ± 1 . To simplify the discussion, we will in this section specify to 2D spinful systems. We will not assume any symmetries to begin (including time-reversal symmetry) except for discrete translations. We take the primitive Bravais lattice vectors to be {a 1 , a 2 }, and the corresponding primitive reciprocal lattice vectors to be

{G 1 , G 2 } satisfying a i • G j = 2πδ ij . The crystal momentum k can then be expanded using k = 2 i=1 ki 2π G i where k i = k • a i .
The BZ is then defined by the region with k i = [-π, π). Toward the end of this section we will additionally specialize to time-reversal (T ) invariant systems. We will also generalize to 3D systems in SN 3 E and 3 F.

We will suppose that both the energy and the spin gaps are open. This implies that the occupied-space projector P (k) is well-defined and is a smooth function of k, and that the eigenvectors of P (k)sP (k) in Image[P (k)] can be separated into upper and lower eigenspaces with projectors P ± (k). The projectors P ± (k) are similarly well-defined and smooth over the BZ. Let us denote the G 2 -directed P ± -Wilson loop eigenphase as {γ ± 1,j (k 1 )} where j is the P ± -Wannier band indices. Notice that, to facilitate the discussion in this subsection 3 C, unlike the most general notation {(γ ± 1 ) j,k,G } introduced in SN 3 B, we have suppressed the subscripts for both k denoting the base point and G characterizing the holonomy such that only the k 1 -dependence remains explicit in the expressions below. This is because the eigenphases are independent of k 2 for G 2 -directed P ± -Wilson loops. We can define the partial Chern numbers C ± γ1 as the negative winding number of Im log det W ± 1,k,G2 as a function of k 1 , or equivalently the positive winding number of Im log det W ± 1,k,G1 as a function of k 2 . In terms of the eigenphases {γ ± 1,j (k 1 )}, we can write the partial Chern numbers as [1, 7]

C ± γ1 = - 1 2π N ± occ j=1 π -π dk 1 ∂γ ± 1,j (k 1 ) ∂k 1 = - i 2π d 2 kTr P ± (k) ∂P ± (k) ∂k 1 , ∂P ± (k) ∂k 2 . (3.24)
We see that the partial Chern numbers C ± γ1 are respectively equal to the Chern numbers of the subspaces of states in the images of P ± (k). Denoting the Chern number of the occupied energy bands as C γ1 , we can use P + (k) + P -(k) = P (k) and P + (k)P -(k) = 0 in conjunction with the second equality of SEq. (3.24) to show that (see for example SRef. [START_REF] Avron | Adiabatic quantum transport[END_REF])

C + γ1 + C - γ1 = C γ1 . (3.25)
As argued in SRef. [1], the partial Chern numbers C ± γ1 are topological invariants, in the sense that two systems with different partial Chern numbers cannot be adiabatically deformed into each other without closing either an energy gap or a spin gap. As shown in SN 2 C, this is a physically motivated constraint since both the energy gap and the spin gap are robust to external perturbations and hence physically meaningful. During a deformation of the Hamiltonian, although C γ1 and C ± γ1 can change due to energy and spin gap closing respectively, they need to satisfy the exact relation in SEq. (3.25). Following SRef. [1], we may also define a spin Chern number

C s γ1 ≡ C + γ1 -C - γ1 , (3.26) 
which can be viewed as the relative winding number of the Wilson loop eigenphases of the upper and lower P (k)sP (k) eigenspaces. We have normalized C s γ1 such that, for a system with conserved spin component n • s, the spin Hall conductivity is given by [6,7,[START_REF] Bernevig | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[END_REF][START_REF] König | The Quantum Spin Hall Effect: Theory and Experiment[END_REF][START_REF] Murakami | Spin-Hall Insulator[END_REF][START_REF] Sinova | Universal Intrinsic Spin Hall Effect[END_REF][START_REF] Sinova | Spin Hall effects[END_REF] 

σ s H = ℏ 2 e h C s γ1 , (3.27) 
where e is the (negative) electron charge. SEq. (3.25) places constraints on how C s γ1 can change when a spin gap closes. Suppose we deform the Hamiltonian in a way that the energy gap remains open while the spin spectrum undergoes a spin band inversion (i.e. the spin gap between the upper and lower spin bands closes and reopens). C γ1 will remain invariant since the energy gap is open throughout the deformation. According to SEq. (3.25), C + γ1 and C - γ1 can only be changed by opposite integers in order to keep C γ1 invariant. For example, before and after the spin band inversion, we can have

C γ1 → C γ1 , (3.28) 
C ± γ1 → C ± γ1 ± n, (3.29) 
where n ∈ Z. Therefore, as long as the energy gap remains open, C + γ1 and C - γ1 cannot change independently. However, absent additional symmetries, the values of C + γ1 and C - γ1 need not to be related. From the definition of C s γ1 in SEq. (3.26), when

C ± γ1 → C ± γ1 ± n, we have C s γ1 → C s γ1 + 2n
. Therefore, without an energy gap closing, it is possible to deform the Hamiltonian such that C s γ1 is changed by an even integer 2n when the spin gap closes and reopens. Therefore, (C s γ1 ) mod 2 is a Z 2 -stable topological invariant that cannot change even when the spin gap closes and reopens. This invariant specifically characterizes whether there is an even-or odd-integer difference between C + γ1 and C - γ1 . Note that systems with (C s γ1 ) mod 2 = 1 cannot be time-reversal symmetric, since the Chern number

C γ1 = C + γ1 + C - γ1 ̸ = 0 if C + γ1 -C - γ1 is odd.
As an example, let us consider a toy model of a Chern insulator with two spinful orbitals per unit cell. We suppose that n • s commutes with the Hamiltonian, so that spin n • s is a good quantum number. This means that we can compute the partial Chern numbers for the spin-up (along +n) and spin-down (along -n) occupied states separately. Suppose that the total Chern number C γ1 = 1, the partial Chern number C + γ1 = 1 for the spin-up electrons, and the partial Chern number C - γ1 = 0 for the spin-down electrons. In this case the spin Chern number C s γ1 = 1. If we deform the Hamiltonian in a way that the energy gap does not close, but the spin gap can close and reopen, then there can be a transfer of partial Chern number between the upper and lower spin bands. Absent any (crystallographic or time-reversal) symmetry constraints, we can have, for instance, that

C + γ1 = 1 → 2, C - γ1 = 0 → -1, (3.30) 
such that C γ1 = C + γ1 + C - γ1 is still 1. The spin Chern number C s γ1 has changed from 1 to 3. In this example, before and after the spin gap closing, (C s γ1 ) mod 2 is always equal to 1. Furthermore, the energy gap has remained open throughout the deformation. Note that if the system has conserved spin component n • s before and after the deformation, then the spin Hall conductivity [SEq. (3.27)] must have changed by e/(2π) times an integer.

For non-interacting systems with time-reversal symmetry, we have that C s γ1 must be even, and [6,[START_REF] Kane | Z2 Topological Order and the Quantum Spin Hall Effect[END_REF]. To see this, let us consider a deformation of the Hamiltonian that preserves T symmetry and does not close an energy gap, while allowing the spin gap to close and reopen. Due to T symmetry, if the spin gap closes at k, then the spin gap will also close at -k. This means that C ± γ1 can in general change only by even integers, such that

C s γ1 = 2C + γ1 = -2C - γ1 . ( 3 
C ± γ1 → C ± γ1 ± 2n, (3.32) 
where n ∈ Z. Although the states at the spin gap closing points k and -k are related by time-reversal, the same quantity of partial Chern number is transferred from the lower spin bands to the upper spin bands at each point. This is because unlike for energy bands, time-reversal symmetry interchanges the upper and lower spin bands. Furthermore, if the spin gap closes between two spin bands at a TRIM, T symmetry requires that the spin band dispersion near the gap closing point is quadratic; hence C ± γ1 can also only change by an even integer [START_REF] Fang | Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry[END_REF] We then see that with T symmetry, 1/2(C s γ1 mod 4) is a stable Z 2 invariant as first shown by Prodan [1]. This is consistent the crystallographic splitting theorem of SRef. [START_REF] Alexandradinata | Crystallographic splitting theorem for band representations and fragile topological photonic crystals[END_REF].

To further establish that 1/2(C s γ1 mod 4) coincides with the Kane-Mele Z 2 invariant, let us consider a T -invariant system with C ± γ1 = ±1 such that C s γ1 = 2. Recall that {γ ± 1,j (k 1 )} are the localized positions along a 2 of the spinresolved hybrid Wannier functions in the upper and lower P sP eigenspaces, and the partial Chern numbers C ± γ1 are the corresponding negative net winding numbers of the spin-resolved hybrid Wannier centers when k 1 → k 1 + 2π. Since T P ± (k)T -1 = P ∓ (-k), the P + -and P --hybrid Wannier functions are related to each other by time-reversal symmetry. C ± γ1 = ±1 then means that we cannot form exponentially-localized Wannier functions using only states in the image of P ± , since the spin-resolved hybrid Wannier functions have a discontinuity when k 1 → k 1 +2π [START_REF] Soluyanov | Smooth gauge for topological insulators[END_REF]. Thus, we see that 1/2(C s γ1 mod 4) = 1 quantifies the obstruction to forming exponentially-localized Wannier functions related to each other by time-reversal symmetry, and so coincides with ν 2d [START_REF] Soluyanov | Smooth gauge for topological insulators[END_REF]. Hence an odd winding in the P ± -Wilson loops implies helical winding protected by T symmetry in the centers of the ordinary hybrid Wannier functions [3,[START_REF] Soluyanov | Wannier Representation of Z2 Topological Insulators[END_REF] computed using the P -Wilson loop formalism (SN 3 A). We will numerically demonstrate this in SN 3 D.

Note also that a nonzero spin Chern number C s γ1 implies an intrinsic contribution to the spin Hall conductivity. For systems with conserved component n • s of the spin, we have that the spin Hall conductivity is directly proportional to the spin Chern number via SEq. (3.27); this follows from Thouless-Komohto-Nightingale-den Nijs expression for the Kubo formula for the Hall conductivity [START_REF] Thouless | Quantized Hall Conductance in a Two-Dimensional Periodic Potential[END_REF] applied separately to spin-up and spin-down states [7]. When spin is not conserved, the Kubo formula for the spin Hall conductivity takes the more complicated form

σ s H = e 4π (σ s I + σ s II ), (3.34) 
where (using Tr(O) to denote the trace of operator O)

σ s I = - i 2π d 2 kTr sP ∂P ∂k 1 , ∂P ∂k 2 (3.35)
describes spin transport, and σ s II quantifies the rate of change of the spin density due to spin nonconservation in the Hamiltonian [108,[START_REF] Shi | Proper Definition of Spin Current in Spin-Orbit Coupled Systems[END_REF][START_REF] Tokatly | Equilibrium Spin Currents: Non-Abelian Gauge Invariance and Color Diamagnetism in Condensed Matter[END_REF][START_REF] Gorini | Onsager Relations in a Two-Dimensional Electron Gas with Spin-Orbit Coupling[END_REF]. Our definition of σ s II differs slightly from that in SRef. [108] in that we have chosen to include in σ s II all contributions to the spin Hall conductivity that vanish when spin is conserved. The spin Chern number gives a topological contribution to σ s I even when spin is not conserved. Writing P (k) = P + (k) + P -(k) and inserting a complete set u ± nk of states in the image of P (k), we can write

σ s I = C s γ1 + i 2π d 2 k 2Tr P + ∂P - ∂k 1 , ∂P - ∂k 2 - α=± n β α nk ⟨u α nk | P ∂P ∂k 1 , ∂P ∂k 2 |u α nk ⟩ , (3.36) 
where we have introduced

β ± nk = ±1 -λ ± nk .
The first term in SEq. (3.36) is the spin Chern number [SEq. (3.26)]. The second term quantifies the fact that if spin is not conserved, the lower P sP eigenstates at k will have nonzero overlap with upper P sP eigenstates at neighboring k + δk. Finally, the third term in SEq. (3.36) gives the integral of the diagonal matrix elements of the ordinary Berry curvature between P sP eigenstates, weighted by the deviation of their P sP eigenvalue from ±1. Thus, σ s I -C s γ1 will be small when n • s non-conserving SOC is weak. Additionally, it was established in SRefs. [108,[START_REF] Yang | Středa-like formula in the spin Hall effect[END_REF] that σ s II is also small when n • s non-conserving SOC is weak. Hence, we have shown that the spin Chern number indicates the leading intrinsic (topological) contribution to the spin Hall conductivity for weak n • s non-conservation. In SN 10 C, we will validate this result under realistic conditions by computing the bulk spin Hall conductivity for several choices of n for the candidate helical HOTI α-BiBr [50,52,53], which we find to have two independent spin-gapped regimes. Remarkably, we find that in both independent spin-gapped regimes, the intrinsic bulk contribution to the spin Hall conductivity lies in close agreement with a quantized value proportional to the spin Chern number, even when the spin gap is as small as ∆ s ∼ 0.25.

Finally, the relation ν 2d = (1/2)C s γ1 mod 2 in 2D allows us to deduce some general features of the spin spectrum for 3D topological insulators. Recall that for a 3D strong topological insulator, if we evaluate the 2D strong Z 2 invariant ν 2d (k i ) over two parallel time-reversal invariant planes with k i = 0 and

k i = π (i = 1, 2, 3), then |ν 2d (0) -ν 2d (π)| = 1.
This implies that the spin Chern numbers evaluated on these planes satisfy |C s γ1 (0)-C s γ1 (π)| = 2+4n for some integer n. Since the spin Chern number C s γ1 (k i ) can be defined over any constant-k i plane over which the spin gap is open, the only way for the C s γ1 to change is if the spin gap closes for some k i . As such, the spin spectrum must have an odd number of gap closing points between the k i = 0 and k i = π planes [START_REF] Roy | Characterization of three-dimensional topological insulators by two-dimensional invariants[END_REF]. Just like for energy bands, the Wigner-von Newmann theorem tells us that, absent additional crystal symmetries, the spin gap closing points at generic k will occur as isolated twofold degeneracies with linearly dispersing spin bands in all directions [START_REF] Herring | Accidental Degeneracy in the Energy Bands of Crystals[END_REF]. Therefore, a 3D strong topological insulator must have a gapless spin spectrum. For an analytic demonstration, we refer the readers to SN 2 E where we perform an explicit computation using a model of 3D strong topological insulator. We will come back to this statement later in SN 3 E and 3 F when we numerically demonstrate the application of our P ± -Wilson loop formalism to 3D strong topological insulators.

D. 2D Spinful Time-Reversal-Invariant Systems

In this section, we will numerically demonstrate the application of the P ± -Wilson loop formalism in SN 3 B to resolve the nontrivial topology in the spin spectrum by considering a 2D strong TI with spinful time-reversal (T ) symmetry. We will also numerically confirm the symmetry constraints for the P ± -Wilson loop spectra we derived in SN 6 G. In the following discussion, we will refer to the eigenvalues of the reduced spin matrix introduced in SEq. (3.5) with n a unit vector along the i th Cartesian coordinate direction as the "s i spectrum" or the "s i eigenvalues." The 2D strong TI model we consider is a four-band lattice model with orbital (s and p) and spin (↑ and ↓) degrees of freedom represented by Pauli matrices τ µ and σ ν , respectively. The corresponding four-band (momentum-space) Bloch Hamiltonian [H(k)] is given by [79,[START_REF] Bernevig | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[END_REF][START_REF] Fu | Topological insulators with inversion symmetry[END_REF] [

H(k)] = [ϵ -t 1,x cos(k x ) -t 1,y cos(k y )]τ z σ 0 + t 2,x sin(k x )τ y σ 0 + t 2,y sin(k y )τ x σ z + t R (sin(k y )τ 0 σ x -sin(k x )τ 0 σ y ) + [t P H,x cos(k x ) + t P H,y cos(k y )]τ 0 σ 0 + t Mx cos(k x )τ y σ x + t My cos(k y )τ y σ y + t I cos(k x )τ x σ 0 , (3.37) 
Both τ 0 and σ 0 are 2 × 2 identity matrices. SEq. (3.37) was formulated by adding additional terms to the Bernevig-Hughes-Zhang (BHZ) model of a 2D strong TI [79,[START_REF] Bernevig | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[END_REF][START_REF] Fu | Topological insulators with inversion symmetry[END_REF] to break rotation and mirror symmetries of that model. We will choose the following values for the parameters of the model: Instead of using {(γ 1 ) j,k,G } and {(γ ± 1 ) j,k,G } to denote the set of eigenphases of the P -and P ± -Wilson loop matrices, in this section we will denote them as {γ 1,j (k ⊥ )} and {γ ± 1,j (k ⊥ )} to emphasize that the eigenphases depend only on k ⊥ . For example, in a 2D orthorhombic system, which is the case we will consider below, if we choose G = 2πx for the holonomy, the corresponding eigenphases for the k x -directed P -and P ± -Wilson loop matrices will be denoted as {γ 1,j (k y )} and {γ ± 1,j (k y )}, respectively. In addition to helical edge states, another characteristic of a 2D strong TI is the presence of an odd helical winding in the P -Wilson loop spectrum [3]. In SFig. 3(a), we show the eigenphases γ 1 of the k x -directed P -Wilson loop matrix [SEq. (3.2)] as a function of k y , where we have chosen G = 2πx in SN 3 A. The two-fold degeneracies at k y = 0 and k y = π in SFig. 3(a) are due to Kramers theorem, and thus the helical winding, if it exists, is protected as long as the T symmetry is preserved [3,[START_REF] Soluyanov | Wannier Representation of Z2 Topological Insulators[END_REF]. Since the model [SEq. (3.37)] with parameters in SEq. (3.38) has only translation and time-reversal symmetries, the eigenphases {γ 1,j (k y )} take generic values at k y = 0, π, as shown in SFig. 3(a); there are no improper rotation symmetries (such as mirror symmetries) to quantize {γ 1,j (k y = 0, π)} [107]. For a detailed discussion of how crystalline symmetries can quantize the eigenphases, we refer the readers to SN 6 A where we specifically consider the effect of inversion symmetry on the P -Wilson loop eigenphases.

ϵ = 1.0, t 1,x = 0.
To systematically resolve the topology in the spin spectrum, we first verify that there is a gap in the s z spectrum computed in the occupied two-band valence space throughout the 2D BZ, as shown in SFig. 2(c). Note that the P s z P eigenvalues deviate from unity, indicating that s z is not conserved. This will enable us to decompose the occupied space into two parts and compute the P ± -Wilson loop eigenphases in the occupied space. We will again choose G = 2πx in SN 3 B. As shown in SFig. 3(b,c), such k x -directed P + -and P --Wilson loop eigenphases as a function of k y are related to each other by ] while for the spectrum in (c) we have winding number +1 corresponding to the partial Chern number C - γ 1 = +1. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

{γ ± 1,j (k y )} mod 2π = {γ ∓ 1,j (-k y )} mod 2π (3.39)
where {γ ± 1,j (k y )} is the set of the eigenphases of the k x -directed P ± -Wilson loop matrix [SEq. (3.17)], and j is the corresponding band indices. This is the 2D counterpart of the T constraints on the P ± -Wilson loops that we will derive in SN 6 G. Indeed, SEq. (3.39) follows directly from the definition of the P ± -Wilson loop matrix, combined with SEq. (2.37). This constrains the winding numbers of {γ + 1,j (k y )} and {γ - 1,j (k y )} as k y → k y + 2π to be opposite. In our specific examples, we see that the winding numbers of the k x -directed P ± -Wilson loop spectra are given by ∓1. From SEq. (3.24), the partial Chern numbers are then given by C ± γ1 = ∓1, where we recall that the partial Chern numbers are given by the winding number of {γ ± 1,j (k y )} as k y → k y + 2π [78,[START_REF] Gresch | Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials[END_REF][START_REF] Bradlyn | Lecture notes on Berry phases and topology[END_REF]. This is consistent with the fact that the subspace of upper and lower spin bands are not invariant under T . However, T symmetry enforces the constraint that C + γ1 = -C - γ1 as we have stated in SEq. (3.31).

From our definition in SEq. (3.26) we have that the spin Chern number of this model is given by

C s γ1 = -2. (3.40)
As mentioned in SN 3 C, for a system with T symmetry, 1/2(C s γ1 mod 4) gives the 2D Z 2 Kane-Mele invariant ν 2d [1,[START_REF] Prodan | Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells[END_REF]. Therefore, SEq. (3.40) means that our 2D model in SEq. (3.37) with parameters in SEq. (3.38) is indeed a 2D strong TI with nontrivial strong Z 2 invariant ν 2d = 1.

As discussed in the text surrounding SEq. (3.33), the reason that 2ν 2d = C s γ1 mod 4 is because C s γ1 can change by a multiple of 4 under T -symmetric adiabatic deformations of the Hamiltonian that close a spin gap but not an energy gap. To see this concretely, we follow the logic of SRef. [1] and construct a deformation of the Hamiltonian [H(k)] in SEq. (3.37) through a unitary transformation

[U (ϕ)] = exp -iϕσ x 2 = σ 0 cos ϕ 2 -iσ x sin ϕ 2 , (3.41) 
which corresponds to a rotation of the spin vector about the x-axis by an angle ϕ. The transformed Hamiltonian as a function of

ϕ is denoted as [H(k, ϕ)] = [U (ϕ)][H(k)][U (ϕ)] † . Since T is represented as [T ] = iσ y K (3.42)
with K denoting the complex conjugation operator, it follows that

[T ][H(k, ϕ)][T ] -1 = [H(-k, ϕ)] (3.43) This means that [H(k, ϕ)] is still T -invariant.
For simplicity, we will turn off all the tight-binding parameters in SEq. (3.38) except for ϵ, t 1,x , t 1,y , t 2,x , and t 2,y . We will further choose ϵ = 1.0, t 1,x = t 1,y = t 2,x = t 2,y = 1.0, which does not close the energy gap between the conduction and valence bands, and does not change the winding numbers of the P ± -Wilson loop eigenphases from their values in SFig. 3(b,c). In other words, when ϕ = 0, we have

C ± γ1 = ∓1. Since [U (π)] † σ z [U (π)] = -σ z ,
it can then be deduced that when ϕ = π, the same eigenstates of the reduced s z matrix that we originally labeled as having positive [negative] P s z P eigenvalues will at ϕ = π be labeled as having negative [positive] P s z P eigenvalues. Therefore, when ϕ = π, we have instead C ± γ1 = ±1. This means that the spin Chern number will change from C s γ1 = -2 to C s γ1 = +2 when we deform the Hamiltonian from ϕ = 0 to ϕ = π. As the partial Chern numbers C ± γ1 give the Chern numbers for the upper and lower P s z P bands, respectively, the spin gap must close and reopen throughout the deformation from ϕ = 0 to ϕ = π in order to transfer -2 partial Chern number from the upper to lower spin bands such that C ± γ1 change from ∓1 to ±1. In fact, with the simpler tight-binding parameter choice we mentioned above, it can be shown analytically that the gap in the P s z P spectrum closes when ϕ = π/2. To see this, note that since [U (π/2)] † σ z [U (π/2)] = σ y , the P s z P eigenvalues of the unitary-transformed model with ϕ = π/2 are the same as the P s y P eigenvalues of the model before the transformation. Before the deformation (ϕ = 0), with the simpler tight-binding parameter choice, we have at (k x , k y ) = (0, ±π/2) the Bloch Hamiltonian [H(0, ±π/2)] = ±τ x σ z .

(3.44)

Similar to the analysis in SN 2 F, we first obtain the corresponding two valence eigenvectors

|1 ± ⟩ = 1 √ 2 1 ∓1 ⊗ 1 0 , (3.45) 
|2 ± ⟩ = 1 √ 2 1 ±1 ⊗ 0 1 , (3.46) 
where |1 ± ⟩ and |2 ± ⟩ denote the first and second eigenvectors of [H(0, ±π/2)] with eigenvalue -1. It can be then checked that the reduced s y spin matrix [s y,reduced (k)] defined in SEq. (3.5) is a 2×2 matrix of zeros at both (k x , k y ) = (0, ±π/2). This means that the P s y P eigenvalues for both [H(0, ±π/2)] are zeros with two-fold degeneracy. In other words, the gap in the P s y P spectrum is closed at (k x , k y ) = (0, ±π/2) for the Bloch Hamiltonian before the deformation (ϕ = 0). Therefore, the gap in the P s z P spectrum of the unitary-transformed model

[U (π/2)][H(k)][U (π/2)] † is closed.
Notice that T symmetry requires that if the spin gap is closed at k, there must be another spin gap closing point at -k. This is because the projected spin operator s(k

) = P (k)sP (k) satisfies [T ]s(k)[T ] -1 = -s(-k). (3.47) 
Also note that since we are performing a unitary transformation [SEq. (3.41)] on the Hamiltonian, the energy spectrum is unchanged throughout the deformation. However, we have changed C s γ1 by +4. The upshot is that, with

T symmetry, if we only maintain the (Hamiltonian) energy gap, then through a closing of the spin gap we are able to change the spin Chern number [SEq. (3.26)] by a multiple of 4 [1,[START_REF] Prodan | Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells[END_REF]. This, correspondingly, results in a measurable change of the (topological contribution to the) spin Hall conductivity (in our example, it interchanges spin-up and spin-down electrons, which reverses the sign of the spin Hall conductivity). We can interpret SFig. 3(b,c) in terms of the spectral flow of hybrid Wannier centers for hybrid Wannier functions composed of upper and lower P s z P eigenstates. In particular, we see that as k y is adiabatically varied from -π to π, the centers of hybrid Wannier functions formed from P + states shift one unit cell to the left along the x direction. Similarly, the centers of hybrid Wannier functions formed from P -states-which are the time-reversed partners of the P + hybrid Wannier functions-shift one unit cell to the right along the x direction. Notice that such a behavior can also be seen in the ordinary P -Wilson loop calculation, as shown in SFig. 3(a). If we trace the individual bands in SFig. 3(a) in a smooth and continuous way, we will also obtain two distinct windings that are related to each other by time-reversal symmetry [such as the reflection with respect to the k y = 0 axis in SFig. 3(b,c)], with opposite winding numbers. We emphasize that, in this section, we have demonstrated the procedure for spin-resolving the Wilson loop spectrum by first decomposing the occupied space into two parts that are related to each other through a spinful T operation, and then performing the Wilson loop calculation within each of the two separate subspaces. Although it may seem from the simple example of a 2D TI considered in this section that the P ± -Wilson loop eigenvalues and general features [SFig. 3(b,c)] can be obtained via a straightforward decomposition of the P -Wilson loop spectrum [SFig. 3(a)], in general this is not the case. In SN 3 G, we will analyze a more complicated model of a 2D fragile topological insulator with more pronounced differences between the P ± -Wilson loops and naive "halves" of the P -Wilson loop spectrum. In subsequent sections we will further show how the spin-resolved Wilson loop can be employed to analyze 3D strong TIs (SN 3 E and 3 F), 2D fragile TIs (SN 3 G), and higher-order topological phases (SN 4 E).

We conclude by summarizing the properties of 2D strong TIs shown in this section: 

E. 3D Spinful Time-Reversal-Invariant Systems with Inversion Symmetry

In this section, we will demonstrate that the P ± -Wilson loops can also be used to detect a 3D TI with spinful T symmetry. We will also verify that spin gap closing points in a 3D system play the role of Berry curvature monopoles for the partial Chern numbers C ± γ1 , defined in SEq. (3.24) as the winding numbers of P ± -Wilson loop eigenphases. We term such spin gap closing points with nonzero partial Berry flux as spin-Weyl nodes.

We begin by introducing a 4-band spinful T and I symmetric 3D TI with an orthorhombic lattice, where at the origin of each unit cell we place a spinful s and a spinful p orbital. The corresponding four-band (momentum-space) Bloch Hamiltonian matrix is given by [15] [

H(k)] = mτ z σ 0 + i=x,y,z (t 1,i cos (k i )τ z σ 0 + t P H,i cos (k i )τ 0 σ 0 + t 2,i sin (k i )τ y σ 0 + v 1,i sin (k i )τ x σ i ) + v 2,xy [sin(k x ) + sin(k y )]τ x σ z + v 2,z sin (k z )τ x σ x . (3.48)
where again τ µ and σ ν are Pauli matrices describing the orbital (s and p) and spin (↑ and ↓) degrees of freedom respectively, and both τ 0 and σ 0 are 2 × 2 identity matrices. The Bloch Hamiltonian [SEq. (3.48)] is formulated by adding additional terms to the BHZ model of a 3D strong TI to break symmetries of that model. We will choose the following parameter values: respectively. The 3D Brillouin zone, energy spectrum, and finite-sized slab spectrum for this model are shown in SFig. 4.

m = -5, t 1,x = 2.3, t 1,y = 2.5, t 1,z = 3, t P H,x = t P H,y = 0.3, t P H,z = 0, t 2,x = 0.9, t 2,y = t 2,z = 0, v 1,x = v 1,y = 3.2, v 1,z = 2.4, v 2,xy = 1.5, v 2,z = 0.4. ( 3 
[I][H(k)][I] -1 = τ z σ 0 [H(k)]τ z σ 0 = [H(-k)], (3.50) [T ][H(k)][T ] -1 = τ 0 σ y [H(k)] * τ 0 σ y = [H(-k)], (3.51) 
In SFig. 5(a), we show the k x -directed P -Wilson loop eigenphases {γ 1,j (k y , k z )} (j = 1 ∼ 2) of the two occupied bands as a function of k y at different constant-k z planes. At the k z = 0 plane there is an odd helical winding of {γ 1,j (k y , 0)} as k y → k y + 2π while at the k z = π plane there is no helical winding of {γ 1,j (k y , π)} as k y → k y + 2π. In SFig. 5(a), the helical winding at the k z = 0 plane is protected by spinful T symmetry, while at k z = π we have a trivial winding of {γ 1,j (k y , k z )} as k y → k y + 2π. This means that the Hamiltonian [SEq. (3.48)] restricted to the k z = 0 plane is topologically equivalent to a two-dimensional Hamiltonian describing a 2D strong TI, while the Hamiltonian [SEq. (3.48)] restricted to the k z = π plane is topologically equivalent to a two-dimensional Hamiltonian describing a trivial insulator. SFig. 5(a) then demonstrates that our lattice model is indeed a 3D TI.

We next numerically determine the locations of the gap closing points in the P s z P bands. Since our system has both I and T symmetry, we know from SN 2 B and SFig. 1 that we can define the lower spin bands as those states with [s z,reduced (k)] eigenvalue λ - nk < 0, and similarly the upper spin bands can be defined as those states with [s z,reduced (k)] eigenvalue λ + nk > 0. Spin gap closing points can only occur at points k * such that λ + nk * = λ - nk * = 0. We can exploit this fact to efficiently find the spin-Weyl nodes numerically by searching for points k * where det[s z,reduced (k * )] = 0 (which can only occur when the spin gap closes). We do this by applying the iterative numerical minimization algorithm to a grid of initial points in the BZ. In SFig. 5(b) we show the two obtained spin s z gap closing points k 1 = -k 2 = (0, 0.456π, -0.212π) related to each other by T and I symmetries.

We next compute the k x -directed P ± -Wilson loop spectrum {γ ± 1,j (k y , k z )} as a function of k y for different constantk z planes, shown in SFig. 5(c,d). Since our model has only two occupied bands, there is only one band in each of the positive and negative P s z P eigenspace, and hence there is only one band {γ ± 1,j (k y , k z )} (j = 1 only) for each of the P ± -Wilson loops. As long as k z ̸ = ±0.212π, the s z spin gap is open, such that the P ± -Wilson loop is well-defined. We first notice that in the T -invariant k z = 0 plane, the {γ bands. We indicate this in SFig. 5(b). This justifies our identification of the spin gap closing points as spin-Weyl nodes. Consistent with our analysis in SN 2 E, 3 C and 3 H, we see that our 3D TI model has an odd number of spin-Weyl nodes in each half of the BZ.

F. 3D TIs With and Without Inversion Symmetry

In this section, we will examine the spin spectra and topology of 3D strong topological insulators with only timereversal symmetry. As noted in SN 2 B, for systems with T but without I symmetry, we can divide the spin band structure into an equal number of lower and upper spin bands. For N occ total occupied bands, we take the projector onto the upper spin bands P + (k) to project onto the N occ /2 eigenstates of [s reduced (k)] with largest eigenvalues; we denote the reduced spin eigenvalues for these states as λ + nk , where n = 1 . . . N occ /2. Similarly we take the projector onto the lower spin bands P -(k) to project onto the N occ /2 eigenstates of [s reduced (k)] with smallest eigenvalues; we denote the reduced spin eigenvalues for these states as λ - nk , where n = 1 . . . N occ /2. The spin gap is open provided λ + nk ̸ = λ - mk for all m, n and k. Just as in SN 3 E, the spin gap with T symmetry will generically close at isolated points k * , at which for a given choice of n, we have that λ + nk * = λ - nk * . However, with only T symmetry, λ + nk * = λ - nk * ̸ = 0 generically at the spin gap closing points. Specifically, with only T symmetry, the spin gap for a 3D insulator will generically close at a set of spin-Weyl nodes, but those spin-Weyl nodes need not have vanishing P sP eigenvalues (i.e. the spin-Weyl nodes can appear at nonzero P sP eigenvalues in the spin spectrum). We also have from SN 2 B that if there exists a spin-Weyl node at k * with λ + nk * = λ - nk * = λ, then by T symmetry, there will also be a spin-Weyl node at

-k * with λ + n-k * = λ - n-k * = -λ; this is illustrated in SFig. 6(d).
As in the Iand T -symmetric case considered in SN 3 E, spin-Weyl nodes in systems with only T symmetry are also monopole sources of partial Chern numbers, even though they generically carry nonzero P sP eigenvalues. Specifically, if we consider the occupied bands in two BZ planes on either side of a spin-Weyl node in a noncentrosymmetric, T -invariant insulator, then the partial Chern numbers C ± γ1 each change by ±1 (or ∓1) as k crosses the spin-Weyl node.

We can now relate spin spectrum degeneracies to the strong topological index in systems with only time-reversal symmetry. Consider a system with a spin band structure that has an odd number of spin-Weyl points in half the BZ, none of which occur on a T -invariant plane. We then have that the partial Chern numbers on the two T -invariant planes bounding the half of the BZ must differ by 1 (or more generally an odd integer). On T -invariant planes, 2D Z 2 Kane-Mele invariant ν 2d is given by the parity of the partial Chern numbers as shown in the argument following SEq. (3.33). This lets us deduce that ν 2d differs between these two T -invariant planes. This implies immediately that the system is a strong topological insulator as defined in SRef. [START_REF] Fu | Topological Insulators in Three Dimensions[END_REF]. It is crucial to recall in this argument that while the 2D Z 2 invariant is only defined on T -invariant planes, the partial Chern numbers are defined at all planes in the BZ in which the spin gap is open. In particular, the value of ν 2d for the occupied bands on a T -invariant plane M fixes parity of half the spin Chern number C s γ1 /2 [defined in SEq. (3.26)] for the occupied bands on any non-T -invariant plane that can be reached by deforming M without crossing a spin-Weyl node. Thus, we deduce that for a gapped Hamiltonian H with spinful T symmetry, if the spectrum of P sP has a number of Weyl nodes n w mod 4 = 2, then the system must be a 3D strong topological insulator. In particular, if there is a spin-Weyl node at k with P sP eigenvalue λ, by time-reversal symmetry there will be another spin-Weyl node at -k with P sP eigenvalue -λ. Crucially, the Berry flux around a spin-Weyl node reverses sign under T symmetry: two spin-Weyl nodes related by T have opposite partial Chern numbers (chiral charges). This might seem counter-intuitive, as we know that Weyl nodes in the energy spectrum that are related by T symmetry carry the same Berry flux. However, recall that for spin bands, time-reversal not only flips the momentum but also flips the sign of the spin. Therefore, under T the upper spin band of a spin-Weyl node at momentum k maps to the lower spin band of the image spin-Weyl node at -k. Since the upper and lower bands of a Weyl node carry opposite Chern numbers provided that the occupied energy bands are separated from the unoccupied energy bands by a finite energy gap, we deduce that the spin-Weyl nodes that are related to each other by T symmetry will carry opposite partial Berry flux. On the other hand, for a system with both I and T symmetries (see SN 3 E), the spin-Weyl nodes with λ = 0 at k and -k are related by either T or I. Importantly, spin-Weyl nodes related by I symmetry will also carry opposite Berry flux. This is because I acts on the P sP eigenstates in the same way as the energy eigenstates, and I does not flip the sign of the spin. Therefore, each of spin-Weyl nodes carries nonzero partial Berry flux (even though the system has both I and T symmetry) while Weyl nodes in the energy spectrum are forbidden in systems with both I and T symmetry [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF]. As a corollary, this also constrains the perturbations to the spin band structure that can occur without closing the spectral gap of the Hamiltonian H. In particular, note that in order to have, or induce, a total number of spin-Weyl nodes n w mod 4 = 2, we must invert spin bands at a TRIM point (a spin band inversion at a generic point would create two pairs of Weyl points related by T -symmetry). Since this spin band inversion would change the strong Z 2 invariant of the occupied states in a T -invariant plane, it cannot occur without closing the gap in the Hamiltonian. This is consistent with the analysis of SRef. [START_REF] Roy | Characterization of three-dimensional topological insulators by two-dimensional invariants[END_REF].

Let us now numerically verify these points. We will consider a model of a 3D TI with only T symmetry and demonstrate the application of the P ± -Wilson loop formalism previously described in SN 3 B to diagnose a 3D Tinvariant TI without inversion symmetry. To begin, we take the model of a 3D TI described in SEq. (3.48) with parameters in SEq. (3.49) and add additional terms

H I-breaking (k) = 3 i,j=1 f 0ij sin k j τ 0 σ i , f 0ij ∈ R, (3.52) 
that break I while preserving T symmetry: We then compute the k x -directed Pand P ± -Wilson loop spectra as a function of k y at various k z = constant planes. As shown in SFig. 6(e), at k z = 0 and k z = π we have helical winding and trivial winding, respectively. This indicates that the two valence bands still describe a 3D TI. In addition, in SFig. 6(f,g) we have spectral flows with winding numbers ±1 and 0 in the P ± -Wilson loop eigenphases at k z = 0 and k z = π planes, respectively. This again demonstrates that the Hamiltonian restricted to k z = 0 is topologically equivalent to a 2D T -invariant TI. Similarly, the Hamiltonian restricted to the k z = π plane is topologically equivalent to a trivial 2D insulator. In particular, there is a discontinuous change of the spectral flow of the P ± -Wilson loops between k z < (k * ) z and k z > (k * ) z , as shown in SFig. 6(f,g). This is a clear indication that the spin-Weyl nodes at ±k * play the role of partial Chern number monopoles.

I : (τ z σ 0 )f 0ij sin k j τ 0 σ i (τ z σ 0 ) = f 0ij sin k j τ 0 σ i ̸ = f 0ij sin (-k j )τ 0 σ i , (3.53) T : (τ 0 σ y )f 0ij sin k j τ 0 (σ i ) * (τ 0 σ y ) = f 0ij sin (-k j )τ 0 σ i . ( 3 
The above discussion reiterates the central idea first recognized in SRef. [6] that to diagnose a helical topological phase, one could divide the occupied space into two parts that are related to each other by the T operation. Once we have constructed P ± (k) as a smooth function of k (except at the spin-Weyl nodes) without a discontinuous jump of rank[P ± (k)], we can use one of the P ± (k) to diagnose the helical topological phase by examining its Wilson loop spectrum. In SN 4 we will extend this perspective to demonstrate the existence of previously unrecognized quantized spin-resolved invariants in helical HOTIs.

G. Spin-Stable Topology in a 2D Fragile Topological Insulator

In this section, we will demonstrate that in a 2D fragile TI there can exist spin-stable topology, which is robust to perturbations provided that both the energy and spin gaps remain open. We will argue that such spin-stable topological phases can exhibit robust responses to external fields and fluxes. Thus, we will show that even though 2D fragile topological phases have the same boundary signatures as obstructed atomic insulators [8,15,31,[START_REF] Schindler | Topological zero-dimensional defect and flux states in three-dimensional insulators[END_REF][START_REF] Ahn | Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle[END_REF][START_REF] Hwang | Fragile topology protected by inversion symmetry: Diagnosis, bulk-boundary correspondence, and Wilson loop[END_REF][START_REF] Lee | Two-dimensional higher-order topology in monolayer graphdiyne[END_REF], they can differ in their bulk signatures due to spin-stable topology.

Without the addition of appropriately chosen trivial bands, the occupied bands of a fragile TI cannot form exponentially localized Wannier functions that respect all of the crystal symmetries. For example, let us consider the 2D fragile topological model introduced in SRef. [8] as a time-reversal invariant generalization of the 2D quadrupole insulator [13,14]. This model has a square lattice with Bloch Hamiltonian where Pauli matrices τ i (σ i ) denotes the s and d orbital (spin) degrees of freedom that are placed at the 1a ((x, y) = (0, 0)) Wyckoff position of the primitive square unit cell. Both τ 0 and σ 0 are 2 × 2 identity matrices. t 1 and t 2 are the nearest-neighbor hopping energies between the same and different orbitals, v m induces an on-site orbital energy splitting, t P H is a spin-and orbital-independent nearest-neighbor hopping that breaks the particle-hole symmetry of the energy spectrum, and v s represents a next-nearest-neighbor spin-orbit coupling (SOC). In addition, v Mz is an SOC term breaking the 3D layer group [START_REF] Wieder | Spin-orbit semimetals in the layer groups[END_REF] mirror reflection M z (represented as σ z ) and inversion I (represented as identity) symmetries. The Bloch Hamiltonian [SEq. (3.55)] respects the symmetries of wallpaper group p4m1 ′ , which is generated by mirror reflection M x , the four-fold rotation C 4z , time-reversal T , and 2D lattice translations (for further information regarding wallpaper groups and their relationship to topological phases, see SRefs. [8,107,[START_REF] Wieder | Spin-orbit semimetals in the layer groups[END_REF][START_REF] Litvin | Magnetic Group Tables[END_REF][START_REF] Kopsky | International Tables for Crystallography,Volume E: Subperiodic Groups. International Tables for Crystallography[END_REF][START_REF] Young | Filling-Enforced Magnetic Dirac Semimetals in Two Dimensions[END_REF]). The symmetries are represented by

[H F (k)] = t 1 [cos(k x ) + cos(k y )]τ z σ 0 + t 2 [cos(k x ) -cos(k y )]τ x σ 0 + v m τ z σ 0 + t P H [cos(k x ) + cos(k y )]τ 0 σ 0 + v s sin(k x ) sin(k y )τ y σ z + v Mz [sin(k x )τ z σ y -sin(k y )τ z σ x ], (3.55) 
[M x ][H F (k)][M x ] -1 = σ x [H F (k)]σ x = [H F (M x k)] (3.56) [C 4z ][H F (k)][C 4z ] -1 = τ z e -iπ/4σz [H F (k)]τ z e iπ/4σz = [H F (C 4z k)] (3.57) [T ][H F (k)][T ] -1 = (iσ y )[H F (k)] * (-iσ y ) = [H F (-k)] (3.58)
The 2D bulk energy bands of SEq. (3.55) correspond to the images of the projectors P 2 and Q 2 shown in SFig. 7.

This model has no gapless edge states in the energy gaps between P 2 and Q 2 when placed in a ribbon geometry, but has four Kramers pairs of corner modes when placed on a finite-sized square [8]. When the bulk is half-filled, the corner mode filling is generically 3/4.
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! " ! # ! $ % " Supplementary Figure 7. Energy bands of a 2D fragile TI in SEq. (3.55) on a square lattice where P2 and Q2 project respectively onto the two valence and two conduction bands. The high-symmetry k points Γ, X and M correspond to (kx, ky) = (0, 0), (π, 0), and (π, π), respectively. P4 is the projector onto four additional energy bands induced from trivial atomic orbitals that are coupled to the 2D fragile TI [SEq. (3.55)] through SEq. (3.59) in a way that respects the symmetries of p4m1 ′ wallpaper group (see also SRef. [8], where this model was originally introduced). The energy bands in the image of the projector P 2 have fragile topology [START_REF] Po | Fragile Topology and Wannier Obstructions[END_REF][START_REF] Bouhon | Wilson loop approach to fragile topology of split elementary band representations and topological crystalline insulators with time-reversal symmetry[END_REF][START_REF] Cano | Topology of Disconnected Elementary Band Representations[END_REF] that can be diagnosed from symmetry indicators and the Wilson loop spectrum [8]. Shown in SFig. 8(a) are the k y -directed P -Wilson loop eigenphases {γ 1,j (k x )} as a function of k x computed in the P 2 occupied space where j is the P -Wannier band index. In particular, this P -Wilson loop spectrum has several two-band crossings at γ 1 = π and generic momenta demonstrated in SFig. 8(b), that are protected by C 2z and T symmetries [8,87,[START_REF] Bradlyn | Disconnected elementary band representations, fragile topology, and Wilson loops as topological indices: An example on the triangular lattice[END_REF][START_REF] Song | All Magic Angles in Twisted Bilayer Graphene are Topological[END_REF][START_REF] Song | Twisted bilayer graphene. II. Stable symmetry anomaly[END_REF]. To demonstrate that the two-band crossings in SFig. 8(b) arise from bulk fragile topology, we introduce four additional tight-binding basis orbitals to the Hilbert space of the system consisting of spinful s orbitals at the 2c Wyckoff positions ((x, y) = (1/2, 0) and (0, [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

1/2)) that are coupled to [H F (k)] in SEq. (3.55) through [V C (k)] = v µ [P µ s ] + v C µ 1,x cos k x 2 + µ 2,x cos k y 2 + v CS -µ 1,x σ y sin k x 2 + µ 2,x σ x sin k y 2 . ( 3 
Although this system has a fragile topology in the occupied space P 2 , we will now demonstrate that it also carries a nontrivial spin-stable topology. We can spin-resolve the occupied space according to its P 2 s z P 2 eigenvalues. As shown in SFig. 8(c,d), the k y -directed P ± -Wilson loop eigenphases {γ ± 1,j (k x )} have net ∓2 winding as k x → k x + 2π. From the winding numbers in SFig. 8(c,d) we can determine the partial Chern numbers of the occupied space P 2 , using the sign convention introduced in SEq. (3.24). To be precise, the partial Chern numbers C ± γ1 in this case are determined by the negative winding numbers of the k y -directed P ± -Wilson loop eigenphases as k x → k x + 2π. This means that the partial Chern numbers of the ± eigenspace of P 2 s z P 2 are C ± γ1 = ±2, such that the spin Chern number [SEq. (3.26)] is given by C s γ1 = +4. As long as both the energy and P 2 s z P 2 gaps remain open, this C s γ1 = +4 is robust [1] and can have several physical consequences when we apply external electromagnetic fields.

We now discuss how this spin-stable topology with |C s γ1 | = 4 manifests in the response of the system to external electromagnetic fields. We begin with the limit where v Mz = 0 [see SEq. (3.55)]. In this case, our model in SEq. (3.55) retains mirror reflection M z symmetry and also s z -conservation. Hence in this limit the Hamiltonian characterizes a stable mirror topological crystalline insulator (TCI) and quantum spin Hall phase with mirror Chern number 2 and |C s γ1 | = 4 [START_REF] Bernevig | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[END_REF][START_REF] Murakami | Spin-Hall Insulator[END_REF]. This implies the presence of two pairs of fully-s z -polarized helical edge states [8]. Here, "fully-s z -polarized" means that the energy eigenstates are also eigenstates of s z . A schematic depiction of the helical states at one edge is shown in SFig. 9(b) if we regard Φ in the x-axis as the crystal momentum parallel to the edge. This will lead to a quantized spin Hall conductivity |σ s H | = |C s γ1 | × |e|/4π = |e|/π when an external electric field is applied parallel to this 2D system [7], consistent with SEq. (3.27).

In addition to an in-plane electric field, we may also adiabatically thread a U (1) magnetic flux Φ(t) as a function of time through the 2D system to probe the nontrivial bulk topology, see the setup as schematically depicted in SFig. 9(a). When Φ = 0 and Φ = π, the system has time-reversal symmetry while time-reversal is broken at generic values of Φ ̸ = 0 and Φ ̸ = π. The corresponding energy spectrum of the 2D sample as a function of Φ when s z is conserved is shown in SFig. 9(b). Due to |C s γ1 | = 4, there are four gap-crossing modes, corresponding to single-particle bound states around the magnetic flux. Two of the modes have positive slopes and the other two have negative slopes. Modes with opposite slopes will have opposite s z eigenvalues as a consequence of time-reversal symmetry. Note that although time-reversal symmetry is broken when the U (1) magnetic flux Φ ̸ = 0 and Φ ̸ = π, for a model with s z conservation when Φ = 0, the Hamiltonian continues to commute with the s z operator when Φ ̸ = 0. Therefore, all the energy eigenstates in SFig. 9(b) are eigenstates of s z .

Importantly, the crossings between the bands at generic Φ indicated by the red arrows in SFig. 9(b) are protected by s z conservation, and the crossings at Φ = π indicated by black arrows are protected by T . As we gradually increase the flux Φ(t), there will be a tangential electric field induced along the azimuthal direction around the flux Φ(t). Since we have s z conservation, |C s γ1 | = 4 indicates that the magnetic flux induces radial currents of spin-up and spin-down electrons with same magnitudes but opposite signs. Applying the same computation performed in SRef. [START_REF] Qi | Spin-Charge Separation in the Quantum Spin Hall State[END_REF] at Φ = π, the many-body ground state in the vicinity of the inserted flux may be described as a spinon bound state with total electric charge Q = 0 and total spin |S z | = 2(ℏ/2) [79,[START_REF] Ran | Spin-Charge Separated Solitons in a Topological Band Insulator[END_REF][START_REF] Ringel | Z2 anomaly and boundaries of topological insulators[END_REF][START_REF] Rosenberg | Wormhole effect in a strong topological insulator[END_REF][START_REF] Gong | Transport study of the wormhole effect in three-dimensional topological insulators[END_REF][START_REF] Ostrovsky | Interaction-Induced Criticality in Z2 Topological Insulators[END_REF][START_REF] Assaad | Topological Invariant and Quantum Spin Models from Magnetic π Fluxes in Correlated Topological Insulators[END_REF][START_REF] Juričić | Universal Probes of Two-Dimensional Topological Insulators: Dislocation and π Flux[END_REF][START_REF] Tyner | Topology of three-dimensional Dirac semimetals and generalized quantum spin Hall systems without gapless edge modes[END_REF][START_REF] Tyner | Part II: Witten effect and Z-classification of axion angle θ = nπ[END_REF][START_REF] Tyner | Solitons and real-space screening of bulk topology of quantum materials[END_REF]. Note that the accumulated spin in the vicinity of the flux (measured in the standard units of ℏ/2) is equal to half the spin Chern number, consistent with the fact that Φ = π corresponds to half of a flux quantum. We also note that, correspondingly, if we were to instead insert a (fictitious or pseudo-) magnetic field that takes opposite signs in opposite spin sectors (i.e. a spin flux), the many-body ground state in the vicinity of the flux would instead be a chargeon with zero total spin and charge |Q| = 2 [START_REF] Qi | Spin-Charge Separation in the Quantum Spin Hall State[END_REF] (measured in the units of electron charge e).

This can also be understood as follows. We start from the ground state with all states in the valence continuum filled, and we fix the electron number so that the infinite system has total charge Q = 0 (including the underlying positive ions). If we now increase the flux Φ from 0 to π, two states will appear at the mid-gap through the two gap-crossing modes with positive slopes. Notice that these two states will have s z eigenvalues both equal to +ℏ/2 or -ℏ/2, depending on the sign of C s γ1 (recall that we assume |C s γ1 | = 4). At Φ = π, one state of the doubly degenerate Kramers pair at higher mid-gap energy will be filled, and there will be another filled state of the doubly degenerate Kramers pair at lower mid-gap energy. And both of the filled states have the same s z eigenvalues, which implies that the total spin of these two filled states will be |S z | = ℏ. Due to the time-reversal symmetry at Φ = π, the valence continuum will have a total spin equal to zero. Therefore, the spinon bound state around the magnetic flux when Φ = π will have total electric charge Q = 0 and total spin |S z | = ℏ. We then conclude that when s z is conserved, we expect to see quantized spin response. In response to an external electric field parallel to the 2D system we have quantized spin Hall conductivity |σ s H | = |e|/π [SEq. (3.27)]. By threading a U (1) magnetic flux Φ we will obtain a spinon bound state around the flux with total electric charge Q = 0 and total spin |S z | = ℏ when Φ = π. We can then ask how this response effect changes when s z is no longer conserved.

When s z is not conserved, which in our 2D fragile topological insulator model [SEq. (3.55)] occurs when v Mz ̸ = 0, the metallic edge states will in general be gapped due to the hybridization between fully-s z -polarized edge states with opposite s z eigenvalues and opposite Fermi velocities. For example, a schematic 1D band structure is shown in SFig. 9(c) if we regard the x-axis as the momentum parallel to the edge. In such a case, the entire system is an insulator in a ribbon geometry, including both the bulk and edge. In other words, when an external electric field is applied parallel to the 2D system, there will be no charge flows that could simultaneously carry spin currents. Although there can be other mechanisms [108], for example the local spin flipping process, that can induce spin currents without charge currents, we expect that the spin Hall conductivity |σ s H | will no longer be quantized, as discussed in SN 3 C. Note that if the modes have sufficiently large velocities (slopes | dE dk | in the energy-momentum dispersion relation), then it is possible that there are no crossings between bands with positive slope and bands with negative slope within the bulk gap. In this case the spectrum would be insensitive to small nonzero values of v Mz . We do not consider this case here, as it can always be deformed to the situation in SFig. 9(c) without closing an energy gap or a spin gap.

On the other hand, the spin-stable topology may still be explored by threading a U (1) magnetic flux Φ through the system [see SFig. 9(a)]. As above, we consider the case where the velocity (slope | dE dΦ | of the energy-Φ relation) of modes is low enough that there are crossings within the bulk gap as shown in SFig. 9(b). Since s z is not conserved, the crossing between the counterpropagating modes indicated by the red arrows in SFig. 9(b) will in general be gapped, with a gap size proportional to |v Mz | [see SFig. 9(c)]. However, the doubly-degenerate localized states around the U (1) flux at Φ = π indicated by the black arrows in SFig. 9(b) will still be doubly-degenerate, as indicated by the black arrows in SFig. 9(c). This is because when Φ = π, the system has time-reversal symmetry and the doubly-degenerate states at Φ = π is protected due to Kramers theorem. If |v Mz | is small enough, we expect that the doubly-degenerate states, both at higher and lower energies, will consist of one state with a z-component spin angular momentum ⟨s z ⟩ ≲ ℏ/2 and another state with ⟨s z ⟩ ≳ -ℏ/2.

Let us now consider threading a time-dependent flux Φ(t) = 2πt/T . The system is now described by three energy scales (with ℏ = 1):

1. ∆, the bulk energy gap, 2. |v Mz |, strength of s z -conservation-breaking, which by our analysis in SN 2 C controls the size of the spin gap, 3. Φ = dΦ/dt = 2π/T , the rate of flux insertion.

In the following discussion, we will assume that |v Mz | ≪ ∆ and Φ ≪ ∆ such that the flux insertion analysis can be carried out using SFig. 9(c) where the bulk energy gap remains open, and the value of the bulk energy gap with v Mz ̸ = 0 is close to its value with v Mz = 0. We will start from the ground state with all states in the valence continuum filled at Φ = 0, and we fix the electron number so that the infinite system has total charge Q = 0 (including the underlying positive ions). If Φ = 2π/T ≪ |v Mz |, when t = T /2 such that Φ = π, we would have both the states in the doubly degenerate Kramers pair at the lower mid-gap energy filled. Since Φ = π preserves time-reversal symmetry, the filled valence continuum will have total spin equal to zero. Together with the filled doubly degenerate states, which also have total spin equal to zero as the degenerate states are related to each other by a spinful time-reversal symmetry, the many-body ground state in the vicinity of the flux at Φ = π may be described as a bound state that carries a total charge Q = 0 and a total spin S z = 0. Now suppose that Φ = 2π/T ≫ |v Mz |. In this case, a Landau-Zener transition [START_REF] Landau | Zur Theorie der Energieubertragung II[END_REF][START_REF] Zener | Non-Adiabatic Crossing of Energy Levels[END_REF] from the filled state to the excited state [see SFig. 9(c)] may occur when the filled state approaches the avoided crossing. The probability of such a transition is given by [START_REF] Rubbmark | Dynamical effects at avoided level crossings: A study of the Landau-Zener effect using Rydberg atoms[END_REF] 

P ∼ exp -2π 1 ℏ 2 dE dΦ |v Mz | 2 Φ = exp - T 2ℏ |v Mz | 2 dE dΦ , (3.60) 
where we have restored factors of ℏ, and where dE dΦ is the slope of the gap-crossing mode when v Mz = 0 indicated in SFig. 9(b). Since we have assumed Φ = 2π/T ≫ |v Mz |, the probability in SEq. (3.60) will be P ≲ 1, and in such a case we in general expect that the Landau-Zener transition will occur. Therefore, at t = T /2 (Φ = π), there will be one state filled in the doubly degenerate Kramers pair at the higher mid-gap energy and another state filled in the doubly degenerate Kramers pair at the lower mid-gap energy. Importantly, the spin expectation values ⟨s z ⟩ of these two filled mid-gap states will have the same signs and will both individually satisfy |⟨s z ⟩| ≲ ℏ/2. Again, at Φ = π time-reversal symmetry requires the valence continuum to have total spin equal to zero. Therefore, if we thread the U (1) magnetic flux Φ(t) with Φ = 2π/T ≫ |v Mz |, the many-body ground state at Φ = π may be described by a spinon bound state with total charge Q = 0 and total spin |S z | ≲ ℏ (i.e. less than or equal to 2 in the units of ℏ/2).

We hence conclude that when s z is not conserved, although the spin Hall conductivity may in principle be decreased to zero, if we thread a U (1) magnetic flux Φ(t) at a rate much greater than the strength of s z -conservation-breaking, we still expect to observe a spinon bound state with nearly spin-ℏ when Φ = π.

For completeness, we note that if in the s z -conserving limit the slopes dE dΦ of the midgap modes are large enough, then it can be the case that there are no crossing points between modes with opposite slopes within the bulk gap. In this case, if we weakly break the s z -conservation, there will still be two chiral midgap modes with positive slopes and two chiral midgap modes with negative slopes. If we then insert a magnetic flux Φ, there will in general be no bound states at Φ = π. Instead, we will observe robust counterpropagating edge states circulating around the small hole as a function of Φ.
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Supplementary Figure 9. Flux insertion for a spin-stable topological phase with spin Chern number |C s γ 1 | = 4. (a) shows a schematic of a perpendicular U (1) flux Φ threading through a small hole of a 2D system. When Φ = 0 and Φ = π the system has time-reversal symmetry while if Φ ̸ = 0 or Φ ̸ = π the time-reversal symmetry is broken [START_REF] Qi | Spin-Charge Separation in the Quantum Spin Hall State[END_REF]. (b) shows a schematic of the energy spectrum of the 2D sample in (a) with infinite size along x and y and a small hole as a function of Φ in the limit of sz-conservation, which in our 2D fragile topological model [SEq. (3.55)] corresponds to vM z = 0. There is spectral flow as a function of Φ, with two bands crossing the bulk gap with positive slope, and two bands crossing the bulk gap with negative slope. For small values of the mode velocity dE dΦ , there will generically be four crossing points between modes with positive and negative slope. The two crossings indicated by the red arrows at generic values of Φ are protected by sz-conservation, and the two indicated by the black arrows at Φ = π are protected by time-reversal symmetry due to Kramers theorem. The slope dE dΦ of the gap-crossing modes is also indicated. (c) shows a schematic of the energy spectrum of the 2D sample in (a) with infinite size along x and y and a small hole as a function of Φ when sz is not conserved, which in our 2D fragile topological model [SEq. (3.55)] corresponds to vM z ̸ = 0. There are two crossings indicated by the black arrows at Φ = π that are protected by T symmetry. In other words, the mid-gap localized states at Φ = π remain doubly degenerate due to Kramers theorem. In contrast, the crossings previously indicated by the red arrows in (b) are now gapped since sz is not conserved due to a nonzero vM z in the Hamiltonian [SEq. (3.55)]. In particular, the gap is proportional to |vM z | for small |vM z |. A Landau-Zener transition [START_REF] Landau | Zur Theorie der Energieubertragung II[END_REF][START_REF] Zener | Non-Adiabatic Crossing of Energy Levels[END_REF] from the low energy filled state to an excited state is also indicated, whose probability is described in SEq. (3.60).

As such, we have established that the robust spin-stable topology indicated in SFig. 8 can have a physical consequence. In fact, such a robustness persists in the presence of a coupling to trivial atomic orbitals such as those in SEq. (3.59). This is demonstrated in SFig. 10(c,d), in which the ∓2 winding number in the k y -directed P ± -Wilson loop eigenphases {γ ± 1,j (k x )} persists in the P 6 occupied space. According to the sign convention introduced in SEq. (3.24), this indicates that the partial Chern numbers of the occupied space still remain C ± γ1 = ±2 after the addition of trivial atomic orbitals, under which the occupied space has been enlarged from the bands in P 2 to those in P 6 . We note that unlike previously for the 2D TI model analyzed in SFig. 3, the P ± -Wilson loop spectra for the fragile phase studied in this section [SFig. 10(c,d)] is not a straightforward decomposition of the P -Wilson loop spectrum [SFig. 10(a)]. This occurs precisely because the P -Wilson loop spectrum need not always wind when the P ± -Wilson loops wind, which is particularly well exemplified by the trivialized fragile phase analyzed in this section. [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

To sum up, although the occupied space of a fragile TI becomes trivial after including bands induced from trivial atomic orbitals, it is possible that each of the spin-resolved ± eigenspaces of P sP have stable nontrivial spin-resolved topology. Importantly, such a spin-resolved stable nontrivial topology can contribute to experimentally measurable quantities such as spin Hall conductivity [7] and bound states carrying nonzero total spin around a U (1) magnetic π flux [START_REF] Qi | Spin-Charge Separation in the Quantum Spin Hall State[END_REF]. This provides a crucial example demonstrating that, beyond the simplest 2D Chern and 3D axion insulating phases [START_REF] König | The Quantum Spin Hall Effect: Theory and Experiment[END_REF][START_REF] Sinova | Spin Hall effects[END_REF][START_REF] Qi | Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors[END_REF], stable electronic band topology does not in general uniquely determine the spinelectromagnetic response of an insulating system. Instead, a finer treatment is required, such as the gauge-invariant spin-resolved methods introduced in this work.

H. Spin-Resolved Wilson Loops and the Spin Entanglement Spectrum

Recall that for the usual P -Wilson loop, there is a correspondence between the P -Wilson loop spectrum and the bipartite entanglement spectrum. In particular, SRefs. [5,[START_REF] Fidkowski | Model Characterization of Gapless Edge Modes of Topological Insulators Using Intermediate Brillouin-Zone Functions[END_REF] argued that in a band insulator the spectrum of the P -Wilson loop in the G i direction is the same as the spectrum of the projected position operator P x • G i P , and that this can be continuously deformed to the entanglement spectrum defined as the spectrum of the single-particle correlation matrix Θ(x • G i )P Θ(x • G i ), where Θ(x • G i ) is zero for states with x • G i < 0, and 1 otherwise.

The argument of SRef. [START_REF] Fidkowski | Model Characterization of Gapless Edge Modes of Topological Insulators Using Intermediate Brillouin-Zone Functions[END_REF], relying only on the geometric properties of the projection operator P , applies straightforwardly to our spin projection operators P ± onto the upper/lower-half of the spin spectrum provided a spin gap is open. Concretely, the P ± -Wilson loops in the G direction are isospectral to the spin-projected position operators P ± x • GP ± . Following the homotopy arguments of SRef. [START_REF] Fidkowski | Model Characterization of Gapless Edge Modes of Topological Insulators Using Intermediate Brillouin-Zone Functions[END_REF], we can adiabatically deform P ± x • GP ± to the spin entanglement spectrum given by the spectrum of Θ(x•G)P ± Θ(x•G). As a consequence, nontrivial spectral flow in the P ± -Wilson loop implies nontrivial spectral flow in the spin entanglement spectrum, provided that the entanglement cut x • G > 0 does not break any symmetry that protects the spectral flow. This represents a generalization of the bulk-boundary correspondence to the spin spectrum and the spin entanglement spectrum.

As a concrete example, let us consider first the model for a two-dimensional topological insulator presented in SN 3 D. The spectra of the P + -and P --Wilson loops for this model were discussed in SN 3 D and shown in SFig. 3. This model has spin Chern number C s γ1 equal to -2, which is reflected in the P ± -Wilson loop eigenphases (SFig. 3). In particular, we demonstrated that the P + -Wilson loop spectrum winds one time with negative slope as a function of k x , while the P --Wilson loop spectrum winds one time with positive slope as a function of k x . We thus expect to see spectral flow in the P ± entanglement spectrum, with one mode of negative chirality in the P + entanglement spectrum, and one mode of positive chirality in the P -entanglement spectrum at each boundary of the entanglement cut. To verify this, we numerically compute the spectrum of Θ(x • G)P ± Θ(x • G) on a cylinder with circumference N = 60 unit cells in the y-direction. We partition the cylinder into two regions: region A has 0 ≤ y < 30, and region B has 30 ≤ y ≤ 59. We then diagonalize Θ(y ∈ A)P ± Θ(y ∈ A), where Θ(y ∈ A) is 1 if y ∈ A, and 0 otherwise. We show the results in SFig. 11. Since region A has two boundaries, we see a pair of modes crossing the gap in each of the P + and P -entanglement spectra. Modes with opposite slope correspond to states localized at opposite boundaries of the entanglement region. Each entanglement spectrum has a spectral flow of one mode per boundary, consistent with the winding of the P ± -Wilson loops. As a more interesting example, let us consider the model introduced in SRef. [8] and analyzed in SN 3 G for a twodimensional insulator with partial Chern numbers C ± γ1 = ±2 and hence spin Chern number C s γ1 = +4. This model is a fragile topological insulator, and hence has no stable winding in the P -Wilson loop spectrum, and no gapless surface states. In SFig. 12 we also verify that the ordinary entanglement spectrum computed from Θ(x ∈ A)P Θ(x ∈ A) (with the region A defined as above) has no spectral flow. Turning to the spin entanglement spectrum, however, we see in SFig. 13 that the spectra of Θ(x ∈ A)P ± Θ(x ∈ A) each feature two chiral modes per boundary of the entanglement region, consistent with the winding of the P ± -Wilson loop eigenphases in SFig. 10. We thus see that by the bulk-boundary correspondence for the spin spectrum, C ± γ1 = ±2 implies that the P ± -Wilson loops wind twice, which implies the existence of two chiral modes per boundary in the spin entanglement spectrum. As a final example, let us consider the spin entanglement spectrum for a 3D strong topological insulator. We consider the model for a 3D TI with broken inversion symmetry given by SEq. (3.48) with the additional inversionsymmetry breaking term [SEq. (3.52)]. The bulk, slab, and spin band structures, as well as the P -and P ± -Wilson loop eigenphases for this model were shown in SFig. 6. The helical winding of the P -Wilson loop in the k z = 0 plane coupled with the trivial winding of the P -Wilson loop in every other k z plane implies that the ordinary entanglement spectrum will feature a protected Dirac crossing at Γ with ξ = 0.5 on each entanglement boundary, with nontrivial helical spectral flow. This is indeed confirmed in SFig. 14, where we see that the spectrum {ξ} of Θ(y)P Θ(y) is homotopic to the slab spectrum in SFig. 6(c).

This result can be interestingly contrasted with the spin entanglement spectrum of a 3D TI. Since the occupied energy bands in every constant-k z plane between the spin-Weyl nodes at ±k * = ±(0, 0.46π, -0.21π) have spin Chern number C s γ1 = 2, we expect the Θ(y)P ± Θ(y) entanglement spectrum to be isospectral to the boundary states (and Wilson loop) of a Weyl semimetal. In particular, we expect to find a set of "spin Fermi arcs" in the spectrum of Θ(y)P ± Θ(y) between the projections ±k * = ±(0, -0.21π) of the spin-Weyl nodes onto the Brillouin zone of the entanglement cut. In SFig. 15 we show the spectrum ξ ± of Θ(y)P ± Θ(y) for the 3D TI model, where a Fermi arc state can be seen in the line of ξ ± = 0.5 eigenvalues starting at Γ and proceeding along the Γ -Z line. To make this clearer, we show in SFig. 16 the P + spin entanglement spectrum along a straight path between -1.2k * and 1.2k * , corresponding to the surface projection of the path between spin-Weyl nodes shown in SFig. 6(d), which shows the spin Fermi arc clearly. This thus demonstrates that, according to the generalized bulk-boundary correspondence, the spin entanglement spectrum for a 3D system with spin-Weyl nodes displays spin Fermi arcs connecting the surface projections of the spin-Weyl points. To conclude, we have shown that the P ± -Wilson loop spectrum is homotopic to the spin entanglement spectrum, defined as the eigenvalues of the restriction of P ± to half the system in position space. Our construction is similar in spirit to the symmetry-resolved entanglement spectrum studied for strongly interacting symmetry-protected topological phases in, e.g. SRefs. [START_REF] Laflorencie | Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids[END_REF][START_REF] Goldstein | Symmetry-Resolved Entanglement in Many-Body Systems[END_REF][START_REF] Azses | Symmetry-resolved entanglement in symmetry-protected topological phases[END_REF]. It should be noted that the spectrum of Θ(x • G)P ± Θ(x • G) differs in important respects from the spin-resolved entanglement spectrum introduced in SRefs. [START_REF] Fukui | Entanglement Chern Number for an Extensive Partition of a Topological Ground State[END_REF][START_REF] Araki | Entanglement Chern Number of the Kane-Mele Model with Ferromagnetism[END_REF][START_REF] Araki | Entanglement Chern number for three-dimensional topological insulators: Characterization by Weyl points of entanglement Hamiltonians[END_REF]. The authors of those works considered an entanglement bipartition not in position space, but in spin space. That is, they considered the (nonzero) spectrum of the matrix C ↑ = P ↑ P P ↑ , with no position space restriction [recall we discussed C ↑ matrix in SEq. (2.57)]. As C ↑ respects the translation symmetry of Hamiltonian, there is no bulk-boundary correspondence for the notion of spin entanglement spectrum in SRefs. [START_REF] Fukui | Entanglement Chern Number for an Extensive Partition of a Topological Ground State[END_REF][START_REF] Araki | Entanglement Chern Number of the Kane-Mele Model with Ferromagnetism[END_REF][START_REF] Araki | Entanglement Chern number for three-dimensional topological insulators: Characterization by Weyl points of entanglement Hamiltonians[END_REF]. By contrast, we have shown here that the spectrum of Θ(x • G)P ± Θ(x • G) is homotopic to the spin-resolved Wilson loop spectrum.

NESTED SPIN-RESOLVED WILSON LOOPS

In this section, we will apply our formalism of spin-resolved topology to higher-order topological phases [13-15, 17-19, 21, 33]. To do so, in SN 4 A we will start by reviewing the nested Wilson loop introduced in SRefs. [13,15,36] as a diagnostic of bulk higher-order topology. Next, in SN 4 B we will define a nested spin-resolved Wilson loop, which we also call nested P ± -Wilson loop and can be understood as the nested Wilson loop computed in the subsets of the P sP [SEq. (2.14)] spectrum. In SN 4 C we will discuss general properties of the nested P ± -Wilson loop, and show how its spectrum can be related to higher-order helical topological invariants described by a set of spin-stable invariants that are protected by an energy and a spin gap. In particular, we derive that a 3D spin-gapped crystalline insulator with inversion and spinful time-reversal symmetry has a Z 2 × Z spin-resolved topology. In SN 4 D we show how the spin-resolved topology refines the classification of topological crystalline insulators and revealing the existence of a previously unrecognized bulk invariant, the partial axion angle, which can be extracted from the nested spin-resolved Wilson loop spectrum. In particular, we will introduce the spin-resolved layer construction which can be deduced from the spin-stable invariants and used to enumerate spinful crystalline insulators, from which we find three different spin-resolved regimes of a helical higher-order topological insulator (HOTI). Finally, in SN 4 E we will apply our formalism to a model of a helical HOTI, paying particular attention to practical considerations that arise in the computation. We will assume that in the following construction, the energy eigenvalues of the occupied eigenvectors of the Bloch Hamiltonian [H(k)] are spectrally separate from the unoccupied ones such that [P (k)] is well-defined and smooth as a function of k. To form the nested P -Wilson loop, we must first calculate the P -Wilson loop along direction G; in this section and what follows we take G to be a primitive reciprocal lattice vector, although the formalism applies for more general reciprocal lattice vectors as well. We can then find the eigenvectors of the Wilson loop, allowing us to form a basis of (Fourier-transformed) hybrid Wannier functions from the occupied states. We then will construct 

[W 1,k,G ] |ν j,k,G ⟩ = e i(γ1) j,k,G |ν j,k,G ⟩ , (4.2) 
where

{|ν j,k,G ⟩|j = 1 . . . N occ } is a set of N occ -component orthonormal eigenvectors such that ⟨ν i,k,G |ν j,k,G ⟩ = δ ij .
Recall from SN 3 A that the eigenvalues (γ 1 ) j,k,G are invariant under shifts k → k + ∆k for ∆k ∥ G. This means that the eigenvectors |ν j,k+∆k,G ⟩ are related to the eigenvectors |ν j,k,G ⟩ by a unitary transformation known as parallel transport [4,78]. If we define the P -Wilson line matrix

[W 1,k ′ ←k ] m,n ≡ ⟨u m,k ′ |   k ′ ←k q [P (q)]   |u n,k ⟩, (4.3) 
where both m and n are the indices of occupied energy eigenvectors, and

  k ′ ←k q [P (q)]   = lim N →∞ [P (k ′ )][P (k + N -1 N (k ′ -k))] • • • [P (k + 1 N (k ′ -k))][P (k)], (4.4) 
then the eigenvectors |ν j,k,G ⟩ satisfy [14] |ν j,k+∆k,G ⟩ = exp -i

(γ 1 ) j,k,G 2π (∆k) • a [W 1,k+∆k←k ]|ν j,k,G ⟩. (4.5)
Here a is the real-space primitive lattice vector dual to the primitive reciprocal lattice vector G such that a • G = 2π. We also note that by definition

[W 1,k+G←k ] [SEq. (4.3)] is equal to [W 1,k,G ] [SEq. (3.2)].
We emphasize that in practice the computation of the eigenvectors |ν j,k,G ⟩ requires a bit of care. For a given base point we can compute the P -Wilson loop matrix [W 1,k,G ] on a discretized k-mesh using SEq. (3.2). To account for numerical error introduced by the finite k-mesh spacing, we then perform a singular value decomposition (SVD) on [W 1,k,G ] to obtain [W 1,k,G ] = U SV † where U and V are unitary matrices while S is a real and diagonal matrix with non-negative diagonal elements; we then redefine [W 1,k,G ] to be the unitary part U V † of the decomposition [78]. Being a unitary matrix, we can then diagonalize [W 1,k,G ] to obtain SEq. (4.2) where the eigenvalues are of the unimodular form e i(γ1) j,k,G with (γ 1 ) j,k,G ∈ R. In practice, we use the Schur decomposition [W 1,k,G ] = ZT Z † to ensure that we obtain orthonormal eigenvectors for the bands of [W 1,k,G ], where Z is a unitary matrix and T is an upper-triangular matrix [START_REF] Horn | Matrix Analysis[END_REF]. Since [W 1,k,G ] is unitary, T is diagonal. Therefore, we can identify the diagonal elements of T as e i(γ1) j,k,G and the corresponding columns of Z as |ν j,k,G ⟩ in SEq. (4.2).

We next use the |ν j,k,G ⟩ to form a set of "hybrid Wannier states" as vectors in our N sta -dimensional Hilbert space as [13][14][15][16]36] (recall that N sta denotes the number of basis states per unit cell in the Hilbert space of our truncated tight-binding Hamiltonian)

|w j,k,G ⟩ = Nocc m=1 [ν j,k,G ] m |u m,k ⟩ , (4.6) 
where [ν j,k,G ] m is the m th (m = 1, . . . , N occ ) component of |ν j,k,G ⟩. Notice that |w j,k,G ⟩ is an N sta -component vector.

To proceed, we now derive the boundary conditions satisfied by |w j,k,G ⟩. Notice that, upon a shift of the crystal momentum k → k+G ′ where G ′ is a reciprocal lattice vector, the matrix projector [P (k)] [SEq. (4.1)] to the occupied energy bands transforms as

[P (k + G ′ )] = n∈occ |u n,k+G ′ ⟩ ⟨u n,k+G ′ | (4.7) = n∈occ [V (G ′ )] -1 |u n,k ⟩ ⟨u n,k | [V (G ′ )] (4.8) = [V (G ′ )] -1 [P (k)][V (G ′ )], (4.9) 
where we have used |u n,k+G

′ ⟩ = [V (G ′ )] -1 |u n,k ⟩ [SEq. (2.12)].
Going further, we can use SEq. (4.9) to show that the product of projectors along a loop starting at the base point k + G ′ and going along a straight path to k + G ′ + G can be rewritten as

  k+G ′ +G←k+G ′ q [P (q)]   = lim N →∞ [P (k + G ′ + G)][P (k + G ′ + N -1 N G)] . . . [P (k + G ′ + 1 N G)][P (k + G ′ )] (4.10) = lim N →∞ [V (G ′ )] -1 [P (k + G)][P (k + N -1 N G)] . . . [P (k + 1 N G)][P (k)][V (G ′ )] (4.11) = [V (G ′ )] -1 k+G←k q [P (q)] [V (G ′ )]. (4.12) 
Using SEqs. (2.12) and (4.12), it follows that upon a shift of the crystal momentum k → k + G ′ , the matrix elements

of the P -Wilson loop [W 1,k,G ] [SEq. (3.2)] are invariant: [W 1,k+G ′ ,G ] m,n = ⟨u m,k+G ′ | [V (G)]   k+G ′ +G←k+G ′ q [P (q)]   |u n,k+G ′ ⟩ (4.13) = ⟨u m,k | [V (G ′ )][V (G)][V (G ′ )] -1 k+G←k q [P (q)] [V (G ′ )][V (G ′ )] -1 |u n,k ⟩ (4.14) = ⟨u m,k | [V (G)][V (G ′ )][V (G ′ )] -1 k+G←k q [P (q)] |u n,k ⟩ (4.15) = ⟨u m,k | [V (G)] k+G←k q [P (q)] |u n,k ⟩ (4.16) = [W 1,k,G ] m,n . (4.17) 
In deriving SEq. (4.17) we have used the fact that both [V (G)] and [V (G ′ )] are diagonal matrices and hence they commute, i.e. 

[V (G)][V (G ′ )] = [V (G ′ )][V (G)]. (4.18) Since the N occ × N occ matrix [W 1,k,G ] [SEq. (3.2)] is invariant upon a shift of k → k + G ′ ,
|w j,k+G ′ ,G ⟩ = Nocc m=1 [ν j,k+G ′ ,G ] m |u m,k+G ′ ⟩ (4.20) = Nocc m=1 [ν j,k,G ] m [V (G ′ )] -1 |u m,k ⟩ (4.21) = [V (G ′ )] -1 |w j,k,G ⟩ , (4.22) 
where we have again used SEq. (2.12). We then see that |w j,k,G ⟩ satisfies the same boundary conditions as the eigenstates of the Bloch Hamiltonian [SEq. (2.12)], and so can be regarded as physical states. In this work, we will call the |w j,k,G ⟩ the G-directed P -Wannier band basis [13][14][15], or simply the P -Wannier basis.

The |w j,k,G ⟩ are the single-particle eigenstate of the P -Wilson loop matrix [W 1,k,G ] with eigenphase (γ 1 ) j,k,G [SEq. (4.2)], expressed in terms of the tight-binding basis states. As long as there is a spectral gap in the P -Wannier bands, namely the eigenphase dispersion {(γ 1 ) j,k,G |j = 1 . . . N occ } as a function of k, we can further choose a subspace containing N W P -Wannier bands to form the matrix projector

[ P G (k)] = N W j=1 |w j,k,G ⟩ ⟨w j,k,G | , (4.23) 
where 

N W ≤ N occ ,
[W 2,k,G,G ′ ] i,j = ⟨w i,k+G ′ ,G |   k+G ′ ←k q [ P G (q)]   |w j,k,G ⟩ = ⟨w i,k,G | [V (G ′ )]   k+G ′ ←k q [ P G (q)]   |w j,k,G ⟩ , (4.24) 
where i and j range from 1 . . . N W , and where we have used the boundary condition [SEq. (4.22)] for |w j,k,G ⟩. We term [W 2,k,G,G ′ ] the nested P -Wilson loop matrix. From SEq. (4. 24), we see that by definition, the nested P -Wilson loop matrix is the PG -Wilson loop matrix for the "occupied" Wannier bands. We will then denote the unimodular eigenvalues of the nested P -Wilson loop matrix [W 2,k,G,G ′ ] as exp{i(γ 2 ) j,k,G,G ′ }, where j = 1, . . . , N W . We call the set {(γ 2 ) j,k,G,G ′ |j = 1 . . . N W } as a function of k the "nested P -Wannier bands," where j is the band index. The eigenphases {(γ 2 ) j,k,G,G ′ |j = 1 . . . N W } give the positions of hybrid Wannier functions formed from the N W "occupied" P -Wannier bands and localized along the lattice vector a ′ dual to the reciprocal lattice vector G ′ [13][14][15]. The eigenphases (γ 2 ) j,k,G,G ′ of the nested P -Wilson loop matrix [SEq. (4.24)] are also the non-Abelian Berry phases of the N W "occupied "P -Wannier bands for the closed loop in k-space parallel to G ′ . In particular, the eigenphases (γ 2 ) j,k,G,G ′ are independent of the momentum component k • a ′ . Note, however, that (γ 2 ) j,k,G,G ′ in general depend on the momentum component k • a where a is the primitive real-space lattice vector dual to the primitive reciprocal lattice vector G. In SN 6 B and 6 D we prove the constraints on the values of the nested P -Wilson loop eigenphases at different k points due to inversion and time-reversal symmetries. We emphasize that in defining the nested Wilson loop in SEq. (4.24) it was crucial to have the eigenvectors |ν j,k,G ⟩ be orthonormal in order for [ P G (k)] defined in SEq. (4.23) to be a projection matrix. Numerically, this was guaranteed by our use of the Schur decomposition. Importantly, the eigenvectors |ν j,k,G ⟩ obtained numerically via the Schur decomposition only satisfy the parallel transport equation [SEq. (4.5)] up to an arbitrary complex phase (or more generally up to an arbitrary unitary transformation between states with equal (γ 1 ) j,k,G . Nevertheless, since our formalism for computing the non-Abelian (nested) Berry phases makes use of only the matrix projection operators, this numerical ambiguity will not affect our computation of the eigenphases (γ 1 ) j,k,G and (γ 2 ) j,k,G,G ′ . However it should be noted that in order to correctly construct the (nested) hybrid Wannier functions, one needs to numerically compute the eigenvector of the Wilson loop matrix [SEq. (3.2)] and nested Wilson loop matrix [SEq. (4.24)] at a given base point k and obtain the eigenvectors at the other momenta via parallel transport equations such as SEq. (4.5) [14,16].

Prior to this work, the nested P -Wilson loop formalism described in this section has been applied to identify signatures of several nontrivial insulating phases of matter, including quantized electric multipole insulators [13,14], magnetic axion insulators [15], and higher-order topology in transition metal dichalcogenides [31]. For example, magnetic axion insulators with 3D spatial inversion symmetry have a nontrivial Z 2 -stable spectral flow [15] in the eigenphases (γ 2 ) j,k,G,G ′ . In the next section (SN 4 B), we will develop a spin-resolved version of nested P -Wilson loop formalism with an aim in the application to identify signatures of spin-stable higher-order topology.

B. Nested P±-Wilson Loop

We will now move to one of the larger theoretical and numerical methods introduced in this work: we will apply the formalism of the previous SN 4 A to the spin-resolved projectors P ± in order to define a nested P ± -Wilson loop. As in SN 3 B, we define the spin operator along n to be s ≡ (n • σ) ⊗ I N orb , and denote N sta = 2N orb . The spin operator s satisfies [V (G)]s[V (G)] -1 = s, as previously proved in SEqs. (3.11)-(3.13), such that the reduced spin matrix [s reduced (k)] [SEq. (3.5)] satisfies the periodic boundary condition [SEq. (3.14)]. We will suppose that the energy and spin gap are both open for every k point such that [P (k)], the matrix projector to the occupied energy bands in SEq. (3.1), and [P ± (k)], the matrix projector to the upper/lower spin bands in SEq. (3.16), are always well-defined and smooth over the BZ.

To begin, we consider the N ± occ × N ± occ P ± -Wilson loop matrix [W ± 1,k,G ] defined in SEq. (3.17). This is the holonomy for a loop starting at base point k and going along a straight path to k + G, where G is a primitive reciprocal lattice vector, and N + occ + N - occ = N occ is the total number of occupied energy bands of the Bloch Hamiltonian [H(k)]. As in SN 4 A, our goal will be to construct a projector onto a subset of P ± -Wannier bands. To do this, we must first find the eigenvectors of [W ± 1,k,G ], which satisfy

[W ± 1,k,G ] ν ± j,k,G = e i(γ ± 1 ) j,k,G ν ± j,k,G , (4.25) 
where the N ± occ -component eigenvectors |ν ± j,k,G ⟩ (j = 1, . . . , N ± occ ) are orthonormal such that

ν ± i,k,G ν ± j,k,G = δ ij . (4.26) 
The eigenvectors ν ± j,k,G satisfy a parallel transport condition by analogy with SEq. (4.5): Defining the P ± -Wilson line matrix

[W ± 1,k ′ ←k ] m,n ≡ ⟨u ± m,k ′ |   k ′ ←k q [P ± (q)]   |u ± n,k ⟩, (4.27) 
where m, n = 1 . . . N ± occ index the upper/lower spin bands, and

  k ′ ←k q [P ± (q)]   = lim N →∞ [P ± (k ′ )][P ± (k + N -1 N (k ′ -k))] • • • [P ± (k + 1 N (k ′ -k))][P ± (k)], (4.28) 
the eigenvector ν ± j,k,G satisfies the parallel transport condition [14] |ν ± j,k+∆k,G ⟩ = exp -i ] need not generally be matrices of the same size. As described in SN 3 B, the eigenphases (γ ± 1 ) j,k,G are the non-Abelian Berry phases for the subset of the occupied states in the image of P ± . Denoting a as the real-space primitive lattice vector dual to G, we have that the eigenphases (γ ± 1 ) j,k,G /(2π) correspond to the localized positions (along and measured in unit of a) of spin-resolved hybrid Wannier states formed from linear combinations of states in the image of P ± . The numerical methods that we employ in this work to find the eigenvectors ν ± j,k,G are the same as those introduced in SN 4 A. We first evaluate [W ± 1,k,G ] using the projector product in SEq. (3.17 Analogous to SEq. (4.6), we next use the ν ± j,k,G to form a set of spin-resolved "hybrid Wannier states" as vectors in our N sta -dimensional Hilbert space as [13][14][15] 

(γ ± 1 ) j,k,G 2π (∆k) • a [W ± 1,k+∆k←k ]|ν ± j,k,G ⟩ (4.
w ± j,k,G = N ± occ m=1 [ν ± j,k,G ] m u ± m,k , (4.30) 
where

[ν ± j,k,G ] m is the m th (m = 1, . . . , N ± occ ) component of ν ± j,k,G . Notice that w ± j,k,G is an N sta = 2N orb - component vector.
To proceed, we now derive the boundary conditions satisfied by ν ± j,k,G and w ± j,k,G . First, we note that as previously proved in SEq. 

± m,k+G ′ = [V (G ′ )] -1 u ± m,k under a shift of the crystal momentum from k to k + G ′
, where G ′ is any reciprocal lattice vector. Hence the projection operators [P ± (k)] onto the upper/lower spin bands satisfy

[P ± (k + G ′ )] = N ± occ n=1 u ± n,k+G ′ u ± n,k+G ′ (4.31) = N ± occ n=1 [V (G ′ )] -1 u ± n,k u ± n,k [V (G ′ )] (4.32) = [V (G ′ )] -1 [P ± (k)][V (G ′ )], (4.33) 
where we have used 

[V (G ′ )] † = [V (G ′ )] -1 . Second, the product of matrix projectors [P ± (k)] satisfies   k+G ′ +G←k+G ′ q [P ± (q)]   = lim N →∞ [P ± (k + G ′ + G)][P ± (k + G ′ + N -1 N G)] . . . [P ± (k + G ′ + 1 N G)][P ± (k + G ′ )] (4.34) = lim N →∞ [V (G ′ )] -1 [P ± (k + G)][P ± (k + N -1 N G)] . . . [P ± (k + 1 N G)][P ± (k)][V (G ′ )] (4.35) = [V (G ′ )] -1 k+G←k q [P ± (q)] [V (G ′ )]. ( 4 
k + G ′ , the N ± occ × N ± occ P ± -Wilson loop matrix [W ± 1,k,G ] in SEq. (3.17) is invariant: [W ± 1,k+G ′ ,G ] m,n = u ± m,k+G ′ [V (G)]   k+G ′ +G←k+G ′ q [P ± (q)]   u ± n,k+G ′ (4.37) = u ± m,k [V (G ′ )][V (G)][V (G ′ )] -1 k+G←k q [P ± (q)] [V (G ′ )][V (G ′ )] -1 u ± n,k (4.38) = u ± m,k [V (G)][V (G ′ )][V (G ′ )] -1 k+G←k q [P ± (q)] u ± n,k (4.39) = u ± m,k [V (G)] k+G←k q [P ± (q)] u ± n,k (4.40) 
= [W ± 1,k,G ] m,n . (4.41) 
As in SN 4 A, we have used the fact that [V (G)] and [V (G ′ )] commute, as shown in SEq. 

w ± j,k+G ′ ,G = N ± occ m=1 [ν ± j,k+G ′ ,G ] m u ± m,k+G ′ (4.43) = N ± occ m=1 [ν ± j,k,G ] m [V (G ′ )] -1 u ± m,k (4.44) = [V (G ′ )] -1 w ± j,k,G . (4.45) 
We see that w ± j,k,G satisfies the same boundary conditions as both the eigenstates of the Bloch Hamiltonian [SEq. (2.12)] and also the eigenstates |u ± m,k ⟩ of the projected spin operator [P (k)]s[P (k)] [SEq. (3.23)]. We can thus regard the w ± j,k,G as physical states. We will call the w ± j,k,G the G-directed P ± -Wannier band basis [13][14][15], or interchangeably the P ± -Wannier basis.

The w ± j,k,G are the single-particle eigenstate of the P ± -Wilson loop matrix [W ± 1,k,G ] with eigenphase (γ ± 1 ) j,k,G , expressed in terms of the spinful tight-binding basis states. As long as there is a spectral gap in the P ± -Wannier bands, namely the eigenphase dispersion {(γ ± 1 ) j,k,G |j = 1 . . . N ± occ } as a function of k (i.e. as long as there is a gap in the spin-resolved Wilson loop spectrum), we can further choose a subspace containing N ± W P ± -Wannier bands to form the matrix projector

[ P ± G (k)] = N ± W j=1 w ± j,k,G w ± j,k,G , (4.46) 
where N ± W ≤ N ± occ , and the subscript G of [ P ± G (k)] indicates that the P ± -Wannier basis is obtained by diagonalizing the P ± -Wilson loop matrix [SEq. (3.17)] for a loop taken parallel to G. Again, being a projector onto a subspace that is spectrally isolated, we can construct the

N ± W × N ± W P ± G -Wilson loop matrix along a loop parallel to k + G ′ with matrix elements [W ± 2,k,G,G ′ ] i,j = w ± i,k+G ′ ,G   k+G ′ ←k q [ P ± G (q)]   w ± j,k,G = w ± i,k,G [V (G ′ )]   k+G ′ ←k q [ P ± G (q)]   w ± j,k,G , (4.47) 
where i and j range from 1, . . . , N ± W , and where we have used the boundary condition in SEq. (4.45) for w ± j,k,G . We term [W ± 2,k,G,G ′ ] the nested P ± -Wilson loop matrix. From SEq. (4.47), we see that by definition, the nested P ± -Wilson loop matrix is the P ± G -Wilson loop matrix for the "occupied" P ± -Wannier bands. We then denote the unimodular eigenvalues of the

N ± W × N ± W nested P ± -Wilson loop matrix [W ± 2,k,G,G ′ ] as exp i(γ ± 2 ) j,k,G,G ′
, where j = 1, . . . , N ± W . We then term the set {(γ ± 2 ) j,k,G,G ′ |j = 1 . . . N ± W } as a function of k the "nested P ± -Wannier bands," where j is the band index. The eigenphases

{(γ ± 2 ) j,k,G,G ′ |j = 1 . . . N ± W }
give the positions of spin-resolved hybrid Wannier functions formed from the N ± W "occupied" P ± -Wannier bands and localized along the lattice vector a ′ dual to the reciprocal lattice vector G ′ [13,14]. Notice that in general N + W can be different from N - W if there are no constraints from symmetries such as time-reversal or SU (2) spin rotation symmetry. The eigenphases (γ ± 2 ) j,k,G,G ′ of the nested P ± -Wilson loop matrix [SEq. (4.47)] are also the non-Abelian Berry phases of the N ± W "occupied" P ± -Wannier bands for the closed loop in k-space parallel to G ′ . In particular, the eigenphases (γ ± 2 ) j,k,G,G ′ are independent of the momentum component k • a ′ . In SN 6 F and 6 H we elucidate the constraints on the values of nested P ± -Wilson loop eigenphases due to inversion and time-reversal symmetries.

Similar to the case of nested P -Wilson loop in SN 4 A, we may deduce the topological properties of a spinful system by computing the spectral flow of {(γ ± 2 ) j,k,G,G ′ |j = 1 . . . N ± W }. We will derive general properties of the spectral flow in SN 4 C and apply these to the classification and study of spin-resolved topology in HOTIs in SN 4 D. In SN 4 E we will numerically evaluate the nested P ± -Wilson loops for a tight-binding model of a helical HOTI, revealing the existence of previously unrecognized spin-stable partial axion angles.

C. General Properties of the Nested P±-Wilson Loop Spectra

In this section, we will derive several general properties of the nested P -and P ± -Wilson loop [SEqs. (4.24) and (4.47)] eigenphases (nested non-Abelian Berry phases) and their associated spectral flow. These will allow us to develop a classification of spin-resolved topology in systems with inversion and time-reversal symmetry. Throughout this section, we will use "(±)", to indicate that a derivation applies to both the nested P -and P ± -Wilson loops. Unless otherwise specified, we will assume that both the energy and P sP spectrum are gapped at every k throughout the BZ. We will consider 3D systems with primitive real-space lattice vectors {a 1 , a 2 , a 3 } and the dual primitive reciprocal lattice vectors {G 1 , G 2 , G 3 } such that a i • G j = 2πδ i,j (i, j = 1 . . . 3). The crystal momentum k can then be expanded using k = 3 i=1 ki 2π G i where the momentum component k i = k • a i . The BZ is then defined by the region with k i = [-π, π). We begin in SN 4 C 1, by showing that the eigenphases of the nested P (±) -Wilson loops [SEqs. (4.24) and (4.47)] coincide with a subset of the eigenphases of the P (±) -Wilson loops [SEqs. (3.2) and (3.17)] when the directions of the first and second holonomy are parallel. Using this result, we will establish in SN 4 C 2 that although the nested Wilson loop eigenphases depend on two momentum components of the base point k, the eigenphases can have a nontrivial spectral flow with a nonzero winding number along at most one momentum direction. In SN 4 C 3, we will derive an exact relation between the spectral flow of the nested (spin-resolved) Wilson loop eigenphases and the (partial) weak Chern numbers, which are the 3D generalizations of the (partial) Chern numbers from SEq. (3.24). While we will specialize to cases where at most one (partial) weak Chern number is nonzero, we will in SN 4 C 3 show how our results extend to more general situations. In SN 4 C 4 we will show that for inversion-and timereversal-symmetric systems the nested P ± -Wilson loops exhibit a novel variant of Z 2 -stable spectral flow, from which we classify spin-stable topology in these systems. Then, in the next SN 4 D, based on the layer-construction of helical and magnetic (higher-order) topological insulators [33,[42][43][44], we show how spin-stable topology refines and enriches the notion of symmetry-indicated stable band topology, and specifically reveals the existence of previously unrecognized spin-resolved (partial) axion angles in 3D insulators.

Nested P -and P±-Wilson Loops When G = G ′

In the computation of the nested Wilson loop eigenphases, we were required to choose two primitive reciprocal lattice vectors G and G ′ in SEqs. (4.24) and (4.47). G fixes the direction of the first Wilson loop, and so determines the localization direction of the Wannier band eigenstates; G ′ gives the direction of the second (nested) Wilson loop, computed as a product of projectors onto the G-directed Wannier bands. And we refer to G and G ′ as the directions of the first and second closed loop holonomy. In this section, we consider the case where G ′ = G and then prove that the resulting nested (spin-resolved or ordinary) Wilson loop eigenphases are the same as the centers of the (spin-resolved or ordinary) G-directed hybrid Wannier functions. We begin by denoting the projector onto the single-particle energy or P sP eigenstates as P (±) , such that

⟨α, k|P (±) |β, q⟩ = ⟨0|c α,k P (±) c † β,q |0⟩ = δ k,q [P (±) (k)] α,β , (4.48) 
where c † α,k and c α,k are the Fourier-transformed creation and annihilation operators of the α th orbital defined in SEqs. (2.2) and (2.3). The matrix projector [P (±) (k)] in SEq. (4.48) is

[P (±) (k)] = N (±) occ n=1 |u (±) n,k ⟩⟨u (±) n,k |, (4.49) 
where |u are the G-directed P (±) -Wannier bands {(γ

(±) 1 ) j,k,G |j = 1 . . . N (±) occ } [SEqs. (4.
2) and (4.25)], and the corresponding eigenstates are (spin-resolved or ordinary) hybrid Wannier functions in the image of P (±) that are localized along the lattice vector a dual to the reciprocal lattice vector G. Provided that we have disjoint groups of P (±) -Wannier bands (i.e., provided there is a gap in the P (±) -Wannier bands), we can form the projector P (±) G onto a group of N (±) W P (±) -Wannier bands using the corresponding single-particle hybrid Wannier functions, such that ⟨α, k| P

(±) G |β, q⟩ = ⟨0|c α,k P (±) G c † β,q |0⟩ = δ k,q [ P (±) G (k)] α,β . (4.50) 
The matrix projector [ P 

G (k)] = N (±) W j=1 |w (±) j,k,G ⟩⟨w (±) j,k,G |, (4.51) 
where |w 

G x • G P (±)
G are eigenstates of P (±) x • GP (±) with the same eigenvalues. In other words, we have established that {(γ

(±) 2 ) j,k,G,G |j = 1 . . . N (±) W } is the same as {(γ (±) 1 ) j,k,G |j = 1 . . . N (±)
W } where j = 1 . . . N (±) W index the P (±) -Wannier bands considered in the computation of the nested P (±) -Wilson loops.

In conclusion, we have proved that when the first and second closed-loop holonomy are in the same direction, the resulting nested P (±) -Wilson loop eigenphases are the same as the corresponding set of G-directed P (±) -Wannier centers.

The Nested P -and P±-Wilson Loops Wind Along at Most One Primitive Reciprocal Lattice Direction

In this section we will further analyze the winding of the nested P (±) -Wilson loop eigenphases {(γ

(±) 2 ) n,k,Gi,Gj |n = 1 . . . N (±)
W } [SN 4 A and 4 B] where the first and second closed loop holonomy are parallel to G i and G j respectively, and we will assume that i ̸ = j (i, j ∈ (1, 2, 3)) for now, as we have discussed the case of i = j in SN 4 C 1. The one remaining linearly-independent primitive reciprocal lattice vector is denoted as G l . The total nested Berry phase (γ

(±)
2 ) k,Gi,Gj is defined by summing over the nested P (±) -Wilson loop eigenphases (γ 2 ) k,Gi,Gj , we can define two winding numbers (4.54)] is the winding number of the nested Berry phase (γ

(±) 2 ) k,Gi,Gj ≡ N (±) W n=1 (γ (±) 2 ) n,k,Gi,Gj mod 2π = Im log det[W (±) 2,k,Gi,Gj ] . (4.52) (γ (±) 2 ) k,Gi,
C (±) γ2,i,j (k l ; i) ≡ BZ dk i ∂(γ (±) 2 ) k,Gi,Gj ∂k i = BZ dk i ∂Im log det[W (±) 2,k,Gi,Gj ] ∂k i , (4.53) 
C (±) γ2,i,j (k i ; l) ≡ BZ dk l ∂(γ (±) 2 ) k,Gi,Gj ∂k l = BZ dk l ∂Im log det[W (±) 2,k,Gi,Gj ] ∂k l . ( 4 
i → k i + 2π, while C (±) γ2,i,j (k i ; l) [SEq.
(±)
2 ) k,Gi,Gj [SEq. (4.52)] when we fix k i and let k l → k l + 2π.

We will now prove that C (±) γ2,i,j (k l ; i) [SEq. (4.53)] must be zero provided that the G i -directed P (±) -Wannier bands can be decomposed into disjoint sets without band touching points, which is the requirement for the nested Berry phases (γ

(±)
2 ) k,Gi,Gj [SEq. (4.52)] to be well-defined at all (k i , k l ). To begin, let us denote the G i -directed P (±) -Wannier bands (non-Abelian Berry phases) as {(γ We will also assume that {(γ

(±) 1 ) n,k,Gi |n = 1 . . . N (±)
occ } consists of spectrally separated groups of bands so that the computation of (γ

(±)
2 ) k,Gi,Gj is well-defined over the 2D BZ spanned by G i and G l . Using the sign convention in SEq. (3.24) that relates the Chern number and the Berry phase winding number, if we choose (j, i, l) to index a right-handed coordinate system, C (±) γ2,i,j (k l ; i) indicates the Chern number in the k l -constant BZ plane for the N (±) W G i -directed, spectrally separated P (±) -Wannier bands. On the other hand, the same Chern number can also be obtained by first computing the nested Berry phases (γ

(±) 2 ) k,Gi,Gi ≡ N (±) W n=1 (γ (±) 2 ) n,k,Gi,Gi mod 2π = Im log det[W (±) 2,k,Gi,Gi ] , (4.55) 
which depend on the momentum components k j and k l . Notice that on the right-hand side of SEq. (4.55), both the first and second closed-loop holonomy are parallel to G i . We next obtain the corresponding winding number

C (±) γ2,i,i (k l ; j) = BZ dk j ∂(γ (±) 2 ) k,Gi,Gi ∂k j = BZ dk j ∂Im log det[W (±) 2,k,Gi,Gi ] ∂k j ., (4.56) 
in which C (±) γ2,i,i (k l ; j) is the winding number of the nested Berry phase (γ

(±)
2 ) k,Gi,Gi [SEq. (4.55)] for a fixed value of k l and taking k j → k j + 2π. Notice that using the sign convention in SEq. (3.24) that relates the Chern number and the Berry phase winding number, if we choose (i, j, l) to index a right-handed coordinate system, C (±) γ2,i,i (k l ; j) also indicates the Chern number of the G i -directed P (±) Wannier bands in a constant-k l BZ plane. In particular, Therefore, the winding number of the nested Berry phase (γ

C (±) γ2,i,i (k l ; j) [SEq. (4.56)] and C (±) γ2,i,j (k l ; i) [SEq. (4.53)] satisfy C (±) γ2,i,j (k l ; i) = -C (±) γ2,i,i (k l ; j).
(±)
2 ) k,Gi,Gj [SEq. (4.52)] must be zero if we fix k l and let

k i → k i + 2π.
We emphasize that, employing the sign convention in SEq. (3.24) and choosing (i, j, l) to index a right-handed coordinate system, since the winding number C (±) γ2,i,j (k i ; l) [SEq. (4.54)] is equal to the Chern number of the N (±) W spectrally separated G i -directed P (±) -Wannier bands in a constant-k i BZ plane, we must have that C (±) γ2,i,j (k i ; l) [SEq. (4.54)] is a constant independent of k i . Therefore, the nested Berry phase (γ

(±)
2 ) k,Gi,Gj [SEq. (4.52)] can have at most one nonzero winding number C (±) γ2,i,j (k i ; l) [SEq. (4.54)], and its value is independent of k i . To conclude, if we compute the nested Berry phase (γ

(±)
2 ) k,Gi,Gj through SEq. (4.52) with G i ̸ = G j , even though the eigenphases depend on k i and k l (noting that G i , G j , G l are linearly-independent), there can be no net winding as a function of k i . As such, nonzero winding in the spectrum of (γ

(±)
2 ) k,Gi,Gj [SEq. (4.52)] can occur only as a function of k l , and in addition such a winding number must be independent of k i provided that there exists a Wannier gap. Therefore, without loss of generality, when we refer to the winding number of the nested Berry phase (γ

(±)
2 ) k,Gi,Gj [SEq. (4.52)], we exclusively are referring to the winding number C (±) γ2,i,j (k i ; l) [SEq. (4.54)]. As such, in later sections we will introduce a simpler notation for C (±) γ2,i,j (k i ; l). Lastly, we note that G l is the only primitive reciprocal lattice vector that we have not yet used either for the first or the second closed-loop holonomy in the computation of the nested Berry phases (γ

(±)
2 ) k,Gi,Gj [SEq. (4.52)]. The winding number of the nested P -Wilson loop has been shown in SRefs. [15,16] to be Z 2 -stable, and is nontrivial for 3D strong magnetic axion insulators (i.e. magnetic insulators with bulk quantized Chern-Simons axion angles θ = π and vanishing weak Chern numbers). In particular, the winding number modulo 2 has been shown to be an indicator of θ [77,79]. In the next section (SN 4 C 3), we will generalize this observation and derive a relationship between the winding number of the nested P (±) -Wilson loop spectrum and the (partial) weak Chern number, which we will then in SN 4 D use to extract a novel spin-resolved (partial) variant of the axion angle.

Relation Between Nested P -and P±-Wilson Loops and (Partial) Weak Chern Numbers

In this section, we will derive exact relations between the winding number of the nested (spin-resolved) Wilson loop eigenphases and the (partial) weak Chern numbers, which are the 3D generalization of the (partial) Chern numbers defined in SEq. (3.24). To be specific, we here consider the nested Berry phases (γ

(±)
2 ) k,Gi,Gj in SEq. (4.52), where the first and second holonomy are parallel to the linearly-independent primitive reciprocal lattice vectors G i and G j , respectively, and the one remaining linearly-independent primitive reciprocal lattice vector is denoted as G l . In order for (γ

(±)
2 ) k,Gi,Gj to be well-defined over the 2D BZ spanned by G i and G l , we also assume that the G i -directed P (±) -Wannier bands described by {(γ 2 ) k,Gi,Gj for a given group of P (±) -Wannier bands can only be nonzero if computed as as a function of k l . We will hence in this section specifically focus on the winding number in SEq. (4.54) of the nested Berry phase (γ

(±)
2 ) k,Gi,Gj computed as a function of k l for a given group of P (±) -Wannier bands.

To begin, we can decompose the matrix projector [P (±) (k)] onto the occupied energy bands or the upper/lower spin bands into ) group of G i -directed P (±) -Wannier bands. In addition, we also have the orthogonality conditions

[P (±) (k)] = N (±) group n=1 [ P (±) Gi,n (k)], ( 4 
[ P Gi,n1 (k)][ P Gi,n2 (k)] = δ n1,n2 [ P Gi,n1 (k)] (4.61)
for the projectors onto the subspaces within the image of [P (k)], and

[ P σ1 Gi,n1 (k)][ P σ2 Gi,n2 (k)] = δ σ1,σ2 δ n1,n2 [ P σ1 Gi,n1 (k)] (4.62)
for the projectors onto the subspaces within the image of [P ± (k)] where σ 1 , σ 2 = ± and n 1 , n 2 denotes the group. Since we have assumed that the energy and P sP spectrum are gapped throughout the 3D BZ, we can define (partial) weak Chern numbers ν

(±) 1 , ν (±)
2 , and ν (±) 3 . {ν 1 , ν 2 , ν 3 } specifically denote the weak Chern numbers of the occupied energy bands, while {ν ± 1 , ν ± 2 , ν ± 3 } are the partial weak Chern numbers of the upper (+) and lower (-) spin bands. To be precise, ν

(±) 1 , ν (±)
2 , and ν

(±) 3
are the Chern numbers of the single-particle states in the image of [P (±) (k)] in BZ planes of constant-k 1 , constant-k 2 , and constant-k 3 , respectively. We note that in the literature, the term "weak indices" is generally used to refer to topological invariants computed in the k i = π BZ planes [33,43,44,[START_REF] Fu | Topological Insulators in Three Dimensions[END_REF][START_REF] Ran | One-dimensional topologically protected modes in topological insulators with lattice dislocations[END_REF][START_REF] Teo | Topological defects and gapless modes in insulators and superconductors[END_REF]. However in systems with an energy and a spin gap, the (partial) Chern numbers cannot change as functions of k i (which would require energy or spin gap-closing points), and hence the (partial) Chern numbers are constant and independent of k i . Since we require the G i -directed P (±) -Wannier bands to consist of disjoint groups that are spectrally separated, we must have that ν

(±) j = ν (±) l = 0. Conversely, ν (±) i
can take any integral values. The partial weak Chern numbers ν + i and ν - i are generically independent, but can be related to each other by symmetries that reverse the spin direction, as we will see below. Recall that throughout this section, we are employing a notation in which i, j, l to denote the three linearly-independent primitive reciprocal lattice vectors G i , G j , and G l . We can express the (partial) weak Chern number ν

(±) i from [P (±) (k)] [SEq. (4.59)] computed in a BZ plane of constant-k i as ν (±) i = - i 2π 2D BZ k i =const dk j dk l Tr [P (±) (k)] ∂[P (±) (k)] ∂k j , ∂[P (±) (k)] ∂k l . (4.63) 
Similarly, the (partial) Chern number of the n th group of the G i -directed P (±) -Wannier bands in a constant-k i BZ plane can be obtained through

C (±) γ2,n = - i 2π 2D BZ k i =const dk j dk l Tr [ P (±) Gi,n (k)] ∂[ P (±) Gi,n (k)] ∂k j , ∂[ P (±) Gi,n (k)] ∂k l , (4.64) 
in which we have chosen (j, l, i) to index a right-handed coordinate system. C 

ν i = ν + i + ν - i , (4.66) 
such that the total weak Chern number of the occupied bands is the sum of the partial weak Chern numbers of the upper and lower spin bands. Before we apply SEq. (4.65) to specific cases, we pause to briefly restate the essential assumptions made in the above derivations:

1. The energy and spin gaps are open throughout the 3D BZ.

2. The G i -directed P (±) -Wannier bands can be separated into disjoint groups such that the decomposition in SEq. (4.59) is well-defined and smooth over the 3D BZ, which implies that two of the (partial) weak Chern numbers are zero, namely ν

(±) j = ν (±) l
= 0. However, we note that ν

(±) j = ν (±) l
= 0 does not imply that the G i -directed P (±) -Wannier bands can be separated into disjoint groups.

Let us now consider some specific implications of SEq. (4.65). First, consider a spinful system with time-reversal symmetry, and gaps in both the energy and P sP spectrum at every k point throughout the BZ. The weak Chern number of the occupied bands at any constant-k i plane must be zero, which implies that ν i = 0. From SEq. (4.66), this further implies that

ν + i = -ν - i (4.67)
in the presence of spinful time-reversal symmetry. Then, if we have ν ± i = ±m ̸ = 0 where m ∈ Z, we can deduce that

N ± group n=1 C ± γ2,n = ±m. (4.68) 
This case occurs, for example, in the 3D quantum spin Hall insulator considered in SRef. [75], in which both the energy and spin gaps are open, and the partial weak Chern numbers are ν ± 1 = ±2, ν ± 2 = ν ± 3 = 0. Next, consider a 3D insulator with an energy gap and ν i = 0, or a 3D insulator with energy and spin gaps and ν ± i = 0. The former can be realized, for instance, by a 3D magnetic axion insulator [15], and the latter can be realized by a time-reversal-symmetric helical HOTI, as we will see later in SN 4 D. The vanishing (partial) weak Chern number in either case implies that

N (±) group n=1 C (±) γ2,n = 0. (4.69)
If we then choose to decompose the G i -directed P (±) -Wannier bands into two groups (which is a convenient choice if the system has inversion symmetry, as will be discussed in detail in SN 4 C 4), we have that the winding numbers

C (±)
γ2,1 st group and C (±) γ2,2 nd group are opposite to each other:

C (±) γ2,1 st group = -C (±) γ2,2 nd group . (4.70) 
Now that we have enumerated useful properties of nested P (±) -Wilson loops, we can proceed to use them as tools for diagnosing (spin-resolved) band topology. In particular, in the next section we will show that in inversion-and time-reversal symmetric systems, the winding number of the nested P ± -Wilson loop is a Z 2 -valued invariant that characterizes properties of a system that are robust as long as neither an energy gap nor a spin gap closes (termed "spin stability" in this work). This will allow us to deduce the existence of nonzero spin-electromagnetic response coefficients in 3D helical HOTIs from their spin-resolved electronic band topology.

As a final remark, we will now generalize our analysis to cases where all of the (partial) weak Chern numbers can be nonzero, provided that the P (±) -Wannier bands can be divided into disjoint groupings. Using the (partial) weak Chern numbers {ν

(±) 1 , ν (±) 2 , ν (±)
3 } and the primitive reciprocal lattice vectors {G 1 , G 2 , G 3 }, we can construct a (partial) Chern vector [92,[START_REF] Halperin | Possible States for a Three-Dimensional Electron Gas in a Strong Magnetic Field[END_REF][START_REF] Kohmoto | Diophantine equation for the three-dimensional quantum Hall effect[END_REF][START_REF] Haldane | Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property[END_REF]]

ν (±) = ν (±) 1 G 1 + ν (±) 2 G 2 + ν (±) 3 G 3 (4.71)
which is related (for weak Chern numbers in the energy spectrum) to the Hall conductivity via

σ H ij = e 2 h (ν) k ϵ kij , (4.72) 
or (for partial weak Chern numbers in the P sP spectrum) to the topological contribution to the spin Hall conductivity [C s γ1 in SEq. (3.36)] via

σ s ij,top = e 4π (ν + -ν -) k ϵ kij . (4.73) 
In SEqs. (4.72) and (4.73), i, j = x, y, z index Cartesian directions, and ϵ ijk is the antisymmetric Levi-Civita symbol.

From the primitive position-space lattice vectors {a 1 , a 2 , a 3 }, we can form a (non-unique) set of supercell positionspace lattice vectors {a sc 1 , a sc 2 , a sc 3 } where

a sc 1 = ν (±) 1 a 3 -ν (±) 3 a 1 , (4.74) 
a sc 2 = ν (±) 2 a 3 -ν (±) 3 a 2 , (4.75) a sc 3 = a 3 , (4.76) 
are all linear combinations of primitive lattice vectors {a 1 , a 2 , a 3 } with integral coefficients. A semi-infinite slab formed from the supercell with finite thickness along a sc 3 has a surface normal vector parallel to the (partial) Chern vector ν (±) since [78]

a sc 1 • ν (±) = a sc 2 • ν (±) = 0. (4.77)
Assuming without loss of generality that the (partial) weak Chern number ν (±) 3 ̸ = 0 [if not we can always permute our coordinates to facilitate this provided that ν (±) ̸ = 0 in SEq. (4.71)], the dual supercell primitive reciprocal lattice vectors are {G sc 1 , G sc 2 , G sc 3 } where

G sc 1 = - 1 ν (±) 3 G 1 , (4.78) 
G sc 2 = - 1 ν (±) 3 G 2 , (4.79) 
G sc 3 = ν (±) 1 ν (±) 3 G 1 + ν (±) 2 ν (±) 3 G 2 + G 3 . (4.80)
Recall that the (partial) Chern vector is a property of a set of occupied states in a 3D translationally-invariant system, which is independent of the description whether we use the primitive lattice vectors {a 1 , a 2 , a 3 } or the supercell lattice vectors {a sc 1 , a sc 2 , a sc 3 }. Therefore, the (partial) Chern vector of the 3D translationally-invariant system described by the supercell lattice vectors {a sc 1 , a sc 2 , a sc 3 } is the same as SEq. (4.71). To obtain the (partial) weak Chern numbers of the supercell system, we rewrite the (partial) Chern vector ν (±) [SEq. (4.71)] in terms of {G sc 1 , G sc 2 , G sc 3 } and obtain

ν (±) = ν (±),sc 1 G sc 1 + ν (±),sc 2 
G sc 2 + ν (±),sc 3 
G sc 3 = ν (±) 3 G sc 3 . (4.81) 
SEq. (4.81) implies that the supercell (partial) weak Chern numbers {ν

(±),sc 1 , ν (±),sc 2 , ν (±),sc 3 
} of the 3D translationallyinvariant system whose Bravais lattice vectors are {a sc 1 , a sc 2 , a sc 3 } are given by

ν (±),sc 1 = 0, ν (±),sc 2 = 0, ν (±),sc 3 = ν (±) 3 . (4.82)
Therefore, provided that the (partial) Chern vector ν (±) in SEq. (4.71) is a nonzero vector, we can choose a supercell spanned by {a sc 1 , a sc 2 , a sc 3 } such that only one of the supercell (partial) weak Chern numbers is nonzero . As such, the results derived in this section can be directly generalized and applied to the supercell system to obtain the relation between the supercell (partial) weak Chern numbers ν (±),sc 3 and the winding numbers of the nested P (±) -Wilson loop spectra, provided that the G sc 3 -directed P (±) -Wannier bands of the supercell system contain disjoint groupings. We emphasize again that different choices of the non-unique supercell Bravais lattice vectors can lead to distinct supercell (partial) weak Chern numbers. However, physical observables like the (spin) Hall conductivity [SEqs. (4.72) and (4.73)] only depend on the invariant (partial) Chern vector [SEq. (4.71)]. As long as one can obtain a set of supercell lattice vectors for which the P (±) -Wannier bands of the supercell system computed along one of the supercell reciprocal lattice vectors can be separated into disjoint groupings such that two of the supercell (partial) weak Chern numbers are zero, the results derived in this section can be directly extended to the relation between the supercell (partial) weak Chern numbers and the winding numbers of the nested P (±) -Wilson loop spectra of the supercell system. In this section, we will show that with inversion (I) and time-reversal (T ) symmetry, the spectral flow of the nested Berry phases in the positive and negative P sP eigenspaces is Z 2 -stable to deformations of the spin-resolved Wannier band structure, provided that both the energy and spin gap remain open throughout the deformation. To be specific, as in SN 4 C 3, we consider the nested Berry phases in SEq. (4.52) where the first and second closed-loop holonomy in the computation of the nested Berry phases are parallel to G i and G j (i ̸ = j), respectively. We again denote the one remaining linearly-independent primitive reciprocal lattice vector as G l . As was previously proved in SN 4 C 2, the winding numbers of the nested Berry phases [SEq. (4.52)] for a given group of Wannier bands can only have nonzero winding as a function of k l . We will thus in this section exclusively consider the winding numbers of the nested Berry phases [SEq. (4.52)] for a given group of Wannier bands as a function of k l .

To begin, we consider 3D insulators with I and T symmetry whose energy and spin spectra are both gapped. As shown in SN 2 B, in the presence of IT symmetry, the upper (+) and lower (-) eigenspace of P sP are the positive and negative eigenspace of P sP . In the presence of I symmetry, the G i -directed P ± -Wannier band eigenphases (γ ± 1 ) j,k,Gi satisfy

{(γ ± 1 ) j,k,Gi |j = 1 . . . N ± occ } = {-(γ ± 1 ) j,-k,Gi |j = 1 . . . N ± occ }, (4.83) 
and in the presence of T symmetry, we have

{(γ ± 1 ) j,k,Gi |j = 1 . . . N ± occ } = {(γ ∓ 1 ) j,-k,Gi |j = 1 . . . N ± occ }, (4.84) 
where (γ ± 1 ) j,k,Gi is defined modulo 2π. Note that (γ ± 1 ) j,k,Gi depends only on the momentum components k j and k l . We refer the readers to SN 6 E and 6 G for the detailed proof of SEqs. (4.83) and (4.84), respectively.

Assuming that there a gap in the P ± -Wannier bands, the inversion symmetry constraint in SEq. (4.83) allows us to divide the P ± -Wannier bands into two disjoint groups-one centered around γ ± 1 = 0, which we term the "inner set", and another around γ ± 1 = π (or equivalently -π), which we term the "outer set" [13-16, 18, 19, 31, 174]. A schematic example is shown in SFig. 17(a,e). The inner and outer sets of spin-resolved (P ± -) Wannier bands are effectively inversion-symmetric in the sense that they individually satisfy SEq. (4.83). In the following, we will use interchangeably the "winding number of the nested Barry phase (γ ± 2 ) k,Gi,Gj [SEq. (4.52)]", and the term "nested partial Chern number [SEq. (4.64)]", where the sign convention in SEq. (3.24) has been implicitly applied. From SEqs. (4.65) and (4.68) in SN 4 C 3, we have that the nested partial Chern numbers for a system with time-reversal symmetry satisfy

C ± γ2,in + C ± γ2,out = ν ± i = ±m, (4.85) 
where ν ± i is the partial weak Chern number (defined in SN 4 C 3) of the positive/negative spin bands at constant-k i planes, m ∈ Z, and we have used "in" and "out" to denote the disjoint inner and outer groups of spin-resolved Wannier bands. As is discussed in SN 4 C 3, by construction, we are here specializing (without loss of generality) to systems in which the other two partial weak Chern numbers ν ± j and ν ± l are zero due to the fact that the G i -directed P ± -Wannier bands contain disjoint groups.

In the presence of T symmetry, since the nested Berry phases (γ ± 2 ) k,Gi,Gj for a given group of P ± -Wannier bands satisfy (γ ±

2 ) k,Gi,Gj mod 2π = (γ ∓ 2 ) -k,Gi,Gj mod 2π (we refer the readers to SN 6 H for a detailed proof), we can deduce that the nested partial Chern numbers [SEq. (4.64)] must satisfy Similar to SN 3 C, we may then define the relative winding numbers of the nested Berry phases between the positive and negative P sP eigenspaces as

C ± γ2,in = -C ∓ γ2,in , (4.86) 
C ± γ2,out = -C ∓ γ2,out . ( 4 
C s γ2,in ≡ C + γ2,in -C - γ2,in , (4.88) 
C s γ2,out ≡ C + γ2,out -C - γ2,out . (4.89) 
We will also call C s γ2,in and C s γ2,out as the nested spin Chern numbers. From SEqs. (4.86) and (4.87), in the presence of T symmetry, we have

C s γ2,in = 2C + γ2,in = -2C - γ2,in , (4.90) 
C s γ2,out = 2C + γ2,out = -2C - γ2,out . (4.91) 
In addition, since the partial weak Chern number ν + i = -ν - i in the presence of T symmetry, SEqs. (4.85), (4.90), and (4.91) also imply that 

C s γ2,in + C s γ2,out = 2ν + i = -2ν - i . ( 4 
+ γ2,out = +1, C - γ2,in = -1, C - γ2,out = -1, C s γ2,in = +2
, and C s γ2,out = +2. We will show in SN 4 D that this configuration of nested partial Chern numbers can be realized through a layer construction with two 2D quantum spin Hall insulators in each unit cell. For introductions to and further discussions of the layer-construction method for enumerating and analyzing symmetry-protected topological states, interested readers may consult SRefs. [20,33,[42][43][44][START_REF] Huang | Building crystalline topological phases from lower-dimensional states[END_REF]. Another example of a system that has an open spin gap and an open energy gap is a 3D helical higher-order topological insulator (HOTI) [31] with ν ± i = 0 and C + γ2,in = +1, which can also be obtained from a layer construction (detailed in SN 4 D and SRefs. [33,[START_REF] Song | Real-space recipes for general topological crystalline states[END_REF]) and will be the main numerical focus in SN 4 E. ν ± i = 0 and C + γ2,in = +1 implies that for this helical HOTI

C + γ2,out = -1, C - γ2,in = -1, C - γ2,out = +1, C s
γ2,in = +2, and C s γ2,out = -2. We will show in SN 4 D that C ± γ2,out = ∓1 and C ± γ2,in = ±1 can be realized via a layer construction by placing one Iand spinful T -symmetric 2D TI with partial Chern numbers C ± γ1 = ±1 in the I-symmetric planes containing the origin of each unit cell, along with placing one Iand spinful T -symmetric 2D TI with partial Chern numbers C ± γ1 = ∓1 in the inversion-symmetric planes at the boundary of each unit cell (defined to be a half-lattice translation from the origin) [18,19,31]. We will explicitly demonstrate this in SN 4 E through a numerical example implementing our nested spin-resolved Wilson loop formalism.

Recall from SEq. = -γ and crystal momentum (-k * j , -k * l ) [see SFig. 17(c)] related by inversion symmetry. These two gap closings transfer the same partial Chern numbers between the inner and outer set of P + -Wannier bands, such that after the deformation, the winding numbers can change according to

C + γ2,in → C + γ2,in + 2n, (4.100) 
C + γ2,out → C + γ2,out -2n, (4.101) 
where n ∈ Z. As an example, in SFig. 17 On the other hand, due to T symmetry, SEq. (4.84) implies that simultaneously there will be also be a pair of gap closings at ±γ -, * 1 = ±γ and crystal momentum (∓k * j , ∓k * l ) between the inner and outer set of P --Wannier bands, see for instance SFig. 17(f,g). Since this pair of band crossings in the P --Wannier bands are related to the previous pair of band crossings in the P + -Wannier bands by time-reversal, we deduce that after the deformation, we have ). In all the following discussion, we refer to (C + γ2,in mod 2, ν + i ) as the spin-stable invariant for a 3D inversion-and spinful time-reversal-invariant system with an energy gap, a spin gap, and ν + j = ν + l = 0. If both the energy gap and the gap between the positive and negative P sP eigenspaces are required to be opened during a deformation of the bulk that preserves I and T symmetry, ν + i ∈ Z cannot change. Therefore, we have that

C - γ2,in → C - γ2,in -2n, ( 4 
(C + γ2,in mod 2, ν + i ) ∈ Z 2 × Z (4.106)
classifies the spin-stable topology of a 3D insulator with I and spinful T symmetry and ν ± j = ν ± l = 0 (recalling that we have taken ν ± j and ν ± l to be zero in order to guarantee the possibility of spectrally separated G i -directed P ± -Wannier bands). In SN 4 D we will compare this Z 2 × Z spin-stable topology with symmetry-indicated (energy) band topology. We will then show that a symmetry-indicated helical HOTI can be further resolved into (at least) two families of spin-stable (spin-gapped) phases with different spin-response effects, which includes the experimentally observable spin-magnetoelectric response and the topological contribution to the bulk spin Hall conductivity. After we introduce the notion of spin-resolved elementary layer construction in SN 4 D, we will also discuss how to systematically enumerate and analyze various families of 3D spin-stable (spin-gapped) phases with inversion and spinful time-reversal symmetries by stacking 2D insulators in 3D. The stacking approach has the merit of making the spin-response effects physically manifest.

D. Comparison Between Spin-Stable Topology and Symmetry-Indicated Topology in Iand Spinful

T -Symmetric 3D Insulators

In this section, we will show that the spin-stable topology (SN 4 C 4) characterized by the spin-resolved Wannier band configurations (C + γ2,in , ν + i ) [SEq. (4.106)] provides a finer topological classification than the usual stable (symmetry-indicated) (energy) band topology [17,21,31,33,[START_REF] Xu | High-throughput calculations of magnetic topological materials[END_REF]. We will introduce a formal notion of spin-resolved layer constructions and the corresponding symmetry indicators (SIs) to enumerate and analyze insulators in the nonmagnetic space group P 11 ′ (# 2.5) [generated by 3D translations, inversion (I), and spinful time-reversal (T )] with a spin gap, which can include the Iand T -protected helical higher-order topological insulators (HOTIs) studied in this work. We will then discuss the different spin-electromagnetic responses of two families of spin-stable (spin-gapped) insulators that are both symmetry-indicated helical HOTIs in the nonmagnetic space group P 11 ′ (# 2.5).

In this section, we consider 3D insulators in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap. Provided that the spin gap is open, we can spin-resolve the occupied electronic bands into positive (+) and negative (-) spin bands, as the system has both I and spinful T symmetries [see also SN 2 B and SFig. 1(c)]. We denote the 3D partial weak Chern numbers as {ν ± 1 , ν ± 2 , ν ± 3 } [SEq. (4.63)]. Following the discussion in SN 4 C 3 and 4 C 4, we assume that in the presence of I symmetry, without loss of generality, the G 3 -directed P ± -Wannier bands can be separated into inner and outer groups centered around the partial Berry phase values γ ± 1 = 0 and γ ± 1 = π (or equivalently -π) respectively, which by construction implies that the partial weak Chern numbers 

ν ± 1 = ν ± 2 = 0. ( 4 
+ γ2,in = -C - γ2,in , C + γ2,out = -C - γ2
,out , and ν + 3 = -ν - 3 . We then have that the pair (C + γ2,in , ν + 3 ) determines the remaining nested partial Chern numbers as

C ± γ2,in = ±C + γ2,in , (4.108) 
C ± γ2,out = ± -C + γ2,in + ν + 3 . (4.109)
We next consider deforming the Hamiltonian in a manner that respects the symmetries of the nonmagnetic space group P 11 ′ (# 2.5) and does not close either the energy gap or the spin gap. Under such a deformation, two spin-resolved Wannier band configurations can be deformed into each other provided that

(C + γ2,in , ν + 3 ) configuration 1 -(C + γ2,in , ν + 3 ) configuration 2 = (2n, 0), (4.110) 
(C + γ 2 ,in mod 2, ν + 3 ) ∈ Z2 × Z Spin-Stable Invariants (0, 0) (1, 1) (0, 1) (0, 2) (1, 2) (1, 0) C ± γ 2 ,in ±2n ±1 0 0 ±1 ±1 C ± γ 2 ,out ∓2n 0 ±1 ±2 ±1 ∓1
Supplementary Table 2. Values of the nested partial Chern numbers (spin-resolved Wannier band configurations) C ± γ 2 ,in and C ± γ 2 ,out consistent with the given Z2 × Z spin-stable invariants (C + γ 2 ,in mod 2, ν + 3 ), assuming that the partial weak Chern numbers ν ± 1 = ν ± 2 = 0 as in SEq. (4.107) (which is required to admit the possibility of a gap in the G3-directed P±-Wilson loop spectrum). The first column indicates that the trivial configuration (0, 0) is consistent with even-integer nested partial Chern numbers C ± γ 2 ,in = ±2n for the inner P±-Wanner bands, and opposite even-integer nested partial Chern numbers C ± γ 2 ,out = ∓2n for the outer P±-Wannier bands. The configurations (1, 1) and (0, 1) can be taken as the generators of the Z2 × Z group of spin-stable (spin-gapped) phases in the nonmagnetic space group P 11 ′ (# 2.5) with ν ± 1 = ν ± 2 = 0, where we define the negative of the generators by reversing the signs of the nested partial Chern numbers in the table. In particular, (1, 1) corresponds to the ν ± 3 = ±1 weak topological insulator [START_REF] Fu | Topological Insulators in Three Dimensions[END_REF][START_REF] Fu | Topological insulators with inversion symmetry[END_REF] depicted in SFig. 20(a), and (0, 1) corresponds to the ν ± 3 = ±1 obstructed weak topological insulator [92] depicted in SFig. 20(b). After the double-vertical line in the table, we give three examples of spin-stable phases with spin-resolved Wannier band configurations derived from linear combinations of the generators. To add two configurations we add their inner and outer nested partial Chern numbers, or equivalently add their (C + γ 2 ,in , ν + 3 ). The (0, 2) phase can be realized with the configuration C ± γ 2 ,in = 0 and C ± γ 2 ,out = ±2, corresponding to the linear combination (0, 2) = (0, 1) ⊕ (0, 1). The (1, 2) spin-stable phase can be realized with the configuration C ± γ 2 ,in = ±1 and C ± γ 2 ,out = ±1, corresponding to the linear combination (1, 2) = (0, 1) ⊕ (1, 1). This corresponds to the ν ± 3 = ±2 quantum spin Hall insulator (QSHI), depicted in SFig. 22(a). The (1, 0) spin-stable phase can be realized with the configuration C + γ 2 ,in = ±1 and C + γ 2 ,out = ∓1, corresponding to the linear combination (1, 0) = (1, 1) ⊖ (0, 1). This phase corresponds to the T -doubled axion insulator (T-DAXI) depicted in SFig. 22(b). We note that we can add a configuration in the trivial phase (0, 0) for any integer n to any of these representative configurations without changing the spin-stable phase. This corresponds to the fact that, as shown in SEq. (4.106) and the surrounding text, C + γ 2 ,in is only stable modulo 2.

anomalous Hall insulator (QAHI) and ν 3 = 1 3D obstructed quantum anomalous Hall insulator (oQAHI), where the ν 3 = 1 oQAHI in SFig. 18(b) is related to the ν 3 = 1 QAHI in SFig. 18(a) by a half-lattice translation along a 3 [92]. For completeness, we note that the two remaining elementary layer constructions are obtained by placing an inversion-symmetric Chern insulator with Chern number C γ1 = 1 in either the r 1 = 1/2 or r 2 = 1/2 plane. They have, respectively, (ν 1 , ν 2 , ν 3 ) = (1, 0, 0) and (ν 1 , ν 2 , ν 3 ) = (0, 1, 0). There are four eLCs rather than 3 to account for the fact that the "Chern number polarization" relative to the origin is a strong Z 2 invariant protected by inversion symmetry [16,33,43,46,92].

Let us now consider the topological crystalline phases built from the two (ν 1 , ν 2 , ν 3 ) = (0, 0, 1) elementary layer constructions in magnetic space group P 1 (# 2.4) discussed above. Focusing on topological configurations with weak Chern numbers ν 1 = ν 2 = 0, in SFig. 19 we show the layer construction of two representative phases. In SFig. 19(a) we show how a 3D QAHI with weak Chern number ν 3 = 2 in magnetic space group P 1 (# 2.4) can be constructed by tiling space with a C γ1 = 1 Chern insulator placed in the r 3 = 0 plane in each unit cell and a C γ1 = 1 Chern insulator placed in the r 3 = 1/2 plane in each unit cell. This corresponds to the sum of the two elementary layer constructions depicted in SFig. 18. In SFig. 19(b) we show how an I-protected 3D magnetic axion insulator (AXI) in magnetic space group P 1 (# 2.4), which is characterized by zero weak Chern numbers ν 1 = ν 2 = ν 3 = 0 and a quantized bulk axion angle θ = π [77,79], can be constructed by tiling space with a C γ1 = 1 inversion-symmetric Chern insulator placed in the r 3 = 0 plane in each unit cell and a C γ1 = -1 inversion-symmetric Chern insulator placed in the r 3 = 1/2 plane in each unit cell. This corresponds to the difference of the two elementary layer constructions depicted in SFig. 18, where the negative of an elementary layer construction is obtained by reversing the signs of the Chern numbers of the 2D layers that tile 3D space. We emphasize that both adding and subtracting elementary layer constructions increases the number of occupied bands in the system.

The layer construction method allows us to efficiently identify symmetry-protected topological phases that span the SI group of a given (magnetic or nonmagnetic) space group. Recall that the magnetic space group P 1 (# 2.4) has the SIs (z 4 , z2,1 , z2,2 , z2,3 ) which can be computed from the inversion eigenvalues of the occupied energy bands at the high-symmetry points in the BZ [43][44][45][46][START_REF] Xu | High-throughput calculations of magnetic topological materials[END_REF]. The strong Z 4 index z4 is specifically determined by the half of the difference between the number of occupied energy bands of positive (n a + ) and negative (n a -) parity (inversion eigenvalues), modulo 4 at all 8 TRIMs k a , z4 ≡ 1 2 ka∈TRIMs n a +n a -mod 4. where i = 1, 2, 3. We see in SFig. 18 that the 3D QAHI with ν 3 = 1 and the 3D oQAHI with ν 3 = 1 have the SIs (z 4 , z2,1 , z2,2 , z2,3 ) = (2, 0, 0, 1) and (0, 0, 0, 1), respectively. Similarly, we see in SFig. 19 that the 3D QAHI with ν 3 = 2 and the 3D AXI have the same SIs (z 4 , z2,1 , z2,2 , z2,3 ) = (2, 0, 0, 0). b k-space r-space " # , " %,& , " %,% , " %,' = 0,0,0,1 a k-space r-space + ' = 1 3D QAHI " # , " %,& , " %,% , " %,' = 2,0,0,1 (4.112)] are determined to be (2, 0, 0, 1) for (a) and (0, 0, 0, 1) for (b). Any topological crystalline phases in the magnetic space group P 1 (# 2.4) with weak Chern numbers ν1 = ν2 = 0 can be derived from linear combinations of (a) and (b), where the negative of a layer construction is obtained by reversing the signs of the Chern numbers of the 2D layers (as opposed to subtracting bands from the occupied subspace) [43,44].

-. / = +/ k 1 /r 1 k 2 /r 2 k 3 /r 3 1 ' = 2 1 ' = 0
The layer construction of topological crystalline insulators has a direct connection to the nested (partial) Berry phase classifications that we introduced in SN 4 A and 4 B. This is because the inner nested (partial) Chern number C We can now adapt these observations to formulate a spin-resolved layer construction for the spin-stable (spingapped) topological crystalline phases with ν ± 1 = ν ± 2 = 0 in the nonmagnetic space group P 11 ′ (# 2.5). First, although the projector P (k) onto the occupied electronic energy bands is invariant under the nonmagnetic space group P 11 ′ (# 2.5), the projectors P ± (k) onto the positive/negative spin bands are invariant only under the magnetic subgroup P 1 (# 2.4) of symmetries that commute with P sP . From this it follows that the spin-resolved topology 5). In addition, both have odd nonzero winding numbers C ± γ2,in/out in their nested partial Berry phases (Supplementary Table 5), indicating that we cannot form time-reversed pairs of inversion-symmetric exponentially localized Wannier functions [START_REF] Bradlyn | Topological quantum chemistry[END_REF]. However, the QSHI and T-DAXI in SFig. 22 differ from each other in their spin-resolved response to external fields. Let us again restrict to the spin-stable (spin-gapped) phases in the nonmagnetic space group P 11 ′ (# 2.5) with partial weak Chern numbers ν ± 1 = ν ± 2 = 0. To see that their responses differ, let us first consider the limit in which the spin component n • s is conserved. In this limit, the bulk spin Hall conductivity for the QSHI [SFig. 22(a)] and T-DAXI [SFig. 22(b)] per unit cell are given by, according to SEq. (4.73), As such, the spin Hall conductivity between QSHI and T-DAXI can be greatly different, even when spin is not conserved. We will later numerically demonstrate that a T-DAXI has a vanishing bulk topological contribution to the spin Hall conductivity by computing its layer-resolved partial Chern numbers in SN 5 E.

σ s ij,top,QSHI = e 4π ϵ ijk • ν + 3 -ν - 3 (G 3 ) k = e 4π • 2ν + 3 ϵ ijk (G 3 ) k = e 4π • 4ϵ ijk (G 3 ) k , ( 4 
On the other hand, from the relation between the winding numbers of the nested Berry phases and the bulk axion angle introduced in SRef. [15], our nested spin-resolved Wilson loop formalism (SN 4 B) allows us to introduce partial axion angles θ ± , which respectively correspond to the 3D bulk axion angle [77] within each of the positive and negative P sP eigenspaces. In analogy with the ordinary axion angle, we can use the layer constructions in Supplementary Table 3 to define the partial axion angle as 2π/|a 3 | times the partial Chern number polarization per unit cell (taken modulo 2π) [15,16]. For the T-DAXI in SFig. 22(b), this gives

θ ± T-DAXI = 2π[0(±1) + 1 2 (∓1)] mod 2π = π. (4.123) 
The bulk contribution to the isotropic magnetoelectric polarizability [77] separately in the positive and negative eigenspace of P sP is then given by

α ± = θ ± e 2 2πh , (4.124) 
where α ± is the partial magnetoelectric polarizability, which represents the 3D analog of the 1D partial polarization introduced by Fu and Kane in SRef. [2]. In the T-DAXI state [SFig. 22(b)], θ ± mod 2π = π, a result that is originindependent, because the bulk partial weak Chern numbers all vanish [16,36,92]. Conversely in a 3D QSHI state [SFig. 22(a)], the partial Chern numbers per unit cell are nonvanishing, and the partial axion angles θ ± are hence origin-dependent. We can combine this result with our arguments about flux insertion from SN 3 G to understand the response of QSHIs and T-DAXIs in SFig. 22(a,b) respectively to the insertion of a magnetic flux. Viewing a QSHI via the layer construction from Supplementary Table 3, we see that the spin Hall conductivity in SEq. (4.121) implies that the intrinsic spin Hall conductivity of a quasi-2D slab of a QSHI is proportional to the thickness of the slab. Inserting a π magnetic flux tube along the a 3 axis into a ν ± 3 ̸ = 0 QSHI will thus bind an extensive number of mid-gap states localized at the flux tube. Conversely, the vanishing partial Chern number in each unit cell of a T-DAXI implies that a π-flux tube in a T-DAXI will not bind any states in the bulk. Instead, we expect the flux-insertion response of a T-DAXI to manifest on surfaces. Specifically by analogy to magnetic AXIs, the partial Chern number polarization in a T-DAXI implies that gapped surfaces with normal vectors parallel to ±G 3 have the response associated with a half-quantized partial Chern number [36,92,[START_REF] Schindler | Topological zero-dimensional defect and flux states in three-dimensional insulators[END_REF][START_REF] Armitage | On the matter of topological insulators as magnetoelectrics[END_REF]. From the results of SRefs. [START_REF] Qi | Spin-Charge Separation in the Quantum Spin Hall State[END_REF][START_REF] Ran | Spin-Charge Separated Solitons in a Topological Band Insulator[END_REF][START_REF] Ostrovsky | Interaction-Induced Criticality in Z2 Topological Insulators[END_REF], we hence expect a π-flux tube in a finite slab of a T-DAXI to bind one spinon between the top and bottom surface at half filling. This is consistent with the fact that, due to the presence of a sample-encircling helical hinge mode, a finite crystallite of a T-DAXI with global I-symmetry, when viewed as a quasi-2D system, is a 2D strong TI. In SN 5 we will formalize the notion of a half-quantized surface partial Chern number by developing a layer-resolved marker for the partial Chern number in position space, which reveals that the gapped surfaces of helical HOTIs in the T-DAXI regime bind anomalous quantum spin Hall states with half-integral (n + 1/2 where n ∈ Z) partial Chern numbers, which are equivalent to anomalous halves of 2D TIs. Concurrent with the preparation of this work, a numerical investigation of π-flux insertion in helical HOTIs revealed that a π-flux tube, on the average, binds half a spinon per surface in a helical HOTI [START_REF] Schindler | Topological zero-dimensional defect and flux states in three-dimensional insulators[END_REF], which is consistent with the above argument and the results of this work. This suggests it would be interesting to explore the partial axion angles θ ± and the associated spin-magnetoelectric response from the perspective of topological quantum field theory, which we leave as an exciting direction for future investigation.

To summarize, our spin-resolved formalism of (nested) Wilson loops in SN 3 B and 4 B has allowed us to identify two distinct forms of spin-stable topology in symmetry-indicated helical HOTIs in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap, ν ± 1 = ν ± 2 = 0, and spin-resolved Wannier band configurations described by (C + 2) cannot form 3D inversion-and time-reversal-symmetric exponentially localized Wannier functions. Furthermore, since the nested P ± -Wilson loop winding provides information regarding the partial Chern numbers of the spin-resolved hybrid Wannier bands in position space, it also allows us to discover that beyond the spin Hall conductivity, there also exists a partial 3D magnetoelectric polarizability in spinful T -invariant 3D insulators with vanishing weak Z 2 indices, which can be considered the 3D generalization of the 1D partial polarization introduced by Fu and Kane in SRef. [2]. We can then deduce the spin-electromagnetic response of 3D QSHIs [SFig. 22(a)] and T-DAXIs [SFig. 22(b)] to external magnetic fields via the spin-resolved layer construction method introduced in this work (Supplementary Table 3 We summarize in Supplementary Table 6 the properties of 3D QSHIs [SFig. 22(a)] and 3D T-DAXIs [SFig. 22(b)] derived in this section. In SN 10 we will demonstrate that the candidate helical HOTI α-BiBr [50,52,53] realizes both 3D QSHI and T-DAXI states, depending on the spin resolution direction. We will specifically show that if α-BiBr is spin-resolved along s z , it realizes a 3D QSHI state with a partial Chern vector ν ± = ∓2G 

(C + γ 2 ,in , ν + 3 ) (1, 2) (1, 0) C ± γ 2 ,in ±1 ±1 C ± γ 2 ,out ±1 ∓1 Spin-Resolved Layer Construction C ± γ 1 = ±1 in r3 = 0, C ± γ 1 = ±1 in r3 = 1 2 C ± γ 1 = ±1 in r3 = 0, C ± γ 1 = ∓1 in r3 = 1 2 Partial Symmetry Indicators (z ± 4 , z± 2,1 , z± 2,2 , z± 2,3 )
(2, 0, 0, 0) (2, 0, 0, 0) Symmetry Indicators (z4, z2,1, z2,2, z2,3)

(2, 0, 0, 0) (2, 0, 0, 0) Symmetry-Indicated Topological Phase helical HOTI helical HOTI Topological Contribution to the Spin Hall Conductivity

e 4π • 4ϵ ijk (G3) k 0 Partial Axion Angles θ ± mod 2π
origin-dependent π Supplementary Table 6. Spin-resolved properties of helical HOTIs in nonmagnetic space group P 11 ′ (# 2.5) with a spin gap, ν ± 1 = ν ± 2 = 0 (SFig. 22), and different spin-stable topology.

Finally, let us make two further remarks. First, since the 3D QSHI and 3D T-DAXI spin-stable phases discussed in this section (see also the summary in Supplementary Table 6) are both symmetry-indicated helical HOTIs in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap and ν ± 1 = ν ± 2 = 0, they can be deformed into each other while keeping the energy gap open and preserving inversion and time-reversal symmetry. However, since their partial weak Chern numbers ν + 3 differ by 2, a gap must still close in the spin spectrum during such a deformation. In particular, the 3D QSHI [3D T-DAXI] considered in this section carries the partial Chern numbers C ± γ1 (k 3 ) = ±2 [C ± γ1 (k 3 ) = 0] in both the k 3 = 0 and k 3 = π planes (see also SFig. 22). The intermediate spin-gapless phase during the deformation will hence have the partial Chern numbers C ± γ1 (k 3 = 0) = ±2 and C ± γ1 (k 3 = π) = 0, or vice-versa, but we expect it to have non-vanishing, nonquantized partial axion angles (by analogy to the nonquantized axion angles in Weyl semimetals [START_REF] Burkov | Negative longitudinal magnetoresistance in Dirac and Weyl metals[END_REF][START_REF] Wang | Chiral anomaly, charge density waves, and axion strings from Weyl semimetals[END_REF][START_REF] You | Response properties of axion insulators and Weyl semimetals driven by screw dislocations and dynamical axion strings[END_REF]). This implies that the intermediate phase is a spin-Weyl semimetal state with an even number of spin-Weyl nodes in each half of the BZ. We will show in SN 9 that the candidate helical HOTI β-MoTe 2 exhibits a spin band structure that lies within the spin-Weyl semimetal regime for all choices of n • s. We will also show in SN 10 that the candidate helical HOTI α-BiBr interpolates between 3D QSHI and T-DAXI regimes through an intermediate spin-Weyl state as the spin resolution direction is rotated from s z = ẑ • s to s x = x • s.

To understand the intermediate spin-Weyl semimetal phase that lies between 3D QSHI and T-DAXI states, recall from SN 3 E that a 3D strong topological insulator has an odd number of spin-Weyl nodes within each half of the 3D BZ. This implies that the intermediate spin-Weyl semimetal phase between a 3D QSHI and a 3D T-DAXI can be constructed by superposing two identical 3D strong topological insulators, in fact realizing the doubled strong topological insulator (DSTI) introduced in SRef. [17], which as discussed in the main text, represents one construction of a symmetry-indicated helical HOTI. Therefore, through the analysis in this section of spin-stable topology and deformations between distinct spin-stable phases, we have found that the minimal model of a helical HOTI in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap and ν ± 1 = ν ± 2 = 0 realizes one of three spin-resolved phases with distinct spin-stable topology: a 3D QSHI with ν Second, although we have in this section considered a 3D QSHI with (C + γ2,in mod 2, ν + 3 ) = (1, 2), there can also exist 3D QSHIs with (C + γ2,in , ν + 3 ) = (0, 2). Spin-resolved Wannier band configurations consistent with (C + γ2,in mod 2, ν + 3 ) = (1, 2) and (0, 2) have the same topological contribution to the spin Hall conductivity, as their partial weak Chern numbers ν ± 3 are equal. However, although a 3D QSHI with (C + γ2,in mod 2, ν + 3 ) = (1, 2) is a symmetryindicated helical HOTI, 3D QSHIs with (C + γ2,in mod 2, ν + 3 ) = (0, 2) are symmetry-indicated trivial insulators, as shown in Supplementary Table 5. This means that in the presence of s-nonconserving SOC, the (1, 2) QSHI remains topologically nontrivial even if a spin gap closes, while the (0, 2) state can be trivialized by deformations that close and reopen the spin gap (and include sufficient trivial bands to trivialize any fragile topology that may arise in few-band models).

In conclusion, we have shown that spin-resolved band topology provides a refinement of the classification of symmetry-indicated helical HOTIs and the layer construction method. Using the (nested) P ± -Wilson loop formalism developed in SN 3 B and 4 B, we have identified distinct spin-stable helical HOTI phases that cannot be deformed into each other without closing either an energy gap or a spin gap. We have used the method of spin-resolved layer constructions introduced in this work to demonstrate that insulators with distinct spin-stable topology, even if they share the same symmetry-indicated electronic band topology without spin resolution, exhibit distinct spinelectromagnetic responses. In the next section (SN 4 E), we will apply the theoretical techniques developed in this section to numerically analyze spin-resolved topology in a model of a helical HOTI.

E. Numerical Calculations for Nested P±-Wilson Loops of an Iand T -Symmetric Helical HOTI

We now apply the formalism of nested P -and P ± -Wilson loop from SN 4 A and 4 B to analyze the 3D bulk topology of a helical HOTI with inversion (I) and spinful time-reversal (T ) symmetry. Provided that the spin gap defined in SN 2 B is open, we may compute the bulk spin-resolved topology of the helical HOTI by considering either the positive (upper) or negative (lower) P sP eigenspace. Through the analysis of spin-resolved topology we will show that our model of the helical HOTI is in the T-DAXI regime.

As in the case of magnetic axion insulators (AXIs), whose bulk axion angles θ can be computed from the spectral flow of the nested P -Wilson loop eigenphases (see SN 4 A and SRef. [15]), we will here show how the nested P ± -Wilson loop allows us to compute the spin-resolved (partial) bulk topological invariants of time-reversal and inversion symmetric helical HOTIs. As demonstrated in SN 4 D and SRef. [START_REF] Schindler | Topological zero-dimensional defect and flux states in three-dimensional insulators[END_REF], the spin-resolved (partial) bulk topological invariants in helical HOTIs manifest as response coefficients of bulk spin-electromagnetic effects. Just like with AXIs, we will see that care must be taken to add extra trivial bands to our models in order to remove fragile winding in the P -and P ± -Wilson loops [15]. Specifically, although AXIs and helical HOTIs are stable topological crystalline insulators [15-19, 33, 43-45, 78, 106], minimal models of AXIs and helical HOTIs exhibit gapless Wilson loops, whereas models with larger number of (occupied) bands generally do not [15,16]. We consider an eight-band helical HOTI with a 3D orthorhombic lattice, formed by placing two spinful s and two spinful ip orbitals at the 1a Wyckoff position [(x, y, z) = (0, 0, 0)] of the primitive unit cell. Symmetry-breaking hopping terms are included to break accidental symmetries while preserving I and T symmetries [31]. Normalizing the lattice constants to one, we have that the primitive reciprocal lattice vectors are (h) shows the sum of the kx-directed P--Wilson loop eigenphases of (g), which exhibit an overall +1 winding number. (d)-(h) collectively establish that the inversion-symmetric 2D slab of a helical HOTI is a time-reversal invariant strong topological insulator with nontrivial strong Z2 invariant ν 2d = 1 [15,92,94]. (i) shows the averaged probability distribution of the four in-gap modes with ky = 0 in (c). In particular, when the system is terminated in a ŷ-directed rod geometry preserving both I and T symmetries as in (c), the 1D metallic states at the same hinge are related to each other by T symmetry; states at opposite hinges are related by I symmetry. These then demonstrate the existence of helical hinge modes. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

G 1 = 2πx, G 2 =
(momentum space) Bloch Hamiltonian is given by [31] [

H(k)] =   m 1 + i=x,y,z v i cos (k i )   τ z µ 0 σ 0 + m 2 τ z µ x σ 0 + m 3 τ z µ z σ 0 + u x sin (k x )τ y µ y σ 0 + u z sin (k z )τ x µ 0 σ 0 + m v1 τ 0 µ z σ 0 + m v2 τ 0 µ x σ 0 + v H sin (k y )τ y µ z σ z + A spin-mixing sin (k z )τ y µ 0 σ x + f 323 τ z µ y σ z . (4.125)
The Bloch Hamiltonian in SEq. (4.125) has both I and T symmetries such that

[I][H(k)][I] -1 = (τ z µ 0 σ 0 )[H(k)](τ z µ 0 σ 0 ) = [H(-k)], (4.126) [T ][H(k)][T ] -1 = (τ z µ 0 σ y )[H(k)] * (τ z µ 0 σ y ) = [H(-k)], (4.127) 
respectively. We will be using the following set of parameters: In particular, the higher-order topology manifests in the existence of an odd number of gapless 1D hinge states in highly symmetric finite-sized model geometries (for any choice of Miller index, since the wallpaper group symmetries p11 ′ for any smooth surface termination cannot stabilize degeneracies between surface bands at generic momenta [18,43,44,107]) that preserves I and spinful T symmetries. The gapless modes in SFig. 23(c) are helical hinge states [SFig. 23(i)] that are related to each other by I at I-related hinges, and spinful T symmetry at the same hinges.

m 1 = -3.0, v x = v z = u x = u z = 1.0, v y = 2.0, m 2 = 0.3, m 3 = 0.2, m v1 = -0.4, m v2 = 0.2, v H = 1.2, f 323 = 0.25. ( 4 
Employing the formalism developed in SN 3 A and 3 B, we next compute the k x -directed P -and P ± -Wilson loop eigenphases for a highly-symmetric 2D slab of this helical HOTI infinite along x and y while finite along z at half-filling. Since the system has both I and spinful T symmetries, the set of P sP eigenvalues {(s z ) n (k)} with n = 1, . . . , N occ at momentum k will be the same as the set {-(s z ) n (k)}, as is discussed in SN 2 B. The spin gap in our model is open throughout the 3D BZ, such that we can define the [P ± (k)] matrix projectors onto the positive and negative P s z P eigenspaces. In particular, we have rank

([P + (k)]) = rank([P -(k)]) = N occ /2 for all k.
As shown in SFig. 23(d), the k x -directed P -Wilson loop eigenphases for the occupied energy bands of the 2D slab with half-filling exhibit a helical winding when k y → k y + 2π. In addition, its k x -directed P ± -Wilson loop eigenphases have winding numbers equal to ∓1 when k y → k y + 2π as shown in SFig. 23(e-h). According to the sign convention in SEq. (3.24) relating the winding number of the Wilson loop spectrum and the Chern number, we deduce that the partial Chern numbers of this 2D slab are C ± γ1 = ∓1. This confirms that the 2D slab of a helical HOTI is a 2D T -invariant topological insulator with nontrivial Z 2 invariant ν 2d = 1 [1,[START_REF] Prodan | Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells[END_REF].

Next, anticipating the possibility of fragile Wilson loop winding at TRIM planes in the 3D BZ (see SRefs. [8,15]) with I and spinful T symmetries, we couple our helical HOTI model to eight additional trivial bands which also respect I and spinful T symmetries. We place two spinful s-like orbitals at a generic position r 3 = (r 3,x , r 3,y , r 3,z ) = (0.35, 0.15, 0.31) in the unit cell (in reduced coordinates) and another two spinful s-like orbitals at -r 3 . We will use

d † R,µ,σ [f † R,µ,σ
] to denote the second-quantized creation operators for the µ th (µ = 1, 2) spin σ (σ =↑, ↓) s-like orbital at r 3 [-r 3 ] in unit cell R. There are in total eight additional tight-binding basis orbitals. In order to induce spinful p-like orbitals at the 1a Wyckoff position, we couple these eight additional degrees of freedom through the following Hamiltonian: In order to explicitly see the fragile Wilson loop winding, we first compute the k z -directed P -and P ± -Wilson loop eigenphases as a function of k y for different constant-k x planes for the four valence bands from the original helical HOTI model denoted by P 4 in SFig. 24(a). For our model with a 3D orthorhombic lattice, taking the P -and P ± -Wilson loops along the k z direction ensures that our (spin-resolved) Wannier bands correspond to states localized in the ẑ direction, allowing us to make contact with the layer constructions of SN 4 D. Again, we construct the [P ± (k)] matrix projectors such that they project to the positive and negative P s z P eigenspace, respectively. At constant-k x planes, the P -Wannier bands [SFig. 24(b,e,h)] can be spin-resolved into P + -Wannier bands [SFig. 24(c,f,i)] and P --Wannier bands [SFig. 24(d,g,j)]. In particular, the number of P + -Wannier bands is the same as the P --Wannier bands, as rank([P + (k)]) = rank([P -(k)]). Notice that the P -Wannier bands are not a direct superposition of the corresponding P ± -Wannier bands, which would be the case in a system with s z conservation. At the k x = 0 plane, the P -Wannier bands [SFig. 24(b)] consist of two sets of helically winding bands. This is the pattern of Wilson loop winding that one would obtain from superposing two identical copies of a 3D spinful T -invariant strong topological insulator (TIs) with I symmetry [17,21,33]. This doubled helical winding in the P -Wilson loop spectrum in SFig. 24(b), however, is fragile; below we will remove it by considering the projector P 6 indicated in SFig. 24(a).

H sp = R,µ,σ t a d † R,µ,σ f R,µ,σ + H.c. + R,µ,σ t b d † R,µ,σ d R,µ,σ + f † R,µ,σ f R,µ,σ + R,σ t c d † R,1,σ d R,1,σ -d † R,2,σ d R,2,σ + f † R,1,σ f R,1,σ -f † R,2,σ f R,2,σ , (4 
H C = R,σ 2 µ,ν=1 t d c † R,s,µ,σ {d R,ν,σ + f R,ν,σ } + H.c. . ( 4 
Turning now to the spin-resolved topology, we can consider the P ± -Wilson loops constructed from the projector P 4 . At the k x = 0 plane, each of the P ± -Wannier bands [SFig. 24(c,d)] exhibits fragile winding (we will explicitly demonstrate the fragility shortly) that is protected by I symmetry, while at other constant-k x planes there is no such fragile winding [SFig. 24(f,g,i,j)]. Notice that at the k x = 0 and π planes, each of the positive and negative P s z P eigenspace has I symmetry while there is no spinful T symmetry-the spinful T operation maps between the positive and negative P s z P eigenspace. The P ± -Wannier band crossing in SFig. 24(c,d) is fragile, in the sense that they can be removed by adding additional trivial degrees of freedom to the occupied subspace. This implies that in 2D, there may also exist phases of matter with fragile spin-resolved topology. We leave the further exploration of this intriguing possibility for future work. By considering the bands in P 4 of SFig. 24(a) together with trivial bands induced from spinful p-orbitals at the 1a Wyckoff position, we may remove the fragile winding in both the P -and P ± -Wannier bands at the k x = 0 planes.

To remove the fragile winding in SFig. 24(b-d) while-crucially-not changing the bulk stable (spin-resolved) topology, we add the doubly degenerate bands right below the image of P 4 to construct the projector P 6 onto the set of bands denoted in SFig. 24(a), which contains in total six bands. We then compute the k z -directed P -and P ± -Wannier bands as a function of k y at different constant-k x planes for the six bands in the image of P 6 . As shown in SFig. 25(a-c), there is no longer any winding of the P -and P ± -Wannier bands at the k x = 0 plane. Moreover, for all constant-k x constant planes, the P -and P ± -Wannier bands can be divided into two disjoint sets of inner and outer bands [ SN 4 C 4] that are spectrally separated from each other by a Wannier gap of size ≈ 0.04π, as indicated in SFig. 25(a-i). The inner and outer set of k z -directed Wannier bands here represent hybrid Wannier states localized at the inversion-symmetric center (z = 0) and boundary (z = 1/2) of the unit cell respectively. Importantly, as discussed in SN 4 C 4, the inner and outer sets of Wannier bands both obey SEq. (4.83) due to bulk I symmetry. We refer the readers to SN 6 A and 6 E for the rigorous proof of the inversion symmetry constraint on the P -and P ± -Wannier bands. Together with the fact that the sixteen-band helical HOTI is Iand T -symmetric with gapped energy and P s z P spectrum, We can next apply the formalism of SN 4 A and 4 B to compute the nested P -and nested P ± -Wilson loops for the occupied bands in the image of the projector P 6 .

Before we move on to compute the nested P -and P ± -Wilson loop eigenphases of our helical HOTI model, we here propose that a 3D helical HOTI can be viewed as a pump of a 2D Iand T -symmetric fragile (or obstructed atomic) phase, following the results of SRef. [15]. We emphasize first that since we use a k z -directed Wilson loop to define our Wannier bands (to make contact with the layer constructions of SN 4 D), the nested Wilson loop spectra varies as a function of k x . Note first that the fragile winding of the P -Wannier bands at the k x = 0 plane can be removed by adding trivial degrees of freedom that respect I and T symmetries. In the sixteen-band helical HOTI model the trivial bands are induced from spinful p orbitals at the 1a Wyckoff position. Next, since there is a spin gap, we can decompose the occupied space into two parts-the positive and negative P s z P eigenspaces related to each other by T . The fragile winding of the P ± -Wannier bands at the k x = 0 plane can be removed by adding trivial degrees of freedom that respect I symmetry within each of the P ± -eigenspace. In our case such trivial bands within each of the P ± -eigenspaces are induced from spinless p orbitals at the 1a Wyckoff position. If we view k x as a pumping parameter, we can say that a helical HOTI demonstrates a pump from a 2D fragile topological insulator with both I (a) shows the 3D bulk band structure where we have labeled the elementary band representation (ρ, ↑↓)q of the additional trivial bands induced from spinful ρ orbitals at Wyckoff position q [START_REF] Bradlyn | Topological quantum chemistry[END_REF][START_REF] Cano | Building blocks of topological quantum chemistry: Elementary band representations[END_REF]. The middle four doubly-degenerate bands (eight bands in total) are also indicated as originating from the "original" eight band helical HOTI in SFig. 23. P4 denotes the projector onto the four valence bands of the original helical HOTI and P6 is the projector constructed from the direct sum of P4 and the projector onto the two additional trivial bands induced from spinful p orbitals at the 1a Wyckoff position [whose bands are shown in orange in (a)]. (b), (c) and (d) show the kz-directed P -, P+-and P--Wannier bands as a function of ky for P4 in the kx = 0 plane. For our helical HOTI model with a 3D orthorhombic lattice, "kz-directed" refers to our choice of G = 2πẑ in the P -and P±-Wilson loop matrices in SEqs. (3.2) and (3.17). In (b) we see that the P -Wilson loop eigenphases evaluated with the projector P4 have an even helical winding. On the other hand, in (c) and (d) we see that the P±-Wilson loop eigenphases constructed from the projector P4 have an odd helical winding. As explained in the text, such windings can be removed and are fragile, as demonstrated in SFig. 25. (e), (f) and (g) are the kz-directed P -, P+-and P--Wannier bands as a function of ky for P4 in the kx = 0.5π plane. (h), (i) and (j) are the kz-directed P -, P+-and P--Wannier bands as a function of ky for P4 in the kx = π plane. For (e)-(j), there is no spectral flow as opposed to (b)-(d). (k) is an enlarged plot of (h) showing that there are in total four Wannier bands in (h). The numbers of bands for the P -[panels (b), (e), and (h)], P+-[panels (c), (f), and (i)], and P--Wannier bands [panels (d), (g), and (j)] are 4, 2 and 2 respectively. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

and T symmetries and (filling-) anomalous spin-charge-separated corner modes [15,31,[START_REF] Schindler | Topological zero-dimensional defect and flux states in three-dimensional insulators[END_REF] at the k x = 0 plane to a 2D trivial insulator at the k x = π plane. This is the spinful time-reversal-symmetric generalization of the concept that a magnetic AXI can be viewed as a pump from a 2D fragile topological insulator to a 2D trivial insulator with I symmetry [15]. In other words, from this pumping perspective, a helical HOTI can be viewed as superposing (i.e., "stacking" in the language of SRef. [17]) two orbital (effectively spinless or spin-polarized) magnetic AXIs related to each other by spinful T symmetry. This picture is the momentum-space analogue of the position-space, spin-resolved layer construction of a helical HOTI in the T-DAXI regime introduced in SN 4 D.

We next compute the nested P -and nested P ± -Wilson loop eigenphases for our sixteen-band HOTI model [SEqs. (4.125), (4.130), and (4. [START_REF] Fukui | Entanglement Chern Number for an Extensive Partition of a Topological Ground State[END_REF]]. After presenting the numerical results, we will then discuss how the coexistence of both I and spinful T symmetries can constrain the various nested (partial) Berry phases. For the P -Wannier bands in SFig. 25(a,d,g), the disjoint inner and outer set of bands contain two and four bands, respectively. For the P ± -Wannier bands in SFig. 25(b,c,e,f,h,i), the disjoint inner and outer set of bands contain one and two bands, respectively. We then construct the projectors onto the disjoint inner and outer set of P -[P ± -] Wannier bands, The occupied energy band projector considered here is P6 in SFig. 24(a), which projects onto the valence bands of the original eight-band model of a helical HOTI together with two additional trivial bands induced from spinful p orbitals at the 1a Wyckoff position. (a), (b) and (c) are the kz-directed P -, P+-and P--Wannier bands as functions of ky for P6 in the kx = 0 plane. (d), (e) and (f) are the kz-directed P -, P+-and P--Wannier bands as functions of ky for P6 in the kx = 0.5π plane. (g), (h) and (i) are the kz-directed P -, P+-and P--Wannier bands as functions of ky for P6 in the kx = π plane. We can see that the spectral flow in SFig. 24(b-d) has been trivialized in panels (a)-(c). In particular, for each panel (a)-(i) of this figure, the P -and P±-Wannier bands can be separated into inner and outer sets separated by a Wannier band gap size of at least ≈ 0.04π. For each panel, we have also labeled the projectors onto the inner and outer set of Wannier bands by P in/out and P ± in/out explicitly, following the notation of SRef. [15]. We can view the inner and outer sets of Wannier bands here as representing hybrid Wannier states localized around the inversion-symmetric center (z = 0) and boundary (z = 1/2) of the unit cell [ SN 4 C 4]. The numbers of bands for the P -[panels (a), (d), and (g)], P+-[panels (b), (e), and (h)], and P--Wannier bands [panels (c), (f), and (i)] in here are 6, 3 and 3, respectively. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.
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which we label as P in [ P ± in ] and P out [ P ± out ], respectively, as shown in SFig. 25(a-i). As the decomposition of the occupied band and positive/negative spin band projectors into P in/out and P ± in/out are well-defined and smooth over the full Brillouin zone, we can compute the corresponding nested P -and P ± -Wilson loop eigenphases. Following the formalism introduced in this work in SN 4 A and 4 B, we compute the nested P -and P ± -Wilson loops by choosing the primitive reciprocal lattice vectors G = 2πẑ and G ′ = 2πŷ [SEqs. (4.24) and (4.47)] as the first and second closed-loop holonomy, and the resulting eigenphases, which we also term nested Berry phases generally in this work, are plotted as functions of k x . In SFig. 26(a,d), the nested P -Wilson loop eigenphases for P in and P out both have an odd helical winding. And as shown in SFig. 26(g), accidental crossing points in the nested P -Wilson loop eigenphases at generic momentum k x ̸ = 0 and k x ̸ = π are not protected by symmetries or local topological invariants (like those protecting Weyl points [START_REF] Armitage | Weyl and Dirac semimetals in three-dimensional solids[END_REF]), and are hence generically gapped. SFig. 26(a,d,g) therefore indicate that the 2D hybrid Wannier states localized at the I-symmetric center (z = 0) and boundary (z = 1/2) planes of the unit cell both carry the same stable topology, and are specifically both topologically equivalent to T -invariant 2D strong TIs. This can be compared with magnetic AXIs, whose spectral flow in the nested P -Wilson loop eigenphases has a nonzero odd chiral winding that is protected by bulk crystal symmetries, such as I [15]. By analogy, we hence establish that odd, helical winding in the nested P -Wilson loop spectrum is one bulk signature of a helical HOTI. As established in Supplementary Table 3, this is consistent with the recognition that a helical HOTI can be layer-constructed as an I-symmetric stack of T -invariant 2D strong TIs, with two parallel TI layers per unit cell separated by a half-lattice translation and pinned to I-invariant real-space planes [33,43,44].

Due to the presence of a spin gap and a P ± -Wannier gap (see SFig. 25), we can further examine the spin-resolved topology of the sixteen-band helical HOTI model [SEqs. (4.125), (4.130), and (4.131)] by computing the nested P ± -Wilson loop eigenphases. Let us denote the nested partial Chern numbers computed from P ± in and P ± out as C ± γ2,in and C ± γ2,out , respectively. We will here employ the sign convention used in SEq. (3.24) to relate the winding number of the (nested) Wilson loop spectrum to the Chern number (which relies on fixing a right-handed coordinate system) to determine the signs of C ± γ2,in and C ± γ2,out consistently. In this convention, C ± γ2,in and C ± γ2,out are also equal to the partial Chern numbers of the spin-resolved hybrid Wannier states localized at the center and the boundary of the unit cell. As discussed in SN 4 C 4, C ± γ2,in and C ± γ2,out are only Z 2 -stable after accounting for Wannier gap closures without accompanying closures of the spin gap or the energy gap. From SFig. 26(b,c,e,f,h,i), we observe that for the sixteen-band helical HOTI model, the nested partial Chern numbers are

C ± γ2,in = ±1, (4.133) 
C ± γ2,out = ∓1. (4.134) 
We emphasize that C ± γ2,in and C ± γ2,out in SEq. 

(C + γ2,in mod 2, ν + z ) = (1 mod 2, 0) = (1, 0) (4.135) 
using the classification previously introduced in SN 4 D, in which ν + z is the partial weak Chern number in the xy plane, and where we have specialized to cases in which the other, unspecified Z-valued partial weak Chern numbers vanish ν ± x = ν ± y = 0 (see also Supplementary Table 6). Next, we recall that as established in SRef. [15], the nontrivial axion angle θ = π of a magnetic AXI can be inferred from the presence of an odd winding number in the nested P -Wilson loop eigenphases, provided that the weak Chern numbers ν i all vanish (and that the bulk contains magnetic crystal symmetries that quantize θ, namely those that change the sign of E • B). From this perspective, SFig. 26(b,c,e,f,h,i), together with SEqs. (4.133) and (4.134), therefore demonstrate that the positive and negative P s z P eigenspaces can each be viewed as orbital (effectively spinless or spin-polarized) AXIs. Hence our helical HOTI model lies in the T-DAXI regime. From the odd winding numbers C ± γ2,in/out [SEqs. (4.133) and (4.134)], we specifically deduce that the partial axion angles [SEq. (4.123)] for the sixteen-band helical HOTI model are

θ ± = π. (4.136) 
We further note that the winding numbers C ± γ2,in and C ± γ2,out are opposite to each other since ν ± z = 0 [SEq. (4.65)] in our helical HOTI model, which most clearly differentiates it from a spin-stable 3D QSHI as discussed in SN 4 D (see specifically Supplementary Table 6). For completeness, it is also useful to note that T symmetry enforces that the winding numbers in and P - in in SFig. 25, respectively. We observe an odd helical winding in the spectrum of the nested P -Wilson loop shown in (a). In the nested spin-resolved Wilson loop spectra shown in (b) and (c), we see a corresponding odd chiral winding with winding number -1 in the nested P+-Wilson loop spectrum and winding number +1 in the nested P--Wilson loop spectrum. (d), (e) and (f) are the nested P -, P+-and P--Wilson loop eigenphases of the outer Wannier bands denoted by Pout, P + out and P - out in SFig. 25, respectively. (g) is an enlarged view of (d) which demonstrates that the band crossings at generic momentum kx ̸ = 0 and kx ̸ = π are not protected and are gapped. There is also a helical winding in (d), similar to that shown in panel (a). Correspondingly, the nested spin-resolved Wilson loop spectra for the outer spin-resolved Wannier bands shown in (e) and (f) have odd chiral winding. (h) and (i) are the total nested partial Berry phases (each of (e) and (f) contains two bands) of the outer P±-Wannier bands denoted by P + out and P - out in SFig. 25, respectively. From (h) and (i), we see that there is spectral flow with winding numbers +1 and -1 in (e) and (f), respectively. Together with (b) and (c) which carry opposite winding numbers of (h) and (i) respectively, this indicates that the helical HOTI in SFig. 24 lies in the T-DAXI regime and is hence characterized by the nontrivial partial axion angles θ ± = π [see SEq. (4.136) and the surrounding text]. The number of nested (spin-resolved) Wannier bands in (a), (b), and (c) is 2, 1, and 1, respectively, and the number of nested (spin-resolved) Wannier bands in (d), (e), and (f) is 4, 2, and 2, respectively. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

C + γ2,in [C + γ2,out ] and C - γ2,in [C - γ2,
2. Independent of its spin-resolution, a helical HOTI can be viewed as a momentum-space pump from an Iand spinful T -symmetric 2D fragile topological insulator (or obstructed atomic insulator) to a 2D trivial insulator, building on the description of I-symmetric magnetic AXIs established in SRef. [15].

A helical HOTI in the T-DAXI regime with vanishing partial weak Chern numbers ν

± x = ν ± y = 0 has a Z 2 × Z invariant (C + γ2,in mod 2, ν + i ) = (1 mod 2, 0) = (1, 0) ,

which is indicated by odd winding numbers in the nested

Berry phases in the P ± -eigenspace, as demonstrated in SFig.

A helical HOTI in the T-DAXI regime is characterized by the quantized nontrivial partial axion angles θ ± = π, which give rise to a bulk topological contribution to the partial magnetoelectric polarizability, and represent a 3D generalization of the partial polarization introduced by Fu and Kane in SRef. [2].

POSITION-SPACE SIGNATURES OF SPIN-RESOLVED TOPOLOGY

In this section, we extend the formalism and numerical methods for computing layer-resolved Chern numbers [36,77,105] in position space to compute layer-resolved partial Chern numbers. This will allow us to quantitatively search for anomalies on the gapped 2D surfaces of 3D helical HOTIs in the T-DAXI regime, and to explore the implications of the partial axion angle introduced in SN 4 D.

To begin, in this section, we will consider d-dimensional translation-invariant systems with primitive Bravais lattice vectors {a 1 . . . a d }, where d = 2 or 3. Each lattice point R (i.e. the center of each unit cell indexed by R), can be written as

R = d i=1 n i a i where n i ∈ Z (i = 1 . . . d). Given {a 1 . . . a d }, we can construct a set of dual primitive reciprocal lattice vector {G 1 . . . G d } satisfying a i • G j = 2πδ ij (i = 1 . . . d).
We denote the number of (spinful) tight-binding basis orbitals within a primitive unit cell as N sta . From a 3D translationally-invariant system we can form a 2D slab infinite along a j and a l while finite along a i with N i unit cells, where {a j , a l , a i } is the linearly independent set of 3D real-space primitive lattice vectors. Throughout this section, we define a layer to consist of a 2D plane of the finite slab that is one unit cell thick in the finite direction of the slab [77,105]. For example, if we use N i = 15 unit cells of the original 3D translation-invariant system to form a slab that is finite along a i , we say this slab has 15 layers along a i . This is distinct from the usage of "layer" in the context of layer constructions (e.g. in SRefs. [33,36,[42][43][44][START_REF] Huang | Building crystalline topological phases from lower-dimensional states[END_REF] and SN 4 D), but is consistent with the terminology of SRefs. [77,105]. For such a slab, we will see below that the layer-resolved partial Chern numbers tell us how the partial Chern numbers [SEq. (3.24)] of the 2D slab is distributed over the N i unit cells, or equivalently over the N i layers. We will argue that the layer-resolved partial Chern numbers are related to the response of a 2D slab to the insertion of a magnetic flux. For example, in SN 4 D we predicted that a Φ = π magnetic flux tube in a finite slab of a T-DAXI binds one spinon between the top and bottom surface [36,92,[START_REF] Schindler | Topological zero-dimensional defect and flux states in three-dimensional insulators[END_REF][START_REF] Armitage | On the matter of topological insulators as magnetoelectrics[END_REF]. We will show that this is a consequence of the fact that in a T-DAXI the gapped surfaces have half-integer partial Chern numbers, while in the bulk the layer-resolved partial Chern numbers vanish when averaged over the degrees of freedom within each unit cell (layer). In this section we will first develop a formulation for the layer-resolved position-space marker [1,36,77,98,[START_REF] Caio | Topological marker currents in Chern insulators[END_REF] for the partial Chern number. We will then compute the layer-resolved partial Chern numbers for the model of a T-DAXI introduced in SN 4 E and numerically identify the partial parity anomaly (defined properly in SN 5 E) realized on its gapped surfaces.

In SN 5 A and 5 B, we will review the Chern marker [98,99,[START_REF] Caio | Topological marker currents in Chern insulators[END_REF] and partial Chern markers [1], which characterize for a 2D system how the Chern number and partial Chern numbers vary as functions of real-space position, respectively. As an extension of SN 5 A, in SN 5 C we will review the formalism for the layer-resolved Chern number, which describes how the Chern number of a 2D slab formed from a 3D translation-invariant system is distributed along the finite direction in position space. Based on SN 5 C, we then develop the formalism of layer-resolved partial Chern numbers in SN 5 D, which describes how the partial Chern numbers of a 2D slab formed from a 3D spinful translation-invariant system are distributed along the finite direction in position space. Finally, in SN 5 E we compute the layer-resolved partial Chern numbers of a T-DAXI, and show that a T-DAXI has vanishing partial Chern numbers in its bulk (when averaged over the degrees of freedom within each layer, or equivalently unit cell), and half-integer partial Chern numbers at its gapped surfaces-the hallmark of a partial parity anomaly arising from the bulk-quantized partial axion angle. We will also distinguish between the layer-resolved partial Chern numbers of a 3D quantum spin Hall insulator (QSHI) and a T-DAXI, which represent two physically distinct spin-stable topological regimes of spin-resolved helical HOTIs, as discussed in SN 4 D.

A. Chern Marker

In this section, we will review the construction of the position-space Chern marker C(R), first introduced by Resta in SRef. [98]. This will allow us to develop intuition for topological markers in position space. We begin by considering a 2D tight-binding lattice Hamiltonian H with a finite size, and define the projector onto a set of occupied energy eigenstates as

P ≡ n∈occ |n⟩ ⟨n| , (5.1) 
where |n⟩ is the eigenstate of H satisfying H |n⟩ = E n |n⟩. The matrix representatives of the position operators x and y in the (spinful) tight-binding basis states have matrix elements

[ x] Rα,R ′ β = ⟨R, α| x|R ′ , β⟩ = ⟨0|c R,α xc † R ′ ,β |0⟩ = δ RR ′ δ αβ (R + r α ) x , (5.2) 
[ y] Rα,R ′ β = ⟨R, α| y|R ′ , β⟩ = ⟨0|c R,α yc † R ′ ,β |0⟩ = δ RR ′ δ αβ (R + r α ) y , (5.3) 
where c † R,α and c R,α represent creation and annihilation operators for the (spinful) orbital labeled by α in the unit cell R, and r α is the position of the (spinful) orbital labeled by α within the unit cell R. Using SEq. (5.1), we can then compute the position operators projected onto the occupied states as

x P = P xP, y P = P yP.

(

From SEq. (5.4) we can define the position-space-resolved Chern number termed the (local) Chern marker [98,99,[START_REF] Caio | Topological marker currents in Chern insulators[END_REF] in the unit cell R as

C(R) = 2πi A cell Nsta α=1 ⟨R, α| [ x P , y P ] |R, α⟩ , (5.5) 
where A cell is the unit cell area of the 2D lattice, and N sta is the number of tight-binding basis state within a unit cell of the 2D lattice. In SEq. (5.5), we have performed a trace of [ x P , y P ] over the tight-binding basis states within the unit cell R, and |R, α⟩ is the tight-binding basis state labeled by α in the unit cell R. C(R) represents the position-space resolution of the Chern number [98,[START_REF] Caio | Topological marker currents in Chern insulators[END_REF] and physically corresponds to the local contribution to the Hall conductivity [105]. For a 2D gapped homogeneous system without disorder, the values of C(R) for R within the bulk region of a finite-sized sample are equal to the Chern number of the system [98,[START_REF] Caio | Topological marker currents in Chern insulators[END_REF]. In particular, in the thermodynamic limit, far from the (gapless) edges of a bulk-gapped system, C(R) is a constant independent of R and equal to the Chern number. The local Chern marker can be used to study single-particle topology in the absence of translation invariance, such as for disordered systems, quasiperiodic systems and at interfaces between bulk topological phases [START_REF] Tran | Topological Hofstadter insulators in a two-dimensional quasicrystal[END_REF][START_REF] Tran | Probing topology by "heating": Quantized circular dichroism in ultracold atoms[END_REF][START_REF] Loring | Bulk spectrum and K-theory for infinite-area topological quasicrystals[END_REF][START_REF] Marra | Topologically quantized current in quasiperiodic Thouless pumps[END_REF][START_REF] Privitera | Quantum annealing and nonequilibrium dynamics of Floquet Chern insulators[END_REF]. In particular, formulated as a function of position, the Chern marker C(R) allows one to compute how the Chern number varies as a function of position, either near the interface between two insulators with different Chern numbers [98], or in disordered systems [START_REF] Marsal | Topological Weaire-Thorpe models of amorphous matter[END_REF]. By studying the scaling of the Chern marker as a function of the parameters inducing a band inversion, critical properties of (weakly-disordered) Chern insulators near topological quantum phase transition can be quantitatively computed [START_REF] Caio | Topological marker currents in Chern insulators[END_REF][START_REF] Ulčakar | Behavior in Disordered Chern Insulators[END_REF]. Furthermore, it is also possible to study the dynamics of the Chern marker C(R, t) as a function of both position R and time t, from which a Chern marker current can be defined [START_REF] Caio | Topological marker currents in Chern insulators[END_REF].

B. The Partial Chern Marker and the Spin Chern Marker

In this work, we are primarily focusing on T -invariant insulators, in which the Chern number, and hence local Chern marker, vanish. However, this does not imply that T -invariant insulators are featureless. Starting from the Chern marker formalism in SN 5 A, we will here formulate a partial Chern marker, which resolves partial Chern number [SEq. (3.24)] in position space. The partial Chern marker formalism that we will describe in this section builds off related constructions in SRefs. [1,100,101,104,[START_REF] Huang | Quantum Spin Hall Effect and Spin Bott Index in a Quasicrystal Lattice[END_REF][START_REF] Huang | Theory of spin Bott index for quantum spin Hall states in nonperiodic systems[END_REF]. Similar to SN 5 A, we begin by considering a 2D spinful tight-binding lattice Hamiltonian H with a finite size. We take the finite-sized system to have N unit cells with N sta = 2N orb spinful orbitals in each unit cell, where the factor of 2 accounts for the spin-1/2 degree of freedom (where we recall from the discussion following SEq. (2.16) that the Hilbert space of a solid derives from pairs of orbitals at the same position with opposite spin, for systems both with and without T -symmetry.) The spin operator along the direction n in terms of the tight-binding basis states is defined in SEq. (2.13) as s ≡ n • σ ⊗ I N orb ⊗ I N , where σ acts on the spin-1/2 degree of freedom, while I N orb and I N are identity operators acting on the orbital and unit cell degrees of freedom, respectively. We can form the reduced spin operator in the occupied subspace as [see also SEq.

(2.35)] [s reduced ] m,n = ⟨m| s |n⟩ , (5.6) 
where |n⟩ is the n th energy eigenstate of the Hamiltonian H, such that H|n⟩ = E n |n⟩, and m, n = 1 . . . N occ with N occ representing the number of occupied energy eigenstates. Therefore, [s reduced ] is an N occ × N occ matrix. The matrix elements of [s reduced ] are the matrix elements of the projected spin operator P sP between occupied energy eigenstates, where P is given in SEq. (5.1). For a finite system with spinful T symmetry, recall from SN 2 B that the

eigenvalues λ n of [s reduced ] satisfy {λ n |n = 1 . . . N occ } = {-λ n |n = 1 . . . N occ }.
We can then define the spin gap ∆ s for a spinful T -invariant system with a finite size as twice the smallest magnitude among the [s reduced ] eigenvalues such that ∆ s = 2|λ min |, where λ min is the eigenvalue of [s reduced ] with smallest absolute value. We remind the reader that here we are considering a finite-sized system, such that both the reduced spin matrix [s reduced ] and the P sP eigenvalues λ n are not functions of crystal momentum. In particular, when ∆ s > 0, we say that the spin gap of this spinful T -invariant finite-sized system is open.

When the spin gap is open, we can divide the occupied subspace into the positive and negative P sP eigenspace as follows. We first write the eigenvalue equation of [s reduced ] as

[s reduced ] ũ± n = λ ± n ũ± n , (5.7) 
where λ + n > 0 and λ - n < 0, and |λ + n | = |λ - n | due to T symmetry. We may re-express the N occ -component eigenvectors |ũ ± n ⟩ of [s reduced ] in the spinful tight-binding orbital basis states using

u ± n = Nocc m=1 [ũ ± n ] m |m⟩ , (5.8) 
where |m⟩ are each (2×N orb ×N )-component occupied energy eigenvectors of H. We can then construct the projectors onto the positive and negative P sP eigenspaces as

P ± = Nocc/2 n=1 u ± n u ± n .
(5.9)

The position operators x and y [SEqs. (5.2) and (5.

3)] projected onto the subspace of Image(P ± ) are then given by

x P± = P ± xP ± , y P± = P ± yP ± . (5.10) 
From this we can compute the position-space-resolved partial Chern marker [1] at the unit cell R using

C ± (R) = 2πi A cell Nsta α=1 ⟨R, α| [ x P± , y P± ] |R, α⟩ , (5.11) 
in analogy with SEq. (5.5). Note that the partial Chern marker in SEq. (5.11) is defined in terms of position operators projected onto the subspace of Image(P ± ). We can then define the spin Chern maker in a similar manner as SEq. (3.26):

C s (R) = C + (R) -C -(R).
(5.12)

C s (R) is then the position-space resolution of the spin Chern number C s γ1 [1,7,[START_REF] Prodan | Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells[END_REF] in SEq. (3.26). In particular, for a clean system with an energy gap and a spin gap in the bulk, in the thermodynamic limit the spin Chern marker C s (R) is independent of R and converges to the spin Chern number [SEq. (3.26)] when evaluated away from the boundaries. For a system with spinful T symmetry and a gapped spin spectrum, we have that 1 2 C s γ1 mod 4 is equal to the strong Z 2 Kane-Mele invariant for 2D TIs [1,6,[START_REF] Prodan | Three-dimensional phase diagram of disordered HgTe/CdTe quantum spin-Hall wells[END_REF][START_REF] Kane | Z2 Topological Order and the Quantum Spin Hall Effect[END_REF]. Crucially, we note for our later discussion that in a 2D non-interacting system in the thermodynamic limit with both an energy and a spin gap, the partial Chern markers C ± (R) are integers in the bulk, and hence with spinful T symmetry the spin Chern marker C s (R) [SEq. (5.12)] is restricted to be an even integer in the bulk.

C. Layer-Resolved Chern Number

The formalism of resolving the Chern number in position space [SN 5 A] can be extended to semi-infinite systems to study how the Chern number of a 2D slab is distributed over the finite direction [36]. To do so, we consider a 2D slab finite along a i with N i unit cells and infinite along a j and a l where {a j , a l , a i } are the primitive lattice vectors of a 3D Bravais lattice. Expressing the Chern number in terms of projection operators [78], we can write [77] 

C jl = - i 2π π -π dk j π -π dk l Tr [P (k j , k l )] ∂[P (k j , k l )] ∂k j , ∂[P (k j , k l )] ∂k l (5.13) = - i 2π π -π dk j π -π dk l Ni ni=1 Nsta α=1 ⟨n i , α, k j , k l | [P (k j , k l )] ∂[P (k j , k l )] ∂k j , ∂[P (k j , k l )] ∂k l |n i , α, k j , k l ⟩ , (5.14) 
where the integral is over the 2D BZ of the slab. In SEqs. (5.13) and (5.14), [P (k j , k l )] is the projector

[P (k j , k l )] = n∈occ u n,kj ,k l u n,kj ,k l (5.15)
onto the subspace spanned by the N occ occupied energy eigenvectors |u n,kj ,k l ⟩ of the (N i N sta × N i N sta )-dimensional Bloch Hamiltonian matrix [H(k j , k l )] for the 2D slab. In SEq. (5.14), |n i , α, k j , k l ⟩ are the Fourier-transformed Bloch basis functions at the crystal momentum (k j , k l ) for the Hilbert space of the system. The index α runs over the (spinful) tight-binding orbitals within each unit cell, and n i indexes the unit cells along the finite a i direction. By interchanging the order of the summation over n i and the integration over the Brillouin Zone in SEq. (5.14), we can define the layer-resolved Chern number

C jl (n i ) = - i 2π π -π dk j π -π dk l Nsta α=1 ⟨n i , α, k j , k l | [P (k j , k l )] ∂[P (k j , k l )] ∂k j , ∂[P (k j , k l )] ∂k l |n i , α, k j , k l ⟩ , (5.16) 
such that

C jl = Ni ni=1
C jl (n i ).

(5.17)

C jl (n i ) quantifies how the Chern number of the 2D slab is distributed over the N i unit cells along the finite direction parallel to a i . Note that according to our sign convention in SEq. (3.24), to actually identify C jl (n i ) [SEq. (5.16)] as the Chern number of the 2D slab distributed over the finite direction a i , (jli) should be chosen to align with the righthanded coordinate system, namely a cyclic permutation of [START_REF] Bradlyn | Topological quantum chemistry[END_REF]. Physically, C jl (n i ) tells us how each of the N i unit cells along the finite direction parallel to a i contribute to the Hall conductivity of the slab. It encodes the topology of layers in the bulk of the slab as well as at gapped surfaces. We remind the readers that throughout this section we define a layer to consist of a 2D plane of the finite slab that is one unit cell thick in the a i direction [77,105]. As such, for the slab we are considering here, we say that it has N i layers along a i . Since the matrix projector [P (k j , k l )] in SEq. (5.15) is invariant under any U (N occ ) gauge transformation of the occupied energy eigenvectors, together with SEq. (5.16) we deduce that the layer-resolved Chern number C jl (n i ) is also invariant under any U (N occ ) gauge transformation. In SRefs. [36,77], C jl (n i ) was used to show that the gapped surfaces of magnetic axion insulators have half-integer Hall conductivity.

D. Layer-Resolved Partial Chern Numbers and Layer-Resolved Spin Chern Number

Building on the formalism for the partial and spin Chern markers in 2D developed in SN 5 B, and the formalism for the layer-resolved local Chern marker in 3D insulators developed in SN 5 C, we will next here formally introduce layer-resolved partial and spin Chern numbers.

We begin by again considering a 2D slab finite along a i with N i unit cells and infinite along a j and a l where {a j , a l , a i } are the primitive lattice vectors for a 3D Bravais lattice. We take there to be N sta = 2N orb tight-binding basis states per unit cell, where the factor of 2 accounts for the spin-1/2 degree of freedom. As in SN 5 B, the spin operator along n is defined as s ≡ n • σ ⊗ I N orb ⊗ I Ni where σ acts on the spin-1/2 degree of freedom, and I N orb and I Ni are identity matrices acting on the orbital and layer (unit cell) degrees of freedom, respectively. We suppose that the slab is insulating both in the bulk and on the surfaces with N occ occupied energy bands. To spin-resolve the occupied energy eigenspace, we first construct the N occ × N occ reduced spin matrix [SEq. (3.5)] as a function of momentum in the 2D Brillouin zone,

[s reduced (k j , k l )] m,n = u m,kj ,k l s u n,kj ,k l .
(5.18)

Here m, n ∈ occ index the occupied single-particle eigenstates. From SN 2 B, if N occ is an even number (as is required in insulators with spinful T symmetry), the spin gap is defined to be open when the N occ /2 spin bands with the largest [s reduced (k j , k l )] eigenvalues (the upper spin bands) are disjoint from the N occ /2 spin bands with the smallest [s reduced (k j , k l )] eigenvalues (the lower spin bands). We refer the readers to SFig. 1(b) for a schematic demonstration of the spin band structure of a spinful T -symmetric system with a spin gap. Let us assume that the N occ is even and that the spin gap is open. The eigenvalue equation of [s reduced (k j , k l )] can then be written as

[s reduced (k j , k l )] u ± n,kj ,k l = λ ± n,kj ,k l u ± n,kj ,k l , (5.19) 
where n = 1 . . . N occ /2 index the upper and lower spin bands, and λ + n,kj ,k l > λ - m,kj ,k l for all n, m, k j , and k l . We may re-express the N occ -component eigenvectors u ± n,kj ,k l of [s reduced (k j , k l )] in terms of the spinful tight-binding basis functions using

u ± n,kj ,k l = Nocc m=1 [ũ ± n,kj ,k l ] m u m,kj ,k l , (5.20) 
as in SEq. (3.7), where u m,kj ,k l are the (2 × N orb × N i )-component occupied energy eigenvectors of the Bloch Hamiltonian matrix of the slab. We can then construct the (2N orb N i × 2N orb N i )-dimensional matrix projector [P ± (k j , k l )] onto the upper (+) and lower (-) spin bands as

[P ± (k j , k l )] = Nocc/2 n=1 u ± n,kj ,k l u ± n,kj ,k l . (5.21) 
Extending SEq. (5.13) to compute the partial Chern numbers [SEq. (3.24)] within the upper and lower spin bands, the partial Chern numbers of the 2D slab are

C ± jl = - i 2π π -π dk j π -π dk l Tr [P ± (k j , k l )] ∂[P ± (k j , k l )] ∂k j , ∂[P ± (k j , k l )] ∂k l (5.22) = - i 2π π -π dk j π -π dk l Ni ni=1 2N orb α=1 ⟨n i , α, k j , k l | [P ± (k j , k l )] ∂[P ± (k j , k l )] ∂k j , ∂[P ± (k j , k l )] ∂k l |n i , α, k j , k l ⟩ . (5.23)
In analogy to our logic in SEqs. (5.14) and (5.16), we can interchange the summation over the layer index n i with the Brillouin zone integration to define the layer-resolved partial Chern numbers

C ± jl (n i ) = - i 2π π -π dk j π -π dk l 2N orb α=1 ⟨n i , α, k j , k l | [P ± (k j , k l )] ∂[P ± (k j , k l )] ∂k j , ∂[P ± (k j , k l )] ∂k l |n i , α, k j , k l ⟩ , (5.24) 
which satisfy

C ± jl = Ni ni=1 C ± jl (n i ). (5.25) 
C ± jl (n i ) quantifies how the partial Chern numbers [SEq. (3.24)] of the 2D slab are distributed over the N i unit cells along the finite direction parallel to a i . Similar to SEq. (3.26), we can define the layer-resolved spin Chern number as

C s jl (n i ) = C + jl (n i ) -C - jl (n i ). (5.26) 
We emphasize that it is important to re-express the

N occ -component eigenvectors u ± n,kj ,k l of [s reduced (k j , k l )]
in terms of the spinful tight-binding basis functions using SEq. (5.20) in order to perform the layer resolution in SEq. (5.24). Since the matrix projector [P ± (k j , k l )] [SEq. (5.21)] is invariant under any U (N occ /2) gauge transformation in the space of (upper or lower) spin bands, then together with SEq. (5.24) we deduce that the layer-resolved partial Chern number C ± jl (n i ) is also invariant under any U (N occ /2) gauge transformation within the upper or lower spin bands.

Physically, C s jl (n i ) tells us how the topological contribution to the spin Hall conductivity in SEq. (3.36) of a 2D slab is distributed over the N i unit cells along the finite direction parallel to a i . The layer-resolved partial and spin Chern numbers encode the topology of the layers in the bulk of the slab as well as at gapped surfaces, in analogy to the layer-resolved Chern number in magnetic insulators (see SN 5 C and SRefs. [36,77]). In the next section, SN 5 E, we will numerically apply the layer-resolved partial and spin Chern numbers developed in this section to a model of a helical HOTI in the T-DAXI regime. We will find that the layer-resolved partial Chern numbers surprisingly do not vanish on the gapped surfaces of T-DAXIs, but instead saturate at an anomalous half-integer value, indicating that the gapped surfaces of T-DAXIs exhibit a novel partial parity anomaly.

E. Layer-Resolved Spin Chern Number of a Helical HOTI

In this section, we will apply the formalism developed in SN 5 D to compute the layer-resolved partial Chern numbers C ± jl (n i ) [defined in SEq. (5.24)] for the model of a symmetry-indicated helical higher-order topological insulator (HOTI) with inversion (I) and time-reversal (T ) symmetries introduced in SRef. [15] and analyzed in SN 4 E. In SN 4 D and Supplementary Table 6 we demonstrated that this model has a spin gap and realizes the T -doubled axion insulator (T-DAXI) spin-stable topological phase. Now we will explicitly compute the layer-resolved partial Chern numbers and will demonstrate that a semi-infinite 2D slab of a T-DAXI with gapped surfaces satisfies the following properties:

1. It is a 2D time-reversal-invariant strong topological insulator (TI) for highly symmetric surface terminations (i.e. in the case in which the entire slab has local T and global I symmetry).

2. The partial Chern numbers do not scale with the thickness of the slab, which physically distinguishes the T-DAXI from the 3D QSHI state discussed in SN 4 D. In particular, see SFig. 22 for their individual spin-resolved layer constructions. This implies that the topological contribution to the spin Hall conductivity of a T-DAXI vanishes in the bulk of the slab averaged over each unit cell (layer) along the finite direction.

3. The T-DAXI slab has half-quantized partial Chern numbers at the gapped surfaces, which cannot be realized for an isolated 2D system with energy and spin gaps. Hence the gapped surfaces of a T-DAXI exhibit a novel partial parity anomaly, which is the spinful time-reversal-symmetric generalization of the parity anomaly encountered on the gapped surfaces of magnetic axion insulators [79,106,[START_REF] Armitage | On the matter of topological insulators as magnetoelectrics[END_REF].

We begin by constructing a semi-infinite slab of a T-DAXI. Recall that our model has an orthorhombic lattice. Normalizing the lattice constants to 1, we take the three position-space primitive lattice vectors to be a 1 = x, a 2 = y, and a 3 = z. The dual primitive reciprocal lattice vectors are G 1 = 2π x, G 2 = 2π y, and G 3 = 2π z, satisfying a i • G j = 2πδ ij (i, j = 1 . . . 3). Our model has eight bands, for which the matrix Bloch Hamiltonian is given explicitly in SEq. (4.125). The tight-binding parameters, specified in SEq. (4.128), together with spin-non-conserving SOC term [A spin-mixing in SEq. (4.125)] are chosen such that the energy spectrum of the surfaces with normal vectors ± x, ± y, and ± z are all gapped. We construct 2D inversion-and time-reversal-symmetric helical HOTI slabs that are finite along a i with 15 unit cells and infinite along a j and a l where (ijl) are cyclic permutations of [START_REF] Bradlyn | Topological quantum chemistry[END_REF]. We below compute the spin spectrum and spin-resolved topology using P s z P [SEq. (2.13)], where the occupied energy bands used to form the projector in SEq. (5.15) are the lower half of all the energy bands of the slab. In other words, we consider the slab at half-filling. We will compare the layer-resolved partial Chern numbers of our model with both spin-s z conservation (A spin-mixing = 0.0) and with large spin-s z -non-conserving SOC (A spin-mixing = 0.5).

We next compute the layer-resolved partial Chern numbers C ± jl (n i ) for each (ijl) a cyclic permutation of (123) using SEq. (5.24). In order to numerically evaluate the integrand in SEq. (5.24), we discretize the 2D BZ of each slab into a 200 × 200 grid. We use a symmetric finite difference approximation to numerically evaluate derivatives; specifically for a function f (x), we approximate df (x) dx ≈

f (x+ 1 2 ∆x)-f (x-1 2 ∆x) ∆x
where ∆x is the grid spacing. We will examine two quantities derived from the layer-resolved partial Chern number. First, we compute the partial Chern number C ± jl of the entire slab, which is given by summing C ± jl (n i ) over all of the layers (unit cells):

C ± jl = ni∈ all layers C ± jl (n i ). (5.27) 
Second, we define the surface partial Chern number, which is given by summing C ± jl (n i ) over only the layers near the surface:

C ± jl,surface = ni∈ layers near a surface C ± jl (n i ).
(5.28)

We will see shortly that for our T-DAXI model, C ± jl,surface is well-defined since C ± jl (n i ) → 0 for n i in the bulk of the slab. In particular, if C ± jl (n i ) ≈ 0 for N bottom < n i < N top , then the sum in SEq. (5.28) is over all n i < N bottom for the bottom surface, and over all n i > N top for the top surface.

In SFig. 27(a,c,e), we show the layer-resolved partial Chern numbers C + jl (n i ) of our three T-DAXI slabs with normal vectors a 1 , a 2 , and a 3 , respectively. As discussed in SN 3 C, using the fact that time-reversal acts locally in the position space, we have in the presence of time-reversal symmetry that

C + jl (n i ) = -C - jl (n i ), (5.29) 
in analogy to SEq. (3.31). There are three main features of C + jl (n i ) in SFig. 27(a,c,e). First, from C ± jl (n i ), we can compute the partial Chern numbers C ± jl using SEq. (5.27). As shown in Supplementary Table 7, all of the partial Chern numbers C ± jl of our helical HOTI slabs, with or without spin-s z conservation, satisfy C + jl = -C - jl and C + jl = +1 or -1. This implies that each slab is a 2D TI with a spin gap [1] [ SN 3 C]. This can be viewed as a consequence of the global inversion symmetry of our semi-infinite slabs coupled with the spin-resolved layer construction description of the T-DAXI presented in SN 4 D. This result can also be compared to the analogous case of I-symmetric finite slabs of I-protected magnetic AXI phases, which have integer Chern numbers [15,36,92,[START_REF] Armitage | On the matter of topological insulators as magnetoelectrics[END_REF]. However, the integer partial Chern number of the finite slab can be changed by adding a 2D topological insulator with a spin gap to the surface of the slab, and so a priori is not a robust invariant characterizing a T-DAXI phase, as real-material samples generically do not exhibit perfect global I symmetry.

Aspin-mixing = 0.0 Aspin-mixing = 0. yz are the partial Chern numbers of the slab finite along x, C ± zx are the partial Chern numbers of the slab finite along y, and C ± xy are the partial Chern numbers of the slab finite along z. Aspin-mixing = 0.0 and 0.5 correspond to the computations performed using the T-DAXI model with and without spin-sz conservation, respectively. In each entry we provide the numerical value as well as the closest integer. We see that in all cases |C ± jl | ≈ 1, and the deviation from unity can be attributed to numerical error coming from the finite discretization of the BZ.

To contrast the T-DAXI with the 3D QSHI regime of a helical HOTI, we can examine how the partial Chern number is distributed over the layers of the slab. In SFig. 27(a,c,e), we see that the nonzero values of C + jl (n i ) are concentrated around the top and bottom gapped surfaces of the slab. In other words, we have C + jl (n i ) = 0 for layers n i far enough from the gapped surfaces. Therefore, the partial Chern numbers C ± jl of our helical HOTI slabs, which are in the T-DAXI regime, only have contributions from the gapped surfaces, and thus |C ± jl | = 1 independent of the thickness of the slab. This should be contrasted with a slab obtained from a 3D QSHI state discussed in SN 4 D, which has a nonzero and quantized value of C + jl (n i ) for layers n i in the bulk region far from the gapped surfaces. For example, the layer-constructed 3D QSHI in Supplementary Table 6 [see also SFig. 22(a)] has |C + jl (n i )| = 2 in the bulk. This shows that the T-DAXI is physically distinguishable from a QSHI state. In particular, this implies that the topological contribution to the spin Hall conductivity of a slab of a T-DAXI is constant and independent of the thickness of the slab, unlike in a QSHI. Furthermore, the topological contribution to the spin Hall conductivity is only nonzero near the boundary of the slab; in the limit in which A spin-mixing is zero, this implies that the spin current in response to an electric field only flows near the boundary of the system. Similarly, when A spin-mixing ̸ = 0, the topological contribution to the spin current will still flow near the boundary of the system. Furthermore, we find that the gapped surface of a slab of a T-DAXI is qualitatively distinct from an isolated 2D system. Since C + jl (n i ) in SFig. 27(a,c,e) is concentrated within the vicinity of the top and bottom gapped surfaces of our slabs, then from global inversion symmetry we can obtain the surface partial Chern numbers C ± jl,surface [SEq. (5.28)] as

C ± jl,surface = 1 2 C ± jl (5.30)
for both the top and bottom gapped surfaces. Therefore, from Supplementary Table 7, we deduce that our helical HOTI slabs have 

C ± yz,surface = ± 1 2 , C ± zx,surface = ∓ 1 2 , C ± xy,surface = ∓ 1 2 . ( 5 
C + jl (n ′ i ) (5.32)
summed over layers beginning at the bottom of the slab. We see that the cumulative layer-resolved partial Chern number [SEq. (5.32)] quickly converges to ± 1 2 for n i in the bulk region of the slab. It is then constant throughout the bulk, and finally converges to ±1 when n i reaches the top layer of the slab. 7. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

While the global inversion symmetry of our slabs allowed us to quickly deduce SEqs. (5.30) and (5.31), the fact that the gapped surface of a T-DAXI slab carries a half-integer partial Chern number is independent of the global inversion symmetry of the slab. To see this, first note that we can always break global inversion symmetry by "gluing" a layer of 2D TI to just one surface of our helical HOTI slab without breaking time-reversal symmetry. Recall from SN 3 C that a 2D TI with a spin gap has the partial Chern numbers C + jl = -C - jl with C + jl an odd integer. Hence, if we add any number of 2D TIs to the top surface of our T-DAXI slab, the partial Chern numbers at the top surface will satisfy

C + jl,surface = -C - jl,surface , (5.33) 
and

C + jl,surface = 1 2 + n (5.34)
where n ∈ Z. Furthermore, the fact that the entire slab of a T-DAXI must have integer partial Chern number implies that local perturbations to the top surface of the sample cannot modify SEq. (5.34) without closing either a spin gap or an energy gap. The half-integer surface partial Chern number hence provides a robust surface signature of the spin-stable T-DAXI phase, even when spin-conservation symmetry is broken by SOC. The half-integer partial Chern number at the surface of a T-DAXI distinguishes the surface of a T-DAXI from an isolated 2D insulator with an energy and spin gap (which can only have an integer partial Chern number). In that sense, the gapped surface of a T-DAXI is an anomalous 2D system. There is a direct analogy between the anomaly at the surface of a T-DAXI and the parity anomaly. Recall that the parity anomaly in a magnetic axion insulator (AXI) is manifested through a half-quantized Chern number on gapped surfaces [15,16,36,77]. In a magnetic AXI this is a direct consequence of the bulk-quantized electromagnetic theta (axion) angle θ = π, which implies a half-integer Chern number on gapped surfaces, which represent "axion domain walls" [80] between the θ = π bulk and the θ = 0 vacuum. The quantized value of θ in the bulk compensates for the parity anomaly on the surface. The half-quantized partial Chern numbers in SEq. (5.34) on the gapped surfaces of a T-DAXI similarly exhibit a partial parity anomaly, which is a spinful and time-reversal-symmetric generalization of the parity anomaly. In other words, when we examine the spin-stable topology of a T-DAXI, each of the (positive and negative) P sP eigenspaces exhibits a half-quantized partial Chern numbers on gapped surfaces. For an isolated, lattice-regularized 2D spinful system with time-reversal symmetry and a spin gap, the partial Chern numbers must be integral. Therefore, the half-quantized partial Chern numbers on the 2D surface of a T-DAXI are anomalous, exhibiting a partial parity anomaly in each of the positive and negative P sP eigenspaces. The anomaly is compensated by the bulk, which we showed in SN 4 D and SEq. (4.123) to have an I-quantized partial axion angle θ ± = π. We thus see that a T-DAXI is uniquely characterized by a bulk partial axion angle quantized by inversion symmetry to θ ± = π and corresponding anomalous surfaces with halfinteger partial Chern numbers [SEq. (5.34)] satisfying SEq. (5.33) due to time-reversal symmetry. In particular, the 1/2 in SEq. (5.34) implies that the anomalous surfaces of a T-DAXI have partial Chern numbers that are halves of the partial Chern numbers of lattice-regularized 2D TIs, which are always odd integers [1]. Going further, SEqs. for some integer n. As discussed in SN 3 D, an isolated lattice-regularized 2D system with an energy gap and a spin gap cannot have an odd spin Chern number without interactions [START_REF] Levin | Fractional Topological Insulators[END_REF]. Thus SEq. (5.35) further demonstrates that the surface of a T-DAXI is anomalous. We further note that SRef. [START_REF] Schindler | Topological zero-dimensional defect and flux states in three-dimensional insulators[END_REF] recently demonstrated that upon the adiabatic insertion of a U(1) magnetic flux, the gapped surface of a T-DAXI exhibits half of the response of an isolated 2D TI. The layer-resolved partial Chern numbers of our T-DAXI slabs in SFig. 27 are consistent with this result, since the half-quantized partial Chern numbers at the gapped surfaces imply that the topological contribution to the spin Hall conductivity [SEq. (3.36)] at the gapped surfaces will be where m ∈ Z, and we have used the fact that an isolated, spinful T -invariant, lattice-regularized 2D TI with an energy gap and a spin gap has C + γ1 = -C - γ1 and C s γ1 mod 4 = 2. In other words, the topological contribution [σ s H ] surface,topological to the surface spin Hall conductivity of a T-DAXI is half-integer quantized in units of the spin Hall conductivity of an isolated 2D system. In particular, combining the results of Supplementary Table 7 with our analysis of flux response in SN 3 G, we deduce that in the presence of a π magnetic flux a slab of T-DAXI will bind one spinon between the top and bottom surface, with on average "half" a spinon per surface. From the point of view of responses to external applied fields, we hence conclude that the gapped surfaces of a T-DAXI may be viewed in a precise sense as a half of an isolated 2D TI. We remark that it was previously predicted in SRef. [START_REF] Liu | Half quantum spin Hall effect on the surface of weak topological insulators[END_REF] that the gapped top surfaces of weak TI states exhibit similar halves of 2D QSHIs-the position-space calculations performed in this section reveal the surface half-2D TI state to be more generic, appearing on all the gapped surfaces of helical HOTIs in the T-DAXI regime. As a final remark, note that in SFig. 27(a-f), we observe that the surface partial Chern numbers in a T-DAXI remain nearly quantized to half integers, even when s z -conservation is broken by SOC, as long as the energy and the spin gap remains open both in the bulk and on the surfaces. Therefore, we see that the partial parity anomaly remains robust as long as the spin gap both in the bulk and on the gapped surfaces remains open.

SYMMETRY CONSTRAINTS ON WILSON LOOP SPECTRA

In this section we derive constraints that unitary inversion (I) and antiunitary time-reversal (T ) symmetry place on the Wilson loop spectra and their nested and spin-resolved generalizations. Throughout this section, we will consider 3D translation-invariant systems with position-space primitive lattice vectors {a 1 , a 2 , a 3 } and dual primitive reciprocal lattice vectors {G 1 , G 2 , G 3 } such that a i • G j = 2πδ ij (i, j = 1 . . . 3). Any crystal momentum k can be expanded as

3 j=1 kj 2π G j with reduced k j = k • a j .
In the text below, the first BZ is taken to be the region defined by k j ∈ [-π, π) for all j = 1, 2, 3. We will denote k points by their coordinates as (k 1 , k 2 , k 3 ). We will denote the number of (spinful) tight-binding basis states in the primitive unit cell as N sta . When the tight-binding model has spin-1/2 degree of freedom, we will assume N sta = 2N orb , where N orb is the number of orbitals (such as s, p, and d orbitals) and the factor of 2 accounts for the spin-1/2 degree of freedom. In addition, we will assume that both the energy spectrum and P sP spectrum are gapped at every k in the BZ such that projectors onto the energy and spin bands are well-defined and are smooth functions of k.

Throughout the derivation in this section, we will focus on the eigenstates and the eigenvalues of (nested) (spinresolved) Wilson loop operators represented as products of N sta × N sta projection matrices acting in the tight-binding Hilbert space (see SEqs. (3.4), (3.19) and the surrounding text, and where we have included an additional [V (G)] at the end of the products in order to close the loop in k-space in a gauge-invariant manner [4,107]). This will allow us to derive symmetry constraints on the Wilson loop spectra in terms of the matrix representatives of symmetries in the tight-binding basis states, which can be generated from the symmetry data of the crystal [START_REF] Cano | Building blocks of topological quantum chemistry: Elementary band representations[END_REF]. The spectrum of an N sta × N sta (nested) (spin-resolved) Wilson loop operator contains a set of unimodular eigenvalues that coincide with the eigenphases of the (nested) (spin-resolved) Wilson loop matrices defined in SEqs. (3.2), (3.17), (4.24), and (4.47). In addition, the spectrum of an N sta × N sta (nested) (spin-resolved) Wilson loop operator also contains a set of zero eigenvalues whose eigenvectors correspond to the unoccupied (energy, P sP , Wannier band, or spin-resolved Wannier band) eigenstates.

We will in this section construct P -and P ± -Wilson loops parallel to the G 1 direction in the BZ (see SN 3 A and 3 B). Similarly, we will use G 1 and G 2 as the directions for the first and second closed loop needed to define nested Pand nested P ± -Wilson loops (see SN 4 A and 4 B). We will introduce a simplified notation throughout the derivation (in SN 6 A-6 D) to make the calculation explicit, while we will generalize the relevant results for (nested) (spin-resolved) Wilson loops oriented along arbitrary primitive reciprocal lattice vectors using the general notation of SN 3 A, 3 B, 4 A, and 4 B.

The remainder of this section is organized as follows. In SN 6 A and 6 B, we will derive the constraints from I-a unitary symmetry-on the P -and nested P -Wilson loop spectra, respectively. We will show that I places a quantization condition on the P -and nested P -Wilson loop eigenphases at the time-reversal invariant momenta. In SN 6 C and 6 D, we will derive the constraints from T -an antiunitary symmetry-on the P -and nested P -Wilson loop spectra, respectively, and a set of general results that hold for both spinless T (T 2 = 1, where 1 is shorthand for the identity operator) and spinful T (T 2 = -1, where 1 is shorthand for the identity operator) will be presented. We will then show that if we specialize to the case with T 2 = -1, there will be Kramers' degeneracies in the P -and nested P -Wilson loop spectra at TRIMs. In SN 6 E and 6 F, we will derive the constraints from I on the P ± -and nested P ± -Wilson loop spectra respectively for a spinful system, in which we also derive a quantization condition enforced by I at TRIM points. In SN 6 G and 6 H, we will derive the constraints from T on the P ± -and nested P ± -Wilson loop spectra respectively for a spinful system with T 2 = -1, where T acts to flip the spin. In SN 6 I, we will present a short summary of the symmetry constraints on the (nested) (spin-resolved) Wilson loop spectra derived throughout this section. In SN 6 J, we will briefly review the relation between the eigenvalues and eigenvectors of Wilson loop operators and their Hermitian conjugates, which will be used throughout this section. Throughout this section, we will denote [I] and [T ] = [U T ]K as the representatives of I and T (T 2 can be either +1 or -1) in the tight-binding basis states. We will present the construction of the representatives for I and T in SN 6 K and 6 L respectively, in which we will also derive how the matrix [V (G)] in SEq. (2.8) transforms under I and T . Although the constraints presented in SN 6 A, 6 B 6 C, 6 H, 6 K and 6 L are not new (see for example SRefs. [4, 13-15, 107, 237]), we will review them here for completeness, and to complement the results of SN 6 E, 6 F, 6 G, and 6 H, which are derived for the first time in the present work.

A. Unitary I Constraint on the P -Wilson Loop

We begin by constructing the P -Wilson loop associated to a projector P onto a set of spectrally isolated occupied bands. Recall from SN 3 A and SRefs. [3,4,[START_REF] Gresch | Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials[END_REF] that the G 1 -directed P -Wilson loop operator with base point k = (k 1 , k 2 , k 3 ) can be written as For the proof of SEq. (6.6) and also the explicit construction of [I] as the unitary matrix representative of I in the tight-binding basis states, see SN 6 K and SRefs. [4,107]. Note that [P (k)] must project onto a set of energy bands that is mapped into itself under I in order for SEq. (6.7) to be satisfied. This is guaranteed if [P (k)] projects onto a set of gapped energy bands for an I-symmetric Hamiltonian. Using SEqs. (6.2), (6.3), (6.4), (6.5), (6.6), and (6.7), it follows that under the action of I, the G 1 -directed P -Wilson loop operator W 1,k,G1 transforms according to

W 1,k,G1 = [V (G 1 )] lim N →∞ [P (k 1 + 2π, k 2 , k 3 )][P (k 1 + 2π(N -1) N , k 2 , k 3 )] • • • [P (k 1 + 2π N , k 2 , k 3 )][P (k 1 , k 2 , k 3 )] , (6.1 
|u n,k+G ⟩ = [V (G)] -1 |u n,k ⟩ = [V (G)] † |u n,k ⟩, (6.4 
[I]W 1,k,G1 [I] † = [I][V (G 1 )][P (k 1 + 2π, k 2 , k 3 )] • • • [P (k 1 , k 2 , k 3 )][I] † = [I][V (G 1 )][I] † [I][P (k 1 + 2π, k 2 , k 3 )][I] † • • • [I][P (k 1 , k 2 , k 3 )][I] † = [V (-G 1 )][P (-k 1 -2π, -k 2 , -k 3 )] • • • [P (-k 1 , -k 2 , -k 3 )] = [V (-G 1 )][V (-G 1 )] -1 [P (-k 1 , -k 2 , -k 3 )][V (-G 1 )] • • • [V (-G 1 )] -1 [P (-k 1 + 2π, -k 2 , -k 3 )][V (-G 1 )] = [P (-k 1 , -k 2 , -k 3 )] • • • [P (-k 1 + 2π, -k 2 , -k 3 )][V (-G 1 )] = [V (-G 1 )] † [P (-k 1 + 2π, -k 2 , -k 3 )] • • • [P (-k 1 , -k 2 , -k 3 )] † = ([V (G 1 )][P (-k 1 + 2π, -k 2 , -k 3 )] • • • [P (-k 1 , -k 2 , -k 3 )]) † = W † 1,-k,G1 , (6.8) 
where

[P (k f )] • • • [P (k i )
] is a shorthand notation for the product of projection matrices along a straight path in kspace from k i to k f . W 1,k,G1 has N sta -N occ zero eigenvalues corresponding to the number of unoccupied eigenstates. More importantly, W 1,k,G1 has N occ unimodular eigenvalues that are independent of k 1 [4,78,[START_REF] Bradlyn | Lecture Notes on Berry Phases and Topology[END_REF]. For simplicity, we denote the set of unimodular eigenvalues of W 1,k,G1 as {e iγ1,j (k2,k3) |j = 1 . . . N occ } where j is the Wannier band index. SEq. (6.8) implies that W 1,k,G1 and W † 1,-k,G1 are isospectral since they are related to each other by a unitary transformation. According to SEq. (6.8), and using the fact that the eigenvalues of W † 1,-k,G1 coincide with the complex conjugates of the eigenvalues of W 1,-k,G1 (see SN 6 J for more details), we have that {e iγ1,j (k2,k3) |j = 1 . . . N occ } = {e -iγ1,j (-k2,-k3) |j = 1 . . . N occ }.

(6.9)

In terms of the set of eigenphases γ 1,j (k 2 , k 3 ), SEq. (6.9) implies that [4,13,14,78,[START_REF] Bradlyn | Lecture Notes on Berry Phases and Topology[END_REF]. With this in mind, SEq. (6.10) then follows from the fact that inversion flips both position and momentum of a hybrid Wannier function.

We can also compute the sum over j of the γ 1,j (k 2 , k 3 ) which defines the total Berry phase [3,4,[START_REF] Soluyanov | Smooth gauge for topological insulators[END_REF][START_REF] Marzari | Maximally localized generalized Wannier functions for composite energy bands[END_REF]]

γ 1 (k 2 , k 3 ) ≡ Nocc j=1 γ 1,j (k 2 , k 3 ) mod 2π, (6.11) 
where SEq. (6.10) indicates that

γ 1 (k 2 , k 3 ) mod 2π = -γ 1 (-k 2 , -k 3 ) mod 2π. (6.12) 
Recall that SEq. (4.17) implies that the eigenphases γ 1 (k 2 , k 3 ) are invariant if we shift the base point by a reciprocal lattice vector. Using this fact, SEq. (6.12) implies that at the four time-reversal invariant momenta (TRIMs) (k T RIM 2 , k T RIM 3 ) = (0, 0), (π, 0), (0, π), and (π, π), we have

γ 1 (k T RIM 2 , k T RIM

3

) mod π = 0. (6.13)

Since inversion symmetry treats all momentum components k i in the same way-it flips the sign of all the components k i -the results of this section can be generalized to G 2 -and G 3 -directed P -Wilson loops. The results of SEqs. (6.9), (6.10), (6.12), and (6.13), written in the general notation in SN 3 A, therefore generalize to

{e i(γ1) j,k,G |j = 1 . . . N occ } = {e -i(γ1) j,-k,G |j = 1 . . . N occ }, (6.14) {(γ 1 ) j,k,G |j = 1 . . . N occ } mod 2π = {-(γ 1 ) j,-k,G |j = 1 . . . N occ } mod 2π, (6.15) (γ 1 ) k,G mod 2π = -(γ 1 ) -k,G mod 2π, (6.16) ((γ 1 ) k T RIM ,G mod π) = 0, (6.17) 
where

(γ 1 ) k,G ≡ Nocc j=1
(γ 1 ) j,k,G mod 2π, (6.18) and (γ 1 ) j,k,G are the eigenphases of the G-directed P -Wilson loop operator W 1,k,G satisfying

[I]W 1,k,G [I] † = W † 1,-k,G . (6.19) 
SEq. (6.19) is true provided that the matrix projector onto the occupied energy bands is inversion-symmetric as specified in SEq. (6.7). Finally, since (γ 1 ) j,k,G is independent of the momentum component k • a, where a is the real-space primitive lattice vector dual to the primitive reciprocal lattice vector G, k T RIM in SEq. (6.17) should be interpreted as a k-vector with (k T RIM • a ′ ) mod π = 0 for each primitive lattice vector a ′ ̸ = a.

B. Unitary I Constraint on the Nested P -Wilson Loop

Recall that to construct the nested P -Wilson loop operator from SN 4 A, we must first specify two primitive reciprocal lattice vectors G 1 and G 2 , respectively. We then solve the eigenvalue equation for the G 1 -directed P -Wilson loop operator [SEq. (6.1)], W 1,k,G1 |w j (k)⟩ = e iγ1,j (k2,k3) |w j (k)⟩, (6.20) where the eigenvectors {|w j (k)⟩|j = 1 . . . N occ } with unimodular eigenvalues form an orthonormal set such that

⟨w j (k)|w j ′ (k)⟩ = δ jj ′ . (6.21) 
In SEq. (6.20), the Wannier band basis vector |w j (k)⟩ lies in the image of [P (k)] and is an eigenvector of W 1,k,G1 with unimodular eigenvalue e iγ1,j (k2,k3) [14]. Although the eigenvalue e iγ1,j (k2,k3) of W 1,k,G1 [SEq. (6.20)] is independent of k 1 (the component of the momentum along G 1 ), the eigenvector |w j (k)⟩ depends on all momentum components k 1 , k 2 , and k 3 of k. In particular, if we expand |w j (k)⟩ in terms of the occupied energy eigenvectors {|u m,k ⟩|m = 1 . . . N occ } as

|w j (k)⟩ = Nocc m=1 [ν j (k)] m |u m,k ⟩, (6.22) 
then as discussed in SN 4 A the N occ -component vector |ν j (k)⟩ satisfies the parallel transport condition in SEq. (4.5).

Let us consider an inversion-symmetric system such that the G 1 -directed P -Wilson loop operator satisfies SEq. (6.8). Acting with [I], the unitary matrix representative of I in the tight-binding basis states, on both sides of the eigenvalue equation in SEq. (6.20), we have Recall that the eigenvector of W 1,k,G1 with eigenvalue e iγ1,j (k2,k3) is also the eigenvector of W † 1,k,G1 with eigenvalue e -iγ1,j (k2,k3) (see SN 6 J for more details). From SEq. (6.24), we then deduce that for a given eigenvector |w j (k)⟩ of W 1,k,G1 with eigenvalue e iγ1,j (k2,k3) , [I]|w j (k)⟩ is an eigenvector of W 1,-k,G1 with eigenvalue e -iγ1,j (k2,k3) . In other words, we have j (k2,k3) [I]|w j (k)⟩. (6.25) In addition to the effective particle-hole symmetry of the G 1 -directed P -Wannier bands that we have already established in SEq. For an inversion-symmetric system, an isolated grouping of Wannier bands [SEq. (6.26)] centered around an inversioninvariant eigenphase γ 1 mod π = 0 can be chosen to satisfy In this work we will always choose [ P (k)] for inversion-symmetric systems such that SEqs. (6.29) and (6.30) hold. Similar to the effective particle-hole symmetry of the entire G 1 -directed P -Wannier band structure described in SEq. (6.10), the grouping of N W G 1 -directed P -Wannier bands chosen in a manner that satisfies SEq. (6.29) also has an effective particle-hole symmetry described by SEq. (6.30) [15]. Before we move on, we emphasize that the eigenvectors |w j (k)⟩ satisfy the boundary condition

[I]W 1,k,G1 [I] † [I]|w j (k)⟩ = e iγ1,j (k2,k3) [I]|w j (k)⟩, (6.23 
W 1,-k,G1 [I]|w j (k)⟩ = e -iγ1,
|w j (k + G)⟩ = [V (G)] -1 |w j (k)⟩ = [V (G)] † |w j (k)⟩, (6.31) 
where G is a reciprocal lattice vector and [V (G)] is given in SEq. (6.2). To verify SEq. (6.31), we note that under a shift of the base point from k to k + G, the G 1 -directed P -Wilson loop operator W 1,k,G1 [SEq. (6.1)] transforms according to

W 1,k+G,G1 = [V (G 1 )][P (k + G + G 1 )] • • • [P (k + G)] = [V (G 1 )][V (G)] -1 [P (k + G 1 )][V (G)] • • • [V (G)] -1 [P (k)][V (G)] = [V (G)] -1 [V (G 1 )][P (k + G 1 )] • • • [P (k)][V (G)] = [V (G)] -1 W 1,k,G1 [V (G)], (6.32) 
where

[P (k f )] • • • [P (k i )
] is a shorthand notation for the product of projection matrices along a straight path in k-space from k i to k f . In simplifying SEq. (6.32) we have used the boundary condition SEq. 

W 2,k,G1,G2 = [V (G 2 )] lim N →∞ [ P (k 1 , k 2 + 2π, k 3 )][ P (k 1 , k 2 + 2π(N -1) N , k 3 )] • • • [ P (k 1 , k 2 + 2π N , k 3 )][ P (k 1 , k 2 , k 3 )] .
(6.33) W 2,k,G1,G2 in SEq. (6.33) is then the nested P -Wilson loop operator constructed by first computing the holonomy along a closed loop parallel to G 1 , followed by computing the holonomy along a closed loop parallel to G 2 . W 2,k,G1,G2 has N sta -N W zero and N W unimodular eigenvalues that are independent of k 2 [4,78,[START_REF] Bradlyn | Lecture Notes on Berry Phases and Topology[END_REF]. For simplicity, we denote the set of unimodular eigenvalues of W 2,k,G1,G2 as {e iγ2,j (k1,k3) |j = 1 . . . N W } where j is the nested Wannier band index. Under an I transformation, W 2,k,G1,G2 in SEq. (6.33) transforms according to

[I]W 2,k,G1,G2 [I] † = [I][V (G 2 )][ P (k 1 , k 2 + 2π, k 3 )] • • • [ P (k 1 , k 2 , k 3 )][I] † = [I][V (G 2 )][I] † [I][ P (k 1 , k 2 + 2π, k 3 )][I] † • • • [I][ P (k 1 , k 2 , k 3 )][I] † = [V (-G 2 )][ P (-k 1 , -k 2 -2π, -k 3 )] • • • [ P (-k 1 , -k 2 , -k 3 )] = [V (-G 2 )][V (-G 2 )] -1 [ P (-k 1 , -k 2 , -k 3 )][V (-G 2 )] • • • [V (-G 2 )] -1 [ P (-k 1 , -k 2 + 2π, -k 3 )][V (-G 2 )] = [ P (-k 1 , -k 2 , -k 3 )] • • • [ P (-k 1 , -k 2 + 2π, -k 3 )][V (-G 2 )] = [V (-G 2 )] † [ P (-k 1 , -k 2 + 2π, -k 3 )] • • • [ P (-k 1 , -k 2 , -k 3 )] † = [V (G 2 )][ P (-k 1 , -k 2 + 2π, -k 3 )] • • • [ P (-k 1 , -k 2 , -k 3 )] † = W † 2,-k,G1,G2 , (6.34) 
where [

P (k f )] • • • [ P (k i )
] represents a product of Wannier band projectors [SEq. (6.27)] along a straight path in kspace from k i to k f . In deriving SEq. (6.34) we have also used SEqs. (6.2), (6.6), (6.27), (6.29), and (6.31), and the unitarity of the matrix [I]. SEq. (6.34) implies that W 2,k,G1,G2 and W † 2,-k,G1,G2 are isospectral since they are related to each other by a unitary transformation. According to SEq. (6.34) and using the fact that the unimodular eigenvalues of W † 2,-k,G1,G2 are the complex conjugates of the unimodular eigenvalues of W 2,-k,G1,G2 (see SN 6 J for more details), we have {e iγ2,j (k1,k3) |j = 1 . . . N W } = {e -iγ2,j (-k1,-k3) |j = 1 . . . N W }. (6.35) In terms of the set of eigenphases γ 2,j (k 1 , k 3 ), SEq. (6.35) implies that We can also compute the sum over j of the γ 2,j (k 1 , k 3 ), which defines the nested Berry phase [15,16,31]

{γ 2,j (k 1 , k 3 )|j = 1 . . . N W } mod 2π = {-γ 2,j (-k 1 , -k 3 )|j = 1 . . . N W } mod 2π. ( 6 
γ 2 (k 1 , k 3 ) ≡ N W j=1 γ 2,j (k 1 , k 3 ) mod 2π, (6.37) 
where SEq. (6.36) indicates that

γ 2 (k 1 , k 3 ) mod 2π = -γ 2 (-k 1 , -k 3 ) mod 2π. (6.38) 
Notice that W 2,k,G1,G2 and W 2,k+G,G1,G2 are isospectral for any reciprocal lattice vector G since W 2,k,G1,G2 and W 2,k+G,G1,G2 are related to each other by a similarity transformation:

W 2,k+G,G1,G2 = [V (G 2 )][ P (k + G + G 2 )] • • • [ P (k + G)] = [V (G 2 )][V (G)] -1 [ P (k + G 2 )] • • • [ P (k + G)][V (G)] = [V (G)] -1 [V (G 2 )][ P (k + G 2 )] • • • [ P (k + G)][V (G)] = [V (G)] -1 W 2,k,G1,G2 [V (G)], (6.39) 
where again [

P (k f )] • • • [ P (k i )
] is a shorthand notation for a product of Wannier band projectors [SEq. (6.27)] along a straight path in k-space from k i to k f , and we have used SEqs. (6.2), (6.27), and (6.31). Therefore, SEq. (6.38) implies that at the four TRIMs (k T RIM 1 , k T RIM 3 ) = (0, 0), (π, 0), (0, π), and (π, π), we have

γ 2 (k T RIM 1 , k T RIM

3

) mod π = 0. (6.40)

Since inversion symmetry treats all momentum components k i in the same way-it flips the sign of all the components k i -the results of this section can be generalized to the nested P -Wilson loop for any primitive reciprocal lattice vectors G for the direction of the first loop and G ′ for the direction of the second loop. The results of SEqs. (6.35), (6.36), (6.38), and (6.40), written in the general notation in SN 4 A, generalize to

{e i(γ2) j,k,G,G ′ |j = 1 . . . N W } = {e -i(γ2) j,-k,G,G ′ |j = 1 . . . N W }, (6.41) {(γ 2 ) j,k,G,G ′ |j = 1 . . . N W } mod 2π = {-(γ 2 ) j,-k,G,G ′ |j = 1 . . . N W } mod 2π, (6.42) (γ 2 ) k,G,G ′ mod 2π = -(γ 2 ) -k,G,G ′ mod 2π, (6.43) ((γ 2 ) k T RIM ,G,G ′ mod π) = 0, (6.44) 
where

(γ 2 ) k,G,G ′ ≡ N W j=1 (γ 2 ) j,k,G,G ′ mod 2π, (6.45) 
and (γ 2 ) j,k,G,G ′ are the eigenphases of the nested P -Wilson loop operator

W 2,k,G,G ′ satisfying [I]W 2,k,G,G ′ [I] † = W † 2,-k,G,G ′ . (6.46)
There are two requirements in order for SEq. (6.46) to hold. First, the Hamiltonian must be inversion-symmetric such that SEq. (6.7) holds, which implies that the G-directed P -Wilson loop operator satisfies SEq. (6.19). Second, we must choose an inversion-symmetric grouping of isolated N W G-directed P -Wannier bands in SEq. (4.23), namely

[I][ P G (k)][I] † = [ P G (-k)], (6.47) 
which implies that the chosen N W G-directed P -Wannier bands satisfy

{(γ 1 ) j,k,G |j = 1 . . . N W } mod 2π = {-(γ 1 ) j,-k,G |j = 1 . . . N W } mod 2π. (6.48) Finally, since (γ 2 ) j,k,G,G ′ is independent of the momentum component k • a ′
, where a ′ is the primitive lattice vector dual to the primitive reciprocal lattice vector G ′ , k T RIM in SEq. (6.44) should be interpreted as a k-vector with (k T RIM • a) mod π = 0 for each primitive lattice vector a ̸ = a ′ .

C. Antiunitary T Constraint on the P -Wilson Loop

We will next examine the constraints that antiunitary T symmetry places on the P -Wilson loop. For concreteness, we will specifically analyze the G 1 -directed P -Wilson loop operator W 1,k,G1 with base point (k 1 , k 2 , k 3 ) given in SEq. (6.1), although our results generalize straightforwardly to P -Wilson loops taken along any primitive reciprocal lattice direction. If the Hamiltonian has T symmetry, then the projection matrix [P (k)] onto the occupied states defined in SEq. (6.3) satisfies

[T ][P (k)][T ] -1 = [P (-k)], (6.49) 
where [T ] is the antiunitary representative of T explicitly constructed in SN 6 L. Note that [P (k)] must project onto a set of energy bands that is mapped into itself under T in order for SEq. (6.49) to be satisfied. This is guaranteed if [P (k)] projects onto a set of gapped energy bands for a T -symmetric Hamiltonian. Acting with T on the definition of W 1,k,G1 [SEq. (6.1)], we find

[T ]W 1,k,G1 [T ] -1 = [T ][V (G 1 )][P (k 1 + 2π, k 2 , k 3 )] • • • [P (k 1 , k 2 , k 3 )][T ] -1 = [T ][V (G 1 )][T ] -1 [T ][P (k 1 + 2π, k 2 , k 3 )][T ] -1 • • • [T ][P (k 1 , k 2 , k 3 )][T ] -1 = [V (-G 1 )][P (-k 1 -2π, -k 2 , -k 3 )] • • • [P (-k 1 , -k 2 , -k 3 )] = [V (-G 1 )][V (-G 1 )] -1 [P (-k 1 , -k 2 , -k 3 )][V (-G 1 )] • • • [V (-G 1 )] -1 [P (-k 1 + 2π, -k 2 , -k 3 )][V (-G 1 )] = [P (-k 1 , -k 2 , -k 3 )] • • • [P (-k 1 + 2π, -k 2 , -k 3 )][V (-G 1 )] = [V (-G 1 )] † [P (-k 1 + 2π, -k 2 , -k 3 )] • • • [P (-k 1 , -k 2 , -k 3 )] † = ([V (G 1 )][P (-k 1 + 2π, -k 2 , -k 3 )] • • • [P (-k 1 , -k 2 , -k 3 )]) † = W † 1,-k,G1 , (6.50) 
where we have made use of SEqs. (6.4), (6.49), and (6.136) (proved in SN 6 L). While this is formally equivalent to SEq. (6.8), the fact that T is antiunitary implies that SEq. (6.50) places distinct constraints on the eigenvalues of W 1,k,G1 . In particular, suppose that |w j (k)⟩ is an eigenvector of W 1,k,G1 with unimodular eigenvalue e iγ1,j (k2,k3) , such that W 1,k,G1 |w j (k)⟩ = e iγ1,j (k2,k3) |w j (k)⟩ . (6.51)

Acting with T on both sides of SEq. (6.51) and using SEq. (6.50) we find that

[T ]W 1,k,G1 |w j (k)⟩ = [T ]e iγ1,j (k2,k3) |w j (k)⟩ , (6.52)

[T ]W 1,k,G1 [T ] -1 [T ] |w j (k)⟩ = e -iγ1,j (k2,k3) [T ] |w j (k)⟩ , (6.53) 
W † 1,-k,G1 ([T ] |w j (k)⟩) = e -iγ1,j (k2,k3) ([T ] |w j (k)⟩) , (6.54) 
where in going from SEq. (6.52) to SEq. (6.53) we made use of the antiunitarity of [T ]. SEq. (6.54) shows that if |w j (k)⟩ is an eigenvector of W 1,k,G1 with unimodular eigenvalue e iγ1,j (k2,k3) , then [T ] |w j (k)⟩ is an eigenvector of W † 1,-k,G1 with unimodular eigenvalue e -iγ1,j (k2,k3) . Using the fact that the unimodular eigenvalues of W † 1,-k,G1 are the complex conjugates of the unimodular eigenvalues of W 1,-k,G1 (see SN 6 J for more details), we have that the set of unimodular eigenvalues of W 1,k,G1 satisfies {e iγ1,j (k2,k3) |j = 1 . . . N occ } = {e iγ1,j (-k2,-k3) |j = 1 . . . N occ }. [4,13,14,78,[START_REF] Bradlyn | Lecture Notes on Berry Phases and Topology[END_REF]. With this in mind, SEq. (6.56) then follows from the fact that time-reversal flips the momentum, but not the position, of a hybrid Wannier function.

We can also examine the T constraint on the sum over j of the eigenphases γ 1,j (k 2 , k 3 ), as defined in SEq. (6.11). SEq. (6.56) indicates that ) = (0, 0), (π, 0), (0, π), and (π, π).

γ 1 (k 2 , k 3 ) mod 2π = γ 1 (-k 2 , -k 3 ) mod 2π. ( 6 
As we mentioned at the start of this section (SN 6), the SEqs. (6.50), (6.55), (6.56), and (6.57) hold for both spinless and spinful systems. Specializing now to spinful systems with T 2 = -1, we have that SEqs. (6.51)-(6.54), together with the related SEq. (6.62) explained at the beginning of the next section (SN 6 D), imply that the eigenphases γ 1,j (k 2 , k 3 ) are twofold degenerate at the four TRIMs (k T RIM 2 , k T RIM 3 ) = (0, 0), (π, 0), (0, π), and (π, π). This follows from the periodicity [SEq. (6.32)] of the Wilson loop operator W 1,k,G1 and the fact that since at TRIMs, namely at k = G/2 where G is a reciprocal lattice vector, |w j (k)⟩ and [V (G)] † [T ] |w j (k)⟩ are linear combinations of the Bloch states |u n,k ⟩ at the same momentum (where the base point k 1 , of which γ 1,j (k 2 , k 3 ) is independent, is taken to be 0 or π). Additionally, by Kramers' theorem we find that |w j (k)⟩ and [V (G)] † [T ] |w j (k)⟩ are orthogonal. Note that we have also used the property that if Since time-reversal symmetry treats all momentum components k i in the same way-it flips the sign of all the components k i -the results of this section can be generalized to G 2 -and G 3 -directed P -Wilson loops. The results of SEqs. (6.55), (6.56), and (6.57), written in the general notation in SN 3 A, therefore generalize to {e i(γ1) j,k,G |j = 1 . . . N occ } = {e i(γ1) j,-k,G |j = 1 . . . N occ }, (6.58) {(γ 1 ) j,k,G |j = 1 . . . N occ } mod 2π = {(γ 1 ) j,-k,G |j = 1 . . . N occ } mod 2π, (6.59) (γ 1 ) k,G mod 2π = (γ 1 ) -k,G mod 2π (6.60) where (γ 1 ) k,G is defined in SEq. (6.18), and (γ 1 ) j,k,G are the eigenphases of the G-directed P -Wilson loop operator

W 1,k,G satisfying [T ]W 1,k,G [T ] -1 = W † 1,-k,G . (6.61) 
SEq. (6.61) is true provided that the matrix projector onto the occupied energy bands is time-reversal-symmetric as specified in SEq. (6.49). Finally, since (γ 1 ) j,k,G is independent of the momentum component k • a (where a is the primitive lattice vector dual to G), Kramers' theorem implies that if T 2 = -1 then the eigenphases (γ 1 ) j,k,G are twofold degenerate at TRIMs k T RIM satisfying (k T RIM • a ′ ) mod π = 0 for each primitive lattice vector a ′ ̸ = a.

D. Antiunitary T Constraint on the Nested P -Wilson Loop

We next investigate the constraints that antiunitary T symmetry places on the nested P -Wilson loop. To begin, we consider the eigenvector |w j (k)⟩ of the G 1 -directed P -Wilson loop operator W 1,k,G1 with eigenvalue e iγ1,j (k2,k3) as shown in SEq. (6.20). From SEqs. (6.52)-(6.54) and the surrounding discussion, we know that [T ]|w j (k)⟩ is an eigenvector of W 1,-k,G1 with eigenvalue e iγ1,j (k2,k3) , namely W 1,-k,G1 [T ]|w j (k)⟩ = e iγ1,j (k2,k3) [T ]|w j (k)⟩. (6.62) According to SEqs. (6.51) and (6.62), there is then a one-to-one correspondence between the eigenvectors of W 1,k,G1 and W 1,-k,G1 with unimodular eigenvalues. In particular, if we choose a grouping of N W P -Wannier bands [denoted as in SEq. (6.26)] that respects the time-reversal symmetry constraint

[T ][ P (k)][T ] -1 = [ P (-k)], (6.63) 
where [ P (k)] [defined as in SEq. (6.27)] is the N sta × N sta matrix projector onto the N W Wannier band eigenstates |w j (k)⟩, then such a grouping of N W Wannier bands must satisfy

{γ 1,j (k 2 , k 3 )|j = 1 . . . N W } mod 2π = {γ 1,j (-k 2 , -k 3 )|j = 1 . . . N W } mod 2π. (6.64)
In this work we will always choose [ P (k)] for time-reversal-symmetric systems in a manner that satisfies SEqs. (6.63) and (6.64).

We now consider the N sta × N sta nested P -Wilson loop operator W 2,k,G1,G2 given in SEq. (6.33). Acting with T , we find that

[T ]W 2,k,G1,G2 [T ] -1 = [T ][V (G 2 )][ P (k 1 , k 2 + 2π, k 3 )] • • • [ P (k 1 , k 2 , k 3 )][T ] -1 = [T ][V (G 2 )][T ] -1 [T ][ P (k 1 , k 2 + 2π, k 3 )][T ] -1 • • • [T ][ P (k 1 , k 2 , k 3 )][T ] -1 = [V (-G 2 )][ P (-k 1 , -k 2 -2π, -k 3 )] • • • [ P (-k 1 , -k 2 , -k 3 )] = [V (-G 2 )][V (-G 2 )] -1 [ P (-k 1 , -k 2 , -k 3 )][V (-G 2 )] • • • [V (-G 2 )] -1 [ P (-k 1 , -k 2 + 2π, -k 3 )][V (-G 2 )] = [ P (-k 1 , -k 2 , -k 3 )] • • • [ P (-k 1 , -k 2 + 2π, -k 3 )][V (-G 2 )] = [V (-G 2 )] † [ P (-k 1 , -k 2 + 2π, -k 3 )] • • • [ P (-k 1 , -k 2 , -k 3 )] † = [V (G 2 )][ P (-k 1 , -k 2 + 2π, -k 3 )] • • • [ P (-k 1 , -k 2 , -k 3 )] † = W † 2,-k,G1,G2 , (6.65) 
where we have made use of SEqs. (6.2), (6.27), (6.31), (6.63), and (6.136) (proved in SN 6 L). Following the same logic we used in SEqs. (6.50)-(6.55), SEq. (6.65) implies that the set of unimodular eigenvalues e iγ2,j (k1,k3) of W 2,k,G1,G2 satisfies

{e iγ2,j (k1,k3) |j = 1 • • • N W } = {e iγ2,j (-k1,-k3) |j = 1 • • • N W } (6.66)
due to T symmetry. In terms of the set of eigenphases γ 2,j (k 1 , k 3 ), SEq. (6.66) implies that We can also examine the T constraint on the sum over j of the eigenphases γ 2,j (k 1 , k 3 ), as defined in SEq. (6.37). SEq. (6.67) indicates that ) = (0, 0), (π, 0), (0, π), and (π, π).

{γ 2,j (k 1 , k 3 )|j = 1 • • • N W } mod 2π = {γ 2,j (-k 1 , -k 3 )|j = 1 • • • N W } mod 2π. ( 6 
γ 2 (k 1 , k 3 ) mod 2π = γ 2 (-k 1 , -k 3 ) mod 2π. ( 6 
As we mentioned at the start of this section (SN 6), the SEqs. (6.65), (6.66), (6.67), and (6.68) hold for both spinless and spinful systems. Specializing now to spinful systems with T 2 = -1, using SEq. (6.65) and following the same logic as SEqs. (6.51)-(6.54) and (6.62), we have that W 2,k,G1,G2 |w 2,j (k)⟩ = e iγ2,j (k1,k3) |w 2,j (k)⟩, (6.69)

W 2,-k,G1,G2 [T ]|w 2,j (k)⟩ = e iγ2,j (k1,k3) [T ]|w 2,j (k)⟩, (6.70) 
where |w 2,j (k)⟩ is the eigenstate of W 2,k,G1,G2 with unimodular eigenvalue e iγ2,j (k1,k3) . As in SN 6 C, SEqs. (6.69) and (6.70) imply that the eigenphases γ 2,j (k 1 , k 3 ) are twofold degenerate at the four TRIMs (k T RIM 1 , k T RIM 3 ) = (0, 0), (π, 0), (0, π), and (π, π). This follows from the periodicity [SEq. (6.39)] of the nested Wilson loop and the fact that since at TRIMs, namely at k = G/2 where G is a reciprocal lattice vector, the eigenvectors |w 2,j (k)⟩ and [V (G)] † [T ] |w 2,j (k)⟩ of W 2,k,G1,G2 are linear combinations of Bloch states |u n,k ⟩ at the same momentum (where the base point k 2 , of which γ 2,j (k 1 , k 3 ) is independent, is taken to be 0 or π). Additionally, by Kramers' theorem we find that |w 2,j (k)⟩ and [V (G)] † [T ] |w 2,j (k)⟩ are orthogonal.

Since time-reversal symmetry treats all momentum components k i in the same way-it flips the sign of all the components k i -the results of this section can be generalized to the nested P -Wilson loop for any primitive reciprocal lattice vectors G for the direction of the first loop and G ′ for the direction of the second loop. The results of SEqs. (6.66), (6.67), and (6.68), written in the general notation in SN 4 A, therefore generalize to

{e i(γ2) j,k,G,G ′ |j = 1 . . . N W } = {e i(γ2) j,-k,G,G ′ |j = 1 . . . N W }, (6.71) {(γ 2 ) j,k,G,G ′ |j = 1 . . . N W } mod 2π = {(γ 2 ) j,-k,G,G ′ |j = 1 . . . N W } mod 2π, (6.72) (γ 2 ) k,G,G ′ mod 2π = (γ 2 ) -k,G,G ′ mod 2π, (6.73) 
where (γ 2 ) k,G,G ′ is defined in SEq. (6.45), and (γ 2 ) j,k,G,G ′ are the eigenphases of the nested P -Wilson loop operator In this section, we will extend the analysis of SN 6 A to investigate the constraints that unitary I places on the P ± -Wilson loop (SN 3 B) for a system with spin-1/2 degrees of freedom. We will make the physically relevant assumption that since spin is a T -odd pseudovector, inversion does not act on spin, implying that 

W 2,k,G,G ′ satisfying [T ]W 2,k,G,G ′ [T ] -1 = W † 2,-k,G,G ′ . ( 6 
s(k)]|u ± n,k ⟩ = λ ± n,k |u ± n,k ⟩, (6.78) 
where the eigenstates |u ± n,k ⟩ ∈ Image([P (k)]) of [s(k)] satisfy the boundary condition in SEq. (3.23). We notice that, with only inversion symmetry, the numbers N ± occ of upper and lower spin bands are not necessarily the same. For instance, if we consider an inversion-symmetric magnetic system where the electronic ground state contains states with spins nearly aligned along n, then the upper and lower spin bands can both have λ ± nk > 0. However, we always have that N + occ + N - occ = N occ , the number of occupied electronic energy bands. Using SEqs. (6.77), (6.78), and the assumption that the upper and lower spin bands are disjoint from each other, we can deduce that

[I][P ± (k)][I] † = [P ± (-k)], (6.79) 
where [P ± (k)] [defined in SEq. (3.16)] is the projector onto the upper/lower spin bands. From SEq. (6.79), we see that the upper and lower spin bands transform under inversion independently of each other, which is a consequence of SEq. (6.76). Using the projector [P ± (k)] onto the upper/lower spin bands, the G-directed P ± -Wilson loop operator W ± 1,k,G can be constructed as

W ± 1,k,G = [V (G)] lim N →∞ [P ± (k + G)][P ± (k + N -1 N G)] • • • [P ± (k + 1 N G)][P ± (k)] (6.80)
along the closed loop parallel to G analogous to SEq. (6.1). W ± 1,k,G has N sta -N ± occ zero eigenvalues corresponding to the number of unoccupied eigenstates. More importantly, W ± 1,k,G has N ± occ unimodular eigenvalues that are independent of the momentum component k • a where a is the real-space primitive lattice vector dual to the primitive reciprocal lattice vector G [4,78,[START_REF] Bradlyn | Lecture Notes on Berry Phases and Topology[END_REF]. Using SEqs. (6.79) and (6.80), and following the same logic as SEq. (6.8), we have that W ± 1,k,G transforms under inversion according to

[I]W ± 1,k,G [I] † = (W ± 1,-k,G ) † . (6.81)
As in SN 6 A, SEq. (6.81) implies the following I-symmetry constraints on the P ± -Wilson loop eigenphases:

{e i(γ ± 1 ) j,k,G |j = 1 . . . N ± occ } = {e -i(γ ± 1 ) j,-k,G |j = 1 . . . N ± occ }, (6.82) 
{(γ ± 1 ) j,k,G |j = 1 . . . N ± occ } mod 2π = {-(γ ± 1 ) j,-k,G |j = 1 . . . N ± occ } mod 2π, (6.83) 
(γ ± 1 ) k,G mod 2π = -(γ ± 1 ) -k,G mod 2π, (6.84) 
(γ ± 1 ) k T RIM ,G mod π = 0, (6.85) 
where

(γ ± 1 ) k,G ≡ N ± occ j=1 (γ ± 1 ) j,k,G mod 2π, (6.86) 
and (γ ± 1 ) j,k,G are the eigenphases (P ± -Wannier bands) of the G-directed P ± -Wilson loop operator W ± 1,k,G satisfying SEq. (6.81). Recall from SN 3 B that the eigenphases (γ ± 1 ) j,k,G of the P ± -Wilson loop operator [SEq. (6.80)] correspond to the localized positions of spin-resolved hybrid Wannier functions formed from the set of upper/lower spin bands [4,13,14,78,[START_REF] Bradlyn | Lecture Notes on Berry Phases and Topology[END_REF]. SEq. (6.83) is then a consequence of the fact that inversion flips both the position and momentum, but does not flip the spin, of a spin-resolved hybrid Wannier function. Since (γ ± 1 ) j,k,G is independent of the momentum component k • a, where a is the real-space primitive lattice vector dual to the primitive reciprocal lattice vector G, k T RIM in SEq. (6.85) should be interpreted as a k-vector with (k T RIM • a ′ ) mod π = 0 for each primitive lattice vector a ′ ̸ = a. Following SN 6 E, we will in this section extend the analysis in SN 6 B to derive the constraints that unitary I places on the nested P ± -Wilson loop (SN 4 B) for a system with spin-1/2 degrees of freedom. Since inversion does not act on spin [see SEq. (6.76) and the surrounding text], then the analysis for the nested P + -and nested P --Wilson loops are independent of each other. Suppose that the G-directed P ± -Wannier bands ({(γ ± 1 ) j,k,G |j = 1 . . . N ± occ }) can be separated into disjoint groupings and that we choose an isolated grouping of N ± W bands described by {(γ ± 1 ) j,k,G |j = 1 . . . N ± W } (where N ± W ≤ N ± occ ) onto which the operator [ P ± G (k)] constructed in SEq. (4.46) projects. We now follow the same logic as SN 6 B and focus on either the P + -or P --Wannier bands. For an inversion-symmetric Upon a displacement k → k + G where G is a reciprocal lattice vector, we have

c † k+G,α = 1 √ N R e i(k+G)•(R+rα) c † R,α = e iG•rα 1 √ N R e ik•(R+rα) c † R,α = e iG•rα c † k,α (6.114) 
where we have made use of e iG•R = 1. Grouping the Bloch basis state creation operators into a creation-operatorvalued row vector

ψ † k = [c † k,1 , • • • , c † k,Nsta ], (6.115) 
we have that 6.117) where R ′ = -(R + r α )r β and the β index is implicitly summed over.

ψ † k+G = ψ † k [V (G)]. ( 6 
Ic † R,α I † = c † R ′ ,β [I] βα ( 
[I] in SEq. (6.117) is then the unitary matrix representative of inversion, which can be obtained from the position-space symmetry data of the tight-binding basis states of the system. Notice that if -(R + r α )r β is not a linear combination of the Bravais lattice vectors with integral coefficients, we automatically have that the corresponding matrix element [I] βα = 0. Using SEqs. (2.2) and (6.117), we can obtain

Ic † k,α I † = 1 √ N R e ik•(R+rα) Ic † R,α I † = 1 √ N R e ik•(R+rα) c † R ′ ,β [I] βα = 1 √ N R e ik•(R+rα) c † -(R+rα)-r β ,β [I] βα = 1 √ N R e i(-k)•(-(R+rα)-r β +r β ) c † -(R+rα)-r β ,β [I] βα = 1 √ N R ′ e i(-k)•(R ′ +r β ) c † R ′ ,β [I] βα = c † -k,β [I] βα . (6.118) 
In other words, under inversion symmetry, ψ † k in SEq. (6.115) transforms according to There are two ways we can rewrite SEq. (6.120). First, using SEq. (6.116) and then SEq. (6.119) we can write

Iψ † k I † = ψ † -k [I]. ( 6 
Iψ † k+G I † = Iψ † k [V (G)]I † = Iψ † k I † [V (G)] = ψ † -k [I][V (G)], (6.121) 
where, importantly, notice that I does not act on the numerical matrix [V (G)]. Second, using SEq. (6.119) and then SEq. (6.116), we can also write SEq. (6.120) as .123) We next assume that all of the tight-binding basis states are orthogonal to each other. Therefore, SEq. (6.123) can only be satisfied if In this section, we will derive the transformation of [V (G)] under antiunitary T . As in SN 6 K, we will first define the antiunitary representative [T ] of T . Let us consider the action of T on the creation operators of the tight-binding basis states [107] T 6.126) where 

Iψ † k+G I † = ψ † -k-G [I] = ψ † -k [V (-G)][I]. ( 6 
ψ † -k [I][V (G)] = ψ † -k [V (-G)][I]. ( 6 
[I][V (G)] = [V (-G)][I]. ( 6 
c † R,α T -1 = c † R ′ ,β [U T ] βα ( 
R ′ = (R + r α ) -r β ,
T c † k,α T -1 = T 1 √ N R e ik•(R+rα) c † R,α T -1 = 1 √ N R e -ik•(R+rα) T c † R,α T -1 = 1 √ N R e -ik•(R+rα) c † R ′ ,β [U T ] βα = 1 √ N R e -ik•(R+rα) c † R+rα-r β ,β [U T ] βα = 1 √ N R e -ik•(R+rα+r β -r β ) c † R+rα-r β ,β [U T ] βα = 1 √ N R ′ e -ik•(R ′ +r β ) c † R ′ ,β [U T ] βα = c † -k,β [U T ] βα , (6.127) 
where we have also used the fact that T is antiunitary. In terms of the creation-operator-valued row vector ψ † k in SEq. (6.115), we then have .128) As in SN 6 K, we then consider the expression

T ψ † k T -1 = ψ † -k [U T ]. ( 6 
T ψ † k+G T -1 . (6.129) 
First, using SEq. (6.116) and then SEq. (6.128), we can write SEq. (6.129) as

T ψ † k+G T -1 = T ψ † k [V (G)]T -1 = T ψ † k T -1 T [V (G)]T -1 = T ψ † k T -1 [V (G)] * = ψ † -k [U T ][V (G)] * . (6.130)
Notice that in SEq. (6.130) we have also used

T [V (G)]T -1 = [V (G)] * (6.131)
which is a consequence of the antiunitarity of T . Second, using SEq. (6.128) and then SEq. (6.116), we can also write SEq. (6.129) as

T ψ † k+G T -1 = ψ † -k-G [U T ] = ψ † -k [V (-G)][U T ]. (6.132) 
Comparing SEqs. (6.130) and (6.132), we find that

ψ † -k [U T ][V (G)] * = ψ † -k [V (-G)][U T ]. (6.133) 
As in SN 6 K, we use the orthogonality of the tight-binding basis states to deduce that SEq. (6.133) can only be satisfied if .134) In the first-quantized matrix formalism, we can introduce the antiunitary representative

[U T ][V (G)] * = [V (-G)][U T ]. ( 6 
[T ] = [U T ]K (6.135)
of T , where [U T ] is the unitary matrix in SEq. (6.126) that can be obtained from the position-space symmetry data of the tight-binding basis orbitals, and K is the complex conjugation operator. SEq. (6.135) also implies that [T ] -1 = K[U T ] † . Using the antiunitary representative [T ] of time-reversal, SEq. (6.134) can then be written as

[T ][V (G)][T ] -1 = [V (-G)]. ( 6 
.136)

BULK SPIN HALL CONDUCTIVITY

In this section, we will use the Kubo formula of SRef. [108] and SEqs. (3.34)-(3.36) to compute the bulk contribution to the spin Hall conductivity in the clean limit for models and materials considered in this work. We start in SN 7 A by reviewing the computational techniques used to evaluate the Kubo formula. Next, in SN 7 B we compute the spin-s z Hall conductivity for the two-dimensional spin-stable C s = 4 quantum spin Hall insulator introduced in SN 3 G, where in here and SN 7 B we denote the spin Chern number as C s instead of C s γ1 in SN 3 G, for simplicity. We will pay special attention to how the strength of s z -conservation-breaking SOC affects the spin Hall conductivity. Next, in SN 7 C we will introduce the layer -resolved spin Hall conductivity for three-dimensional systems. We will compute the layer-resolved spin Hall conductivity for the T-DAXI model introduced in SEq. (4.125), and compare it with the layer-resolved spin Chern number computed in SN 5 E.

A. Computational Details

The spin conductivity tensor σ s,i µν parametrizes the linear response of the spin current J s,i to an applied DC electric field E, via

⟨J s,i µ ⟩ = ν σ s,i µν E ν . (7.1) 
Here µ and ν index spatial coordinates (with respect to, e.g. a Cartesian basis, as we will elaborate on in Sec. 7 C), and i = x, y, z indexes the spin direction. The spin conductivity can be evaluated using the standard Kubo formula

σ s,i µν = lim ϵ→0 ∞ 0 dt⟨ J s,i µ (t), X ν (0) ⟩e -ϵt , (7.2) 
where X ν is the ν component of the position operator (which couples to the external electric field in the Hamiltonian), the time-dependence of operators is evaluated in the Heisenberg picture using the unperturbed (E = 0) Hamiltonian H 0 , and the average is with respect to the unperturbed ground state. There are two main obstacles to the direct evaluation of SEq. (7.2) for a tight-binding model of a system. First, we must identify the spin current operator J s,i . As proposed in SRefs. [108,[START_REF] Shi | Proper Definition of Spin Current in Spin-Orbit Coupled Systems[END_REF][START_REF] Gorini | Onsager Relations in a Two-Dimensional Electron Gas with Spin-Orbit Coupling[END_REF][START_REF] Tokatly | Magnetoelasticity theory of incompressible quantum Hall liquids[END_REF], we adopt the definition

J s,i µ = ∂ ∂t X µ s i = i H 0 , X µ s i . (7.3)
Defining the spin current via SEq. (7.3) ensures that the spin conductivity satisfies the Onsager reciprocity relations [START_REF] Gorini | Onsager Relations in a Two-Dimensional Electron Gas with Spin-Orbit Coupling[END_REF]. This is crucial for relating the spin conductivity to experimental observables, since Onsager reciprocity relates the spin conductivity [SEq. (7.2)] to the inverse spin conductivity that is measured by injecting a spin current into a sample and measuring the induced voltage. The definition [SEq. (7.3)] corresponds to adding to the "conventional spin current" J s,i conv = 1/2{v, s i } the curl-free contributions to the spin torque [START_REF] Shi | Proper Definition of Spin Current in Spin-Orbit Coupled Systems[END_REF]. Having defined the spin current operator, we can attempt to evaluate SEq. (7.2). One difficulty that arises is that the Kubo formula involves the position operator, both explicitly in SEq. (7.2) and implicitly via the definition [SEq. (7.3)] of the spin current. We must take care then in applying SEq. (7.2) to infinite or periodic systems, where the position operator may not be well-defined. SRef. [108] gives a careful exposition of these issues. In particular, since X ν (0) appears in the commutator in SEq. (7.2), only the off-diagonal matrix elements of X ν , which are well-defined even in infinite or periodic system: the off-diagonal matrix elements of X ν are expressible in terms of the Berry connection. Thus, when evaluating σ s,i µν using SEq. (7.2) we are free to take our system to be infinite in the ν direction. More subtle is the position operator appearing in SEq. (7.3) for the spin current. When the i-component of spin is conserved, then SEq. (7.3) only involves off-diagonal components of the position operator X µ , and we have no issues. However, when s i is not conserved, J s,i µ involves both diagonal and off-diagonal matrix elements of X µ , and hence is not manifestly well-defined for periodic or infinite systems. Nevertheless, SRef. [108] showed that for insulators in the thermodynamic limit, the average in SEq. (7.2) is given by a constant times the number of unit cells of the system, and so can be evaluated by taking a trace over the degrees of freedom in a single unit cell. Thus, we can evaluate the Kubo formula for σ s,i µν when µ ̸ = ν by considering a system finite in the µ-direction (consisting of N µ unit cells with periodic boundary conditions) and infinite in the ν direction. Provided we choose the origin for X µ to lie at the center of the finite system, then we recover the bulk spin conductivity for N µ sufficiently large compared to the inverse bulk energy gap.

Concretely, we will consider d-dimensional tight-binding Hamiltonians defined on a cylinder finite and periodic in the µ direction (with d = 2 or 3). The Bloch Hamiltonian for such a system can be written as H(k), where k is a (d -1)-dimensional vector. The basis states for the Hilbert space can be written as |R µ kαs⟩ where R µ indexes the unit cells in the X µ direction, α indexes the orbital degrees of freedom, and s indexes the spin. In this basis the energy eigenstates are |u nk ⟩ = Rµαs u Rµαsnk |R µ kαs⟩ with energies ϵ nk . We can then rewrite SEq. (7.2) for the off-diagonal components of the spin conductivity tensor as

σ s,i µ̸ =ν = i (2π) d-1 d d-1 k αs ⟨0kαs| H(k), X µ s i Π ν (k) |0kαs⟩ , (7.4) 
where H(k) is the Bloch Hamiltonian and Π ν is the first-order correction to the projection operator given by

Π ν (k) = n∈occ m∈unocc i ϵ mk -ϵ nk (|u nk ⟩ ⟨u nk |∂ ν u mk ⟩ ⟨u mk | + |u mk ⟩ ⟨u mk |∂ ν u nk ⟩ ⟨u nk |) , (7.5) 
where ∂ ν ≡ ∂/∂k ν . To compute Π ν numerically, we note that the numerator can be computed in a gauge invariant form, n∈occ m∈unocc

(|u nk ⟩ ⟨u nk |∂ ν u mk ⟩ ⟨u mk | + |u mk ⟩ ⟨u mk |∂ ν u nk ⟩ ⟨u nk |) = Q∂ ν P P -P ∂ ν P Q. ( 7.6) 
where P (k) is the projector onto the occupied states at k, and Q(k) = 1 -P (k). SEq. (7.6) can be evaluated using a symmetric finite difference approximation to the derivative ∂ ν . We can then isolate the off-diagonal matrix elements and divide by the energy denominators in SEq. (7.5) to compute Π ν .

In the subsequent sections, we will apply SEq. (7.4) to compute the spin Hall conductivity for models of spin-stable topological phases in two and three dimensions. We begin by computing the spin Hall conductivity σ s,z xy for the fragile two-dimensional topological insulator analyzed in SN 3 G.

B. Spin Hall Conductivity of the 2D Spin-Stable Quantum Spin Hall Insulator

To begin, we consider the square lattice fragile TI with Hamiltonian in SEq. (3.55) and with additional trivial bands coupled via SEq. (3.59). As shown in SN 3 G, this model realizes a spin-stable topological phase with spin-s z Chern number C s = 4. When the spin-orbit coupling parameter v Mz in SEq. (3.55) is zero, s z is conserved and the model has two pairs of counterpropagating edge states and a bulk Wilson loop with nonzero helical winding [8]. When v Mz ̸ = 0 however, we showed how the spin Chern number could be computed from the net winding of the spin-resolved Wilson loop (SFig. 10).

The fact that C s = 4 even when v Mz ̸ = 0 suggests that the fragile TI should have a large spin-Hall conductivity even in the absence of spin-s z conservation. To justify this, we use SEq. We show the computed spin Hall conductivity for the fragile TI model in SFig. 28. When v Mz = 0, we see that the spin Hall conductivity is given by σ s,z xy = e/(4π)C s = 4e/(4π) as expected from SEq. (3.36). Away from v Mz = 0, we see that the spin Hall conductivity increases quadratically as a function of v Mz , consistent with the analysis of SRef. [108] on other two-dimensional topological systems. For weak spin-orbit coupling, we thus expect the spin Hall conductivity to be perturbatively close to the quantized value of e/(4π)C s for spin-stable topological phases in two dimensions.

C. Layer-Resolved Spin Hall Conductivity of T-DAXIs in 3D

Next, we examine the spin Hall conductivity of helical HOTIs in the T-DAXI regime. To do so, let us return to SEq. (7.4) for the off-diagonal spin conductivity tensor. In analogy with Secs. 5 C and 5 E, for a quasi-2D slab we can organize the sum over orbitals α, s in the unit cell in SEq. (7.4) to identify the layer-resolved spin conductivity. Concretely, we consider a tight-binding model for a three-dimensional system with primitive Bravais lattice vectors a 1 , a 2 , and a 3 . We consider a two-dimensional slab finite along a 3 with N 3 unit cells. We take there to be N sta = 2N orb tight-binding basis states per unit cell. We will compute the spin conductivity in reduced coordinates, defined as

σ s,i a̸ =b = i (2π) dk b αs ⟨0k b αs| [H(k b ), G a • Xs i ]G b • Π(k b ) |0k b αs⟩ , (7.8) 
where {G a } are the reciprocal lattice vectors dual to {a a }. The sum over α runs over the N orb orbitals in each of the N 3 unit cells, allowing us to write

|0k b αs⟩ = |0k b n 3 βs⟩ , (7.9) 
where n 3 = 1, . . . N 3 indexes the unit cell in the a 3 direction of the slab, and β = 1, . . . N orb indexes the orbitals in each unit cell. Inserting this parametrization into SEq. (7.8), we have

σ s,i a̸ =b = n3 dk b i (2π) β ⟨0k b n 3 βs| [H(k b ), G a • Xs i ]G b • Π(k b ) |0k b n 3 βs⟩ (7.10) = n3 σ s,i a̸ =b (n 3 ), (7.11) 
where we have defined the layer-resolved spin conductivity

σ s,i a̸ =b (n 3 ) = dk b i (2π) β ⟨0k b n 3 βs| [H(k b ), G a • Xs i ]G b • Π(k b ) |0k b n 3 βs⟩ . ( 7 
.12)

We will focus in particular on the layer-resolved spin Hall conductivity

σ s,i H (n 3 ) = 1 2 σ s,i 12 (n 3 ) -σ s,i 21 (n 3 ) , (7.13) 
which gives the contribution of layer n 3 to the spin Hall conductivity

σ s,i H = n3 σ s,i H (n 3 ) (7.14)
of a 2D slab.

Let us now employ SEq. (7.12) to compute the layer-resolved spin Hall conductivity for the model of a symmetryindicated helical HOTI with inversion and time-reversal symmetry introduced in SRef. [15] and analyzed in SN 4 E and 5 E. In SN 4 E we demonstrated that this model has a spin gap and realizes the T-DAXI spin stable topological phase. In SN 5 E and Supplementary Table 7 we further showed that the two-dimensional surfaces of the model realized an anomalous odd integer spin Chern number, and we argued that this implied an anomalous topological contribution to the surface spin Hall conductivity. We can now substantiate this argument by computing the layer-resolved spin Hall conductivity for the T-DAXI slab.

We begin by constructing a semi-infinite slab of a T-DAXI. Recall that our model has an orthorhombic lattice. Normalizing the lattice constants to 1, we take the three position-space primitive lattice vectors to be a 1 = x, a 2 = y, and a 3 = z. The dual primitive reciprocal lattice vectors are G 1 = 2π x, G 2 = 2π y, and G 3 = 2π z, satisfying a i • G j = 2πδ ij (i, j = 1 . . . 3). Our model has eight bands, for which the matrix Bloch Hamiltonian is given explicitly in SEq. (4.125). The tight-binding parameters, specified in SEq. (4.128), together with spin-non-conserving SOC term [A spin-mixing in SEq. (4.125)] are chosen such that the energy spectrum of the surfaces with normal vectors ± x, ± y, and ± z are all gapped. We construct a 2D inversion-and time-reversal-symmetric helical HOTI slab that is finite along a 3 with 15 unit cells and infinite along a 1 and a 2 . We then compute the layer-resolved spin-s z Hall conductivity σ s,z H (n 3 ) for the helical HOTI slab with both s z conservation (A spin-mixing = 0) and with large spin non-conserving SOC (A spin-mixing = 0.5). SFig. 29 shows the layer-resolved spin Hall conductivity in the s z -conserving limit A spin-mixing = 0, in units of e/(4π). In this limit, the spin Hall conductivity is given entirely by the topological contribution defined in SEq. (3.36). We see from SFig. 29(a) that the layer-resolved spin Hall conductivity is zero deep in the bulk of the slab and nonzero near the surfaces. This is consistent with the spin-resolved layer construction of the T-DAXI presented in SN 4 D 2. In SFig. 29(b) we show the cumulative spin Hall conductivity

n ′ z =nz n ′ z =-7 σ s,z H (n z ).
Summing over the five layers closest to the surface, we find that each surface contributes

σ s,z H,surface = n ′ z =-3 n ′ z =-7 σ s,z H (n z ) = -0.999e/(4π) ≈ (-1)e/(4π) (7.15)
to the spin Hall conductivity. This is consistent with our computation in SN 5 E, where we showed that the surface spin-s z Chern number for this helical HOTI slab is given by C + xy -C - xy = -1. We thus see that in the s z -conserving limit, the odd-integer surface spin Chern number of the T-DAXI implies a quantized odd-integer (in units of e/(4π)) surface spin Hall conductivity. The total spin Hall conductivity σ

s,z H = n ′ z =7 n ′ z =-7 σ s,z H (n z ) = (- 2 
)e/(4π), consistent with the partial Chern number of the T-DAXI slab given in Supplementary Table 7. In comparing SFig. 29 for the layer-resolved spin Hall conductivity with SFig. 27 for the layer-resolved partial Chern number, we see that although the cumulative spin Hall conductivity for the top surface is proportional to the surface spin Chern number, the layer-resolved spin Hall conductivity is not proportional to the layer-resolved spin Chern number even in this spinconserving limit. In particular, we see from SFig. 29 that the layer-resolved spin Hall conductivity oscillates between

In the remainder of this section, we will briefly summarize our application of spin-resolved topological analysis to real materials and numerical demonstration of the associated physical signatures of nontrivial spin-resolved topology; complete details are provided below in SN 9 and 10.

First, in SN 9 B, we will show that β-MoTe 2 realizes a spin-Weyl state (SN 4 D 3) for all choices of the spin resolution direction. We will then demonstrate in SN 9 C that β-MoTe 2 , when subjected to a large external Zeeman field, exhibits (001)-surface topological Fermi arcs originating from bulk spin-Weyl points (see SN 2 G for the underlying theoretical details). Next, in SN 10 B, we will show that α-BiBr remarkably exhibits a large spin gap across a significant range of spin resolution directions, and specifically hosts both spin-stable 3D QSHI and T-DAXI states (SN 4 D 2 and 4 D 3). Lastly, in SN 10 C, we will numerically demonstrate that the spin-gapped 3D QSHI and T-DAXI states in α-BiBr respectively carry nearly quantized and nearly vanishing bulk spin Hall conductivities per unit cell, respectively (see SN 7).

In our topological analysis of real materials, we will work primarily with Wannier-based approximate tight-binding models. We will compute (spin-resolved) Wilson loops and transport coefficients in terms of the tight-binding eigenstates. We take care to note that in doing so, we will in our analysis ignore contributions to Wilson loops and transport coefficients arising from the finite extent and spatial profile of the Wannier functions themselves. In particular, Wilson loops computed using tight-binding eigenstates can have a different eigenspectrum than Wilson loops computed using exact Bloch eigenstates due to off-diagonal matrix elements of the position operator in the Wannier-function basis [4,[START_REF] Bradlyn | Lecture notes on Berry phases and topology[END_REF]. Similarly, off-diagonal matrix elements of the position operator in the Wannier-function basis lead to modifications of the current and spin-current operators that can alter the numerical value of computed transport coefficients [START_REF] Parker | Diagrammatic approach to nonlinear optical response with application to Weyl semimetals[END_REF]. Since the discrepancy between tight-binding and ab-initio derived quantities originates from the spatial extent of the Wannier functions, we expect that the discrepancies will be exponentially small provided that the Wannier functions are well-localized. In particular, for a model with exponentially localized Wannier functions that are spin eigenstates, the (partial) Chern numbers computed from the tight-binding eigenstates will coincide with the (partial) Chern numbers computed from the full ab-initio wave functions. In our analysis of real materials detailed below, we have taken care to include sufficient bands in the tight-binding Hilbert space to ensure that the Wannier functions of our tight-binding model are symmetric, exponentially localized, and spin eigenstates. As such, we expect that the (partial) Chern numbers that we obtain from Wannier-based tight-binding calculations accurately reflect the band topology of the ab-initio wave functions, and we similarly expect our tight-binding-derived numerical calculation of the spin Hall conductivity to be a good approximation of the intrinsic spin Hall conductivity of real materials (here α-BiBr).

FIRST-PRINCIPLES ANALYSIS OF β-MoTe2

In this section, we will compute the spin-resolved topology of 3D β-phase MoTe 2 , which was identified in SRefs. [31,50] as a helical HOTI with both inversion (I) and time-reversal (T ) symmetries (specifically characterized by a nontrivial Z 4 -invariant z 4 = 2 and vanishing weak indices z 2i = 0).

Below, we will begin our spin-resolved topological analysis of 3D β-MoTe 2 by detailing in SN 9 A the densityfunctional-theory (DFT) calculations that we employed to obtain a symmetric, Wannier-based tight-binding model of β-MoTe 2 . In SN 9 B, we will then show that 3D β-MoTe 2 generically lies in the spin-Weyl regime of a helical HOTI [ SN 4 D 3] for all choices of spin direction by computing the spectrum of the projected spin operator [SEq. (2.14)] and spin-resolved Wilson loops [SN 3 B]. Finally in SN 9 C, we will demonstrate the appearance of (001)-surface topological Fermi arcs in β-MoTe 2 subjected to a strong (spin-) Zeeman field, which represent a physical signature of its bulk spin-Weyl points (see SN 2 G).

A. Details of Density Functional Theory Calculations on β-MoTe2

The 3D β phase of MoTe 2 crystallizes a centrosymmetric structure that respects the symmetries of nonmagnetic SG P 2 1 /m1 ′ (#11. 

G 1 = 2π a (x -cot βẑ) , G 2 = 2π b ŷ, G 3 = 2π c csc βẑ. (9.3) 
We use ab-initio (DFT) calculations incorporating the effects of SOC to compute the electronic band structure of β-MoTe 2 . Our first-principles calculations were specifically performed within the DFT framework using the projector-augmented wave (PAW) method [START_REF] Blöchl | Improved tetrahedron method for Brillouin-zone integrations[END_REF][START_REF] Kresse | Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[END_REF] as implemented in the Vienna ab-initio simulation package (VASP) [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF]. In our first-principles calculations, we adopted the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation exchange-correlation functional [START_REF] Perdew | Generalized gradient approximation made simple[END_REF], and SOC was incorporated self-consistently. The cutoff energy for the plane-wave expansion was 400 eV, and 0.03 × 2π Å-1 k-point sampling grids were used in the selfconsistent process. In SFig. 31(c) we show the ab-initio band structure for β-MoTe 2 computed along high-symmetry lines. We note that throughout this work, high-symmetry BZ (TRIM) points in the bulk electronic and spin spectra of β-MoTe 2 are labeled for consistency using the convention previously employed in SRef. [31]. The TRIM point labels for β-MoTe 2 in this work hence differ from the standard labels for SG P 2 1 /m1 ′ (#11.51) listed on the Bilbao Crystallographic Server [43,[START_REF] Aroyo | Bilbao Crystallographic Server: I. Databases and crystallographic computing programs[END_REF][START_REF] Aroyo | Crystallographic Server. II. Representations of crystallographic point groups and space groups[END_REF][START_REF] Aroyo | Crystallography Online: Bilbao Crystallographic Server[END_REF][START_REF]BANDREP: Band Representations of the Double Space Groups[END_REF][252][START_REF] Elcoro | Double crystallographic groups and their representations on the Bilbao Crystallographic Server[END_REF].

Next, to analyze the spin-resolved band topology, we constructed a symmetric, Wannier-based tight-binding model fit to the electronic structure of β-MoTe 2 obtained from our DFT calculations. We constructed symmetric Wannier functions for the bands near the Fermi energy E F in β-MoTe 2 by using the Wannier90 package [START_REF] Pizzi | Wannier90 as a community code: new features and applications[END_REF] for the Mo 4d and the Te 5p orbitals, and then performing a subsequent SG symmetrization using WannierTools [START_REF] Wu | An open-source software package for novel topological materials[END_REF]. In this section, we will show that the helical HOTI phase of β-MoTe 2 carries the spin-resolved topology of a spin-Weyl semimetal state (SN 4 D 3) with an even number of spin-Weyl nodes in each half of the BZ for every choice of spin resolution direction.

To begin, we recall that the P ± -Wilson loops defined in SN 3 B depend on the choice of spin operator s = n • s used to separate occupied states into positive and negative P sP eigenspaces. To analyze the spin-resolved topology of β-MoTe 2 , we first compute the partial Chern numbers C ± γ1 (n, k i ) [SEq. (3.24)] through the winding numbers of the P ± -Wilson loops of the occupied states in constant-k i BZ planes (i = 1, 2, 3). For n sampled on a uniform (in spherical coordinates) mesh of 451 points in the upper hemisphere of the unit sphere (to exclude spin directions related by T ), we show in SFig. 33(a,b) the winding numbers of the P ± -Wilson loop spectra for the positive spin bands in the T -invariant k i = 0 and k i = π planes. We first find that for all choices of spin direction n and for all i = 1, 2, 3, the partial Chern numbers of the occupied bands in the

k i = π planes vanish [C ± γ1 (n, k i = π) = 0]
. This implies that the occupied bands of the Hamiltonian [H MoTe2 ] restricted to each k i = π plane are equivalent to a 2D Iand T -symmetric Hamiltonian with trivial spin-resolved stable topology. Next, in SFig. 33(a-c) we show the partial Chern number C + γ1 (n, k i = 0) for i = 1, 2, 3 computed as a function of n. We see that C ± γ1 (n, k i = 0) takes the values 0 or ±2 for different choices of spin direction when i ̸ = 2. Recalling from SN 2 E and 3 E that the partial Chern number can only change as a function of k i due to the presence of spin-Weyl nodes (chirally-charged 3D spin-gap closing points), we deduce that for the spin resolution directions n for which C ± γ1 (n, k i = 0) = ±2, β-MoTe 2 must host an even number of spin-Weyl nodes per half BZ.

If we focus in particular on constant-k 3 planes, we see from SFig. 33(c) that there is a set of n for which the partial Chern numbers

C ± γ1 (n, k 3 = 0) = C ± γ1 (n, k 3 = π) = 0.
From this, one might assume that there are no spin-Weyl nodes for these n, for example n = ŷ. However comparing with SFig. 33(a), we see that when C ± γ1 (n, k 3 = 0) = 0, the partial Chern numbers C ± γ1 (n, k 1 = 0) are poorly conditioned: if the spin gap were open near the k 1 = 0 plane, we would expect the partial Chern number C ± γ1 (n, k 1 = 0) to be constant in n taken over continuous patches of the upper spin hemisphere. However in SFig. 33(a), we see that the partial Chern number oscillates rapidly between -2, 0, and 2 as n is varied. Through an explicit numerical computation of the P sP spectrum, we verify that this rapid oscillation of C + γ1 is due to the presence of spin-Weyl nodes lying close to the k 1 = 0 plane. Specifically, as done previously in SN 3 E, we determine the k-space locations of spin-Weyl nodes by minimizing the absolute value of the determinant of the reduced spin matrix [s reduced ] [SEq. (3.5)]. This provides a reasonable indicator of the locations of the spin-Weyl nodes in 3D systems like β-MoTe 2 with I and T symmetries, which together restrict spin-Weyl nodes to only occur when two eigenvalues of [s reduced ] go to zero (see SN 3 E). We show a representative configuration of spin-Weyl points in β-MoTe 2 for n = ŷ in SFig. 33(d), in which we find that indeed numerous spin-Weyl nodes lie within the small BZ region |k 1 | < 0.05π. Below in SN 9 B 1, we will further perform an extensive numerical sampling and minimization of the spin gap for all spin directions n, the results of which demonstrate the absence of a discernible numerical spin gap in any spin resolution direction in β-MoTe 2 . This calculation allows us to conclude that even for the values of n in SFig. 33(c) for which C ± γ1 (n, k 3 = 0) = C ± γ1 (n, k 3 = π) = 0, β-MoTe 2 realizes a spin-Weyl semimetal state with an even number of spin-Weyl nodes per half BZ. To summarize, through spin-resolved Wilson loop calculations (supported by direct spin gap calculations that will be detailed in SN 9 B 1), we have demonstrated that for all choices of n, β-MoTe 2 carries an even number of spin-Weyl nodes per half BZ whose positions continuously evolve as a function of the choice of spin direction n, but not in a manner in which all spin-Weyl points are annihilated for any particular n. As shown in SRef. [17] and discussed in the main text, simply doubling-or "stacking"-a model of a 3D strong TI is one way of constructing a model of a helical HOTI, a construction that the authors of SRef. [17] specifically termed a "doubled strong TI" (DSTI). Because a 3D TI hosts an odd number of spin-Weyl nodes per half BZ (SN 3 E), then a helical HOTI in the DSTI regime necessarily hosts an even number of spin-Weyl points per half BZ. As shown in SN 4 D 3, the DSTI regime of a helical HOTI with I and T symmetries can be understood as an intermediate critical spin-stable (spin-gapless) phase separating spin-gapped T -doubled axion insulator [SFig. 22(b)] and 3D quantum spin Hall insulator [SFig. 22(a)] states (see the main text and SN 4 D). From the above analysis, we determine β-MoTe 2 to be a helical HOTI that lies in the DSTI regime for all choices of spin resolution direction n.

We will next fix a choice of n and investigate the spin spectrum in more detail. As we will show below, the spin spectrum (spin-Weyl point distribution) in β-MoTe 2 is particularly simple for n = nxz = (x + ẑ)/ √ 2, to which we will hence specialize in the analysis below. This specialization to nxz is further justified because nxz is invariant under the m y × T (magnetic [43]) reflection symmetry of β-MoTe 2 [nonmagnetic SG P 2 1 /m1 ′ (#11.51)], and recent studies have observed preferential spin-electromagnetic responses for reflection-invariant spin directions in devices based on transition metal dichalcogenides like MoTe 2 [137-139, 257, 258].

First, from our analysis in SFig. -c) respectively correspond to the nx and ny components of the spin-resolution unit vector n. First, we find that C + γ 1 (n, ki = π) = 0 for all n; we hence do not show in this figure the partial Chern numbers in the ki = π planes. (a) shows the partial Chern number C + γ 1 (n, k1 = 0) in the k1 = 0 plane as a function of n. In (a), C + γ 1 (n, k1 = 0) oscillates between -2, 0 and 2 as n is varied. In particular, when nx < 0 we find that the regions of constant C + γ 1 (n, k1 = 0) are discontinuous. This is a signature of spin-Weyl nodes lying very close to the k1 = 0 plane, for which the representative example of n = ŷ is shown in (d). (b) shows the partial Chern number C + γ 1 (n, k2 = 0) in the k2 = 0 plane as a function of n. We see that C + γ 1 (n, k2 = 0) = 0 for all spin directions. (c) shows the partial Chern number C + γ 1 (n, k3 = 0) in the k3 = 0 plane as a function of n. We see that there are well-defined (smooth and continuous) regions in spin-resolution parameter (n-) space for which C + γ 1 (n, k3 = 0) = 0, ±2. In (d), we plot the 2D projection onto the k1 -k2 plane of the k points at which the absolute values of the determinant of the reduced spin sy matrix [SEq. (3.5) for n = ŷ] is smaller than 10 -6 , which numerically defines the locations of the spin-Weyl nodes for the spin resolution direction n = ŷ. We find numerous (8) additional spin-Weyl points lying close to k1 = 0 for n = ŷ in (d), consistent with the numerical oscillations of C + γ 1 (n, k1 = 0) in (a). The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

the adapted BHZ model of a 3D strong TI (SN 3 E), consistent with our above determination of β-MoTe 2 as a DSTI.

We next explicitly compute the configuration of spin-Weyl nodes in β-MoTe 2 for n = nxz . We find that there are a total of four spin-Weyl nodes in each half of the BZ. We plot the locations of the spin-Weyl nodes in the 3D BZ for n = nxz in SFig. 32(d,e). Focusing on the upper half of the BZ (k 3 ≥ 0), we see that there are three spin-Weyl nodes with partial Chern number (or partial monopole chiral charge) -1, and one spin-Weyl node with partial Chern number +1. From this, we deduce that the change in partial Chern number C + In the k3 > 0 half of the BZ in (c,d), there are three Weyl nodes with charge -1 and one Weyl node with charge +1. As required by inversion symmetry, which is preserved by an external Zeeman field, there are three Weyl nodes with charge +1 and one Weyl node with charge -1 in the k3 < 0 half of the BZ. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

Searching for a Spin Gap in β-MoTe2 at Generic Spin Resolution Directions

As shown in SFigs. 32 and 33, by calculating the partial Chern numbers of occupied states in high-symmetry (T -invariant) BZ planes, 3D β-MoTe 2 can be determined to lie in the DSTI regime of a helical HOTI [17,21,31,50] for a large range of spin resolution directions n. However, as shown in SFig. 33(a,d), there exist several regions of n-parameter space (such as in the vicinity of n = ŷ) in which the partial Chern number is poorly conditioned (i.e. unstably oscillating). To further characterize the spin-resolved topology of β-MoTe 2 in the spin directions for which high-symmetry-plane (k 1 = 0) partial Chern numbers cannot be computed, we in this section directly numerically investigate the presence (or absence) of a spin gap throughout the full 3D BZ for each spin direction n in the P (n • s)P spectrum of β-MoTe 2 . As shown below, our calculations show that β-MoTe 2 realizes a spin-Weyl semimetal (spin-gapless) state for all choices of spin resolution direction n.

To begin, we parameterize the spin direction n as a 3D unit vector described by n = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). correspond to the Cartesian unit vectors ẑ, x, and ŷ, respectively. Because 3D β-MoTe 2 has both inversion (I) and spinful time-reversal (T ) symmetries, its P sP spectrum exhibits an antiunitary chiral symmetry due to the relation Having established the spin-direction parameterization in SEq. (9.5) as a function of the angular variables (ϑ, ϕ) and defined the spin gap ∆ s ≡ min k∈BZ [∆ s (k)] in the text following SEq. (9.7), we next compute ∆ n•s as a function of the spin direction n through numerical minimization. Practically, for each spin direction n, we perform a Nelder-Mead minimization [START_REF] Pandey | Nodes: An ab-initio python code for searching nodes in a material using Nelder-Mead 's simplex approach[END_REF] on the spin gap function ∆ s (k) for 100 k points randomly sampled across the 3D BZ as the initial points. We then define the numerical spin gap ∆ s as the minimal value of the 100 minimization results for each spin direction n.

In SFig. 34, we show the numerical spin gap ∆ s (in the units of ℏ/2) for n (projected onto the xy plane) sampled over the spin hemisphere defined by ϑ ∈ [0, 0.5π] and ϕ ∈ [0, 2π] using the angular resolutions ∆ϑ = 0.05π and ∆ϕ = 0.05π. Because ∆ s = ∆ -s due to T symmetry, this sampling of the angular variables (ϑ, ϕ) contains all independent values of the numerical spin gap ∆ s over the full sphere of spin resolution directions n. In SFig. 34, we use black dots to indicate the spin directions n for which ∆ s is smaller than 10 -3 =0.001. From the regular (projected) spacing of black dots in SFig. 34, we conclude that the numerical spin gap ∆ s of 3D β-MoTe 2 is smaller than 10 -3 for all n, which implies that within numerical precision, β-MoTe 2 is spin-gapless for all choices of n. Within the spin spectrum, the only nodal degeneracies that can appear in 3D insulators with only bulk I and T symmetry are 3D spin-Weyl points (SN 4 D 3); other degeneracies, such as spin-nodal-lines, would require higher crystal symmetries. In addition to I and T symmetries, the crystal structure of β-MoTe 2 [SG P 2 1 /m1 ′ (#11.51)], respects m y mirror and s 2y screw symmetries, which are both broken at generic spin resolution directions. Specifically, the spin spectrum of β-MoTe To demonstrate physical signatures of the bulk spin-Weyl points β-MoTe 2 , we begin with the relationship, previously established in SN 2 G, between the P sP spectrum and the spectrum of the Hamiltonian in a strong Zeeman field. Specifically, as shown in SN 2 G, if the bulk of an insulator hosts a spin-Weyl semimetal state for a particular spin resolution direction n, then under the application of a large Zeeman field parallel to n, the energy spectrum of the system will develop Weyl points whose positions in k and chiral charges lie close to those of the spin-Weyl points in the original zero-field insulator. To conclude, we have hence crucially demonstrated that the spin-resolved topological analysis techniques developed in this work can be applied to ab-initio calculations of the electronic structure of real materials, here specifically β-MoTe 2 . Below, in SN 10, we will next apply the machinery of spin-resolved topology to the candidate helical HOTI α-BiBr [50,52,53], which unlike β-MoTe 2 exhibits a bulk topological spin gap for large regions of n spin-resolution parameter space.

FIRST-PRINCIPLES ANALYSIS OF α-BiBr

In this section, we will compute the spin-resolved topology of 3D α-BiBr, which was theoretically identified in SRefs. [50,52,53] as a candidate helical higher-order topological insulator (HOTI) with both inversion (I) and time-reversal (T ) symmetries. As previously with β-MoTe 2 in SN 9, the helical HOTI phase predicted in α-BiBr is characterized by a nontrivial Z 4 -invariant z 4 = 2 and vanishing weak indices z 2i = 0. Recent experimental studies have also revealed evidence of helical higher-order topology in α-BiBr, including signatures of 1D helical hinge states in laser angle-resolved photoemission experiments [64], and scanning tunneling microscopy signatures of hinge-localized, T -protected 1D gapless (helical) conducting channels that persist up to room temperature [68]. Further experiments have also reported spectroscopic and transport signatures of helical hinge modes in α-BiBr [65,66,72,[START_REF] Yang | Large-Gap Quantum Spin Hall State and Temperature-Induced Lifshitz Transition in Bi4Br4[END_REF][START_REF] Peng | Observation of Topological Edge States on α-Bi4Br4 Nanowires Grown on TiSe2 Substrates[END_REF][START_REF] Qiao | Ultralong Single-Crystal α-Bi4Br4 Nanobelts with a High Current-Carrying Capacity by Mechanical Exfoliation[END_REF][START_REF] Chen | Quantum transport evidence of boundary states and Lifshitz transition in Bi4Br4[END_REF][START_REF] Han | Optical bulk-boundary dichotomy in a quantum spin Hall insulator[END_REF].

We will begin our spin-resolved topological analysis of α-BiBr below by first in SN 10 A detailing the DFT calculations that we performed to obtain a symmetric, Wannier-based tight-binding model of α-BiBr. We then in SN 10 B compute the P sP spin spectrum for α-BiBr over the full range of spin-resolution directions n. In SN 10 B, we will specifically use (nested) spin-resolved Wilson loops to show that unlike previously for β-MoTe 2 (SN 9), α-BiBr exhibits a bulk topological spin gap over a large range of spin resolution directions n, and hosts both spin-stable 3D quantum spin Hall insulator (QSHI) states as well as, remarkably, the T -doubled axion insulating (T-DAXI) state introduced in this work. Lastly, in SN 10 C, we will numerically compute the bulk intrinsic contribution to the spin Hall conductivity (per layered unit cell) in α-BiBr, which we find to be nearly quantized in the 3D QSHI regime, and nearly vanishing for the spin-stable T-DAXI state. In order to analyze the spin-resolved bulk topology, we first use DFT incorporating the effects of SOC to compute the electronic band structure of α-BiBr. We specifically performed first-principles calculations within the DFT framework using the PAW method [START_REF] Blöchl | Improved tetrahedron method for Brillouin-zone integrations[END_REF][START_REF] Kresse | Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[END_REF] as implemented in VASP [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[END_REF]. In our DFT calculations, we adopted the PBE generalized gradient approximation exchange-correlations functional [START_REF] Perdew | Generalized gradient approximation made simple[END_REF], and SOC was incorporated self-consistently. The cutoff energy for the plane-wave expansion was 400 eV, and 0.03×2π Å-1 k-point sampling grids were used in the self-consistent process. In SFig. 37(c), we show the ab-initio band structure (labeled as "DFT") for α-BiBr computed along high-symmetry BZ lines connecting TRIM points labeled using the Bilbao Crystallographic Server convention for SG C2/m1 ′ (#12.59) (see SFig. 37(b) and SRefs. [43,[START_REF] Aroyo | Bilbao Crystallographic Server: I. Databases and crystallographic computing programs[END_REF][START_REF] Aroyo | Crystallographic Server. II. Representations of crystallographic point groups and space groups[END_REF][START_REF] Aroyo | Crystallography Online: Bilbao Crystallographic Server[END_REF][START_REF]BANDREP: Band Representations of the Double Space Groups[END_REF][252][START_REF] Elcoro | Double crystallographic groups and their representations on the Bilbao Crystallographic Server[END_REF]). In our topological (Wilson-loop, see SN 4 C) analysis of α-BiBr below, we will used reduced k coordinates (k 1 , k 2 , k 3 ) defined by k i = k • a i , such that:

k = 1 2π (k 1 G 1 + k 2 G 2 + k 3 G 3 ) , (10.9) 
where each G i is defined in SEq. (10.4). In the reduced k = (k 1 , k 2 , k 3 ) coordinates of SEq. (10.9), the TRIM points in α-BiBr lie at the positions [SFig. 37(b)]:

V = (π, 0, 0), L = (π, 0, -π), A = (0, 0, π), Γ = (0, 0, 0), M = (π, π, -π), Y = (π, π, 0). (10.10) To analyze the spin-resolved band topology of α-BiBr, we next constructed a symmetric, Wannier-based tightbinding model fit to the electronic structure of α-BiBr obtained from our DFT calculations. We specifically constructed symmetric Wannier functions for the bands near E F in α-BiBr by using the Wannier90 package [START_REF] Pizzi | Wannier90 as a community code: new features and applications[END_REF] for the Bi 6p and the Br 4p orbitals, and then performing a subsequent SG symmetrization using WannierTools [START_REF] Wu | An open-source software package for novel topological materials[END_REF]. Here and below, hosts both 3D QSHI (e.g. for n = ẑ) and T-DAXI (e.g. for n = x) spin-stable states. Spin Spectrum of α-BiBr. We will begin by computing the spin gap of α-BiBr over the full range of spin resolution directions n. The spin band structure is defined as the eigenspectrum of P sP ≡ [P (k)]s[P (k)] computed as a function of k. As previously with β-MoTe 2 in SN 9 B, α-BiBr has both I and spinful T symmetries. Hence, the P sP spectrum of α-BiBr exhibits an antiunitary chiral symmetry due to the relation where Spec(O) denotes the spectrum of the operator O. From SEq. (10.12), we then again define the spin gap function ∆ s (k) as the difference between the smallest positive and the largest negative P sP eigenvalues at each k point. Before performing the more intensive calculation of the global (direct) spin gap for each spin resolution direction n, we have first computed the full spin spectrum (band structure) of α-BiBr for the high-symmetry n = ẑ and n = x spin directions. As shown in SFig. 38(b,c), we find that the P s z P and P s x P spin spectra of α-BiBr are gapped along correspond to the Cartesian unit vectors ŷ, x, and ẑ, a choice that is motivated by the C 2y rotation symmetry of α-BiBr [SEq. (10.5)]. For each (ϑ, ϕ), we then performed a Nelder-Mead minimization [START_REF] Pandey | Nodes: An ab-initio python code for searching nodes in a material using Nelder-Mead 's simplex approach[END_REF] on the spin gap function ∆ s (k) taking for the initial points 100 k points randomly sampled from the 3D BZ in the reduced k coordinates (k 1 , k 2 , k 3 ) defined in SEq. (10.9). We next define the numerical spin gap ∆ s as the minimal value of the 100 minimization results for each spin direction n. In SFig. 39, we show the numerical spin gap ∆ s (in the units of ℏ/2) for n (projected into the xz plane) sampled over the spin hemisphere defined by ϑ ∈ [0, 0.5π] and ϕ ∈ [0, 2π] [SEq. (10.13)] using the angular resolutions ∆ϑ = 0.05π and ∆ϕ = 0.05π. Such a sampling of (ϑ, ϕ) specifically corresponds to the upper hemisphere of a unit sphere with the north pole is identified as ŷ. Because ∆ s = ∆ -s due to T symmetry, this sampling of the angular variables (ϑ, ϕ) contains all independent values of the numerical spin gap ∆ s over the full sphere of spin resolution directions n.

As shown in SFig. 39, the numerical spin gap ∆ s > 0.1 for most values of n, and is larger than 0.8 (40% of the maximum possible value ∆ s = 2) over a significant range of spin resolution directions roughly centered around n = ±ẑ (light and dark red circles in SFig. 39). For our subsequent calculations, it is important to note that there also exists a narrower pair of spin-gapped regions in α-BiBr in the vicinity of n = ±x with smaller values of ∆ s (light blue circles in SFig. 39) relative to those in the vicinity of n = ±ẑ. The ±s z spin gap in α-BiBr is hence large (∆ sz ≈ 0.9309028798325673), and is much larger than the ±s x spin gap (∆ sx ≈ 0.2550432063802285). This is consistent with earlier first-principles investigations of α-BiBr, which found the spin-electromagnetic (Rashba-Edelstein) response of its (010)-surface states to be strongly polarized in the z-direction relative to the x-direction [52]. We further crucially observe in SFig. 39 a pair of effectively spin-gapless (∆ s < 0.1) lines separating the four spingapped regions, suggesting the possibility that the n = ±ẑ and n = ±x spin-gapped regions of α-BiBr are separated by spin-resolved topological phase transitions. Below, we will shortly confirm this intuition, finding specifically through (nested) spin-resolved Wilson-loop calculations that α-BiBr is a 3D QSHI [T-DAXI] for n = ±ẑ [n = ±x].

Overall, we find that the global spin gap in α-BiBr peaks at a large value (∆ s ≈ 0.9479813926905263) and lies at n = (n x , ny , nz ) = ±(-0.2486898871648553, 0, 0.968583161128631), which is surprisingly oriented within ≈ 3.019998214845685 • of the lattice vector a 3 [SEq. (10.1)]. This indicates that the bulk spin-orbital texture in α-BiBr is dominated by contributions that are almost entirely polarized along the a 3 ∥ c lattice vector [SFig. 37(a)]. In 2D materials, such as superconducting transition-metal dichalcogenides, analogous spin-orbital textures polarized along high-symmetry crystallographic axes have also been observed, and have been termed "Ising SOC" [START_REF] Wang | Ising Superconductivity and Its Hidden Variants[END_REF][START_REF] Saito | Superconductivity protected by spin-valley locking in ion-gated MoS2[END_REF][START_REF] Lu | Evidence for two-dimensional Ising superconductivity in gated MoS2[END_REF][START_REF] De La Barrera | Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transitionmetal dichalcogenides[END_REF][START_REF] Wang | Type-II Ising Superconductivity in Two-Dimensional Materials with Spin-Orbit Coupling[END_REF]. The appearance of a large spin gap nearly locked to a crystallographic axis in SFig. 39 suggests that it would be intriguing to investigate the microscopic mechanism of the SOC in α-BiBr in future theoretical studies, and to study the spin-resolved response of α-BiBr in future photoemission and transport experiments, which may exhibit an unusually high degree of spin polarization relative to other strongly spin-orbit-coupled 3D materials.

To conclude our analysis of the spin spectrum of α-BiBr, we last performed a Nelder-Mead minimization [START_REF] Pandey | Nodes: An ab-initio python code for searching nodes in a material using Nelder-Mead 's simplex approach[END_REF] for n = ŷ on the spin gap function ∆ s (k), taking for the initial points uniformly sampled k points drawn from 10×10×10 grids in the 3D BZ in the reduced k coordinates (k 1 , k 2 , k 3 ) defined in SEq. (10.9). We find that the numerical spin gap ∆ sy ≈ 7.981038733049717 × 10 -6 , such that the P s y P spectrum of α-BiBr can be identified as spin-gapless within numerical precision. By direct computation, we have confirmed that like β-MoTe 2 for all spin-resolution directions (SN 9 B), α-BiBr for n = ŷ is specifically a spin-Weyl semimetal with two spin-Weyl points within each half of the 3D BZ, as expected for a helical HOTI lying in the critical DSTI (spin-Weyl) regime that separates 3D QSHI and T-DAXI spin-stable states (see SN 4 D 3).

Spin-Resolved Topology of α-BiBr: Spin-Resolved Wilson Loop. Having established that α-BiBr hosts a bulk spin gap over a large range of spin resolution directions n, we will next focus on analyzing the bulk (spin-resolved) topology of α-BiBr from several perspectives. We begin by first investigating the partial Chern numbers C ± γ1 (n, k i ) of the occupied 64 occupied valence bands in constant-k i BZ planes (i = 1, 2, 3). We first recall that if a 3D insulator hosts a global spin gap for a spin direction n, then C ± γ1 (n, k i ) evaluated in any BZ plane of constant k i will take the same values in all other BZ planes of constant k i (keeping i fixed). This can be seen by recognizing that C ± γ1 (n, k i ) can only change via the closing and reopening of a spin gap that manifests as a nodal degeneracy in the 3D spin spectrum with a nonvanishing partial chiral charge, such as a spin-Weyl point [see SN 3 E and 4 C 3]. In this section and below in SN 10 C we will, for simplicity, express the partial Chern vector ν ± in the reduced coordinate of the reciprocal lattice vectors [50,52,53]), the data in this figure indicate that α-BiBr is a ν ± = (ν ± 1 , ν ± 2 , ν ± 3 ) = (0, 0, ∓2) or (0, 0, ±2) 3D QSHI over the large spin-gapped regions in (c,f) with C + γ 1 (n, k3) = -2 or +2, and is remarkably a T-DAXI for the smaller spin-gapped region in (c,f) with C + γ 1 (n, k3) = 0 [see SFig. 39 for comparison]. We will shortly confirm this conclusion by direct computation of the nested partial Wilson loop spectrum of α-BiBr. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

In T -invariant (nonmagnetic) insulators like α-BiBr, ν - i = -ν + i , such that As introduced in this work, the partial Chern numbers C ± γ1 (n, k i ) can be numerically obtained via the winding numbers of the spin-resolved Wilson loop spectra of the occupied bands in constant-k i BZ planes, here specifically k i = 0, π (see SN 3 C). As discussed above, if C ± γ1 (n, k i ) in the k i = 0, π planes take different values, then there must exist spin gap closing points with nonvanishing partial chiral charges (such as spin-Weyl points) between k i = 0, π. Lastly as seen in SN 9 B, diagnosing the bulk spin-resolved topology via high-symmetry (k i = 0, π) BZ-plane partial Chern numbers is only a numerically stable calculation when spin-gap closing points do not lie close to the k i = 0, π BZ planes. However, as shown earlier in this section [SFig. 39], α-BiBr is in fact spin-gapped for most values of the spin resolution direction n.

To compute the high-symmetry k i = 0, π partial Chern numbers of α-BiBr, we begin by again parameterizing n using SEq. (10.13) with ϑ and ϕ sampled over the angular range ϑ ∈ [0, 0.5π] and ϕ ∈ [0, 2π] using the angular resolution ∆ϑ = 0.05π and ∆ϕ = 0.05π. In SFig. 40, we show the partial Chern numbers for the occupied bands in α-BiBr C + γ1 (n, k i ) computed over all n for k i = 0, π. We specifically in SFig. 40 only show the upper spin hemisphere parameterized by (ϑ, ϕ) in SEq. (10.13), relying on the result that in the T -invariant BZ planes k i = 0, π, C ± γ1 (n, k i ) = -C ∓ γ1 (n, k i ), (10.16) which implies that C ± γ1 (n, k i ) = -C ± γ1 (-n, k i ) at k i = 0, π, due the general property that C ± γ1 (n, k i ) = C ∓ γ1 (-n, k i ). As shown in SFig. 40 Along with the finite numerical spin gap ∆ s established in SFig. 39 for the spin resolution directions n centered around n = ẑ and n = x, we conclude from SEqs. (10.17), (10.18), and (10.19) that α-BiBr hosts the partial weak Chern vectors ν ± = (0, 0, ∓2) for s z (and surrounding n), ν ± = (0, 0, 0) for s x (and surrounding n). (10.20) Because α-BiBr is a symmetry-indicated helical HOTI [50,52,53], SEq. (10.20), along with the s z and s x numerical spin gaps, imply that α-BiBr realizes a 3D QSHI (T-DAXI) state for n = ẑ (n = x), due to its bulk spin-resolved (partial) SIs (SN 4 D 2). We will below in this section shortly confirm this conclusion via the direct computation of the nested spin-resolved Wilson loop spectrum of α-BiBr. In SN 10 C, we will also compare the partial weak indices in SEq. (10.20) to the bulk intrinsic spin Hall conductivity in α-BiBr for s z and s x spins, which we will show provides a physically measurable signature of its spin-gapped bulk topology.

Higher-Order Spectral Flow in α-BiBr: Nested Wilson Loop Spectrum. We will next pause from analyzing spinresolved quantities to compute the ordinary (nested) Wilson loop of α-BiBr. This calculation will provide us with a reference hybrid Wannier (nested Wilson) spectrum for the nested spin-resolved Wilson loop of α-BiBr, which will be computed later in this section. Furthermore as we will discuss below, confirming helical nested Wilson loop flow in the ab-initio-derived electronic structure of a candidate helical HOTI itself represents a significant result; such calculations remain exceedingly rare, with a noteworthy previous example being the nested Wilson loop identification of a non-symmetry-indicated helical HOTI state in γ-MoTe 2 [31]. Here and throughout this work, our (spin-resolved) nested Wilson loop calculations have been performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15], and was then greatly expanded for the present work.

To investigate the hybrid Wannier spectrum of α-BiBr, we first compute the k 3 -directed Wilson loop eigenphases [Wannier band energies] γ 1 (k 1 , k 2 ) for the 64 occupied (valence) bands [SFig. 41(a)]. The Wilson loop spectrum in [SFig. 41(a)] exhibits clear gaps at γ 1 (k 1 , k 2 ) = ±π/2 = ±0.5π, reminiscent of the Wilson loop spectrum of the candidate helical HOTI β-MoTe 2 [31], whose spin-resolved topology was previously analyzed in SN 9 B. Following the procedure introduced in SRefs. [15,31] and discussed in SN 4 E, we then divide the Wannier (Wilson) bands in SFig. 41(a) into two Iand T -symmetric groupings: an inner set centered around γ 1 = 0 and an outer set centered around γ 1 = π. We crucially further find that for all perpendicular momenta k 2 , the k 3 -directed Wannier spectrum of α-BiBr remains gapped in the vicinity of γ 1 = ±π/2.

We may hence compute the Iand T -invariant nested Wilson spectrum of α-BiBr (see SRefs. [15,31,[START_REF] Schindler | Topological zero-dimensional defect and flux states in three-dimensional insulators[END_REF] and SN 6). To perform the nested Wilson loop calculation, we first define the inner and outer Wannier-(Wilson-) band projectors as P in and P out [SFig. 41(a)]. We then separately compute the k 2 -directed nested Wilson loop eigenvalues γ 2 (k 1 ) for the inner [SFig. 41(b)] and outer [SFig. 41(c)] Wannier bands. In both the inner and outer nested Wilson loop spectra in SFig. 41(b,c), we observe the odd helical winding characteristic of an Iand T -protected helical HOTI (see SRef. [31] and SN 4 E). Specifically, due to the correspondence between the Wilson spectrum and the hybrid Wannier spectrum (see SN 2 A and 3 A, and SRefs. [4,14]), the nested Wilson spectra in SFig. 41(b,c) indicate that the hybrid Wannier spectrum of α-BiBr can be deformed without breaking I or T symmetry (or closing a bulk energy gap) to the hybrid Wannier spectrum of the minimal layer construction of a helical HOTI [33]. More specifically, the k 3 -directed hybrid Wannier spectrum of α-BiBr can be symmetrically deformed without closing an energy gap to a hybrid Wannier spectrum consisting of 2D TI layers with normal vectors parallel to a 3 pinned by I symmetry to spin gap ∆ s=n•s as the minimal value of the 100 minimization results for each spin direction n.

In SFig. 44 we plot the numerical (global) spin gap in α-BiBr for ny = 0 [ϑ = π/2 in SEq. (10.13)]. Over the spin resolution circle parameterized by ϑ = π/2 in α-BiBr [SEq. (10.13)], there are only four very narrow regions in which the global spin gap closes within numerical precision [green regions in SFig. 44]. By computing the full spin spectrum of α-BiBr for representative and continuous values of n within the green (spin-gapless) regions in SFig. 44, we have confirmed that the spin-gapless regions correspond to spin-Weyl semimetal states. Combined with the extensive (nested) spin-resolved Wilson loops performed in this section, we hence conclude that for ϑ = π/2, α-BiBr hosts four spin-gapped regions: a ν ± = (0, 0, ∓2) 3D QSHI region centered around n = ẑ, a ν ± = (0, 0, ±2) 3D QSHI region centered around n = -ẑ, and two T-DAXI regions centered around n = ±x. α-BiBr hence realizes for varying n all three of the spin resolutions of a helical HOTI uncovered in this work: 3D QSHI, spin-Weyl semimetal, and T-DAXI states.

C. Physical Signatures of Spin-Gapped States in α-BiBr: Bulk Spin Hall Conductivity

To demonstrate physical signatures of the spin-gapped states in α-BiBr, we will in this section compute the intrinsic bulk contribution to the (non-quantized) spin Hall conductivity. We will specifically compute the non-quantized bulk spin Hall conductivity (per unit cell) for s z and s x , and will then compare the results to the quantized bulk spinresolved topology. Previously in SN 7, we used the Kubo formula to derive the spin Hall conductivity tensor σ s,i µν , which we emphasize is generically nonquantized due to s-nonconserving SOC. As discussed in SEq. (4.73) and the surrounding text, in spin-gapped states, the quantized partial weak Chern vector ν ± = (ν ± 1 , ν ± 2 , ν ± 3 ) indicates the bulk topological contribution to the intrinsic spin Hall conductivity per layered unit cell. However in real materials like α-BiBr-even those with bulk spin gap-one might expect that SOC destroys any discernible relationship between ν ± and σ s,i µν . However as we will show below, we find remarkable agreement between ν ± and σ s,i µν in α-BiBr for s z and s x spins.

To compute the spin Hall conductivity per unit cell of α-BiBr, we use our implementation [SEq. (7.8)] of the Kubo formula and focus on the s z and s x spin Hall conductivities. Previously in SN 10 B, we found that α-BiBr is a ν ± = (0, 0, ∓2) 3D QSHI [ν ± = 0 T-DAXI] for n = ẑ [n = x] spin resolution direction. By direct numerical computation, we first find that the s z spin Hall conductivity (per unit cell) in α-BiBr-crucially allowing for spinnonconserving SOC-is given by We next perform the analogous computation of the s x spin Hall conductivity per unit cell. We find that for α-BiBr We have hence demonstrated that for s z and s x spins, the nonquantized bulk intrinsic spin Hall conductivity in α-BiBr lies close to the quantized topological contribution from its nontrivial spin-resolved bulk topology. Practically, the calculations performed in this section suggest a highly anisotropic spin Hall response in α-BiBr that interpolates between a large, extensive bulk contribution for s z spin transport to a small, surface-dominated contribution for s x spin transport. Given that α-BiBr is readily synthesizable [64-66, 68, 72, 109-113, 268], the anisotropic spinelectromagnetic response predicted in this work should be accessible through straightforward (inverse) spin Hall measurements that are achievable within a short timeframe.
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 2 FIG.2. Spin-resolved band topology. (a) A 2D insulator with strong sz-preserving (e.g. "Ising"[61] or "Kane-Mele-like"[14]) spin-orbit coupling (SOC). In (a), separate Chern numbers C ↑,↓ can be defined for the sz =↑, ↓ occupied states. The sum C ↑ +C ↓ indicates the topological coefficient of (b) the Hall response [Eq. (1)], whereas the difference C ↑ -C ↓ indicates the topological coefficient of (c) the spin Hall response [Eq. (3)][62][63][64]. (d) A 2D insulator with sz-breaking (e.g. Rashba[15]) SOC. Though the sz spin Hall conductivity is no longer quantized in (d), the existence of a topological contribution [σ s H ] topological to the (nonquantized) bulk sz spin Hall response can still be inferred from the quantized partial Chern numbers C ± of spectrally isolated groupings of bands in the spin spectrum of the matrix P sP with s = sz[7] [see Eq. (5) and SN 3C]. Crucially, perturbative deformations to the system correspond to perturbative deformations of the spin spectrum (SN 2C). This facilitates introducing a finer notion of spin-stable topological phases in which the spin-resolved band topology of the P sP spectrum indicates the existence of bulk topological contributions to (non-quantized) spin-electromagnetic response effects, which cannot be removed without closing gaps in the energy or spin spectra. For example, because the sz-nonconserving P szP spin spectrum in (d) is adiabatically related to the sz-conserving P szP spectrum in (a) without closing an energy or spin gap, then C ↑ = C + and C ↓ = C -.
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 3 FIG.3. Spin-Weyl fermions in spin-resolved 3D topological insulators. (a) A T -invariant 3D strong topological insulator (TI) in crystal momentum (k) space. The 3D TI in (a) can be re-expressed as a helical Thouless pump between a 2D TI (orange plane) and a trivial insulator[17, 18, 30, 35]. Because a 3D TI is a strong, isotropic topological phase, then we may choose the pumping parameter in (a) to be kz without loss of generality. (b) The P sP spin spectrum [Eq. (5)] of the 3D TI in (a) is gapless for all choices of s = s • n (e.g. sz). In each half of the 3D Brillouin zone (BZ) in (b), the spin spectrum specifically exhibits Weyl-like[65] nodal degeneracies with a net-odd partial chiral charge, which we term "spin-Weyl fermions" (see SN 2E, 3E, and 3F). In (b), we show the simplest schematic example of a spin-resolved 3D TI [spin-Weyl state] with one positively (red) and one negatively (blue) charged spin-Weyl point in each half of the 3D BZ. The green plane in (b) indicates that the positive P sP bands at kz = 0 carry a nontrivial odd partial Chern number C + = 1 [originating from spin-resolving the 2D TI bands at kz = 0 in (a)], which stands in contrast to the trivial partial Chern number C + = 0 at kz = π. The ∆C + mod 2 = 1 difference in partial Chern numbers between kz = 0, π in (b), combined with the continued validity of the P sP calculation in BZ planes without T symmetry away from kz = 0, π [7], indicates the presence of an odd number of integer-charge spin-Weyl fermions per half BZ. Spin-Weyl states like those in 3D TIs exhibit topological surface Fermi arcs under strong Zeeman fields (SN 2G and 9C), and display arc-like states along the entanglement cut in the spin-resolved entanglement spectrum (SN 3H). Further theoretical and numerical calculations demonstrating unremovable spin-Weyl points in 3D TIs are provided in SN 2E, 3E, and 3F.

  FIG.3. Spin-Weyl fermions in spin-resolved 3D topological insulators. (a) A T -invariant 3D strong topological insulator (TI) in crystal momentum (k) space. The 3D TI in (a) can be re-expressed as a helical Thouless pump between a 2D TI (orange plane) and a trivial insulator[17, 18, 30, 35]. Because a 3D TI is a strong, isotropic topological phase, then we may choose the pumping parameter in (a) to be kz without loss of generality. (b) The P sP spin spectrum [Eq. (5)] of the 3D TI in (a) is gapless for all choices of s = s • n (e.g. sz). In each half of the 3D Brillouin zone (BZ) in (b), the spin spectrum specifically exhibits Weyl-like[65] nodal degeneracies with a net-odd partial chiral charge, which we term "spin-Weyl fermions" (see SN 2E, 3E, and 3F). In (b), we show the simplest schematic example of a spin-resolved 3D TI [spin-Weyl state] with one positively (red) and one negatively (blue) charged spin-Weyl point in each half of the 3D BZ. The green plane in (b) indicates that the positive P sP bands at kz = 0 carry a nontrivial odd partial Chern number C + = 1 [originating from spin-resolving the 2D TI bands at kz = 0 in (a)], which stands in contrast to the trivial partial Chern number C + = 0 at kz = π. The ∆C + mod 2 = 1 difference in partial Chern numbers between kz = 0, π in (b), combined with the continued validity of the P sP calculation in BZ planes without T symmetry away from kz = 0, π [7], indicates the presence of an odd number of integer-charge spin-Weyl fermions per half BZ. Spin-Weyl states like those in 3D TIs exhibit topological surface Fermi arcs under strong Zeeman fields (SN 2G and 9C), and display arc-like states along the entanglement cut in the spin-resolved entanglement spectrum (SN 3H). Further theoretical and numerical calculations demonstrating unremovable spin-Weyl points in 3D TIs are provided in SN 2E, 3E, and 3F.

  (d)], a 3D QSHI state [Fig. 1(c)], and a T-DAXI state [Fig. 1(e)].

  FIG.4. Spin-resolved layer constructions and bulk partial axion angles in T -doubled AXIs. (a) The layer construction of an Iand T -symmetric helical HOTI[8, 32, 41]. The HOTI in (a) is theoretically constructed by placing Iand T -symmetric 2D TIs (orange rectangles) in the I-invariant z = 0 and z = 1/2 real-space planes in each unit cell. (b,c) Spin-resolved layer constructions with electronic bands that are topologically equivalent to the HOTI in (a). Specifically if each 2D TI in (a) carries a bulk sz spin gap [where we have chosen s = sz for concreteness, see Fig.2(d)], there are two ways to spin-resolve the helical HOTI layer construction in (a) while keeping a spin gap open. If both 2D TI layers have the same partial Chern numbers, then (b) through Eq. (7), each 2D TI layer carries the same even-integer sz spin Chern number C s mod 4 = 2 [Eq. (8)], resulting in a 3D QSHI state with a non-quantized (but generically nonvanishing) sz spin Hall conductivity per bulk unit cell. However if the 2D TI layers in (a) have oppositely signed partial Chern numbers that are identical in magnitude, (c) the system instead realizes a T-DAXI state with a vanishing bulk sz spin Chern number and I-quantized nontrivial partial axion angles θ ± = π (SN 4E). By closing and reopening the P szP spin gap, the QSHI insulator in (b) can be deformed into the T-DAXI in (c) via an intermediate spin-Weyl semimetal regime. Crucially, this deformation-which changes the bulk topological contribution to the spin-electromagnetic response for sz spins-must close an sz spin gap, but need not close an energy gap. (d) Numerical workflow employed in this study to compute θ ± . We specifically extract θ ± by theoretically elucidating and numerically implementing a spin-resolved generalization of the nested Wilson loop method for computing θ that was previously introduced in Ref.[30]. Documentation and details for accessing our freely available (spin-resolved) nested Wilson loop code are provided in SN 4E and 10B and Ref.[59].
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 5 FIG. 5. Surface partial parity anomaly in T -doubled axion insulators. (a) The layer-resolved position-space partial Chern number C + xy (nz) for s = sz spins of an I-symmetric finite slab of the sz-nonconserving T-DAXI model from Fig. 4(d) [adapted from Ref. [49], see SN 5E], plotted as a function of the z-direction slab layer index nz. (b) The cumulative (summed) values of C + xy (nz) in (a). In a T-DAXI, C + xy (nz) is zero in the bulk of the system [white region in (a,b)] and nonvanishing on gapped surfaces [shaded regions in (a,b)]. However on each T-DAXI surface, we observe a cumulative half-integer partial Chern number [specifically C + = -0.5 in (a,b)]. Because isolated T -invariant noninteracting 2D insulators can only carry even spin Chern numbers (and hence integer partial Chern numbers viaC s = C + -C -= 2C + )[75] and because C + mod 2 = 1 in 2D TIs[7], the data in (a,b) indicate that the T -invariant gapped surfaces of T-DAXIs are not trivial, but rather carry anomalous halves of 2D TI states in a realization of a novel partial parity anomaly (SN 4D3). Importantly, perfect global I symmetry is not required to quantize θ ± = π in the bulk and realize anomalous surface halves of 2D TI states. To illustrate this, in (c) we show schematic layer constructions of a finite T-DAXI slab. [(c), upper schematic] An I-symmetric slab corresponding to the partial Chern number distribution in (a,b). [(c), lower schematic] The T-DAXI slab from the upper panel in (c). Adding an extra (non-anomalous) layer with C s = 2 (C + = 1) to the top surface of the system breaks global I symmetry, yielding a slab with a vanishing total spin Chern number. However because each surface still carries an anomalous half of a 2D TI, each surface under an applied magnetic field still exhibits an intrinsic (non-quantized) spin Hall response unaccompanied by a bulk response, resulting overall in a 3D spin-magnetoelectric effect (see SN 7C and Refs.[31, 76]).

  (b,d)], and that in the k 3 > 0 half of the 3D BZ, there are three spin-Weyl points with positive charge and one spin-Weyl point with negative charge [Fig.6(e,f)]. Because pairs of oppositely charged spin-Weyl points lie close together, and because the total spin-Weyl partial chiral charge in each k 3 -indexed half of the BZ is |2|, then we conclude that
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 6 FIG. 6. Spin-Weyl points in β-MoTe2. (a) Crystal structure of the candidate helical HOTI β-MoTe2 [46, 49], which respects the symmetries of Shubnikov space group (SSG) P 21/m1 ′ (# 11.51, see SN 9A). The red arrows in (a) indicate the primitive lattice vectors a1,2,3. (b) The bulk BZ of β-MoTe2. The blue arrows in (b) indicate the primitive reciprocal lattice vectors G1,2,3. (c) Band structure of a first-principles-(DFT-) obtained, symmetric, Wannier-based tight-binding model of β-MoTe2 (details provided in SN 9A), plotted along the dashed green high-symmetry k-path in (b). In (c), we label the highest valence [lowest conduction] doubly-degenerate bands in blue [red]. (d) The P sxzP spin spectrum of the occupied bands of β-MoTe2 [choosing all states to be individually occupied up to and including the blue bands in (c) at each k point, see SN 9A].Though the spin spectrum in (d) appears gapped, closer examination of the spin gap away from high-symmetry BZ lines reveals the presence of spin-Weyl points in the BZ interior. We further find that for all choices of spin direction s in P sP [Eq. (5)], β-MoTe2 realizes a spin-Weyl state with an even number of spin-Weyl nodes per half BZ (SN 9B). (e) The distribution of spin-Weyl nodes for the s = sxz [Eq. (13)] spin spectrum in (d). In (e), there are eight spin-Weyl nodes in the BZ interior with a total partial chiral charge of |2| per k3-indexed half BZ, which we have confirmed through spin-resolved Wilson loop calculations (SN 9B). (f) The (001)-surface spectral function of β-MoTe2 with the projected locations and partial chiral charges of the bulk sxz spin-Weyl points from (e) labeled with red and black circles.
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 7 FIG. 7. Converting spin-Weyl fermions to Weyl fermions in β-MoTe2 with an applied Zeeman field. (a) The electronic band structure of the Wannier-based tight-binding model of β-MoTe2 [Fig. 6(c)] in the presence of an (x+ẑ)-directed B = |B| = 100eV (spin-) Zeeman field. We note that the band structure in (a) within each sxz spin sector (here close to E ∼ -B ∼ -100eV) exhibits nearly the same band ordering and features as the field-free band ordering at EF in Fig. 6(c). Though the blue and red singly-degenerate [nearly spin-polarized] bands in (a) appear gapped along high-symmetry BZ lines [Fig. 6(b)], the blue and red bands in fact cross in the BZ interior to form Weyl fermions. (b) The eight Weyl points connecting the blue and red bands in (a). Remarkably, the locations and chiral charges of the Zeeman-induced Weyl nodes in (b) are nearly identical to the locations and partial chiral charges of the spin-Weyl nodes in Fig. 6(e). (c) The (001)-surface spectral function of β-MoTe2 at E = -100eV with the projected locations and partial chiral charges of the Zeeman-induced bulk Weyl points from (b) labeled with red and black circles. (d) The (001)-surface spectral function at E = -100eV computed on a small, counterclockwise path encircling the (001)-surface projection of the bulk Weyl point circled in (c). The bulk Weyl points in (b,c) give rise to topological Fermi-arc surface states crossing the bulk (indirect) gap, as shown in (d) and SN 9C.
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 8 FIG. 8. 3D quantum spin Hall and T -doubled axion insulator states in α-BiBr. (a) Crystal structure of the candidate helical HOTI α-BiBr [6, 10], which respects the symmetries of SSG C2/m1 ′ (# 12.59, see SN 10A). The red arrows in (a) indicate the primitive lattice vectors a1,2,3, which are related to the conventional lattice vectors a, b, c through the equations in the inset box. (b) The bulk BZ of α-BiBr. The blue arrows in (b) indicate the primitive reciprocal lattice vectors G1,2,3. (c) Band structure of a DFT-obtained, symmetric, Wannier-based tight-binding model of α-BiBr (details provided in SN 10A), plotted along the dashed green high-symmetry k-path in (b). In (c), we label the highest valence [lowest conduction] doubly-degenerate bands in blue [red]. (d) The spin gap ∆s and spin-resolved topology of α-BiBr plotted as a function of s rotated in the xz-plane (see SN 10B). For nearly every spin resolution direction in (d), α-BiBr is spin-gapped, with the largest spin gap [∆s ≈ 0.95, ≈ 47% of its maximal value ∆s = 2] surprisingly lying within 3 degrees of the a3 ∥ c axis in (a) [see SN 10B]. The large c-axis-directed spin gap indicates that the bulk spin-orbital texture in α-BiBr is dominated by contributions almost entirely polarized along the c axis. Through (nested) spin-resolved Wilson loop calculations [see Fig. 4(d) and SN 10B], we obtain the spin-resolved topological phase diagram of α-BiBr shown in (d), in which the ±sz-centered blue regions host 3D QSHI states, and the ±sx-centered pink regions host the spin-stable T-DAXI state introduced in this work. The inset box in (d) shows the non-quantized bulk spin Hall conductivity per unit cell of α-BiBr for the sz and sx spin directions (see SN 7 and 10C for calculation details). For both the 3D QSHI (sz) and T-DAXI (sx) regimes of α-BiBr, the bulk intrinsic spin Hall conductivity of α-BiBr lies close to the quantized topological contribution from its nontrivial spin-resolved bulk topology.
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  |ψ⟩. An example of spin bands with T symmetry is shown in Supplementary Figure (SFig.) 1(b). If we additionally have inversion symmetry I satisfying I 2 = I 2N , then IP (k)sP (k)I -1 = P (-k)sP (

  ) where ± ĩk are the eigenstates of QsQ with eigenvalue ±1. Using the definitions of |λ k ⟩ , |ϕ(λ k )⟩ , |±ik⟩ and ± ĩk along with SEqs. (2.20)-(2.27) we have

Supplementary Figure 2 .

 2 Brillouin zone, energy spectrum, and sz spin spectrum for the 2D TI model in SEqs. (3.37) and (3.38). (a) shows the first BZ of a 2D orthorhombic lattice. (b) shows the bulk energy bands of [H(k)] [SEq. (3.37)] with tight-binding parameters in SEq. (3.38). (c) shows the P szP eigenvalues for the lowest two bands in (b) evaluated on a uniformly sampled grid of k points in the 2D BZ. The (square) grid size used in the sampling is (∆kx, ∆ky) = (0.01π, 0.01π) such that the number of k points is 200 × 200. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [171] that was implemented and utilized for the preparation of SRefs. [8, 15] and the present work. a b c Supplementary Figure 3. Wilson loops and spin-resolved Wilson loops for a 2D strong TI with T symmetry. The Bloch Hamiltonian is given by SEq. (3.37) with tight-binding parameters in SEq. (3.38). And the occupied energy bands are chosen as the lowest two energy bands. (a) shows the eigenphases {γ1,j(ky)} of the kx-directed P -Wilson loop matrix [SEq. (3.2)] as a function of ky. There are two bands that demonstrate an odd helical winding. (b) and (c) show the eigenphases {γ ± 1,j (ky)} of the kx-directed P±-Wilson loop matrix [SEq. (3.17)] as a function of ky. There is one band for each of (b) and (c). The spin-resolved Wilson loop spectra in (b) and (c) demonstrate nonzero net winding. For the spectrum in (b), as ky → ky + 2π we have winding number -1 corresponding to the partial Chern number C + γ 1 = -1 [using the sign convention introduced in SEq. (3.24)

1 .

 1 The P -Wilson loop eigenphases have spectral flow with odd helical winding protected by T symmetry [SFig. 3(a)]. 2. The P ± -Wilson loop eigenphases have spectral flow with opposite odd winding numbers [SFig. 3(b,c)]. 3. The spin Chern number C s γ1 defined in SEq. (3.26) indicates the 2D strong Z 2 invariant ν 2d = 1/2(C s γ1 mod 4), such that for a 2D strong TI, C s γ1 = 2 + 4n where n ∈ Z.

  Supplementary Figure 4. Spectrum for the 3D Iand T -symmetric 3D TI given in SEqs. (3.48) and (3.49). (a) shows the 3D Brillouin zone with high symmetry points labeled. (b) shows the 3D bulk band structure of [H(k)] in SEq. (3.48) with tight-binding parameters in SEq. (3.49). (c) shows the 2D band structure of a slab infinite along a2 ∥ ŷ and a3 ∥ ẑ while finite along a1 ∥ x with open boundary condition and 41 unit cells. We see a twofold degenerate surface Dirac cone on each surface.

Supplementary Figure 5 .

 5 + 1,j (k y , k z )} and {γ - 1,j (k y , k z )} as a function of k y exhibit net winding numbers equal to +1 and -1, respectively. This implies that the occupied bands in the k z = 0 plane have the partial Chern numbers C ± γ1 = ±1 and the relative winding number (s z spin Chern number) C s γ1 = +2 defined in SEq. (3.26). The Hamiltonian of our model restricted to the k z = 0 plane is thus topologically equivalent to a model of a 2D strong topological insulator. Since the partial Chern numbers cannot change unless the spin gap closes, we expect that C ± γ1 (k z ) = ±1 for all |k z | < 0.212π. Indeed we see in SFig. 5(c,d) that C ± γ1 (k z = 0.16π) = ±1, consistent with our expectation. Thus, away from k z = 0, the Hamiltonian of our model restricted to 2D planes with |k z | < 0.212π are topologically equivalent (in the sense that they can be deformed without closing an energy gap or a spin gap) to a model of a 2D magnetic insulator with partial Chern numbers C ± γ1 = ±1. On the other hand, in the T -invariant k z = π plane, both {γ + 1,j (k y , k z )} and {γ - 1,j (k y , k z )} exhibit zero winding as a function of k y , which implies that the occupied bands in the k z = π plane have vanishing partial Chern numbers. This indicates that the Hamiltonian of our model restricted to the k z = π plane is topologically equivalent to a model of a 2D trivial insulator. Going further, since the partial Chern numbers can be defined for all BZ planes in which the spin gap is open, away from k z = π, the occupied bands of our model restricted to 2D BZ planes with π ≥ |k z | > 0.212π are topologically equivalent (in the sense that they can be deformed without closing an energy gap or a spin gap) to those of a 2D magnetic insulator with partial Chern numbers C ± γ1 = 0. We numerically verify this by computing the Wilson loops for the 3D strong TI with both spinful time-reversal and inversion symmetry, with Hamiltonian given by SEqs. (3.48) and (3.49). (a) shows the kx-directed P -Wilson loop eigenphases {γ1,j(ky, kz)} (j = 1 ∼ 2) as a function of ky in constant-kz plane. (b) shows the two P szP gap closing points (spin-Weyl nodes) at k1 = -k2 = (0, 0.456π, -0.212π) with their individual charges, namely the partial Berry flux, of the lower spin band indicated. The winding numbers C - γ 1 of the P--Wilson loop spectra at constant-kz planes separated by these spin-Weyl nodes will differ by the amount of the topological charges, as will be demonstrated in (d). (c)&(d) show the kx-directed P±-Wilson loop eigenphases {γ ± 1,j=1 (ky, kz)} as a function of ky in constant-kz plane. The projectors [P±(k)] are defined using sz as the s operator in SEq. (3.5), see SN 3 B for further details. All of the kx-directed P -and P±-Wilson loop are computed by discretizing the path k + G ← k of the projector product in SEqs. (3.4) and (3.19) with 101 k points. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package[START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs.[8, 15] and the present work.

P

  ± -Wilson loops at k z = 0.26π and k z = π [SFig. 5(c,d)], which exhibit zero winding, indicating that the spin bands carry zero partial Chern numbers. Since the k z coordinate of the spin s z gap closing points are ±0.212π, we expect that both {γ + 1,j (k y , k z )} and {γ - 1,j (k y , k z )} will have a discontinuous change of winding when the constant-k z plane passes through k z = ±0.212π. As demonstrated in SFig. 5(c) [5(d)], in the k z = 0.16π plane, the k x -directed {γ + 1,j (k y , k z )} [{γ - 1,j (k y , k z )}] has a net +1 [-1] winding while in the k z = 0.26π plane it has zero winding. Since the partial Chern number C + γ1 [C - γ1 ] changes by -1 [+1] between planes just below and just above the spin gap closing point with k z = 0.212π, we deduce that this spin gap closing point is a monopole source of partial Berry flux with charge -1 [+1] for the upper [lower] spin
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 6 Spectrum and Wilson loops for an inversion-breaking 3D TI. (a) shows the 3D bulk energy band structure of a 3D TI described by SEq.(3.48) with parameters in SEq.(3.49), where the labels of the high-symmetry k points can be found in SFig. 4(a). The energy bands are doubly degenerate at all k points because of the coexistence of inversion (I) and time-reversal (T ) symmetries. (b) shows the 3D bulk energy band structure of a 3D TI described by SEq. (3.48) with additional inversion-breaking terms in SEq. (3.52). The energy bands are no longer doubly degenerate at generic k points except for TRIMs. (c) shows the 2D energy band structure of a slab finite along z with 41 unit cells for the inversion-breaking 3D TI with the same model parameters in (b). We can see that there are 2D, twofold degenerate surface Dirac cones with linear dispersion at the Γ point ( kx = ky = 0) of the surface BZ. (d) shows the eigenvalues (sz)n(k) (n = band index) of the reduced sz matrix from SEq. (3.5) as a function of the crystal momenta k, which we call the P szP band structure, for the two valence bands in (b). The P szP band structure is plotted from -1.2k * to +1.2k * along a straight line. And ±k * ≈ ±(0, 0.46π, -0.21π) are the positions of the spin-Weyl nodes which have nonzero P szP eigenvalues ∓0.1206. (e) shows the kx-directed P -Wilson loop eigenphases of the two lowest occupied bands of the inversion-breaking 3D TI plotted as a function of ky at different kz = constant planes. (f) & (g) show the kx-directed P±-Wilson loop eigenphases of the two lowest occupied bands of the inversion-breaking 3D TI plotted as a function of ky at different kz = constant planes. We can see that there is a discontinuous change of the winding numbers of the spectral flow at the planes with kz < (k * )z and kz > (k * )z. As an example, we can see that the spectral flow has a +1 [0] winding number at the kz = 0.16π [kz = 0.26π] plane in (f). And the spectral flow has a -1[0] winding number at the kz = 0.16π [kz = 0.26π] plane in (g). The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop[97], which represents an extension of the PythTB open-source Python tight-binding package[START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs.[8, 15] and the present work.

  The energy bands are computed from Bloch Hamiltonian [HF (k)] + [VC (k)] in SEqs. (3.55) and (3.59) with tight-binding parameters t1 = 5.0, t2 = 1.5, vm = -1.5, tP H = 0.1, vs = 1.3, vM z = 0.4, vµ = 8.25 × vm, vC = 4.0, and vCS = 0.45 × vC . The numbers of energy bands in the image of Q2, P2, and P4 are 2, 2, and 4, respectively.

Supplementary Figure 8 .

 8 .59) [P µ s ] is the projection matrix onto the spinful s orbitals at 2c Wyckoff positions. µ 1,x [µ 2,x ] implements the hopping matrix with nonzero coefficients being 1 that connects the spinful d orbitals at 1a and s orbitals at (x, y) = (1/2, 0) [(x, y) = (0, 1/2)]. v µ denotes the on-site energy (or effectively the chemical potential, up to a sign) of the spinful s orbitals at 2c. v C (v CS ) represents the (spin-orbit) coupling between the spinful d orbitals at 1a and s orbitals at 2c. Notice that both of v C and v CS contain inter-and intra-cell hopping[8]. Crucially, the symmetry group of the combined Hamiltonian [H(k)] + [V C (k)] remains the wallpaper group p4m1 ′ , such that changes to the spectral flow of the Wilson loop cannot be attributed to symmetry breaking.The additional four bands whose coupling to the original Hamiltonian [SEq.(3.55)] is described by [V C (k)] [SEq.(3.59)] lie in the image of the projector denoted as P 4 in SFig. 7. The bands in the image of P 4 carry an elementary band representation of p4m1 ′ induced from spinful s orbitals at the 2c Wyckoff position. As analyzed in SRef.[8], although the bands in the image of P 2 are fragile topological, we can include the trivial bands in the image of P 4 and consider the combined projection operator P 2 ⊕ P 4 = P 6 . And the straight P 6 -Wilson loop does not wind for any choice of direction in the 2D BZ. This is demonstrated in SFig. 10(b) where the two-band crossings at γ 1 = π in SFig. 8(b) are removed, and the six-band Wilson loop spectrum shown in SFig. 10(a) form two groups of bands that are spectrally separated from each other-one group consists of two bands around γ 1 = π mod 2π and the other group consists of four bands centered around γ 1 = 0. We have hence demonstrated that the two-band crossings [see SFig. 8(b)] of the P -Wilson loop spectrum in occupied space P 2 can be trivialized by adding trivial bands [see SFig. 10(b)], confirming the previous calculations in SRef. [8]. ky-directed Wilson loop eigenphases as a function of kx in the (a) occupied space P2 of SFig. 7, (c) positive (+), and (d) negative (-) eigenspace of P2szP2 where sz is the z-component of the spin vector s, namely sz = ẑ•s. (b) is an enlarged view of the region in (a) around γ1 = π, demonstrating the two-band crossings protected by C2z and T . The numbers of bands in (a), (c), and (d) are 2, 1, and 1, respectively. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package

Supplementary Figure 10 .

 10 ky-directed Wilson loop eigenphases as a function of kx in the (a) occupied space P6 of SFig. 7, (c) positive (+), and (d) negative (-) eigenspace of P6szP6 where sz is the z-component of the spin vector s, namely sz = ẑ • s. (b) shows an enlarged view of (a) around γ1 = π to demonstrate that the two-band crossings in SFig. 8(b) are removed. The numbers of bands in (a), (c), and (d) are 6, 3, and 3, respectively. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package

Supplementary Figure 11 .

 11 Spin entanglement spectrum ξ± for the 2D strong topological insulator considered in SN 3 D. The P+ entanglement spectrum is shown on the top panel, and the P-entanglement spectrum is shown on the bottom panel. Each entanglement spectrum shows a single gap-traversing chiral mode per boundary of the entanglement region, consistent with the fact that this model has partial Chern numbers C ± γ 1 equal to ∓1.

Supplementary Figure 12 .Supplementary Figure 13 .

 1213 Entanglement spectrum ξ for the 2D fragile topological insulator considered in SN 3 G. The left panel shows the full range of the entanglement spectrum. On the right, we zoom in on the range 0.7 ≤ ξ ≤ 1. We see that there is no spectral flow in the entanglement spectrum, consistent with the fact that the P -Wilson loop does not wind. Spin entanglement spectrum ξ± for the 2D fragile topological insulator considered in SN 3 G. The P+ entanglement spectrum is shown on the top, and the P-entanglement spectrum is shown on the bottom. On the right, we zoom in on the range 0.7 ≤ ξ± ≤ 1. Each entanglement spectrum shows two gap-traversing chiral modes per boundary of the entanglement region, consistent with the fact that this model has partial Chern numbers C ± γ 1 equal to ±2.

Supplementary Figure 14 .Supplementary Figure 15 .

 1415 Eigenvalues ξ of the entanglement spectrum for the 3D TI model with broken inversion symmetry discussed in SN 3 F and in SFig. 6. The entanglement spectrum shows a protected Dirac crossing at Γ, with nontrivial spectral flow, in correspondence with the gapless surface states of a 3D TI. Eigenvalues ξ± of the spin entanglement spectrum for the 3D TI model with broken inversion symmetry discussed in SN 3 F and in SFig. 6. Each entanglement spectrum shows a "spin Fermi arc" originating at Γ and extending along the Γ -Z line, in correspondence with the gapless surface states of a 3D Weyl semimetal.

Supplementary Figure 16 .

 16 Eigenvalues ξ+ of the spin entanglement spectrum for the 3D TI model with broken inversion symmetry, plotted along a line connecting the surface projection of the spin-Weyl points. The flat spin Fermi arcs at ξ+ = 0.5 are visible over the majority of the plotted range. Later, using the example of β-MoTe2 in SN 9 we will show that spin Fermi arcs manifest as topological surface Fermi arcs in the physical energy spectrum of a spin-Weyl semimetal in a strong Zeeman field.

A

  . Nested P -Wilson Loop Before we develop the formalism of a spin-resolved version of nested Wilson loops in SN 4 B, let us review the ordinary nested P -Wilson loop formalism [8, 13-15, 31, 202]. We consider a 2D or 3D lattice model with discrete translation symmetries and denote the projector to the N occ occupied energy eigenstates at crystal momentum k by [P (k)] = Nocc n=1 |u n,k ⟩ ⟨u n,k | . (4.1)

  a projector [ PG (k)] onto a subset of these hybrid Wannier bands, and compute the eigenvalues for a Wilson loop formed as a product of the [ PG (k)]. To formalize this process, we begin with the N occ × N occ P -Wilson loop matrix [W 1,k,G ] for a holonomy starting at base point k and going along a straight path to k + G where G is a primitive reciprocal lattice vector [see SEq. (3.2) and surrounding text]. To find the eigenvectors of [W 1,k,G ], we must solve

  and the subscript G of [ P G (k)] indicates that the P -Wannier basis states |w j,k,G ⟩ are obtained by diagonalizing the P -Wilson loop matrix [SEq. (3.2)] for a loop taken parallel to G. We will refer to the states in the image of [ PG ] as the "occupied" P -Wannier bands, by analogy to the occupied energy eigenstates in the image of [P ] [SEq. (4.1)]. Being a projector onto a subspace that is spectrally isolated, we can construct the N W × N W PG -Wilson loop matrix along a loop G ′ with the matrix elements

  ). We then employ a singular value decomposition to extract the unitary part of [W + 1,k,G ]. A further Schur decomposition of the result then gives us the orthonormal eigenvectors ν ± j,k,G [SEq.(4.25)].

  (3.23), the eigenstates u ± m,k of the projected spin operator [P (k)]s[P (k)] satisfy the boundary condition u

( 4 .

 4 18). Since the N ± occ × N ± occ matrix [W ± 1,k,G ] [SEq.(3.17)] is invariant upon a shift of crystal momentum from k to k + G ′ , we can choose without loss of generalityν ± j,k+G ′ ,G = ν ± j,k,G . (4.42) for the eigenvectors in SEq. (4.25). Notice that the boundary condition in SEq. (4.42) is consistent with the eigenvalue equation in SEq. (4.25) and the parallel transport condition in SEq. (4.29) if we choose G ′ = G. With the boundary conditions in SEqs. (3.23) and (4.42), we then have that the |w ± j,k,G ⟩ in SEq. (4.30) satisfy

  ⟩ is the occupied energy eigenvector of the Bloch Hamiltonian matrix [H(k)] [SEq.(2.11)] or the eigenvector of the reduced spin matrix [s reduced (k)] [SEq.(3.5)] in the upper/lower P sP eigenspace written in terms of the tightbinding basis states [SEq.(3.7)]. From SRefs.[4, 14], the eigenvalues of the projected position operator P (±) x • GP (±)

G

  (k)] in SEq. (4.50) is [according to SEqs. (4.23) and (4.46)]

G

  ,G ⟩ [SEqs.(4.6) and (4.30)] is the G-directed P (±) -Wannier band basis corresponding to the eigenvectors of the G-directed P (±) -Wilson loop matrix [SEqs. (3.2) and (3.17)] with eigenphases {(γ(±) 1 ) j,k,G |j = 1 . . . N (±)W } where j indexes the "occupied" N (±) W P (±) -Wannier bands spectrally separated from the other "unoccupied" N , whose eigenvalues are the eigenphases of the nested P (±) -Wilson loop with G ′ = G[4, 14] denoted by {(γ(±) 2 ) j,k,G,G |j = 1 . . . N (±)W } (SN 4 A and 4 B). Since P (±) = P (±) G on states in the image of P (±) G , and since the image of P (±) G is spanned by a set of eigenstates of P (±) x • GP (±) , we have that eigenstates of P (±)

1 )

 1 n,k,Gi |n = 1 . . . N (±) occ } [SEqs. (4.2) and (4.25)]. Since (γ (±) 1 ) n,k,Gi is independent of the momentum component k i , we may view {(γ (±) 1 ) n,k,Gi |j = 1 . . . N (±) occ } as a 3D band structure that is flat as a function of k i , with the caveat that the eigenvectors of the P (±) -Wilson loop matrix must satisfy the parallel transport conditions [SEqs. (4.5) and (4.29)].

(4. 57 ) 1 )W 1 ) 1 )

 57111 Next, from the discussion in SN 4 C 1, we can deduce that the nested Berry phase (γ n,k,Gi mod 2π, where n = 1 . . . N Wannier bands are spectrally separated from the other Wannier bands, the winding number of N n,k,Gi mod 2π must be zero. Since (γ n,k,Gi mod 2π, this then implies the winding number C (±) γ2,i,i (k l ; j) [SEq.(4.56)] is also zero. From the relation C(±) γ2,i,j (k l ; i) = -C (±) γ2,i,i (k l ; j) [SEq.(4.57)], we then conclude that C (±) γ2,i,j (k l ; i) [SEq. (4.53)] satisfies C (±) γ2,i,j (k l ; i) = 0. (4.58)

1 )

 1 j,k,Gi |j = 1 . . . N (±) occ } contain spectrally separated N (±) group groups of bands. As previously proved in SN 4 C 2, the winding number of the nested Berry phase (γ (±)

  projector [SEqs. (4.23) and (4.46)] formed from the G i -directed P (±) -Wannier band basis |w (±) j,k,Gi ⟩ [SEqs. (4.6) and (4.30)] in the n th (n = 1 . . . N (±) group

C

  in SEq.(4.64) is identical to the winding number C (±) γ2,i,j (k i ; l) defined in SEq. (4.54) provided that, as specified above, (j, l, i) align with the righthanded coordinate system in SEq.(4.54). The fact that different groups of G i -directed P (±) -Wannier bands are spectrally separated allows us to deduce that C (±) γ2,n in SEq. (4.64) does not depend on the choice of constant-k i BZ plane in which we perform the calculation on the right-hand side of SEq. (4.64), as is discussed in SN 4 C 2. Combining SEqs. (4.59), (4.61), (4.62), (4.63), and (4.64), it follows in analogy with SEq. (3.25) that [154] (±) γ2,n . (4.65) This implies that the sum of the nested (partial) Chern numbers C (±) γ2,n [SEq. (4.64)] over all of the N (±) group groups of P (±) -Wannier bands gives the (partial) weak Chern number of the occupied energy bands (or the upper/lower spin bands). In addition, from [P (k)] = [P + (k)] + [P -(k)] where [P + (k)][P -(k)] = 0, it also follows that

4 .

 4 Z2-Stable Spectral Flow in the Nested P±-Wilson Loop Eigenphases in the Presence of Bulk I and Spinful T Symmetries, and the Corresponding Spin-Stable Bulk Topology

Supplementary Figure 17 .

 17 Effect of Wannier gap closings on the nested P±-Wilson loop spectrum in the presence of spinful time-reversal and 3D inversion symmetries. (a)-(d) schematically show a deformation of the Hamiltonian that induces P+-Wannier band gap closings between the inner and outer set of P+-Wannier bands. The outer set of P+-Wannier bands transfers +2 partial Chern number to the inner set of P+-Wannier bands via the two P+-Wannier band gap closings in (b) and (c) related by inversion symmetry. After the deformation, the winding numbers of the nested Berry phases in the P+-eigenphase change according to C + γ 2 ,in → C + γ 2 ,in + 2 and C + γ 2 ,out → C + γ 2 ,out -2, as indicated in (a) and (d). (e)-(h) show the corresponding deformation of the P--Wannier bands related to (a)-(d) by the operation of time-reversal. In particular, (a) and (e), (b) and (g), (c) and (f), (d) and (h) are related to each other by time-reversal. The inner set of P--Wannier bands transfers +2 partial Chern number to the outer set of P--Wannier bands via the two P--Wannier band gap closings in (f) and (g) related by inversion symmetry. After the deformation, the winding numbers of the nested Berry phases in the P--eigenspace change according to C - γ 2 ,in → C - γ 2 ,in -2 and C - γ 2 ,out → C - γ 2 ,out +2, as indicated in (e) and (h). Both (b) and (f) are taken in the k l = k * l plane, and both (c) and (g) are in the k l = -k * l plane, in which the P±-Wannier band gap closes during the deformation.

1 =

 1 (4.64) that the winding numbers of the nested Berry phases in the P ± -eigenspaces are identical to the partial Chern numbers of the P ± -Wannier bands. Let us now consider a deformation of the Hamiltonian that preserves I and spinful T symmetries and keeps the energy and spin gaps open. Focusing on the P + -Wannier bands, from SEq. (4.83), if there is a Wannier gap closing between the inner and outer set of bands at γ +, * γ and crystal momentum (k * j , k * l ) [see SFig. 17(b)], there must be another gap closing at -γ +, * 1

  (a-d) we schematically show the case of SEqs. (4.100) and (4.101) with n = 1.

(4. 111 )

 111 The three weak Z 2 indices are determined by the half of the difference between the number of occupied energy bands of positive and negative parity at all 4 TRIMs in the k a • a i = π planes, modulo 2

Supplementary Figure 18 .

 18 Elementary layer constructions for topological crystalline phases in the magnetic space group P 1 (# 2.4) with weak Chern numbers ν1 = ν2 = 0. The coordinates ki and ri (i = 1, 2, 3) in momentum(k)-space and position(r)space are given by k = 3 i=1 k i 2π Gi and r = 3 i=1 riai respectively. {a1, a2, a3} are the r-space primitive lattice vectors and {G1, G2, G3} are the dual k-space primitive reciprocal lattice vectors such that ai • Gj = 2πδij (i, j = 1, 2, 3). The I-invariant constant-r3 planes contain r3 = 0 and r3 = 1/2, which correspond to the center and the boundary of the primitive unit cell along a3. Similarly, the I-symmetric constant-k3 planes contain k3 = 0 and k3 = π, which correspond to the center and the boundary of the BZ along G3. (a) shows the layer construction of a ν3 = 1 3D quantum anomalous Hall insulator (QAHI) in both r-space (right) and k-space (left). In r-space, the ν3 = 1 3D QAHI can be constructed by tiling 3D space with 2D I-symmetric Chern insulators with Chern number Cγ 1 = 1 placed in the I-symmetric r3 = 0 plane within each unit cell, as shown on the right-hand side of (a). The occupied energy bands in momentum space for this layer construction each have Chern number Cγ 1 = 1 in both the I-symmetric k3 = 0 and k3 = π planes. (b) shows the layer construction of a ν3 = 1 3D obstructed quantum anomalous Hall insulator (oQAHI) in both r-space (right) and k-space (left) [92]. In r-space, the ν3 = 1 3D oQAHI can be constructed by tiling 3D space with 2D I-symmetric Chern insulators with Chern number Cγ 1 = 1 placed in the I-symmetric r3 = 1/2 plane within each unit cell, as shown on the right-hand side of (b). The occupied energy bands in momentum space for this layer construction have Chern number Cγ 1 = 1 in both the I-symmetric k3 = 0 and k3 = π planes. The 3D oQAHI in (b) and 3D QAHI in (a) are related to each other by a half-lattice translation along a3. The inversion eigenvalues at the eight TRIMs compatible with the r-space layer construction for (a) and (b) with one occupied electronic energy band are also shown individually on the left-hand side of each panel, from which the Z4 × (Z2) 3 SIs (z4, z2,1, z2,2, z2,3) [SEqs. (4.111) and

  gives the (partial) Chern number for the (spin-resolved) hybrid Wannier bands centered at an I-symmetric plane at the origin of the unit cell. Similarly, the outer nested (partial) Chern number C (±) γ2,out gives the (partial) Chern number for the (spin-resolved) hybrid Wannier bands centered at an I-symmetric plane at the boundary of the unit cell. In particular, as we have shown in SEq. (4.65) of SN 4 C 3, the summation of C (±) γ2,in and C (±) γ2,out is the (partial) weak Chern number along the direction normal to the layers (in a layer construction with parallel layers). This allows us to associate each layer construction to a configuration of C gives the (partial) Chern number of the layer at the origin of the unit cell, and C (±) γ2,out gives the (partial) Chern number at the boundary of the unit cell.

3 .

 3 Responses of 3D QSHIs and T-DAXIs, and the Deduction of an Intermediate Spin-Weyl Regime Both the 3D QSHI and T-DAXI in SFig. 22(a,b) respectively are symmetry-indicated helical HOTIs, as they both have zero weak Z 2 invariants (z 2,1 = z 2,2 = z 2,3 = 0) and the strong Z 4 invariant z 4 = 2 (Supplementary Table

2 .

 2 and (1, 0) [SFig. 22(a,b)]: 1. The spin-resolved Wilson loop formalism from SN 3 B allows us to compute the partial weak Chern numbers, which characterize distinct topological contributions to the bulk and surface spin Hall conductivity that distinguish between 3D QSHIs and T-DAXIs [SEqs. (4.121) and (4.122)]. The nested spin-resolved Wilson loop formalism from SN 4 B allows us to deduce that both 3D QSHIs [SFig. 22(a)] and T-DAXIs [SFig. 22(b)] with odd winding numbers C ± γ2,in/out in their nested partial Berry phases (Supplementary Table

3

 3 and the nested spinresolved Wilson loop winding numbers (identified as the nested partial Chern numbers [SEq. (4.64)]) C ± γ2,in = ∓1, and C ± γ2,out = ∓1. Furthermore, we excitingly find that if α-BiBr is spin-resolved along s x , it realizes a T-DAXI state with a partial Chern vector ν ± = 0 and the nested spin-resolved Wilson loop winding numbers (identified as the nested partial Chern numbers [SEq. (4.64)]) C ± γ2,in = ∓1, C ± γ2,out = ±1, which are indicative of origin-independent nontrivial partial axion angles θ ± = π. Spin-Stable Phases 3D QSHI with ν ± 3 = ±2 [SFig. 22(a)] 3D T-DAXI [SFig. 22(b)]

± 3 =

 3 ±2 [SFig. 22(a)], a T-DAXI with θ ± mod 2π = π [SFig. 22(b) and SEq. (4.123)], or a DSTI with an even number of spin-Weyl points per half BZ.

Supplementary Figure 23 .

 23 2πŷ, and G 3 = 2πẑ. The corresponding eight-band Bulk and boundary spectrum of the eight-band helical HOTI tight-binding model introduced in SRef.[31], which has been reproduced in a slightly modified form in SEqs. (4.125), (4.128) and (4.129). (a) shows the 3D bulk band structure. The labels of the high-symmetry points are given in SFig. 4(a). (b) shows the 2D band structure of a slab infinite along x and y while finite along z with 21 unit cells. (c) shows the 1D band structure of a rod infinite along y while finite along x and z with size 21 × 21. Here "kx-directed" means that we have chosen G = 2πx in the P -and P±-Wilson loop matrices [SEqs. (3.2) and (3.17)]. (d) shows the kx-directed P -Wilson loop eigenphases as a function of ky for a 2D slab infinite along x and y while finite along z with 21 unit cells. There is an odd helical winding with band crossings at ky = 0 and π protected by the spinful T symmetry in (d). (e) shows the kx-directed P+-Wilson loop eigenphases as a function of ky for the same 2D slab model in (d). (f) shows the sum of the kx-directed P+-Wilson loop eigenphases in (e), which exhibit an overall -1 winding number. (g) shows the kx-directed P--Wilson loop eigenphases as a function of ky for the same 2D slab in (d).

. 128 )

 128 When A spin-mixing ̸ = 0 the Hamiltonian [SEq.(4.125)] does not conserve s z . In this section we take A spin-mixing = 0.5. (4.129) Although s z is not conserved, the gap in the P (k)s z P (k) spectrum remains open throughout the 3D BZ. The 3D band structure [shown in SFig. 23(a)] consists of four doubly degenerate bands due to the coexistence of I and spinful T symmetries. The 2D surfaces of this helical HOTI are fully gapped [SFig. 23(b)].

. 130 )

 130 where t a , t b and t c are all real numbers, and H.c. means the Hermitian conjugate. A nonzero value of t a will hybridize the single-particle states|d R,µ,σ ⟩ = d † R,µ,σ |0⟩ and |f R,µ,σ ⟩ = f † R,µ,σ |0⟩. Next,we couple these additional orbitals to the original helical HOTI model [SEq. (4.125)]. The creation [annihilation] operators of the spinful s and ip orbitals in the original helical HOTI model will be denoted as c † R,s,µ,σ [c R,s,µ,σ ] and c † R,ip,µ,σ [c R,ip,µ,σ ]. c † R,s,µ,σ [c † R,ip,µ,σ ] creates an electron in the µ th (µ = 1, 2) s [ip] orbital with spin σ (σ =↑, ↓) at the origin of the unit cell R. The Hamiltonian that couples the additional eight tight-binding basis states created by d † R,µ,σ and f † R,µ,σ to the original helical HOTI model [SEq. (4.125)] is given by

. 131 )

 131 Both H sp in SEq.(4.130) and H C in SEq.(4.131) are Iand T -symmetric. We take t a = 11.0, t b = -0.5, t c = 1.5, t d = 1.0. (4.132) The 3D bulk band structure of the resulting sixteen-band model has eight pairs of doubly-degenerate bands and is shown in SFig. 24(a) where the middle four doubly degenerate bands (eight bands in total) are from the original helical HOTI model [SEq. (4.125)], as indicated in the figure. Our choice |t a | ≫ |t b |, |t c |, |t d | ensures that the lowest four bands in SFig. 24(a) are topologically trivial.

  Supplementary Figure 24. P -and P±-Wilson loops for four bands in the sixteen-band helical HOTI model. The model is obtained by coupling the eight-band helical HOTI model introduced in SRef. [31] [and described in SEqs. (4.125), (4.128), and (4.129)] to eight additional trivial bands, as described in SEqs. (4.130), (4.131) and (4.132).

)

  Supplementary Figure 25. P -and P±-Wilson loops with G = 2πẑ [SEqs. (3.2) and (3.17)] of the sixteen-band helical HOTI model whose energy band structure is shown in SFig. 24(a). The model is obtained by coupling the eight-band helical HOTI model [SEqs. (4.125), (4.128), and (4.129)] to eight additional trivial bands described by SEqs. (4.130), (4.131) and (4.132).

  (4.134) are the negatives of the winding numbers of the corresponding nested spin-resolved Wilson loop eigenphases in SFig. 26(b,c,e,f,h,i), owing to the sign convention in SEq. (3.24), in which the Chern number is equal to the negative [positive] winding number of the k y -directed [k x -directed] Wilson loop eigenphases as k x → k x + 2π [k y → k y + 2π]. SEqs. (4.133) and (4.134) are consistent with the spin-stable topology of a T-DAXI characterized by the Z 2 × Z spin-stable topological indices

  out ] carry opposite signs [SN 4 C 4 and 6 H]. As discussed in SN 4 D, since our helical HOTI model is a spin-stable T-DAXI with an s z = ẑ • s spin gap, we have that the bulk topological contribution to its s z spin Hall conductivity in the xy-plane per unit cell along z vanishes (σ s T-DAXI ) topological = 0 [SEq. (4.122)]. However, we importantly find that it instead carries a bulk topological contribution to the partial magnetoelectric polarizability α ± = π • e 2 2πh [SEq. (4.124)]. To summarize, we have explicitly demonstrated the following bulk signatures of a symmetry-indicated, spin-gapped helical HOTI lying in the T-DAXI regime: 1. Independent of its spin resolution, a helical HOTI is characterized by an odd helical winding in the nested P -Wilson loop eigenphases as demonstrated in SFig. 26(a,d), whenever there is a Wannier gap as demonstrated in SFig. 25(a,d,g). Supplementary Figure 26. Nested P -and P±-Wilson loops with G = 2πẑ and G ′ = 2πŷ [SEqs. (4.24) and (4.47)] as the first and second closed-loop holonomy of the sixteen-band helical HOTI model whose energy band structure is shown in SFig. 24(a). The model is obtained by coupling the eight-band helical HOTI model [SEqs. (4.125), (4.128), and (4.129)] to eight additional trivial bands described by SEqs. (4.130), (4.131) and (4.132). We use the projector P6 indicated in SFig. 24(a) to construct the nested Wilson loops. (a), (b) and (c) are the nested P -, P+-and P--Wilson loop eigenphases of the inner Wannier bands denoted by Pin, P +

Supplementary Figure 27 .

 27 Layer-resolved partial Chern numbers C + jl (ni) of 2D slabs formed from our model of an Iand Tsymmetric helical HOTI [SEq. (4.125)] in the T-DAXI regime (see SN 4 E). We consider T-DAXIs both with (Aspin-mixing = 0.0) and without (Aspin-mixing = 0.5) spin-sz conservation. Due to time-reversal symmetry we have C + jl (ni) = -C - jl (ni), hence we show only C + jl (ni) in this figure. (a) shows the layer-resolved partial Chern number C + yz (nx) for a 2D slab finite along x with 15 unit cells and infinite along y and z. (b) shows the cumulative partial Chern number n ′ x =nx n ′ x =-7 C + yz (n ′ x ) as a function of nx beginning from the bottom layer in (a). (c) shows the layer-resolved partial Chern number C + zx (ny) for a 2D slab finite along y with 15 unit cells and infinite along z and x. (d) shows the cumulative partial Chern number n ′ y =ny n ′ y =-7 C + zx (n ′ y ) as a function of ny beginning from the bottom layer in (c). (e) shows the layer-resolved partial Chern number C + xy (nz) for a 2D slab finite along z with 15 unit cells and infinite along x and y. (f) shows the cumulative partial Chern number n ′ z =nz n ′ z =-7 C + xy (n ′ z ) as a function of nz beginning from the bottom layer in (e). As we can see in (a), (c) and (e), the nonzero values of C + jl (ni) are concentrated around the top and bottom layers, and this feature persists when spin-sz conservation is broken due to a nonzero value of the SOC term Aspin-mixing in SEq. (4.125). In addition, (b), (d), and (f) demonstrate the appearance of anomalous, half-quantized partial Chern numbers around the gapped surfaces of the T-DAXI, as the cumulative values of C + jl (ni) beginning from the bottom layer quickly converge to ± 1 2 and remain constant in the bulk. The numerical values of the partial Chern numbers obtained by summing C + jl (ni) over all the layers for (b), (d), and (f) are given in Supplementary Table

  (5.33) and(5.34) together imply that the surface spin Chern number of a T-DAXI satisfies C s jl,surface = C + jl,surface -C - jl,surface = 2n + 1(5.35) 

  used SEqs.(3.36) and(5.35) with n ∈ Z. On the contrary, for an isolated, lattice regularized, and spin-gapped 2D TI the topological contribution to the spin Hall conductivity [SEq.(3.36)] must be [σ s H ] 2D TI,topological =

  ) where the product of projectors [P (k)] is taken along a straight path from k to k+G 1 , or equivalently from (k 1 , k 2 , k 3 ) to (k 1 + 2π, k 2 , k 3 ) in reduced coordinates. In SEq. (6.1) the matrix [V (G)] defined in SEq. (2.8) encodes the positions of the tight-binding basis orbitals, and [P (k)] is the projector onto the occupied eigenvectors |u n,k ⟩ of the Bloch Hamiltonian as defined in SEq. (3.1). For completeness, we summarize the important properties of [V (G)] and [P (k)] below: [V (G)] αβ = e iG•rα δ αβ , (6.2) [P (k)] = Nocc n=1 |u n,k ⟩⟨u n,k |, (6.3)

  ) where α, β = 1 . . . N sta in SEq. (6.2) label the tight-binding basis states within the primitive unit cell, and N occ in SEq. (6.3) is the number of occupied energy bands. From the definition in SEq. (6.3), the matrix projector [P (k)] is Hermitian, such that [P (k)] † = [P (k)]. (6.5) For a system with inversion symmetry, [V (G)] and [P (k)] transform under I according to [I][V (G)][I] † = [V (-G)], (6.6) [I][P (k)][I] † = [P (-k)]. (6.7)

{γ 1 ,

 1 j (k 2 , k 3 )|j = 1 . . . N occ } mod 2π = {-γ 1,j (-k 2 , -k 3 )|j = 1 . . . N occ } mod 2π.(6.10) We refer to the I constraint in SEq. (6.10) as an effective "particle-hole" symmetry in the P -Wilson loop eigenphases. A more operational way to interpret SEq. (6.10) is that the P -Wannier spectrum {γ 1,j (k 2 , k 3 )|j = 1 . . . N occ } is invariant under a simultaneous sign-change of the momenta (k 2 , k 3 ) → (-k 2 , -k 3 ) and the phase γ 1 → -γ 1 . Recall from SN 3 A that the eigenphases [SEq. (6.10)] of the P -Wilson loop operator [SEq.(6.1)] correspond to the localized positions of hybrid Wannier functions formed from the set of occupied states

  ) where we have inserted the identity matrix [I] † [I] since [I] is unitary. Combining SEqs. (6.8) and (6.23), we obtain W † 1,-k,G1 [I]|w j (k)⟩ = e iγ1,j (k2,k3) [I]|w j (k)⟩. (6.24)

( 6 .

 6 10), SEq.(6.25) implies that the eigenvectors {|w j (k)⟩ |j = 1 . . . N occ } and {|w j (-k)⟩ |j = 1 . . . N occ } of W 1,k,G1 and W 1,-k,G1, respectively, are related to each other by[I].Suppose that the G 1 -directed P -Wannier bands can be separated into disjoint groupings and we choose a grouping of N W bands described by{γ 1,j (k 2 , k 3 )|j = 1 . . . N W } (6.26)to form the projector[ P (k)] = N W j=1 |w j (k)⟩⟨w j (k)|, (6.27) which projects onto the vector space spanned by the N W Wannier band eigenstates |w j (k)⟩ from SEq. (6.20). By definition, the matrix projector [ P (k)] in SEq. (6.27) is Hermitian, and therefore satisfies [ P (k)] † = [ P (k)]. (6.28)

[

  I][ P (k)][I] † = [ P (-k)]. (6.29) Combining SEqs. (6.20), (6.25), and (6.29), such a grouping of N W Wannier bands [SEq. (6.26)] must satisfy {γ 1,j (k 2 , k 3 )|j = 1 . . . N W } mod 2π = {-γ 1,j (-k 2 , -k 3 )|j = 1 . . . N W } mod 2π. (6.30)

  (2.12) on the energy eigenvectors |u n,k ⟩, as well as the commutation relation SEq.(4.18) between the matrices [V (G)] and [V (G 1 )]. SEq.(6.32) indicates that W 1,k+G,G1 and W 1,k,G1 are related to each other by a similarity transformation, hence implies that their eigenvectors |w j (k + G)⟩ and |w j (k)⟩ can be chosen to satisfy SEq.(6.31).Using the definition in SEq. (6.27) of the matrix projector [ P (k)] onto the N W Wannier band eigenfunctions with the eigenphases in SEq.(6.26), we can construct the following N sta × N sta P -Wilson loop operator along a closed loop parallel to G 2 ,

(6. 55 )

 55 In terms of the set of eigenphases γ 1,j (k 2 , k 3 ), SEq. (6.55) implies{γ 1,j (k 2 , k 3 )|j = 1 . . . N occ } mod 2π = {γ 1,j (-k 2 , -k 3 )|j = 1 . . . N occ } mod 2π. (6.56) SEq. (6.56) indicates specifically that the P -Wilson loop eigenphase spectrum (i.e. the P -Wannier band structure) is invariant under a reversal of the sign of the crystal momentum (k 2 , k 3 ) → (-k 2 , -k 3 ) . Recall from SN 3 A that the eigenphases [SEq. (6.56)] of the P -Wilson loop operator [SEq. (6.1)] correspond to the localized positions of hybrid Wannier functions formed from the set of occupied states

. 57 )

 57 Notice that SEq.(6.57) does not lead to the quantization of γ 1 (k 2 , k 3 ) at the four TRIMs (k T RIM 2 , k T RIM 3

  [T ] is antiunitary and satisfies [T ] 2 = -1, then [V (G)] † [T ] is also antiunitary and satisfies [V (G)] † [T ] 2 = -1, which can be deduced by using SEq. (6.136) proved in SN 6 L. Hence Kramers' theorem can be applied to deduce the orthogonality between |w j (k)⟩ and [V (G)] † [T ] |w j (k)⟩ at the BZ boundary TRIMs k = G/2.

. 68 )

 68 Notice that SEq.(6.68) does not lead to the quantization of γ 2 (k 1 , k 3 ) at the four TRIMs (k T RIM 1 , k T RIM 3

. 74 )

 74 SEq.(6.74) is true provided that the projector [ P G (k)] [SEq.(4.23)] onto the isolated grouping of N W G-directed P -Wannier bands satisfies the time-reversal-symmetric constraint[T ][ P G (k)][T ] -1 = [ P G (-k)]. (6.75)Finally, since (γ 2 ) j,k,G,G ′ is independent of the momentum component k • a ′ (where a ′ is the primitive lattice vector dual to G ′ ), Kramers' theorem implies that if T 2 = -1 then the eigenphases (γ 2 ) j,k,G,G ′ are twofold degenerate at TRIMs k T RIM satisfying (k T RIM • a) mod π = 0 for each primitive lattice vector a ̸ = a ′ .E. Unitary I Constraint on the P±-Wilson Loop

[

  I]s = s[I],(6.76) where s = s • n is the spin operator along the direction n and s = (s x , s y , s z ) is given in SEq.(2.13). Acting with inversion on the projected spin operator[s(k)] ≡ [P (k)]s[P (k)] [SEq. (2.14)],we have that for an inversion-symmetric system[I][s(k)][I] † = [I][P (k)][I] † [I]s[I] † [I][P (k)][I] † = [P (-k)][I]s[I] † [P (-k)] = [P (-k)]s[P (-k)] = [s(-k)], (6.77) where we have used SEqs. (6.7), (6.76), and the unitarity of [I]. Next, we assume that the spin bands, defined as the eigenvalues of [s(k)] with eigenvectors in the image of [P (k)], can be separated into disjoint upper (+) and lower (-) groupings. The corresponding eigenvalue equation for [s(k)] is then [

F

  . Unitary I Constraint on the Nested P±-Wilson Loop

. 116 )

 116 Next we consider the inversion operation acting on the creation operators of the tight-binding basis states[107] 

. 119 )

 119 Now, let us consider the expressionIψ † k+G I † . (6.120) 

. 124 )

 124 Since [I] is unitary, we hence conclude that[I][V (G)][I] † = [V (-G)].(6.125)L. Transformation of the [V (G)] Matrix Under Antiunitary T

  (7.4) to compute the spin-s z Hall conductivity σ s,z xy as a function of v Mz . Note that due to the 4mm symmetry of the Hamiltonian [SEqs. (3.55) and (3.59)], the spin conductivity tensor satisfies σ s,z xy = -σ s,z yx . (7.7) This follow from the fact that m 110 symmetry (which is an element of wallpaper group p4mm) maps x → -y, y → -x, and s z → -s z . Applying m 110 to the Kubo formula [SEq. (7.2)] yields the antisymmetry condition [SEq. (7.7)].

Supplementary Figure 28 .

 28 Spin-sz Hall conductivity σ s,z xy for the fragile TI model given by SEqs. (3.55) and (3.59), plotted as a function of sz-nonconserving SOC strength vM z .

Supplementary Figure 29 .

 29 Layer-resolved spin Hall conductivity σ s,z H (nz) of a 2D slab formed from our model of an Iand T -symmetric helical HOTI [SEq. (4.125)] in the T-DAXI regime (see SN 4 E) with spin sz conservation (Aspin-mixing = 0.0). (a) shows the layer-resolved spin Hall conductivity σ s,z H (nz) for a 2D slab finite along z with 15 unit cells and infinite along x and y. (b) shows the cumulative spin Hall conductivity n ′ z =nz n ′ z =-7 σ s,z H (n ′ z ) as a function of nz beginning from the bottom layer in (a). As we can see in (a), the nonzero values of σ s,z H (nz) are concentrated around the top and bottom layers. In addition, (b) demonstrates the appearance of anomalous odd-integer spin Hall conductivity (in units of e/(4π)) around the gapped surfaces of the T-DAXI, as the cumulative values of σ s,z H (nz) beginning from the bottom layer quickly converge to -e/4π and remain constant in the bulk.

31 .

 31 51). Each primitive (unit) cell of β-MoTe 2 contains four Mo atoms and eight Te atoms [SFig. 31(a)]. The primitive Bravais lattice vectors of β-MoTe 2 are given by a 1 = a = (6.3299999 Å)x = ax, a 2 = b = (3.4690001 Å)ŷ = bŷ, a 3 = c = -(0.9467946 Å)x + (13.8276235 Å)ẑ = c cos β x + c sin βẑ, (9.1) where a, b, and c denote the conventional-cell lattice parameters [242] a = |a| = 6.3299999 Å, b = |b| = 3.4690001 Å, c = |c| = 13.8599997 Å, (9.2) First-principles electronic structure of β-MoTe2. (a) The crystal structure of β-MoTe2, which respects the symmetries of space group (SG) P 21/m1 ′ (#11.51) [242] . There are four Mo atoms and eight Te atoms in each primitive (unit) cell. In (a), the red (black) arrows denote the primitive-cell lattice (Cartesian-unit) vectors [SEq. (9.1)]. (b) The bulk Brillouin zone (BZ) for β-MoTe2; the primitive reciprocal lattice vectors Gi (blue arrows) are given in SEq. (9.3), and notably differ from the Cartesian reciprocal unit vectors (black arrows). In (b), the time-reversal-invariant k (TRIM) points are labeled for consistency using the convention previously employed in SRef. [31], which we note differs from the labeling convention for SG P 21/m1 ′ (#11.51) on the Bilbao Crystallographic Server [243-245]. (c) The first-principles-(DFT-) obtained electronic structure of β-MoTe2 plotted along the green dashed k-path in (b). The Fermi energy is denoted as EF . such that for β-MoTe 2 , a, b, and c respectively coincide with |a 1 |, |a 2 |, and |a 3 |, because nonmagnetic SG P 2 1 /m1 ′ (#11.51) is primitive (P ) monoclinic. In SEq. (9.1), β ≈ 93.91699963419269 • is the angle between a 1 and a 3 . The primitive reciprocal lattice vectors [SFig. 31(b)] for β-MoTe 2 are correspondingly given by

  For the following discussion, we denote the Hamiltonian of the Wannier-based tight-binding model as [H MoTe2 ]. The single-particle Hilbert space of [H MoTe2 ] consists of 44 spinful Wannier functions per unit cell; the Bloch Hamiltonian [H MoTe2 (k)] is therefore an 88 × 88 matrix. To reduce the computational resources required for our spin-resolved and Wilson loop calculations, we next truncated [H MoTe2 ] to only contain hopping terms with an absolute magnitude greater than or equal to 0.001eV. We have confirmed that this truncation affects neither the band ordering nor the qualitative features of the band structure near the Fermi energy. Specifically in SFig. 32(a,b), we show the band structure of β-MoTe 2 computed from the Wannier-based tight-binding model [H MoTe2 ], which shows good agreement with the DFT-obtained band structure in SFig. 31(c), demonstrating that our truncated Wannier-based tight-binding model well-approximates the electronic structure of β-MoTe 2 . In both the DFT-obtained and Wannier tight-binding band structures, there is an avoided crossing between the valence and conduction bands along the Γ -Y line [enlarged view B. Spin-Resolved Topology of β-MoTe2

Supplementary Figure 33 .

 33 33(c), we see that the partial Chern numbersC ± γ1 (n xz , k 3 = 0) = ±2, while C ± γ1 (n xz , k 3 = π) = 0.This is precisely what one would expect from a naive doubling of the partial Chern numbers of Partial Chern numbers for the occupied bands of β-MoTe2 as a function of the spin resolution direction n in P n • sP . The direction n of the spin operator is taken to lie in the upper hemisphere nz ≥ 0 without loss of generality, which is sufficient to determine the spin-resolved topology (here partial Chern numbers) for all n in time-reversal-(T -) invariant insulators, because T symmetry relates the ±n spin resolution directions. The x-and y-axes in panels (a

Supplementary Figure 35 .

 35 γ1 (n xz , k 3 ) between k 3 = 0 and k 3 = π Energy spectrum and Weyl nodes for β-MoTe2 in a strong (x + ẑ)-directed Zeeman field. (a) The band structure of [HZ ] in SEq. (9.8), which was obtained by applying a strong (x + ẑ)-directed (spin-) Zeeman field to a Wannier-based tight-binding model of β-MoTe2 obtained from DFT calculations (SN 9 A). Near E ≈ -B = -100eV in (a), the electronic band structure appears qualitatively similar to the zero-field bulk band structure in SFig. 32(a), albeit with half the number of bands [the remaining bands have energies E ≈ +B, and so do not appear (a)]. Because the product of inversion and time-reversal symmetries (I × T ) is broken by the large Zeeman field, the energy bands in (a) are singly degenerate at generic k points, as opposed to the doubly-degenerate bulk bands in β-MoTe2 in the absence of an external field [SFig. 32(a)]. (b) shows an enlarged view of the energy band structure along the Γ -Y line near the green circle in (a). In (b), there is an avoided crossing between the red and blue bands. Nevertheless, upon closer examination, we find that the red and blue bands in (a,b) do indeed cross and form Weyl points at lower-symmetry k points throughout the 3D BZ. (c) shows the positions and monopole chiral charges of the eight Weyl nodes in the energy spectrum of [HZ ]. The locations and chiral charges of the Weyl points in (c) are nearly identical to the locations and chiral charges of the nxz spin-Weyl nodes in β-MoTe2 [SFig. 32(d,e)]. (d) shows a projection of the Weyl nodes in (c) onto the k1 -k2 plane; Weyl nodes with positive (negative) chiral charges are shown in orange (blue).

(9. 5 ) 36 .

 536 The parameterization in SEq.(9.5) is chosen such that the angular variables (ϑ, ϕ) = (0, 0), (0.5π, 0), and (0.5π, 0.5π) Spectral function for the (001)-surface of β-MoTe2 in a strong (x + ẑ)-directed Zeeman field. (a) shows the surface spectral function at E = (-B -0.02)eV as a function of k1 and k2 for an (001)-oriented slab of the tightbinding model [HZ ] in SEq. (9.8), which consists of a DFT-obtained, Wannier-based tight-binding model of β-MoTe2 (SN 9 A) subjected to a B = 100eV (spin-) Zeeman field. In (a), red and black dots mark the positions of the Weyl nodes in the energy spectrum with positive and negative chiral charges, respectively. Arc-like surface features can be seen emanating from the surface projections of the bulk Weyl points. (b-e) show the surface spectral function computed on circles surrounding the negatively-charged Weyl nodes [indicated in panel (a)] plotted as functions of E and the polar angle φ of the circles in (a). φ = 0 corresponds to the positive k1 axis, and the circles are traversed counterclockwise in (b-e) as indicated by the black arrows in (a). In (b-e), gap-traversing chiral modes indicative of topological surface Fermi arcs can be seen emanating towards the center of the surface BZ. In panel (b), we see that the Fermi-arc chiral mode crosses the dashed black line near φ ≈ 3π/2, indicating that the Fermi arc is directed towards the origin in (a). In (b), there is specifically one chiral surface state with a negative slope crossing the dashed line, in correspondence with the -1 charge of the encircled Weyl node in (a). (c) and (d) show surface spectral functions surrounding the surface projections of the two Weyl nodes closest to the origin in the k2 < 0 half of (a). The Weyl points in (c,d) are embedded into the continuum of bulk states at lower energies. In both (c,d), a single chiral surface state with negative slope crosses the dashed line, corresponding again to the -1 charge of the encircled Weyl nodes in (a). (e) shows the surface spectral function surrounding the Weyl node in the upper right quadrant of (a). In (e), there is a Fermi-arc surface state near φ = π, which corresponds to an arc emanating towards the center of the surface BZ in (a). A single chiral surface state with negative slope crosses the dashed line in (e), corresponding to the -1 charge of the encircled Weyl-node projection in (a). To draw comparison with the Zeeman-field energy spectrum in (a), in (f), we plot the zero-field (001)-surface spectral function of β-MoTe2 at E = -0.02eV and indicate the surface projections and partial chiral charges of the bulk nxz spin-Weyl nodes. The zero-field spin-Weyl points in (f) lie at almost identical k positions and carry the same chiral charges as the Zeeman-induced Weyl points in (a).

[

  I][T ][P (k)]s[P (k)]([I][T ]) -1 = -[P (k)]s[P (k)], (9.6) where [I] and [T ] are the unitary and antiunitary matrix representatives of I and spinful T acting on the 88 × 88 Wannier-based tight-binding Bloch Hamiltonian matrix [H MoTe2 (k)] that we obtained from DFT calculations of the electronic structure of 3D β-MoTe 2 (SN 9 A). In SEq. (9.6), [P (k)] denotes the matrix projector [P (k)] = 56 n=1 |u n,k ⟩⟨u n,k | onto the 56 occupied (valence) bands of β-MoTe 2 (see SN 9 A), where |u n,k ⟩ is the n th eigenvector of [H MoTe2 (k)]. As discussed in SN 2 B, the presence of I × T symmetry [SEq. (9.6)] further implies that Spec ([P (k)]s[P (k)]) = -Spec ([P (k)]s[P (k)]) , (9.7) in which Spec(O) denotes the spectrum of the operator O. From SEq. (9.7), we can then define the spin gap function ∆ s (k) as the difference between the smallest positive and largest negative P sP eigenvalues at each crystal momentum k. From the values of ∆ s (k) taken across the BZ for a given spin operator s = n • s, we then define the spin gap ∆ s as ∆ s ≡ min k∈BZ [∆ s (k)], namely the minimal value of ∆ s (k) over the entire BZ.

2

 2 is only constrained by symmetries other than I and T for n = ŷ (m y -preserving) and n lying in the xz-plane (m y × T -preserving). Together with our previous observation of numerically stable partial Chern numbers for n lying in the xz-plane [SFig. 33(a,b,c)], and our direct computation of the spin spectrum for n = ŷ [the spin-Weyl state shown in SFig. 33(d)], the spin-gaplessness of β-MoTe 2 in SFig. 34 hence specifically indicates that 3D β-MoTe 2 realizes a spin-Weyl state for all choices of spin resolution direction n. C. Physical Observables of the Spin-Weyl State in β-MoTe2: Surface Fermi Arcs in a Strong Zeeman Field

  For n = nxz = (x + ẑ)/ √ 2 in β-MoTe 2 [SFig. 32(c,d,e)], we specifically expect that the low-energy (E ∼ -B) bands of [H Z ] = [H MoTe2 ] -B √ 2 ([s x ] + [s z ]) = [H MoTe2 ] -Bs xz (9.8) will host Weyl nodes that are adiabatically connected to the spin-Weyl nodes in the P s xz P spectrum. To verify this, in SFig. 35(a,b) we compute the energy band structure for [H Z ] in SEq. (9.8) with the external Zeeman field strength set to B = 100eV. Along high-symmetry BZ lines, we see that the electronic band structure at E ≈ -B ≈ -100eV in the presence of a strong (x + ẑ)-directed Zeeman field structure strongly resembles that of the original field-free Hamiltonian [shown in SFig. 32(a,b)], albeit with half the number of bands [the remaining bands lie at energies E ≈ +B, and hence do not appear in SFig. 35(a)]. As was done previously in SN 9 B 1, we next perform a numerical minimization using the Nelder-Mead method [259] to search for degeneracies between the red and blue bands near E = -100eV in SFig. 35(a,b). We find that, like the nxz spin spectrum of β-MoTe 2 [SFig. 32(d,e)], the energy spectrum of [H Z ] contains four Weyl nodes per half-BZ. In SFig. 35(c,d) we plot the locations and chiral charges of the Weyl nodes in the energy spectrum of [H Z ] [SEq. (9.8)] in the vicinity of E = -100eV. We find that as expected from the analytic analysis in SN 2 G, the energy Weyl nodes in SFig. 35(c,d) lie at very similar positions to the nxz spin-Weyl nodes in β-MoTe 2 [SFig. 32(d,e)]. Finally, as established in SN 2 G and 3 H, the presence of Weyl nodes in the spectrum of [H Z ] allows us to infer the existence of topological surface Fermi arcs on surfaces of β-MoTe 2 subjected to a strong (spin-) Zeeman field. To verify this intuition, we next construct an L = 21 unit-cell-thick slab of the tight-binding model [H Z ] with a surface normal vector pointing in the experimentally-accessible (001)-direction of β-MoTe 2 [260-267]. To remove dangling-bond surface states, we have added a constant chemical potential offset for atoms in the quarter of the unit cell closest to each surface to passivate the outermost (fractional) van der Waals layer of the tight-binding model [H Z ]. In SFig. 36, we plot top-[(001)-] surface spectrum of [H Z ] obtained from surface Green's functions. SFig. 36(b-e) specifically show the (001)-surface spectral function as a function of energy and position plotted along circles surrounding the surface projections of the four energy Weyl points with -1 chiral charges. In all four panels [SFig. 36(b-e)], we observe a chiral surface mode traversing the (direct) gap between the bands surrounding E = -100eV, confirming the presence of topological surface Fermi arcs. In SFig. 36(a), we show the (001)-surface spectral function of [H Z ] for a fixed energy (-B -0.02)eV, plotted as a function of k 1 and k 2 . The Fermi arcs in SFig. 36(b-e) can be seen extending towards the center of the BZ. To draw comparison with the energy spectrum of [H Z ], in SFig. 36(f), we show the surface spectral function of [H MoTe2 ] in the absence of a Zeeman field and label the (001)-surface projections and partial chiral charges of the nxz spin-Weyl points. The zero-field spin-Weyl points in SFig. 36(f) lie at almost identical k positions and carry the same chiral charges as the Zeeman-induced Weyl points in SFig. 36(a) [see also SFigs. 32(d,e) and 35(c,d)]).
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 12312331231123124 . Details of Density Functional Theory Calculations on α-BiBr α-BiBr crystallizes in a centrosymmetric structure that respects the symmetries of nonmagnetic SG C2/m1 ′ (#12.59). Each primitive (unit) cell of α-BiBr contains eight Bi atoms and eight Br atoms [SFig. 37(a)]. The primitive lattice vectors of α-BiBr are given by a 1 = (6.5320001 Å)x -(2.1689999 Å)ŷ, a 2 = (6.5320001 Å)x + (2.1689999 Å)ŷ, a 3 = -(6.0057388 Å)x + (19.1409210 Å)ẑ, (10.1) SG C2/m1 ′ (#12.59) is generated by C-face-centered 3D lattice translations [SEq. (10.1)], as well as C 2y (180 • rotation about the Cartesian y axis), I, and T symmetries. In particular, C 2y and I act on the lattice vectors a i asC 2y : (a 1 , a 2 , a 3 ) → (-a 2 , -a 1 , -a 3 ), (10.2) I : (a 1 , a 2 , a 3 ) → (-a 1 , -a 2 , -a 3 ). (10.3)The primitive reciprocal lattice vectors G i [SFig.37(b)] dual to the lattice vectors a i in SEq. (10.1) satisfy a i • G j = 2πδ ij , and are specifically given by G To provide symmetry intuition for the k-space electronic structure and spin-orbital texture of α-BiBr, we note that C 2y and I act on the primitive reciprocal lattice vectors {G 1 , G 2 , G 3 } in SEq.(10.4) asC 2y : (G 1 , G 2 , G 3 ) → (-G 2 , -G 1 , -G 3 ), I : (G 1 , G 2 , G 3 ) → (-G 1 , -G 2 , -G 3 ). (10.5)Because SG C2/m1 ′ (#12.59) is C-face centered, and not primitive monoclinic, α-BiBr is sometimes instead characterized by its conventional (primitive supercell) lattice vectors [SFig.37(a)]a = a 1 + a 2 = ax, b = -a 1 + a 2 = bŷ, c = a 3 = c cos β x + c sin βẑ,(10.6) where a, b, and c denote the conventional-cell lattice parameters [268] a = |a| = 13.0640002 Å, b = |b| = 4.3379998 Å, c = |c| = 20.0610009 Å. (10.7)In SEq. (10.6), β ≈ 107.41999821484573 • is the angle between a and c[START_REF] Von Benda | Zur Kenntnis von BiBr und BiBr1,167[END_REF]. The conventional reciprocal lattice vectors of α-BiBr are correspondingly given by[52] 

  Supplementary Figure 38. Energy bands, energy gaps, P sP spin bands, and P sP spin gaps for the Wannier-based tightbinding model of α-BiBr. (a) Tight-binding energy band structure along high-symmetry BZ lines in α-BiBr [dashed green lines in SFig. 37(b)]. In (a), the bands are doubly degenerate due to bulk I × T symmetry [178], and the highest valence (lowest conduction) bands are colored in blue (red). (b,c) Respectively the P szP and P sxP band structures computed along the same high-symmetry BZ lines as the electronic band structure in (a), with the positive (negative) spin bands colored in orange (blue). (d) Direct energy gaps ∆(k) of the Wannier-based tight-binding model in (a) at k points sampled from a uniformly spaced [in the reduced k coordinates defined in SEq. (10.9) and the surrounding text] 100 × 100 × 100 grid over the 3D BZ of α-BiBr. We find that the direct energy gap takes the minimal value ∆(k) ≈ 0.24196355481095755 eV. (e,f) Respectively the direct P szP and P sxP spin gaps ∆s(k) (in the units of ℏ/2) computed over the uniform (in reduced coordinates) k-grid employed in (d). For the spin direction n = ẑ in panel (e) [n = x in panel (f)], we find that the direct spin gap takes the minimal value ∆s z (k) ≈ 0.9309028798325673 [∆s x (k) ≈ 0.2550432063802285]. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package[START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs.[8, 15] and the present work.

[

  I][T ][P (k)]s[P (k)]([I][T ]) -1 = -[P (k)]s[P (k)], (10.11) where [I] and [T ] are the matrix representatives of I and spinful T symmetries acting on the 96 × 96 Wannier-based tight-binding Bloch Hamiltonian matrix [H BiBr (k)] that we obtained from DFT calculations of the electronic structure of α-BiBr (SN 10 A), and where [P (k)] denotes the matrix projector [P (k)] = 64 n=1 |u n,k ⟩⟨u n,k | onto the 64 occupied (valence) bands of α-BiBr. As discussed in SN 2 B, the presence of bulk I × T symmetry [SEq. (10.11)] further implies that Spec ([P (k)]s[P (k)]) = -Spec ([P (k)]s[P (k)]) , (10.12)

{G 1 ,

 1 G 2 , G 3 }. As discussed in SN 3 C and 4 C 3, in spin-gapped 3D insulators, the partial Chern vectors ν ± indicate the topological contributions σ H s=n•s,top,ij to the bulk non-quantized spin Hall conductivity σ H s=n•s,ij (i ̸ = j and i, j ∈ {1, 2, 3}). As shown in SEq. (4.73), σ H s=n•s,ij specifically satisfies the relation σ H s=n•s,top,ij = Supplementary Figure 40. Partial Chern numbers of the occupied bands in α-BiBr. In each panel, we show the partial Chern numbersC + γ 1 (n, ki) in the high-symmetry (T -invariant) ki = 0, π (i = 1, 2, 3) BZ planes. Because T symmetry enforces that C + γ 1 (-n, ki) = -C + γ 1 (n, ki), and because C - γ 1 (n, ki) = -C + γ 1 (n, ki) at ki = 0, π,then we in this figure only show C + γ 1 (n, ki) sampled over the positive spin hemisphere defined in SEq. (10.13) for which n = ŷ is taken to be the north pole. At each point in each panel in this figure, we show the value of the partial Chern number C + γ 1 (n, ki) plotted at the position of n projected onto the xz-plane. As shown in (a,b,d,e), C + γ 1 (n, ki) = 0 at all n for i = 1, 2 and ki = 0, π. Conversely for k3 = 0, π, there are large regions of n parameter space (centered around n = ±ẑ) in which the partial Chern numbers are nontrivial C + γ 1 (n, k3) = ±2. Though the regions with C + γ 1 (n, k3) = ±2 in (c,f) [blue and orange circles] appear identical, we note that there exist small numerical differences in the shape and range of the intermediate C + γ 1 (n, k3) = 0 regions in (c,f) [green circles]. Along with the nonvanishing global spin gap for most n in α-BiBr established in SFig. 39, and the nontrivial (partial) SIs of α-BiBr (see SN 4 D 2 and SRefs.

  (a,b,d,e), we find thatC ± γ1 (n, k 1 = 0) = C ± γ1 (n, k 1 = π) = C ± γ1 (n, k 2 = 0) = C ± γ1 (n, k 2 = π) = 0,(10.17)for all n in α-BiBr. Conversely in the k 3 = 0, π BZ planes, C ± γ1 (n, k 3 = 0) and C ± γ1 (n, k 3 = π) take nonvanishing values (±2) over a large range of n centered around n = ẑ, and vanish (while remaining numerically stable) over a smaller range of n centered around n = x, such thatC ± γ1 (ẑ, k 3 = 0) = C ± γ1 (ẑ, k 3 = π) = ∓2,(10.18)C ± γ1 (x, k 3 = 0) = C ± γ1 (x, k 3 = π) = 0. (10.19) 

  10.21) shows remarkable agreement with the partial weak Chern numbers of α-BiBr. Specifically as discussed in SEq. (4.73) and the surrounding text, an s-conserving, T -invariant quantum spin Hall state will carry a bulk spin Hall conductivity of [e/(4π)] × 2ν + (noting that ν + = -ν -due to T symmetry). This implies that if α-BiBr had perfect s z spin symmetry, it would carry the quantized spin Hall conductivities (per cell) of σ s,z 12 = [e/(4π)] × -4, σ s,z 31 = σ s,z 23 = 0 (i.e. the spin Hall conductivity would be entirely given by the topological contribution). Hence even though the s z spin gap in α-BiBr ∆ sz ≈ 0.9309028798325673 is only ≈ 46% of the maximum possible value ∆ s = 2 [see SFig. 38(e)], indicating the presence of non-negligible s z -nonconserving SOC, the bulk intrinsic spin Hall conductivity (per unit cell) in SEq. (10.21) only deviates slightly from the quantized topological contribution that originates from its nontrivial spin-resolved topology.

22 )

 22 Previously in SN 10 B, we found that α-BiBr realizes a ν ± = 0 T-DAXI for n = x. In a T-DAXI state, the bulk topological contribution to the spin Hall conductivity vanishes (though the bulk nontrivial 3D partial axion angles θ ± = π give rise to an anomalous 2D surface spin Hall conductivity, see SN 4 D 3, 5, and 7 C). Even though the s x spin gap in α-BiBr is even smaller than its s z spin gap [∆ sx ≈ 0.2550432063802285, ≈ 12% of the maximum possible value ∆ s = 2, see SFig. 38(f)], we find that the s x spin Hall conductivity nevertheless nearly matches the vanishing value expected for an idealized s x -conserving T-DAXI state.

  for each eigenstate of P sP within the image of P with eigenvalue λ with |λ| < 1, there exists an eigenstate of QsQ within the image of Q with eigenvalue -λ, and vice versa. SEq. (2.28) shows that given |ψ⟩ in the image of P with P sP |ψ⟩ = λ|ψ⟩ where |λ| < 1, there exists a state |ϕ⟩ in the image of Q satisfying QsQ|ϕ⟩ = -λ|ϕ⟩ where Q = 1 -P . In particular, |ϕ⟩ satisfies s|ϕ⟩ = |α||ψ⟩ -λ|ϕ⟩, where |α| = √ 1λ 2 . Next, we will show that if we have |ϕ 1 ⟩ and |ϕ 2 ⟩-both in the image of Q-that are constructed from two orthogonal states |ψ 1 ⟩ and |ψ 2 ⟩ in the image of P with non-unit P sP eigenvalues, then |ϕ 1 ⟩ and |ϕ 2 ⟩ are orthogonal. To see this, we can rewrite the overlap ⟨ϕ 1 |ϕ 2 ⟩ as

	From SEq. (2.23) we deduce immediately that |λ| ≤ 1. Furthermore, λ = 1 if and only if |ψ⟩ is an eigenstate of s. Going further, if |λ| < 1, then we can define a normalized state
	|ϕ⟩ ≡	1 |α|	| φ⟩	(2.24)
	such that			
	s|ψ⟩ = λ|ψ⟩ + |α||ϕ⟩.	(2.25)
	Acting with s again we see that			
	s 2 |ψ⟩ = |ψ⟩ = λs|ψ⟩ + |α|s|ϕ⟩ = |λ| 2 |ψ⟩ + λ|α||ϕ⟩ + |α|s|ϕ⟩.	(2.26)
	In order to satisfy the equality in SEq. (2.26), we must have that	
	s|ϕ⟩ = |α||ψ⟩ -λ|ϕ⟩.	(2.27)
	From which we deduce that			
	QsQ|ϕ⟩ ≡ Q(k)n • sQ(k)|ϕ⟩ = -λ|ϕ⟩,	(2.28)
	i.e.			
				)
	⟨ψ|ψ⟩ = 1, P sP |ψ⟩ = λ|ψ⟩.	(2.18) (2.19)
	SEqs. (2.17)-(2.19) imply that			
	s|ψ⟩ = λ|ψ⟩ + | φ⟩,	(2.20)
	where			
	Q| φ⟩ ≡ (I 2N -P )| φ⟩ = | φ⟩, ⟨ φ| φ⟩ = ⟨ψ| sQs |ψ⟩ ≡ |α| 2 .	(2.21) (2.22)
	We then have			
	1 = ⟨ψ|ψ⟩ = ⟨ψ|s 2 |ψ⟩ = (λ⟨ψ| + ⟨ φ|)(λ|ψ⟩ + | φ⟩) = |λ| 2 + |α| 2 .	(2.23)

  are null eigenstates of P sP and QsQ. We see then that [s reduced ] has a null eigenvalue if and only if P sQ + QsP has a pair of eigenvalues of modulus 1.

							and (2.27), we can write
	s(a|ψ⟩ + b|ϕ⟩) = (|ψ⟩, |ϕ⟩)	λ |α| |α| -λ	a b	≡ (|ψ⟩, |ϕ⟩)M	a b	.	(2.36)
	We can see that SEq. (2.36) is a 2 × 2 matrix equation, where the matrix M has trace tr(M) = 0 and deter-minant det M = -1. By diagonalizing M, we obtain two eigenstates of s with eigenvalues ±1 given by |ξ⟩ = (2 -2ξλ) -1/2 (|α| |ψ⟩ + (-λ + ξ) |ϕ⟩) where ξ = ±1. This shows concretely how in the presence of SOC, spin eigen-states can be reconstructed from linear combinations of occupied and unoccupied states. A particularly interesting case is when |ψ⟩ is a null-eigenstate of P (k)sP (k), so that λ = 0, |α| = 1. In this case, |±⟩ = 1 √ 2 (|ψ⟩ ± |ϕ⟩) is an eigenstate of s with eigenvalue ±1. Similarly, if we have eigenstates |±⟩ of P sQ + QsP with eigenvalue ±1, we can see from the block structure of SEq. (2.36) that 1 √ 2 (|+⟩ ± |-⟩)

  QsQ and s. Since the non-unit spectrum of P sP coincides with that of P sP -QsQ, we can identify points at which the spin gap closes by diagonalizing P sP -QsQ within the basis of spin eigenstates. This is consistent with what we showed in SEqs. (2.28) and (2.36), since we can take eigenstates of P sP and -QsQ both with eigenvalue λ and reconstruct s eigenstates. Moreover, to check whether the spin gap is closed in P sP , we only need to diagonalize P sP -QsQ within the basis of spin s eigenstates with either +1 or -1 eigenvalues.Interestingly, P sP -QsQ can also be related to the (spectrally flattened) Hamiltonian projected into a single spin sector. To see this, first note that

	.50) From SEq. (2.28), we see that eigenvalues of P (k)sP (k) -Q(k)sQ(k) with |λ| < 1 are doubly degenerate, and correspond to the non-unit eigenvalues of P (k)sP (k). Crucially, the utility of considering P sP -QsQ as a proxy for P sP extends beyond Dirac models and to the analysis of real materials with larger single-particle Hilbert spaces. This is because P sP -QsQ eigenstates are all s eigenstates. To see this, let us evaluate [s, P sP -QsQ] = sP sP -P sP s -sQsQ + QsQs, = (P + Q)sP sP -P sP s(P + Q), -(P + Q)sQsQ + QsQs(P + Q), = QsP sP -P sP sQ -P sQsQ + QsQsP, = Qs(P + Q)sP -P s(P + Q)sQ, = Qs 2 P -P s 2 Q = 0, (2.51) and so we can simultaneously diagonalize P sP -P sP -QsQ = P sP -(1 -P )s(1 -P ), = s + {s, P }, = {s, 1 2 + P }. (2.52)

  2×2 = σ 11 σ 12 σ 21 σ 22 = σ for H 1 , ij are the matrix elements of the 2 × 2 matrix σ = σ • n. As we can see in SEq. (2.109), the reduced spin matrix for H 2 is diagonal, which follows from the fact that the orbital components of |1⟩ and |2⟩ in SEq. (2.106) are orthogonal for the occupied eigenstates of H 2 . We can then compute the two eigenvalues of the reduced spin matrices with n = x, ŷ, and ẑ; the results are summarized in Supplementary Table 1. We see that the spin gap is open for

				(2.108)
	[s] 2×2 =	σ 11 0 0 σ 22	for H 2 ,	(2.109)
	where σ			

107) 

where |i τ ⟩ and |i σ ⟩ are the orbital and spin components of the i th eigenstate with energy eigenvalue -1 from SEqs. (2.105) or (2.106) such that |i⟩ = |i τ ⟩ ⊗ |i σ ⟩. Using SEq. (2.107), we find the following reduced spin matrices

[s] 

  The model in SEq.(3.37) is T -symmetric, where T symmetry is represented as [T ] = iσ y K, and K represents complex conjugation. For the parameter values given in SEq.(3.38), the model does not have mirror or twofold rotation symmetries. The spectrum and s z spin spectrum for this model are shown in SFig. 2, where we see that there is both an energy gap and a spin gap.

8, t 1,y = 1.2, t 2,x = 1.3, t 2,y = 0.9, t R = 0.8, t P H,x = 0.3, t P H,y = 0.4, t Mx = 0.3, t My = 0.2, t I = 1.0.

(3.38) 

  .54) In SFig. 6(a,b) we show the 3D bulk band structures with f 0ij = 0.0 and f 0ij = 1.0 for all i, j = 1 ∼ 3, respectively. As we can see in SFig. 6(b), since the I symmetry is broken, the energy bands are no longer doubly degenerate at generic (non-time-reversal-invariant) k points. Since there is no bulk gap closing when we turn on nonzero values of f 0ij , the two valence bands of SFig. 6(b) still describe a 3D TI with a nontrivial strong Z 2 invariant ν 2d = 1. This can be seen by computing the band structure of a 2D slab finite along z, which is shown in SFig. 6(c) exhibits one surface Dirac cone at the surface Γ point of each surface. As mentioned above, if we denote {s

n (k)} as the set of eigenvalues of the reduced spin matrix [SEq. (3.5)], T symmetry alone only constrains {s n (k)} = {-s n (-k)}. Therefore, generically the spin-Weyl nodes do not appear at zero P sP eigenvalues. To demonstrate this, we obtain the P s z P band structure of the two valence bands of SFig. 6(b), which contains two spin-Weyl nodes at momenta ±k * with nonzero P s z P eigenvalues, as shown in SFig. 6(d). In SFig. 6(d), the spin-resolved projectors P + (k) and P -(k) are the projectors onto the upper (orange) and lower (blue) spin bands.

  Note that we have not imposed time-reversal symmetry, and therefore N + occ can be different from N -

	resolved Wilson loop matrices [W + 1,k,G ] and [W -1,k,G	occ . Consequently, the spin-

29) 

for ∆k ∥ G, where a is the real-space primitive lattice vector dual to the primitive reciprocal lattice vector G such that a • G = 2π. Also notice that by definition [W ± 1,k+G←k ] [SEq.

(4.27)

] is equal to [W ± 1,k,G ] [SEq.

(3.17)

].

  .36) Putting together SEqs. (4.33) and (4.36), we can then show that, under a shift of the crystal momentum from k to

  Gj is a function of the momentum components k i and k l , and [W

		(±) 2,k,Gi,Gj ] is the nested P (±) -Wilson loop
	matrix [SEqs. (4.24) and (4.47)]. From (γ	(±)

  ± γ2,out of the nested Berry phases are fully specified given any of the four winding numbers and the partial weak Chern numberAs an example, we can consider an inversion-symmetric 3D quantum spin Hall insulator with s z conservation and ν ± i = ±2[75], as will be detailed in SN 4 D. If there is a Wannier gap, then such a system can have C + γ2,in = +1, from which we can deduce that C

	To be explicit, using SEqs. (4.85), (4.86), (4.87), and (4.93), it can be shown that if	
	C + γ2,in = C ∈ Z,	(4.94)
	then	
	C + γ2,out = -C + m, C -γ2,in = -C, C -γ2,out = C -m,	(4.95) (4.96) (4.97)
	which from SEqs. (4.90) and (4.91) also imply that the nested spin Chern numbers are	
	C s γ2,in = 2C,	(4.98)
	C s γ2,out = -2C + 2m.	(4.99)
	ν ± i = ±m ∈ Z.	(4.93)

.92) From SEqs. (4.85), (4.86), and (4.87), we see that the four winding numbers C ± γ2,in and C

  In particular SEqs. (4.100)-(4.105) ensure that the nested partial Chern numbers satisfy SEqs. (4.85)-(4.87), and (4.92) both before and after the deformation. Therefore, we can deduce that the quantities C ± γ2,in , C ± γ2,out , 1 2 C s γ2,in , and1 2 C s γ2,out are all Z 2 -stable when a spin-resolved Wannier gap closes and reopens. In fact all of C ± γ2,in , C ± γ2,out ,

	1 2 C s γ2,in , and 1 2 C s γ2,out are uniquely specified given (C + γ2,in , ν + i	
		.102)
	C -γ2,out → C -γ2,out + 2n.	(4.103)
	As an example, in SFig. 17(e-h) we have schematically shown the case of SEqs. (4.102) and (4.103) with n = 1.
	C s γ2,in → C s γ2,in + 4n, C s γ2,out → C s γ2,out -4n.	(4.104) (4.105)

From SEqs. (4.100), (4.101), (4.102), and (4.103), the relative winding numbers C s γ2,in/out , which are even numbers from SEqs. (4.90) and (4.91), will also change according to

  .107) Recall from SN 4 C 3 that we can always choose a supercell such that SEq. (4.107) holds. The nested partial Chern numbers, namely the partial Chern numbers of the inner and outer groups of G 3 -directed P ± -Wannier bands, satisfyC ± γ2,in + C ± γ2,out = ν ± 3 fromSEq. (4.65). Spinful T symmetry implies from SEqs. (4.67), (4.86), and (4.87) that C

  used SEq. (4.67) in the presence of spinful T symmetry. As noted in SEq. (3.36), in the presence of weak n • s non-conserving SOC, we expect SEqs. (4.121) and (4.122) to give the leading-order bulk topological contributions to σ s ij,QSHI and σ s ij,T-DAXI , respectively.

		.121)
	σ s ij,top,T-DAXI = 0,	(4.122)
	where we have	

  , Supplementary Table 4, SFig. 20, and SFig. 22).

Table 7 .

 7 Numerically computed partial Chern numbers C ± jl [SEq. (5.27)] for our T-DAXI slabs over different slab stacking directions. C ±

	5

  .36) From the I constraint in SEq.(6.36), we identify an effective particle-hole symmetry in the set of nested P -Wilson loop eigenphases. A more operational way to interpret SEq.(6.36) is that the nested P -Wannier spectrum {γ 2,j (k 1 , k 3 )|j = 1 . . . N W } is invariant under a simultaneous sign-change of the momenta (k 1 , k 3 ) → (-k 1 , -k 3 ) and the phase γ 2 → -γ 2 . Recall from SN 4 A that the eigenphases [SEq.(6.36)] of the nested P -Wilson loop operator [SEq.(6.33)] correspond to the localized positions of the hybrid Wannier functions formed from a group of P -Wannier bands [SEq.(6.26)][13, 14]. With this in mind, we can understand SEq. (6.36) as a consequence of the fact that inversion flips both position and momentum of a hybrid Wannier function.

  .67) SEq.(6.67) specifically implies that the nested P -Wilson loop eigenphase spectrum, i.e. the nested P -Wannier band structure, is invariant under a reversal of the sign of the crystal momentum (k 1 , k 3 ) → (-k 1 , -k 3 ). Recall from SN 4 A that the eigenphases in SEq. (6.67) of the nested P -Wilson loop operator [SEq.(6.33)] correspond to the localized positions of the hybrid Wannier functions formed from a group of P -Wannier bands [denoted as in SEq. (6.26)][13, 14]. With this in mind, we can understand SEq. (6.67) as a consequence of the fact that time-reversal flips the momentum, but not the position, of a hybrid Wannier function.

  and β is summed over. [U T ] in SEq. (6.126) is the unitary part of the representative of the antiunitary T . Since T acts trivially in position space, [U T ] βα has nonzero matrix elements only when r β = r α . With SEq. (6.126), we can deduce that the Bloch basis state creation operator [SEq. (2.2)] transforms under T according to
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where n ∈ Z. The deformation proceeds via pairs of gap closings and reopenings related by I between the inner and outer groups of the G 3 -directed P ± -Wannier bands, as described in SFig. 17. For example, the trivial spin-resolved Wannier band configuration (C + γ2,in , ν + 3 ) = (0, 0) can be deformed into (C + γ2,in , ν + 3 ) = (2, 0) as depicted in SFig. 17, where the P ± -Wannier bands transfer ±2 partial Chern number from the outer to inner P ± -Wannier bands. Hence (C + γ2,in , ν + 3 ) = (2, 0) is equivalent to the trivial (C + γ2,in , ν + 3 ) = (0, 0) in the Z 2 × Z classification of the spin-stable topological phases with vanishing partial weak Chern numbers ν ± 1 = ν ± 2 = 0, as per SEq. (4.106). On the other hand, the trivial spin-resolved Wannier band configuration (C + γ2,in , ν + 3 ) = (0, 0) cannot be deformed into (C + γ2,in , ν + 3 ) = (1, 1) or (0, 1) since the difference between their Z 2 ×Z spin-stable invariants violates SEq. (4.110). In fact, the spin-resolved Wannier band configuration with (C + γ2,in , ν + 3 ) = (1, 1) corresponds to a 3D weak topological insulator (WTI) [START_REF] Fu | Topological Insulators in Three Dimensions[END_REF][START_REF] Fu | Topological insulators with inversion symmetry[END_REF]. This is shown schematically in SFig. 20(a). Similarly, the configuration (C + γ2,in , ν + 3 ) = (0, 1) corresponds to a 3D "obstructed" weak topological insulator (oWTI), which is related to WTI by a half-lattice translation [92]. This is shown schematically in SFig. 20(b). Both (C + γ2,in , ν + 3 ) = (1, 1) and (0, 1) are of particular importance in this work, as they serve as the building blocks of spin-stable topological crystalline phases in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap and partial weak Chern numbers ν ± 1 = ν ± 2 = 0. We will shortly discuss these two cases in greater detail.

In Supplementary Table 2, we summarize values of nested partial Chern numbers C ± γ2,in [SEq. (4.108)] and C ± γ2,out

[SEq. (4.109)] consistent (up to the addition of a trivial spin-resolved Wannier band configuration) with the Z 2 × Z spin-stable invariants (C + γ2,in mod 2, ν + 3 ) in SEq. (4.106). A spin-resolved Wannier band configuration has trivial invariant (C + γ2,in mod 2, ν + 3 ) = (0, 0) if the inner and outer groups of spin-resolved hybrid Wannier functions have nested partial Chern numbers C ± γ2,in = ±2n and C ± γ2,out = ∓2n where n ∈ Z, respectively [as shown in SEq. (4.110)]. From Supplementary Table 2, a spin-resolved Wannier band configuration has (C + γ2,in mod 2, ν + 3 ) = (1, 1) if the inner and outer groups of the spin-resolved hybrid Wannier functions have nested partial Chern numbers C ± γ2,in = ±1 and C ± γ2,out = 0, respectively, modulo the addition of a trivial spin-resolved Wannier band configuration. On the other hand, up to the addition of a trivial configuration (C + γ2,in mod 2, ν + 3 ) = (0, 0), a spin-resolved Wannier band configuration has (C + γ2,in mod 2, ν + 3 ) = (0, 1) if the inner and outer groups of the spin-resolved hybrid Wannier functions have nested partial Chern numbers C ± γ2,in = 0 and C ± γ2,out = ±1, respectively. Importantly, (C + γ2,in mod 2, ν + 3 ) = (1, 1) and (0, 1) can be taken as the generators of the Z 2 × Z spin-stable invariants in nonmagnetic space group P 11 ′ (# 2.5) with a spin gap and partial weak Chern numbers ν ± 1 = ν ± 2 = 0. Any spin-resolved Wannier band configurations can be derived from linear combinations of these two generators where a "negative" generator is obtained by reversing the signs of (C + γ2,in , ν + 3 ), which according to SEqs. (4.108) and (4.109) amounts to reversing the signs of the corresponding (nested) partial Chern numbers. Several examples of spin-stable (spin-gapped) phases in the nonmagnetic space group P 11 ′ (# 2.5) with ν ± 1 = ν ± 2 = 0 built using the configurations (C + γ2,in , ν + 3 ) = (1, 1) and (0, 1) are shown and discussed in Supplementary Table 2.

Spin-Resolved Layer Constructions

The enumeration of spin-stable phases based on their spin-resolved Wannier band configurations characterized by (C + γ2,in , ν + 3 ), or equivalently C ± γ2,in and C ± γ2,out (Supplementary Table 2), allows us to formulate position-space layer constructions of spin-stable (spin-gapped) topological crystalline phases with ν ± 1 = ν ± 2 = 0 in the nonmagnetic space group P 11 ′ (# 2.5) generated by 3D lattice translations, I, and spinful T . Layer constructions were introduced in SRefs. [33,[42][43][44][START_REF] Huang | Building crystalline topological phases from lower-dimensional states[END_REF] to build and classify magnetic and nonmagnetic topological phases protected by crystal symmetries. Given a 3D (magnetic) space group, the layer construction approach builds a topological crystalline phase by tessellating space with flat layers of 2D topological crystalline phases placed in high-symmetry planes within the unit cell in a manner consistent with the crystal symmetries, and coupled such that the bulk remains gapped. Two layer constructions correspond to the same topological phase if they can be deformed into each other by sliding layers in a manner consistent with the crystal symmetries. As a representative example, let us consider the 3D magnetic space group P 1 (# 2.4), generated by I and 3D lattice translations with Bravais lattice vectors {a 1 , a 2 , a 3 }. There are six I-invariant planes in the unit cell perpendicular to one of the primitive reciprocal lattice vectors G i : they are the constant r i = 0, 1/2 planes (where r = r 1 a 1 + r 2 a 2 + r 3 a 3 ). It was argued in SRefs. [43,44] that all gapped, noninteracting topological crystalline phases in magnetic space group P 1 (# 2.4) can be generated from four elementary configurations of layers, termed elementary layer constructions (eLCs). In SFig. 18(a,b) we show two of the elementary layer constructions for topological crystalline phases in magnetic space group P 1 (# 2.4) with weak Chern numbers ν 1 = ν 2 = 0, where we tile 3D space by C γ1 = 1 inversion-symmetric Chern insulators in the r 3 = 0 or r 3 = 1/2 planes respectively. These two elementary layer constructions correspond to ν 3 = 1 3D quantum In particular, on the left-hand side of (b), the two occupied energy bands in the k3 = 0 plane for a 3D AXI have 2D fragile topology in the magnetic space group P 1 (# 2.4), though the 3D (strong axionic) topology is stable [15].

of the projectors P ± (k) correspond to the topology of bands in the magnetic subgroup P 1 (# 2.4) of P 11 ′ (# 2.5). (We note that in systems with conserved spin, spin-resolved band topology can also be analyzed using spin space groups [43,[START_REF] Brinkman | Theory of spin-space groups[END_REF][START_REF] Yang | Symmetry-protected nodal points and nodal lines in magnetic materials[END_REF][START_REF] Corticelli | Spin-space groups and magnon band topology[END_REF][START_REF] Liu | Spin-Group Symmetry in Magnetic Materials with Negligible Spin-Orbit Coupling[END_REF][START_REF] Xiao | Spin Space Groups: Full Classification and Applications[END_REF][START_REF] Jiang | Enumeration of spin-space groups: Towards a complete description of symmetries of magnetic orders[END_REF][START_REF] Ren | Enumeration and representation of spin space groups[END_REF][START_REF] Chen | Spin Space Group Theory and Unconventional Magnons in Collinear Magnets[END_REF][START_REF] Yang | Symmetry invariants in magnetically ordered systems having weak spin-orbit coupling[END_REF]).

Spinful T symmetry only constrains that the states in the image of P + (k) are related to the states in the image of P -(k) by spinful T , such that states in the image of P (k) = P + (k) + P -(k) are symmetric under the symmetries of P 11 ′ (# 2.5). Recall that the four elementary layer constructions for the magnetic subgroup P 1 (# 2.4) correspond to tiling 3D space with I-symmetric Chern insulators with Chern number C γ1 = 1 in I-invariant planes within the unit cell. We then deduce that the four elementary spin-resolved layer constructions for spin-stable phases in nonmagnetic group P 11 ′ (# 2.5) correspond to tiling 3D space with 2D spin-gapped, translation-, I-, and spinful T -invariant insulators with partial Chern numbers C ± γ1 = ±1 in I-invariant planes within the unit cell. Restricting to the cases with ν ± 1 = ν ± 2 = 0, this yields two elementary spin-resolved layer constructions L 1 and L 2 , as shown in Supplementary Table 3; two other elementary spin-resolved layer constructions can be obtained by permuting the crystalline axes in

] are constructed by tiling 3D space with 2D Iand T -symmetric spin-gapped insulators with partial Chern numbers C ± γ1 = ±1 in the I-invariant plane r 3 = 0 [r 3 = 1/2] within each unit cell, as shown in SFig. 20(a) [SFig. 20(b)]. Recall from SN 3 C that a T -symmetric spin-gapped 2D system with odd partial Chern numbers is a 2D strong topological insulator. By construction, L 1 is then a WTI [START_REF] Fu | Topological Insulators in Three Dimensions[END_REF][START_REF] Fu | Topological insulators with inversion symmetry[END_REF] while L 2 is an oWTI [92] related to L 1 by a half-lattice translation along a 3 . L 1 and L 2 are elementary in the sense that any spin-resolved layer constructions with spin-resolved Wannier band configurations described by nested partial Chern numbers in SEqs. (4.108) and (4.109) can be derived from linear combinations of L 1 and L 2 , where the negative of a spin-resolved layer construction can be obtained by reversing the signs of all the partial Chern numbers C ± γ1 of the 2D layers. In particular, as indicated in Supplementary Table 3, we have that L 1 and L 2 have spin-stable invariants (C + γ2,in mod 2, ν + 3 ) = (1, 1) and (0, 1) respectively, which are the generators of the Z 2 × Z group of spin-stable topology of nonmagnetic space group P 11 ′ (# 2.5) with ν ± 1 = ν ± 2 = 0. From the two elementary spin-resolved layer constructions L 1 and L 2 in Supplementary Table 3 and ) are (2, 0, 0, 1) for (a) and (0, 0, 0, 1) for (b). Any topological crystalline phases in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap and partial weak Chern numbers ν ± 1 = ν ± 2 = 0 can be derived from linear combinations of (a) and (b), where the negative of a layer construction is obtained by reversing the signs of the partial Chern numbers of 2D layers tiling 3D space in the layer construction [33,[START_REF] Song | Real-space recipes for general topological crystalline states[END_REF]. In particular, (a) and (b) correspond to the L1 and L2 elementary spin-resolved layer constructions in Supplementary Table 3, respectively.

can build the trivial Z 2 × Z spin-stable phases with (C + γ2,in mod 2, ν + 3 ) = (0, 0) by forming the linear combinations 2nL 1 ⊖ 2nL 2 , since 2n(1 mod 2, 1) -2n(0 mod 2, 1) = (0, 0). (4.113) Therefore, any spin-resolved layer construction with trivial Z 2 × Z invariants (C + γ2,in mod 2, ν + 3 ) = (0, 0) corresponds to having 2D layers with partial Chern numbers C ± γ1 = ±2n and C ± γ1 = ∓2n in the r 3 = 0 and r 3 = 1/2 planes, respectively, consistent with Supplementary Table 2. We can always add this trivial layer construction to any spinstable phase without changing the spin-stable topology. We can make contact with SN 4 C 4 by noting that the trivial spin-resolved layer constructions 2nL 1 ⊖ 2nL 2 can also be obtained by tiling 3D space by 2D layers with in total zero partial Chern numbers at generic constant-r 3 planes related by I. These layers can be moved to inversion-symmetric constant-r 3 planes in a manner respecting the nonmagnetic space group symmetry P 11 ′ (# 2.5); such a spin-resolved bubbling process [46,[START_REF] Song | Real-space recipes for general topological crystalline states[END_REF] is demonstrated in SFig. 21. Two spin-resolved layer constructions in the nonmagnetic space group P 11 ′ (# 2.5) describe the same spin-stable phases if they can be related by such a spin-resolved bubbling process. We term such an equivalence as the spin-resolved bubble equivalence [START_REF] Song | Real-space recipes for general topological crystalline states[END_REF]. The spin-resolved bubbling process requires a gap closing and reopening in the spin-resolved Wannier spectrum, consistent with the change in nested partial Chern numbers [SEqs. (4.100) and (4.101)].

L1

L2 built from elementary spin-resolved layer constructions

Supplementary Table 3. Spin-resolved layer constructions for the spin-stable phases in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap and partial weak Chern numbers ν ± 1 = ν ± 2 = 0 in Supplementary Table 2. Since C - γ 1 = -C + γ 1 by time-reversal symmetry, we only list the values of partial Chern number C + γ 1 for the 2D layers. All the spin-stable phases in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap and ν ± 1 = ν ± 2 = 0 in Supplementary Table 2 can be derived from linear combinations of the elementary spin-resolved layer constructions L1 and L2, where we define the negative of a spin-resolved layer construction by reversing the signs of the partial Chern numbers of all the 2D layers. The trivial spin-stable phase is realized by any linear combination of the form 2nL1 ⊖ 2nL2 where n ∈ Z. The spin-resolved layer construction with Z2 × Z invariant (C + γ 2 ,in mod 2, ν + 3 ) = (0, 2) can be obtained both from 2L1 or 2L2 = 2L1 ⊕ (2L2 ⊖ 2L1). This is because 2L1 corresponds to (C + γ 2 ,in mod 2, ν + 3 ) = 2 × (1 mod 2, 1) = (0, 2), and 2L2 corresponds to (C + γ 2 ,in mod 2, ν + 3 ) = 2 × (0 mod 2, 1) = (0, 2). 2L1 and 2L2 can be constructed by placing a 2D layer with partial Chern numbers C ± γ 1 = ±2 in the r3 = 0 or r3 = 1/2 plane, respectively. Such a 2D layer with C ± γ 1 = ±2 and two occupied energy bands can be realized, for example, using the model of a fragile topological insulator introduced in SRef. [8] (and analyzed in detail in SN 3 G) 

The Quantum Spin Hall Insulator and the T -Doubled Axion Insulator

Using the two elementary spin-resolved layer constructions L 1 and L 2 in Supplementary Table 3, we will now build two representative families of spin-stable (spin-gapped) topological crystalline phases in nonmagnetic space group P 11 ′ (# 2.5) with ν ± 1 = ν ± 2 = 0. In SFig. 22(a), we show that a 3D quantum spin Hall insulator (QSHI) with the partial weak Chern numbers ν ± 3 = ±2 can be constructed by tiling 3D space with C ± γ1 = ±1 2D layers in the I-symmetric r 3 = 0 plane within each unit cell, and C ± γ1 = ±1 2D layers in the I-symmetric r 3 = 1/2 plane within each unit cell. SFig. 22(a) corresponds to the sum L 1 ⊕ L 2 of the two elementary spin-resolved layer constructions defined in Supplementary Table 3 and SFig. 20. In SFig. 22(b) we show that a 3D phase in nonmagnetic space group P 11 ′ (# 2.5) that we term in this work the T -doubled magnetic axion insulator (T-DAXI) can be constructed by tiling 3D space with C ± γ1 = ±1 2D layers in the r 3 = 0 plane within each unit cell, and C ± γ1 = ∓1 2D layers in the r 3 = 1/2 plane within each unit cell. This corresponds to the difference L 1 ⊖ L 2 of the two elementary spin-resolved layer constructions (Supplementary Table 3 and SFig. 20). Recall that the elementary spin-resolved layer constructions in the nonmagnetic space group P 11 ′ (# 2.5) are obtained from time-reversed pairs of the elementary layer construction in the magnetic subgroup P 1 (# 2.4). The QSHI with ν ± 3 = ±2 in SFig. 22(a) can be spin-resolved into QAHI states [SFig. 19(a)] in both the positive and negative P sP eigenspaces that are related to each other by spinful T . On the other hand, the T-DAXI in SFig. 22(b) can be spin-resolved into AXI states [SFig. 19(b)] in both the positive and negative P sP eigenspaces that are related to each other by spinful T . This justifies our choice to term this spin-stable phase as the T -doubled AXI. The T-DAXI is characterized by zero partial weak Chern numbers ν ± 1 = ν ± 2 = ν ± 3 = 0 and, as we will show in SEq. (4.123) and the surrounding text, I-quantized bulk partial axion angles θ ± = π.

Note that the projectors P ± (k) onto the positive/negative spin bands are symmetric under the action of the magnetic subgroup P 1 (# 2.4) of P 11 ′ (# 2.5). This implies that we can assign parity eigenvalues to the spin bands at TRIMs, which are inherited from the parity eigenvalues of the occupied bands. We can then compute the corresponding SIs [SEqs. (4.111) and (4.112)] within each of the positive and negative P sP eigenspaces. This allows us to define SIs within the positive/negative P sP eigenspace, which we term the partial SIs. To be specific, we define the partial SIs (z ± 4 , z± 2,1 , z± 2,2 , z± 2,3 ) in the same way as SEqs. (4.111) and (4.112) except that the numbers of the +1 and -1 inversion eigenvalues at TRIMs are taken from P sP eigenstates in the positive (+) and negative (-) spin bands. We can compute the partial SIs for each spin-stable (spin-gapped) phase in space group P 11 ′ (# 2.5) with ν ± 1 = ν ± 2 = 0 using our spin-resolved layer constructions.

Let us first consider the partial SIs for the elementary spin-resolved layer constructions (Supplementary Table 3 and SFig. 20). The elementary spin-resolved layer construction L 1 (WTI) in SFig. 20(a) consists of two copies of the magnetic elementary layer construction for a 3D QAHI with ν 3 = 1 shown in SFig. 18(a), one in each spin subspace, related by time-reversal symmetry. Since the magnetic 3D QAHI with ν 3 = 1 has the magnetic SIs (z 4 , z2,1 , z2,2 , z2,3 ) = (2, 0, 0, 1), we deduce that the elementary spin-resolved layer construction L 1 has the partial SIs (z ± 4 , z± 2,1 , z± 2,2 , z± 2,3 ) = (2, 0, 0, 1). On the other hand, the elementary spin-resolved layer construction L 2 (oWTI) in 2 is consistent with the trivial Z2 × Z spin-stable invariants (C + γ 2 ,in , ν + 3 ) = (0, 0). We term the process described by (a) → (b) → (c) the spin-resolved bubbling process [46,[START_REF] Song | Real-space recipes for general topological crystalline states[END_REF]. In particular, inserting 2D layers with (in total) trivial spin-resolved topology in generic r3 = r * 3 and r3 = -r * 3 planes in a manner respecting the symmetries of P 11 ′ (# 2.5) cannot change the spin-resolved topology, and therefore corresponds to the trivial spin-resolved Wannier band configuration with C ± γ 2 ,in = ±2n and C ± γ 2 ,out = ∓2n. We refer to spin-stable phases with spin-resolved layer constructions related by the spin-resolved bubbling process as spin-resolved bubble equivalent [46,[START_REF] Song | Real-space recipes for general topological crystalline states[END_REF].

SFig. 20(b) consists of two copies of the magnetic elementary layer construction for a 3D oQAHI with ν 3 = 1 shown in SFig. 18(b), one in each spin subspace, related by time-reversal symmetry. Since the magnetic 3D oQAHI with ν 3 = 1 has the magnetic SIs (z 4 , z2,1 , z2,2 , z2,3 ) = (0, 0, 0, 1), we deduce that the elementary spin-resolved layer construction L 1 has the partial SIs (z ± 4 , z± 2,1 , z± 2,2 , z± 2,3 ) = (0, 0, 0, 1). Next, let us consider the two families (SFig. 22) of spin-stable phases built from these two elementary spin-resolved layer constructions L 1 and L 2 . The 3D QSHI with

, 0, 0, 0) as the bands in the positive and negative P sP eigenspaces are equivalent to a time-reversed pair of QAHIs with ν 3 = ±2 depicted in SFig. 19(a) with magnetic symmetry indicators (z 4 , z2,1 , z2,2 , z2,3 ) = (2, 0, 0, 0). Similarly, the 3D T-DAXI in SFig. 22(b), which corresponds to L 1 ⊖ L 2 , also has the partial SIs (z ± 4 , z± 2,1 , z± 2,2 , z± 2,3 ) = (2, 0, 0, 0) as the bands in the positive and negative P sP eigenspaces are equivalent to the time-reversed pair of AXIs depicted in SFig. 19(b), with the magnetic symmetry indicators (z 4 , z2,1 , z2,2 , z2,3 ) = (2, 0, 0, 0).

We now investigate the relationship between the spin-stable phases and the stable symmetry-indicated electronic band topology. For topological crystalline phases in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap, we can obtain the Z 4 × (Z 2 )

3 SIs (z 4 , z 2,1 , z 2,2 , z 2,3 ) for electronic band topology based on the partial SIs (z ± 4 , z± 2,1 , z± 2,2 , z± 2,3 ) within the positive/negative P sP eigenspaces. The strong Z 4 index for the nonmagnetic space group P 11 ′ (# 2.5) is given by [17,21,33] 3, respectively. and the three weak Z 2 indices for the nonmagnetic space group P 11 ′ (# 2.5) are given by [START_REF] Fu | Topological insulators with inversion symmetry[END_REF] 

where i = 1, 2, 3. Using SEqs. (4.111), (4.112), (4.114), and (4.115), together with the facts that [I, T ] = 0, the positive and negative P sP eigenspaces in the occupied energy bands are orthogonal to each other, and that the numbers of positive and negative inversion eigenvalues are additive, we deduce that for topological crystalline phases in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap we have 

Note that the existence of a spin gap requires that z 4 be even; this is because z 4 = 1, 3 correspond to 3D strong topological insulators, which are spin-Weyl semimetals as detailed in SN 2 E, 3 E, and 3 F. This is consistent with the fact that the partial symmetry indicators z± 4 and the magnetic symmetry indicator z4 cannot be odd for layerconstructable (i.e. spin-gapped or insulating) phases.

We emphasize that spin-resolved topology is a refinement of electronic (energy) band topology for systems with a spin gap. Systems with distinct spin-stable topology but equivalent electronic (energy) band topology can be deformed into each other without closing an energy gap provided a spin gap closes. We summarize this in Supplementary Table 5, where we show how the spin-stable invariants (C + γ2,in mod 2, ν + 3 ) characterizing spin-stable topological phases with ν ± 1 = ν ± 2 = 0 in space group P 11 ′ (# 2.5) collapse onto the symmetry indicators of (energy) band topology [SEqs. (4.117)-(4.120)] when a spin gap is allowed to close. We emphasize that since [I, T ] = 0, a spin band inversion without an energy band inversion cannot trivialize the partial SIs. This represents the 3D generalization of the statement that the spin Chern number C s γ1 of a 2D TI can be changed without closing an energy gap, but cannot go to zero without closing an energy gap or breaking T symmetry (i.e. (C s γ1 /2) mod 2 = 1 in a 2D TI state, see SRef. [1] and SN 3 C).

Let us now examine the

22 in more detail. From Supplementary Table 4 we find that both the QSHI and T-DAXI have the SIs (z 4 , z 2,1 , z 2,2 , z 2,3 ) = (2, 0, 0, 0). This implies that the QSHI and T-DAXI represent distinct spin resolutions of the same symmetry-indicated stable topological crystalline phase in the nonmagnetic space group P 11 ′ (# 2.5). Note that (z 4 , z 2,1 , z 2,2 , z 2,3 ) = (2, 0, 0, 0) corresponds to a symmetry-indicated helical HOTI. On the other hand, in terms of the 2 and3). Hence, although the QSHI [SFig. 22(a)] and T-DAXI [SFig. 22(b)] collapse to the same symmetry-indicated stable topological crystalline phase in the nonmagnetic space group P 11 ′ (# 2.5) without spin resolution, they realize distinct spin-stable phases. We will discuss how these differences manifest in physical observables in the remainder of this section below.

(Partial) Symmetry Indicators and Spin-Stable Invariants

(0, 0, 0, 1) (0, 0, 0, 1) (0, 1) 2nL1 ⊖ 2nL2 (n ∈ Z) (trivial spin-stable phase in SFig. 21) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0)

(2, 0, 0, 0) (2, 0, 0, 0) (1, 0) Supplementary Table 4. Partial SIs (z ± 4 , z± 2,1 , z± 2,2 , z± 2,3 ), SIs (z4, z2,1, z2,2, z2,3), and the Z2 × Z spin-stable invariants (C + γ 2 ,in mod 2, ν + 3 ) for different spin-resolved layer constructions of topological crystalline phases in the nonmagnetic space group P 11 ′ (# 2.5) with a spin gap and partial weak Chern numbers ν ± 1 = ν ± 2 = 0. We see that L1 ⊕ L2 and L1 ⊖ L2 have distinct spin-resolved topology, as their invariants (C + γ 2 ,in mod 2, ν + 3 ) do not satisfy SEq. (4.110). However, we also see that L1 ⊕ L2 and L1 ⊖ L2 have the same SIs (z4, z2,1, z2,2, z2,3) = (2, 0, 0, 0). The corresponding symmetry-indicated electronic band topology for the spin-stable phases are given in Supplementary Table 5.

(2, 0, 0, 1) (0, 0, 0, 1) (0, 0, 0, 0) (0, 0, 0, 0) (2, 0, 0, 0) (2, 0, 0, 0) Symmetry-indicated topological phase WTI oWTI trivial trivial helical HOTI helical HOTI Supplementary Table 5. SIs (z4, z2,1, z2,2, z2,3) [SEqs. (4.117), (4.118), (4.119), and (4.120)] and the corresponding stable symmetry-indicated topological crystalline phases in nonmagnetic space group P 11 ′ (# 2.5) with a spin gap and ν ± 1 = ν ± 2 = 0 for the spin-stable phases with (C + γ 2 ,in , ν + 3 ) given in Supplementary Tables 2 and3. The stable symmetry-indicated topological crystalline phases include a trivial insulator, weak topological insulator (WTI) [START_REF] Fu | Topological Insulators in Three Dimensions[END_REF][START_REF] Fu | Topological insulators with inversion symmetry[END_REF], obstructed weak topological insulator (oWTI) [92], and a helical higher-order topological insulator (HOTI). As we can see, although the spin-stable phases with (C + γ 2 ,in , ν + 3 ) = (1, 2) and (1, 0) are both symmetry-indicated helical HOTIs, they have distinct spin-resolved topology, as the difference between their (C + γ 2 ,in , ν + 3 ) violates SEq. (4.110). Similarly, although both (C + γ 2 ,in , ν + 3 ) = (0, 0) and (0, 2) are symmetry-indicated trivial insulators, they have distinct spin-resolved topology, as (0, 2) corresponds to tiling 3D space with 2D layers carrying the partial Chern numbers C ± γ 1 = ±2 in the r3 = 1/2 plane within the primitive unit cell.

system, the projector [ P ± G (k)] onto an isolated grouping of N ± W G-directed P ± -Wannier bands centered around an inversion-invariant eigenphase γ ± 1 mod π = 0 can be chosen to satisfy

SEqs. (6.81) and (6.87) imply that the isolated grouping of N ± W G-directed P ± -Wilson loop eigenphases satisfies

Similar to the effective particle-hole symmetry of the entire P ± -Wannier band structure described in SEq. (6.83), the isolated grouping of N ± W P ± -Wannier satisfying SEq. (6.87) also has an effective particle-hole symmetry described by SEq. (6.88). From the matrix projector [ P ± G (k)], we can construct the P ± G -Wilson loop operator along a closed loop parallel to G ′ as 

As in SN 6 B, SEq. (6.90) allows us to deduce the following constraints on the nested P ± -Wilson loop eigenphases:

where

and (γ ± 2 ) j,k,G,G ′ are the eigenphases (nested P ± -Wannier bands) of the nested

satisfying SEq. (6.90). Recall from SN 4 B that the eigenphases (γ ± 2 ) j,k,G,G ′ of the nested P ± -Wilson loop operator [SEq. (6.89)] correspond to the localized positions of the spin-resolved hybrid Wannier functions formed from a group of P ± -Wannier bands [13,14]. SEq. (6.92) is then a consequence of the fact that inversion flips both position and momentum, but does not flip the spin of a spin-resolved hybrid Wannier function. Since (γ ± 2 ) j,k,G,G ′ is independent of the momentum component k • a ′ , where a ′ is the primitive lattice vector dual to the primitive reciprocal lattice vector G ′ , k T RIM in SEq. (6.94) should be interpreted as a k-vector with (k T RIM • a) mod π = 0 for each primitive lattice vector a ̸ = a ′ .

G. Antiunitary T Constraint on the P±-Wilson Loop

In this section, we will extend the analysis in SN 6 C to investigate the constraints that spinful antiunitary T places on the P ± -Wilson loop (SN 3 B) for a system with spin-1/2 degrees of freedom and with T 2 = -1. In the presence of spinful T symmetry, we denote the N occ /2 spin bands with largest P sP eigenvalue as the upper spin bands; we denote the N occ /2 spin bands with smallest P sP eigenvalue as the lower spin bands. We assume that the upper and lower such that the projected spin operator [s(k)] transforms under spinful T according to

where we have also used SEq. (6.49). Different from the analysis in SN 6 E, we here specialize to the case in which N ± occ = N occ /2, which is required by T symmetry. Following the same logic as in SEq. (6.50) and using SEq. (6.96), the P ± -Wilson loop operator [SEq. (6.80)] transforms under spinful T according to

As in SN 6 C, SEq. (6.100) allows us to deduce the following spinful time-reversal constraints on the P ± -Wilson loop eigenphases:

where N + occ = N - occ = N occ /2, (γ ± 1 ) k,G is defined in SEq. (6.86), and (γ ± 1 ) j,k,G are the eigenphases (P ± -Wannier bands) of the G-directed P ± -Wilson loop operator W ± 1,k,G satisfying SEq. (6.100). Recall from SN 3 B that the eigenphases (γ ± 1 ) j,k,G of the P ± -Wilson loop operator [SEq. (6.80)] correspond to the localized positions of spinresolved hybrid Wannier functions formed from the set of upper/lower spin bands [4,13,14,78,[START_REF] Bradlyn | Lecture Notes on Berry Phases and Topology[END_REF]. SEq. (6.102) is then a consequence of the fact that spinful time-reversal flips both momentum and spin, but not the position, of a spin-resolved hybrid Wannier function.

H. Antiunitary T Constraint on the Nested P±-Wilson Loop

Following SN 6 G, in this section, we will extend the analysis in SN 6 D to deduce the constraints that antiunitary spinful T places on the nested P ± -Wilson loop (SN 4 B) for a system with spin-1/2 degrees of freedom and for which T 2 = -1. For a spinful T -symmetric system, the projector [ P ± G (k)] [SEq. (4.46)] onto an isolated grouping of N ± W G-directed P ± -Wannier bands can be chosen to satisfy

which combining with SEq. (6.100) implies that the isolated grouping of N ± W G-directed P ± -Wilson loop eigenphases satisfies

which is similar to the constraints imposed by spinful T on the entire P ± -Wannier band structure [SEq. (6.102)].

Notice that, as a consequence of enforcing SEqs. (6.104) and (6.105), we have that

Following the same logic as in SEq. (6.65) and using SEq. (6.104), the nested P ± -Wilson loop operator [SEq. (6.89)] transforms under spinful T according to

As in SN 6 D, SEq. (6.106) allows us to deduce the following spinful time-reversal constraints on the nested P ± -Wilson loop eigenphases:

where (γ ± 2 ) k,G,G ′ is defined in SEq. (6.95) and (γ ± 2 ) j,k,G,G ′ are the eigenphases (nested P ± -Wannier bands) of the nested P -Wilson loop operator W ± 2,k,G,G ′ satisfying SEq. (6.106). Recall from SN 4 B that the eigenphases (γ ± 2 ) j,k,G,G ′ of the nested P ± -Wilson loop operator [SEq. (6.89)] correspond to the localized positions of the spin-resolved hybrid Wannier functions formed from a group of P ± -Wannier bands [13,14]. SEq. (6.108) is then a consequence of the fact that spinful time-reversal flips both momentum and spin, but not the position, of a spin-resolved hybrid Wannier function.

I. A Summary of Symmetry Constraints on P -, P±-, Nested P -, and Nested P±-Wilson Loop

In this section, we present two tables [Supplementary Tables 8 and9] summarizing the symmetry constraints derived in SN 6 A-6 H on the projectors and the eigenphases of the Wilson loops constructed from the product of these projectors along a closed loop. Supplementary Tables 8 and9 summarize the symmetry constraints from unitary inversion (I) and antiunitary time-reversal (T ) symmetries, respectively. The expressions in Supplementary Tables 8 and9 use the general notation employed in SN 3 A, 3 B, 4 A, and 4 B. 

Unitary Inversion (I) Symmetry Projector Wilson Loop Eigenphases

[SEq. (6.75)] = {(γ2) j,-k,G,G ′ |j = 1 . . . NW } mod 2π [SEq. (6.72)] (Kramers' degeneracy at TRIMs when

Supplementary Table 9. Constraints from antiunitary time-reversal (T ) symmetry on the projectors and on the eigenphases of the Wilson loops. 

J. Eigenvalues and Eigenvectors of Wilson Loop Operators and Their Hermitian Conjugates

Suppose an operator W has spectral decomposition

where SEqs. (6.110) and (6.111) imply that the eigenvector |w j ⟩ of W with unimodular eigenvalue e iγj is also an eigenvector of W † with eigenvalue e -iγj . In other words, the sets of unimodular eigenvalues of W and W † are complex conjugates of each other; in addition, W and W † have the same set of orthonormal eigenvectors.

K. Transformation of the [V (G)] Matrix Under Unitary I

In this section, we will derive the representative [I] of I in the tight-binding basis states. We will denote by I the unitary inversion operator that acts on the second-quantized electron operators in SEqs. (2.2) and (2.3). We will use [I] to denote the N sta × N sta unitary representative of inversion in the tight-binding basis states.

In this section, we will specifically prove that

where [V (G)] is the N sta × N sta matrix defined in SEq. (6.2) that encodes the positions of the tight-binding basis states.

Let us consider the creation operators [SEq. (2.

2)] for the Bloch basis states

positive and negative values near each surface, while the layer-resolved spin Chern number in SFig. 27 decreases monotonically to zero near each surface. To understand this discrepancy, we recall from SEqs. (3.34)-(3.36) that the spin Hall conductivity can be written as the sum of the spin Chern number and a correction term σ s II . Although σ s II vanishes in the s z -conserving limit when summed over all layers, it still gives a non-vanishing contribution to the layer-resolved spin Hall conductivity. Physically, this is because each layer of the slab is not an isolated 2D system: s z -per layer is not a good quantum number since electrons can hop into and out of each layer. Nevertheless, we see that the surface contribution to the spin Hall conductivity (summed over the layers near the surface) are given by e/(4π) times the surface contribution to the spin Chern number [SEq. (5.28)]. 

as a function of nz beginning from the bottom layer in (a). As we can see in (a), the nonzero values of σ s,z H (nz) are largely concentrated around the top and bottom layers, although the spin Hall conductivity remains small but nonzero in the bulk of the system. This becomes clearer in (b), where we see both large anomalous topological contributions to the spin Hall conductivity around the gapped surfaces of the T-DAXI, as well as a residual small nontopological contribution from the bulk of the system.

When A spin-mixing = 0.5, s z is no longer conserved, and so we expect the spin Hall conductivity to receive both topological and non-topological contributions per SEqs. (3.34)- (3.36). In SFig. 30 we show the layer-resolved spin Hall conductivity σ s,z H (n z ) [panel (a)] and the layer-summed cumulative spin Hall conductivity

For the T-DAXI model with A spin-mixing = 0.5. Since s z is no longer conserved, the bulk spin Hall conductivity is no longer zero, but receives small corrections; we find that σ s,z H (n z = 0) ≈ -0.007e/(4π) in the center of the slab. Similarly, the total spin Hall conductivity of the slab deviates from the spin Chern number, and is given by

11e/(4π). Nevertheless, we see from SFig. 30(a) that the largest contributions to the spin Hall conductivity come from the anomalous gapped surfaces. Summing over the five layers closest to the surface, we find that the surface contribution to the spin Hall conductivity is

SPIN-RESOLVED TOPOLOGY IN REAL MATERIALS

Importantly, the spin-resolved Wilson loop and nested spin-resolved Wilson loop formalisms developed in SN 3 and 4 are applicable beyond toy models, and can be applied without modification to deduce the spin-resolved topology of real materials. Additionally, when there is a spin gap, the spin-resolved topology can then be compared to the intrinsic bulk contribution to the spin Hall conductivity, which can be computed through the Kubo formula as shown in SN 7. Below, in SN 9 and 10, we will present detailed analyses of the spin-resolved topology and physical observables for two experimentally accessible candidate helical HOTI materials: β-MoTe 2 [ICSD 14349, space group (SG) P 2 1 /m1 ′ (#11.51) in magnetic (Shubnikov) notation, SG 11 (P 2 1 /m) in nonmagnetic notation] [31,43,50] and α-BiBr [ICSD 1560, SG C2/m1 ′ (#12.59) in magnetic notation, SG 12 (C2/m) in nonmagnetic notation] [50,52,53,64,68,[START_REF] Liu | Weak Topological Insulators and Composite Weyl Semimetals: β-Bi4X4 (X = Br, I)[END_REF]. In the k3 > 0 half of the BZ in (d,e), there are three spin-Weyl nodes with partial chiral charge -1 and one spin-Weyl node with partial chiral charge +1. Due to time-reversal symmetry, which flips the sign of the chiral charge of spin-Weyl points (see SN 2 E), there are therefore in the k3 < 0 half of the BZ three spin-Weyl nodes with partial chiral charge +1 and one spin-Weyl node with partial chiral charge -1. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

in SFig. 32(b)], which is a remnant of a monopole-charged Dirac nodal line that is gapped by SOC [31].

In 3D β-MoTe 2 , there are 56 valence electrons per unit cell. To analyze the (spin-resolved) topology of the valence electrons in β-MoTe 2 , we will hence in the discussion below take the lowest 56 electronic states in energy of [H MoTe2 ] to be separately occupied at each k point. Though β-MoTe 2 is a (semi)metal [i.e. valence and conduction bands cross E F (set to zero) in SFig. 32(a,b)], the topology of the 56 valence bands of β-MoTe 2 is nevertheless a gauge-invariant quantity. Specifically, the 56 occupied (valence) bands in β-MoTe 2 are separated from the unoccupied (conduction) bands by an energy gap at each k point. Because there is an energy gap between the 56 th and 57th Bloch states at each k point [SFig. 32(a)], we can therefore uniquely and consistently define a projector onto the valence bands at each k point to characterize their topology across the 3D BZ [107,[START_REF] Wieder | Topological materials discovery from crystal symmetry[END_REF]. Hence throughout this work, we will analyze β-MoTe 2 -despite the existence of electron and hole pockets at E F -as if it is an insulator with 56 occupied valence bands. Lastly, by computing the SIs of our Wannier-based tight-binding model, we find that β-MoTe 2 is specifically a helical HOTI with (z 4 , z 21 , z 22 , z 23 ) = (2, 0, 0, 0), consistent with the findings of previous works [31,50]. Below in SN 9 B, we will next analyze the spin-resolved topology of the 56 occupied valence bands in β-MoTe 2 .

Supplementary Figure 34. Numerical spin gap ∆ s=n•s as a function of the spin resolution direction n for 3D β-MoTe2. The angular parameterization of n is defined in SEq. (9.5), and our calculations were performed over the spin-direction hemisphere of n defined by ϑ ∈ [0, 0.5π] and ϕ ∈ [0, 2π]. For our calculations, the angular variables (ϑ, ϕ) were respectively sampled using the numerical resolution of ∆ϑ = 0.05π and ∆ϕ = 0.05π. By performing a Nelder-Mead minimization [START_REF] Pandey | Nodes: An ab-initio python code for searching nodes in a material using Nelder-Mead 's simplex approach[END_REF] on the spin gap function ∆s(k) individually for 100 k points randomly sampled from the 3D Brillouin zone as the initial points, we define for each n the numerical spin gap ∆ s=n•s as the minimal value (in the units of ℏ/2) of the 100 minimization results for the fixed value of n. In this figure, we use black dots to indicate the values of n for which the numerical spin gap ∆ s=n•s in β-MoTe2 is less than 10 -3 = 0.001. From the uniform (projected) spacing of the black dots in this figure, we conclude that β-MoTe2 is in fact spin-gapless (within numerical precision) for all values of n. For completeness, we note that within the resolution of the angular variables (ϑ, ϕ) sampled over the spin hemisphere considered in our calculations, the maximum numerical spin gap ∆s ≈ 1.401393465896699 × 10 -4 lies at (ϑ, ϕ) = (0.25π, 0.05π), and the minimal numerical spin gap ∆s ≈ 2.4070658354675936×10 -6 lies at (ϑ, ϕ) = (0.05π, 1.75π). The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

is given by

This is consistent with our calculation in SFig. 33(c) showing that C + γ1 (n xz , k 3 = π) = 0 and C + γ1 (n xz , k 3 = 0) = +2. We therefore conclude that while β-MoTe 2 realizes a DSTI for all choices of n, β-MoTe 2 is not a minimal DSTI for n = nxz . Specifically, in a helical HOTI lying in the minimal DSTI regime, there are only two spin-Weyl nodes of the same partial chiral charge in each half of the 3D BZ. Instead, for n = nxz in β-MoTe 2 , an additional dipole of spin-Weyl nodes of opposite partial Chern numbers is present in each half of the BZ. we denote the tight-binding Hamiltonian of the Wannier-based tight-binding model as H BiBr . The single-particle Hilbert space of H BiBr consists of 48 spinful Wannier functions per primitive (unit) cell; the Bloch Hamiltonian [H BiBr (k)] is therefore a 96 × 96 matrix, To reduce the computational resources required for our spin-resolved and Wilson loop tight-binding calculations, we have truncated [H BiBr (k)] to only contain hopping terms with an absolute magnitude greater than or equal to 0.001 eV. In SFig. 37(c) we show the band structure of [H BiBr (k)] in the vicinity of E F using red circles (denoted as "Wannier symm") overlaying the DFT-obtained electronic band structure (blue lines, denoted as "DFT"). We have confirmed that the truncated Wannier-based tight-binding model exhibits the same band ordering and qualitative features as the first-principles electronic structure.

In our DFT calculations, α-BiBr is an insulator with 64 occupied spinful valence bands, which appear in doublydegenerate pairs due to bulk I × T symmetry [START_REF] Wieder | Spin-orbit semimetals in the layer groups[END_REF]. In SFig. 38(a), we again plot the band structure of the Wannierbased tight-binding model [H BiBr (k)], coloring the highest occupied (lowest unoccupied) pair of bands in blue (red). To confirm that the truncated form of [H BiBr (k)] exhibits a band gap at E F at all k points, we have computed the energy gap ∆(k) between the 64 th (highest occupied valence) and 65 th (lowest unoccupied conduction) bands of [H BiBr (k)] using a 100 × 100 × 100 grid uniformly spaced over the 3D BZ in the reduced k coordinates (k 1 , k 2 , k 3 ) defined in SEq. (10.9) and the surrounding text. As shown in SFig. 38(d), we find that the band gap at E F at all k points is nonzero, and takes values greater than ∆(k) ≈ 0.24196355481095755 eV. As a final test that [H BiBr (k)] is gapped at E F , we further performed a numerical Nelder-Mead minimization [START_REF] Pandey | Nodes: An ab-initio python code for searching nodes in a material using Nelder-Mead 's simplex approach[END_REF] on the direct energy band gap ∆(k) using uniformly sampled 20×20×20 k grids (again in reduced k coordinates) as initial points of minimization. For the truncated form of [H BiBr (k)], we found after 8000 Nelder-Mead minimizations that ∆(k) ≥ 0.24181320342543444eV, essentially identical to the value obtained from uniform BZ sampling [SFig. 38(d)]. Hence for our calculations below of the spin-resolved topology (SN 10 B) and spin-electromagnetic response (SN 10 C) of α-BiBr, we have established that the projector onto the occupied (valence) bands, [P (k)] = 64 n=1 |u n,k ⟩⟨u n,k | where |u n,k ⟩ is the n th eigenvector of [H BiBr (k)], is numerically well-defined over the full 3D BZ.

B. Spin-Resolved Topology of α-BiBr

In this section we will analyze the spin-resolved topology of the candidate helical HOTI α-BiBr. As we will show below, we find that α-BiBr hosts a bulk spin gap over a large range of spin resolution directions n, and specifically : Δ # < 0.1 Supplementary Figure 39. Numerical spin gap ∆ s=n•s as a function of the spin resolution direction n for α-BiBr. The angular parameterization of n is defined in SEq. (10.13), and our calculations were performed over the spin-direction hemisphere of n defined by ϑ ∈ [0, 0.5π] and ϕ ∈ [0, 2π]. For our calculations, the angular variables (ϑ, ϕ) were respectively sampled using the numerical resolution of ∆ϑ = 0.05π and ∆ϕ = 0.05π. By performing a Nelder-Mead minimization [START_REF] Pandey | Nodes: An ab-initio python code for searching nodes in a material using Nelder-Mead 's simplex approach[END_REF] on the spin gap function ∆s(k) taking as the initial points 100 k points randomly sampled from the 3D BZ in the reduced k coordinates (k1, k2, k3) defined in SEq. (10.9), we define for each n the numerical spin gap ∆ s=n•s as the minimal value (in the units of ℏ/2) of the 100 minimization results for the fixed value of n. Unlike previously for β-MoTe2 [SFig. 34], we find that α-BiBr exhibits a significant spin gap (∆s > 0.1) for most values of n, and becomes larger than 0.8 (40% of the maximum possible value ∆s = 2) over a significant range of spin resolution directions roughly centered around n = ±ẑ (light and dark red circles). We find specifically that the global spin gap in α-BiBr peaks at a large value [∆s ≈ 0.9479813926905263] and lies at n = (nx, ny, nz) = ±(-0.2486898871648553, 0, 0.968583161128631), which is surprisingly oriented within ≈ 3.019998214845685 degrees of the a3 ∥ c lattice vector [see SEqs. (10.1) and (10.6) and SFig. 37(a)]. This indicates that the bulk spin-orbital texture in α-BiBr is dominated by contributions that are almost entirely polarized along the a3 ∥ c axis. We note that there also exists a narrower pair of spin-gapped region with smaller values of ∆s centered around n = ±x (light blue circles), and that in particular ∆s(k) ≥ 0.2550432063802285 for n = ±x [see SFig. 38(f)]. As we will show later in this section, all four spin-gapped regions of α-BiBr exhibit nontrivial spin-resolved topology, with the ±ẑ-(±x-) centered regions specifically hosting 3D QSHI (T-DAXI) spin-stable states. The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work.

high-symmetry BZ lines. Next, to search for the existence of spin gap closures at lower-symmetry k points in the 3D BZ interior (e.g. spin-Weyl points), we computed the local spin gap ∆ s (k) over a 100×100×100 grid uniformly spaced over the 3D BZ in the reduced k coordinates (k 1 , k 2 , k 3 ) defined in SEq. (10.9). For both n = ẑ and n = x, we observe a nonzero ∆ s (k) at all sampled k points, with the specific local spin gap values of ∆ sz (k) ≥ 0.9309028798325673 for n = ẑ [SFig. 38(e)] and ∆ sx (k) ≥ 0.2550432063802285 for n = x [SFig. 38(f)].

To gain a more comprehensive understanding of the spin gap structure in α-BiBr, we next computed the global (minimum) spin gap ∆ s ≡ min k∈BZ [∆ s (k)] for each spin direction n in the P (n • s)P spectrum of α-BiBr. As we will show below, we find that unlike β-MoTe 2 (SN 9 B), α-BiBr in fact hosts a topological spin gap over a large range of n. We begin by re-expressing the spin direction n as a 3D unit vector parameterized in rotated spherical coordinates as n = (sin ϑ cos ϕ, cos ϑ,sin ϑ sin ϕ).

(10.13)

The parameterization in SEq. (10.13) is chosen such that (ϑ, ϕ) = (0, 0), (0.5π, 0), and (0.5π, -0.5π) respectively the origin and a 3 /2, equivalent to that of the minimal layer construction of a Iand T -protected helical HOTI (see SN 4 D). We have hence shown, for the first time, that the hybrid Wannier spectrum of the candidate helical HOTI α-BiBr [50,52,53,64,68] exhibits higher-order helical spectral flow. Spin-Resolved Topology of α-BiBr: Nested Spin-Resolved Wilson Loop. Having confirmed that α-BiBr hosts large spin-gapped regions in spin-direction (n) parameter space (SFig. 39), and that its occupied bands exhibit the characteristic nested Wilson spectrum of an Iand T -protected helical HOTI (SFig. 41), we will next directly apply the (nested) spin-resolved Wilson loop method developed in this work (SN 3 B and 4 B) to extract the spin-resolved topology of α-BiBr. First, earlier in this section, we showed that the spin spectrum of α-BiBr can be divided into four spin-gapped regions respectively centered around n = ±ẑ and n = ±x (SFig. 39). For this reason, we will here focus on computing the spin-resolved topology of α-BiBr in just the n = ẑ and n = x spin resolution directions, noting that the I-protected spin-resolved topology of α-BiBr will be the same for other values of n that are related to n = ẑ, x by (adiabatic) paths in n parameter space along which the spin gap does not close (see SN 2 C and SFig. 39). As noted earlier in this section, the (nested) spin-resolved Wilson loop calculations detailed below were performed using the freely available Python package nested and spin resolved Wilson loop [97], which was developed for SRefs. [8,15] and the present work.

We begin by reconsidering the n = ẑ P (n • s)P [P s z P ] spectrum of α-BiBr. Because there is a spin gap at all k points for n = ẑ [SFig. 38(b,e)], then we may compute the spin-resolved P ± -Wilson loop on the positive and negative spin bands (SN 3 B). In SFig. 42 , we here take a finer angular resolution ∆ϕ = 0.01π in order to determine the spin-resolved topological phase boundaries in α-BiBr. By performing a Nelder-Mead minimization [START_REF] Pandey | Nodes: An ab-initio python code for searching nodes in a material using Nelder-Mead 's simplex approach[END_REF] on the direct spin gap function ∆s(k) taking as the initial points 100 k points randomly sampled from the 3D BZ in the reduced k coordinates defined in SEq. (10.9), we define for each n the numerical spin gap ∆ s=n•s as the minimal value (in the units of ℏ/2) of the 100 minimization results for the fixed value of n. We note that the right half of this figure was generated directly from the left half for numerical expediency by relying on the fact that ∆s = ∆-s, which follows from the definition of the projected spin operator P sP (see SN 2 B). We identify four narrow regions (green background) that are spin-gapless to within numerical precision. By directly computing the spin spectrum for selected n within the green regions, we confirm that they represent spin-Weyl states that separate four spin-gapped regions in n parameter space (blue and pink regions). By comparing the regions in this plot to the (nested) spin-resolved Wilson loop calculations performed earlier in this section [SFigs. 40, 42, and 43], as well as by performing additional nested spin-resolved Wilson loop calculations for selected additional ϕ, we confirm that the blue (pink) regions represent spin-stable 3D QSHI (T-DAXI) regimes of α-BiBr. Specifically, the blue 3D QSHI region centered around n = ẑ [n = -ẑ] is characterized by the partial weak Chern numbers ν ± = (0, 0, ∓2) [ν ± = (0, 0, ±2)], and the two pink T-DAXI regions centered around n = ±x are characterized by nontrivial, origin-independent, I-quantized partial axion angles θ ± = π (see SN 4 D). The calculations detailed in this figure were performed using the freely available Python package nested and spin resolved Wilson loop [97], which represents an extension of the PythTB open-source Python tight-binding package [START_REF]Python Tight-Binding (PythTB) Package[END_REF] that was implemented and utilized for the preparation of SRefs. [8,15] and the present work. Spin-Resolved Topology of α-BiBr: Phase Diagram. We have in this section performed extensive spin gap and (nested, partial) Wilson loop calculations to demonstrate that α-BiBr exhibits a bulk spin gap over a large range of n, realizes a 3D QSHI state for n = ẑ, and realizes a T-DAXI state for n = x. As established in SN 2 C, the spin spectrum varies adiabatically under small changes in the system Hamiltonian, which can be treated as equivalent to small changes in the spin resolution direction n. This indicates that for small deviations in n from n = ẑ [n = x], α-BiBr will still also realize a spin-stable 3D QSHI [T-DAXI] state. However we have not yet determined the exact phase boundaries in n parameter space of the 3D QSHI and T-DAXI spin-stable states in α-BiBr. To create a spinresolved phase diagram for α-BiBr, we begin by taking n to lie in the xz-plane, such that n = (n x , 0, nz ). We next again parameterize n using the (ϑ, ϕ) angular parameterization in SEq. (10.13), but here fixing ϑ = π/2 while varying ϕ with an angular resolution of ∆ϕ = 0.01π [a finer resolution than the full spin (hemi-) sphere ∆ s calculations for α-BiBr in SFig. 39]. For each ϕ, we then perform a Nelder-Mead minimization [START_REF] Pandey | Nodes: An ab-initio python code for searching nodes in a material using Nelder-Mead 's simplex approach[END_REF] on the direct spin gap function ∆ s (k) taking 100 k points randomly sampled from the 3D BZ as the initial points. Lastly, we define the numerical