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Fiber suspensions flowing in structured media are encountered in many biological and industrial
systems. Interactions between fibers and the transporting flow as well as fiber contact with obstacles
can lead to complex dynamics. In this work, we combine microfluidic experiments and numerical
simulations to study the interactions of a rigid fiber with an individual equilateral triangular pillar
in a microfluidic channel. Four dominant fiber dynamics are identified: transport above or below
the obstacle, pole vaulting and trapping, in excellent agreement between experiments and modeling.
The dynamics are classified as a function of the length, angle and lateral position of the fibers
at the channel entry. We show that the orientation and lateral position close to the obstacle are
responsible for the fiber dynamics and we link those to the initial conditions of the fibers at the
channel entrance. Direct contact between the fibers and the pillar is required to obtain strong
modification of the fiber trajectories, which is associated to irreversible dynamics. Longer fibers are
found to be more laterally shifted by the pillar than shorter fibers that rather tend to remain on
their initial streamline. Our findings could in the future be used to design and optimize microfluidic
sorting devices to sort rigid fibers by length.

I. INTRODUCTION

Fluids containing small elongated particles play a crucial role in many fields of modern technology, such as paper
manufacturing [1], drag reduction [2], composite materials fabrication [3], and pollution control problems [4, 5]. In
many instances, small fibers must navigate through crowded environments embedded with obstacles: micro-plastic
fibers can propagate in soils and cause pollution of groundwater [6, 7], wood-pulp fibers interact with the fabric
mesh underneath during the formation of paper sheets [1], and pathogenic filaments made of parasites, such as
bacterial biofilm streamers, can clog tortuous capillaries or complex structures such as stents [8, 9]. The motion of
elongated particles is much more complex than spherical ones due to their asymmetric shape. Their dynamics results
from the interplay between the surrounding background flow, internal elastic forces, hydrodynamic interactions and
eventually interactions with solid walls and embedded obstacles. Interactions with obstacles are used in microfluidic
particle sorting devices based on the so-called deterministic lateral displacement (DLD) technique, which was initially
developed for spherical particles [10]. DLD uses successive collisions with pillars in a background flow to sort particles
based on their size or mechanical properties. It has been successfully extended to separate DNA fragments [11, 12],
pathogenic bacteria [13], cells [14, 15], and blood parasites [16]. However, the sorting of rigid elongated objects, such
as micro-plastics, with obstacles has never been reported yet.

Indeed, while the motion of elongated particles in unbounded and confined viscous flows has been widely investigated
[17], research on the dynamic interactions between a rigid fiber and an obstacle is still scarce. When freely transported
in a viscous flow, the trajectory of the center of mass of a rigid fiber will follow the streamlines. Hydrodynamic
interactions with bounding channel walls can additionally lead to rotation, reorientation and transverse oscillations
of the fiber [18, 19]. Combining experiments, theory and numerical simulations, Makanga et al. [20] recently showed
that, in the absence of a background flow, the interactions between a sedimenting fiber and an obstacle can either
induce a large lateral displacement or permanent trapping depending on the obstacle shape, fiber length and/or
deformability. In the presence of an ambient flow field, the 2D simulations of a semi-flexible polymer in a periodic
array of circular obstacles by Chakrabarti et al. [21] show that various modes of transport occur depending on the
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incidence of the incoming flow in the lattice. While instructive, this work does not explore the effect of rigidity and
lacks experimental validations.

Studying fluid structure interactions of fibers in the presence of obstacles is a particularly rich topic as fiber transport
does not only result from the interaction of the finite size slender object with a complex flow field (created by the
presence of the obstacle), but also by possible contact between the fiber and the obstacle. Despite considering flows at
vanishing Reynolds numbers where direct contact between objects is prevented by lubrication forces, surface roughness
or the presence of small attractive forces between fibers and objects might promote such direct contact.

Migration of fibers between streamlines can thus result from reversible interactions, induced by streamline curvature,
but also by irreversible interactions induced by direct fiber/obstacle contact. Modeling direct contact between fibers
and obstacles is very challenging as the details of such interactions are often unknown and not fully controlled from
experiments. In this paper we overcome these difficulties by performing a combined experimental and modeling study
where a simplified approach is used in the model to simulate fiber and obstacle contact. Direct comparison between
very well controlled model experiments and simulations allows to adjust the contact parameters in the simulation and
to obtain excellent agreement between experiments and simulations, as far as fiber trajectories, orientations and time
scales are concerned. In this way we effectively capture the fiber dynamics and the combined role of fluid structure
interactions and fiber obstacle contact. This allows us to perform a systematic study of cross-stream migration of
rigid fibers interacting with a triangular pillar in a confined microchannel as a function of their initial orientation and
position at the channel entry and their length, and to evaluate the sorting potential.

This paper is organized as follows: in Sec. II, we briefly introduce the fabrication method of the rigid fibers and the
experimental setup. Section III presents the numerical methods used to compute the flow field and the motion of the
fibers. Section IV describes the flow field and the fiber dynamics, and Sec. V focuses on the sorting potential. The
main conclusions of this study are summarized in Sec. VI.

II. EXPERIMENTAL METHOD

A. Rigid fiber fabrication and characterization

The elongated rigid fibers used in this study are prepared by shearing an emulsion of SU-8 polymer droplets in a
glycerol-ethanol mixture and exposing the stretched droplets to ultraviolet (UV) light (see Fig. 1a). The UV radiations
photo-crosslink the SU-8 and yield chemically highly stable colloidal SU-8 fibers [22], as shown on the right panel in
Fig. 1a. The fibers are mostly straight and have high aspect ratios. The length and width of the fibers are controlled
by tuning the viscosity of the solvent and the shear stress. In practice, this corresponds to adjusting the ratio between
glycerol and ethanol and the stirring speed. In our experiments, the solvent consists of 70% glycerol and 30% ethanol
by weight, and it is stirred at 300 rpm. The fibers have typical lengths of 20 to 200 µm and diameters of 2 to 6 µm
(see Fig. 1b). The Young’s modulus of crosslinked SU-8 is found to be E = 0.9 to 7.4GPa [23]. The fibers can be
considered undeformable in our experiments due to their high flexural rigidity, which is on the order of 10−14 Nm2.

B. Experimental setup

We conduct the experiments in a polydimethylsiloxane (PDMS) microchannel of width Wch = 800µm, height
Hch = 40µm, and length Lch = 20mm with three inlets and one outlet (see Fig. 1c). A triangular pillar with
the same depth Hch as the channel is placed in the middle of the microchannel (see Fig. 1d). Its base is aligned

with the flow direction and the triangle is of height hobs = 75 µm and base lobs = 2hobs/
√
3. The experiments are

performed on an inverted microscope (Zeiss Axio Observer A1). The PDMS channel is placed on a motorized stage
(ASI MS-2000 XY automated stage) to precisely control its position in the x and y directions (horizontal plane). An
insert is moved in the z-axis via a piezo element with a range of 150 µm with nanometer accuracy. A syringe pump
(CETONI GmbH, neMESYS Low Pressure module 290N) drives the experimental fluids with controlled flow rates.
The suspension containing rigid fibers in a glycerol and ethanol mixture is delivered from the middle inlet with a flow
rate Q2 = 1nL/s. Fiber concentration is very low to assure that fibers enter the channel and interact with the obstacle
one by one. Two lateral inlets inject the same glycerol and ethanol mixture with the flow rate Q1 = Q3 = 5nL/s.
These lateral flows focus the fibers into a narrow band in the center of the channel width, increasing the probability
of their interaction with the obstacle. Flow-focusing also aligns the fibers parallel to the main flow direction, reducing
the range of initial fiber orientations. At the outlet, the flow rate is set to Q4 = −(Q1 + Q2 + Q3) = −11 nL/s to
stabilize the flow. The flow can be reversed to release fibers that remain trapped on the obstacle. In the experiments,
the density ρ and dynamic viscosity µ of the suspending fluid are respectively 1190 kg/m3 and 340mPa s [24]. Notice
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that the density of the raw SU-8 resin is reported to be about 1200 kg/m3, which is very close to the density of the
solvent. Hence, sedimentation of fibers is negligible in the experiments.

SU-8 fibers are observed under bright-field microscopy, and a sCMOS camera (ORCA-Flash4.0 V3 Digital CMOS
camera, Hamamatsu) records images of their evolution in the channel through a 10× objective (N-Achroplan 10x/0.25
Ph1 M27, Zeiss). The camera’s exposure time is 10ms to avoid image blurring, and the sampling frequency is 100Hz
at best performance with an image resolution of 2048 × 2048 pixels. The images are processed using a homemade
MATLAB code, which includes background removal, tubular structure enhancement, noise reduction using Gaussian
blurring, binarization, skeletonization, and B-spline reconstruction.

Before the experiments, we perform micro-particle image velocimetry (µPIV) (LaVision GmbH) at different depths
in the microchannel with the same suspending fluid and flow rates as in the experiments to characterize the flow
field. The fluid velocity at the channel centerline Umax is in the order of 600 µm/s, which gives a Reynolds number
Re = ρUmaxhobs/µ in the order of 10−4.

(a) (b)

Motorized stageSyringe pump

Syringe pump
PDMS channel

Objective

Top light

Region of Interest (ROI)

(c) (d)

FIG. 1. (a) The rigid SU-8 fiber fabrication process. The right panel is a real image of the SU-8 fibers under the microscope. (b)
The length and width distributions of the SU-8 fibers. (c) A detailed sketch of the experimental setup showing the microfluidic
channel, flow control, and data acquisition. (d) Zoom in on the region of interest (ROI) showing the main geometrical parameters
of the study (figure not to scale).

III. NUMERICAL METHOD

A. Numerical setup

The microfluidic channel used in the numerical simulations has the same width Wch = 800µm and height Hch =
40 µm as the one used in the experiments (see Fig. 1d), and it has a length Lch = 2400µm. An equilateral triangular

pillar of height hobs = 75µm and base lobs = 2hobs/
√
3 is placed in the middle of the channel with the baseline aligned

with the flow direction, again matching the experimental conditions. The channel is long enough so that the flow at
the inlet and outlet of the domain is not significantly disturbed by the presence of the pillar.

A rigid fiber of length L and cross-section radius a is positioned in the midplane of the channel far away from the
pillar. Its center of mass is initially located at r0 = (x0 = Lch/4, y0, z0 = Hch/2), which is far enough from the pillar
so that the fiber does not feel any flow disturbance. In the experiments, most of the fibers enter the microfluidic
channel close to the center with respect to the channel width and with a small initial angle θ0 due to the flow-focusing.
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To explore similar initial conditions the initial lateral position y0 is varied in the simulations between the base and the
apex of the pillar and the initial angle is varied in the range −10◦ ≤ θ0 ≤ 10◦. The fiber radius is set to a = 2µm and
the fiber length spans from 0.5lobs to 1.4lobs to match the geometrical properties of the fibers used in the experiments.
Owing to the low Reynolds number reported in the experiments, the fluid flow in the microfluidic channel is governed

by the Stokes equation

∇p− ρfb = µ∇2u (1)

where p, ρ, µ and u are respectively the pressure, the density, the dynamic viscosity and the velocity of the fluid, and
fb = (fbx, 0, 0) is the constant force parallel to the channel walls that generates the flow. The value of fbx is adjusted
to have the same velocity Umax at the channel centerline as in the experiments. No-slip condition (u = 0) is set on
the channel walls and on the surface of the obstacle, and periodic boundary conditions are set at the channel inlet
and outlet.

B. Computation of the flow field

The flow field is computed in three dimensions using the lattice Boltzmann method (LBM) [25, 26]. The LBM is
based on the lattice Boltzmann equation

fi(r+ ei∆t, t+∆t)− fi(r, t) = − (fi − f eq
i )∆t/τ + fbi

(2)

where fi(r, t) is a distribution function that gives the probability of finding a fluid particle at position r and time t
flowing at the discrete velocity ei, and ∆t is the timestep. Here, the D3Q19 lattice is used and thus i = 0− 18, and
the collision term is approximated by the Bhatnagar-Gross-Krook collision operator [27]. The relaxation time τ is
related to the kinematic viscosity of the fluid ν by τ = 3ν + 1

2 , and fbi is the body force generating the flow field.
The equilibrium distribution function f eq

i is defined as

f eq
i (r, t) = ωiρ

[
1 +

u · ei
c2s

+
(u · ei)2

2c4s
− u · u

2c2s

]
(3)

where cs =
1√
3
is the lattice speed of sound and the ωi’s are weight factors with ω0 = 1

3 , ω1−6 = 1
18 and ω7−18 = 1

36 .

The fluid density ρ and velocity u are respectively computed as the zeroth and first order moments of the distribution
function fi

ρ(r, t) =

18∑
i=0

fi(r, t) u(r, t) =
1

ρ

18∑
i=0

fi(r, t)ei. (4)

The no-slip boundary conditions applied on the channel walls and on the surface of the pillar are achieved using a
standard bounce-back scheme. The flow field is assumed to be not modified by the presence of the fiber and is then
computed only once.

C. Computation of the fiber dynamics

The viscous flow transports the fiber within the channel and thus exerts mechanical stress on it. In addition, the
fiber can experience contact forces when it meets the obstacle surface. Internal bending and tensile forces are imposed
on the rigid fiber in order to keep it straight. The interplay between the external viscous and contact forces and
the internal tensile and bending forces determines the fiber dynamics and trajectories. Below we briefly introduce
the method used to account for these elastohydrodynamic couplings and contact of the fiber with the obstacle in the
simulations.

The fiber is modeled as a chain of n rigid spherical beads of radius a that are linked together by internal elastic
forces FE (see Fig. 2a) to keep the fiber shape unchanged over time. These forces are derived from an elastic potential
H [28]

FE = −∇H with H =

n∑
i=2

[
S

4a
(|ti| − 2a)

2

]
+

n−1∑
i=2

[
B

2a

(
1− t̂i+1 · t̂i

)]
(5)
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where the first sum accounts for stretching (i.e. tensile) forces and the second sum accounts for bending forces. Here,
S = Eπa2 is the stretching coefficient and B = Eπa4/4 is the bending coefficient, where E is the fiber Young’s
modulus. In the simulations we chose E = 26MPa, which is smaller than the Young’s modulus of the fibers used in
the experiments, but it is large enough to simulate rigid fibers and prevents making the problem too stiff to be solved
numerically. ti is the vector linking the center of mass of beads i and i− 1 and t̂i = ti/ |ti|.
The fiber is immersed in the Eulerian grid used to compute the flow field by LBM, as depicted in Fig. 2b, where

fluid nodes are represented as blue circles and solid nodes where no-slip boundary conditions apply are shown as red
squares. When the fiber comes close to the obstacle, it will experience short range contact forces. To model this
contact, the surface of the pillar is discretized with small beads in order to smoothen the stepped shape of the Eulerian
grid and to tune the effective pillar roughness through the bead radius aobs. A repulsive force FR [29] is added to the
fiber beads that are closer than a given cutoff Rref to the pillar beads to prevent the fiber from penetrating inside the
obstacle. The external repulsive force between the fiber bead i and the obstacle bead j is defined as

FR
ij =

− Fref

a+aobs

[
R2

ref−|rij |2

R2
ref−(a+aobs)

2

]4
rij if |rij | < Rref

0 otherwise
(6)

where Fref = 6πµaUmax and rij is the vector between the fiber bead i and the obstacle bead j. The total repulsive
force FR acting on the ith fiber bead is the sum of all the repulsive forces FR

ij (see Fig. 2c). The discretization of the
fiber and the pillar using beads leads to a repulsive force that is not strictly normal to the pillar surface. It can be
decomposed as

FR = FR
n n̂+ FR

t t̂ (7)

where n̂ and t̂ are respectively the unit vectors normal and tangent to the pillar surface. The normal component is a
repulsive force and the tangential component can be described as a “friction force”.

Once the internal and external forces are obtained, the velocity of the fiber beads is computed from the mobility
relation

Ui =

n∑
j=1

MijFj + ui (8)

where F = FE + FR is the total non-hydrodynamic force acting on the fiber beads, ui is the velocity of the frozen
background flow (computed with LBM, see Sec. III B) interpolated at the center of mass of the ith bead, and M is
the mobility matrix that contains all hydrodynamic interactions between the fiber beads. In this work we use the
Rotne-Prager-Yamakawa mobility matrix defined as [30]

Mij =

{(
I+ a2

3 ∇2
)
T(rij) i ̸= j

1
6πµa I i = j

(9)

where I is the 3 × 3 identity matrix, T is the Oseen tensor and rij the vector between fiber beads i and j. Due to
the fact that the radius of the beads is much smaller compared to the channel dimensions we use a mobility matrix
derived for an unbounded domain and neglect as such the presence of the channel walls. The new position of the fiber
beads r is then computed by integrating dr/dt = U with an implicit second order backward differentiation formula
(BDF2) method to handle the stiffness of the system.

The mobility matrix M used here neglects fiber/obstacle hydrodynamic interactions. The fiber nevertheless slows
down at the approach of the obstacle due to the modification of the flow field and in particular the no-slip boundary
condition leading to a vanishing velocity at the obstacle surface. However, lubrication forces are not taken into
account and the obstacle-fiber interaction is solely modelled by repulsive forces between the fiber and the object
corresponding to direct fiber/obstacle contact. This is a strong simplification, in particular as for perfectly smooth
surfaces lubrication forces prevent direct contact at vanishing Reynolds number. In the experiments, of course, surfaces
are never perfectly smooth allowing for direct contact even at low Reynolds numbers, but the exact contact conditions
are difficult to quantify or to control.

We thus chose here to model the fiber obstacle interactions using the simplified approach of a short range repulsive
force. Careful comparison between simulations and experimental results obtained with very well controlled model
experiments allows us to adjust the parameters of the simulations. We found that a cutoff distance Rref = 1.54 µm and
an obstacle bead radius aobs = 0.6 µm were optimal to prevent artificial overlapping between the fiber and the obstacle
surface and also provide excellent quantitative agreement for all comparisons between experiments and simulations (see



6

Secs. IV and V). This proves that our “effective” approach captures correctly the role of the complicated fiber-obstacle
interactions on the fiber dynamics. We would like to stress that such agreement is surprisingly good given the fact
that our model neglects near-field hydrodynamic interactions between the fiber and the obstacle. But as mentioned
above, solving the exact flow in the thin gap separating the two objects is out of reach due to their unknown surface
topography, and our adjustable model offers a robust alternative.

(a) (b) (c)

FIG. 2. (a) Sketch showing the discretization of the fiber by rigid spherical beads connected by springs. (b) Representation of
the Eulerian grid where the fiber and the obstacle are immersed. Fluid nodes are shown as blue circles and solid nodes as red
squares. (c) Zoom on the contact between the fiber and the obstacle surface. The resulting repulsive force FR = FR

ij +FR
ik+FR

il

is not strictly normal to the obstacle surface (the red line) because of the discretization using spherical beads.

IV. FLOW DISTURBANCE AND FIBER DYNAMICS

A. The disturbance flow field

We first characterize the flow disturbance created by the presence of the obstacle. The flow field computed by the
LBM is shown in Fig. 3 and compared to the µPIV measurements in the midplane of the experimental channel. Note
that in the Hele-Shaw configuration of our channel a Poiseuille flow develops in the z direction. The flow velocity
is maximal at the midplane where the velocity gradient in the z direction is zero. We thus concentrate both in the
experiments and in the simulations on the fiber dynamics at the midplane, where they are solely given by the flow
properties in the x and y direction and where the out of plane shear can be neglected. Panel (a) gives the streamlines
and the normalized velocity magnitude in the neighborhood of the pillar (only a portion of the channel is represented
here). The main features of the experimental flow are well captured by the simulation. The velocity is zero along the
bounding walls (y = 0 and 800 µm) and on the pillar surface. The fluid is sharply accelerated right above and below
the pillar and it is almost uniform far away from the pillar. The confinement of the flow in the shallow Hele-Shaw
like channel leads to a localization of the flow disturbance close to the obstacle and to a strong acceleration zone
at the apex of the triangle. The lateral extent of the flow disturbance scales with the channel height [31] as shown
in Appendix A and gets more and more localized with decreasing channel height. At the same time the velocity
gradients close to the obstacle increase. The red thick line is the flow separatrix which separates the streamlines going
above and below the obstacle. The velocity profiles along the x and y axes (horizontal and vertical lines in panel (a))
are respectively reported in Figs. 3b and 3c. The flow fields in the experiment and the simulation are in excellent
quantitative agreement. Note that all streamlines are symmetric due to the symmetry of the obstacle and the fact
that the Reynolds number is small.
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(a)

(b) (c)

FIG. 3. Velocity fields in the vicinity of the pillar in the experiments and simulations. (a) Normalized velocity magnitude and
streamlines obtained experimentally by µPIV (left) and computed by LBM simulation (right). The thick red line is the flow
separatrix. (b) Velocity profiles along the x-axis (horizontal lines in (a)). (c) Velocity profiles along the y-axis (vertical lines in
(a)). Umax is the velocity magnitude at the channel centerline.

B. Fiber dynamics

The dynamics of rigid fibers is investigated as a function of their length L, initial angle θ0 and lateral position y0 at
the channel entry. A lateral position of y0 = 0 corresponds to the position of the base of the triangle. We thus refer
to increasing y0 as positioning the fiber “higher” whereas decreasing y0 corresponds to positioning the fiber “lower”
along the triangle. More than 200 experiments and 1300 numerical simulations have been performed with a single
isolated fiber for various initial conditions. Four different fiber dynamics have been observed both experimentally and
numerically depending on θ0, y0 and L. Typical examples from experiments and simulations are shown in Fig. 4. For
these examples the exact initial conditions from the experiments have been used as a starting point for the simulations.
In panel (a), the fiber is initially parallel to the flow (θ0 = 0) and almost aligned with the base of the pillar (y0 ≈ 0).
It simply follows a mostly symmetric trajectory and goes below the pillar. This dynamics is referred to as “Below”
in the following. For panel (b), the fiber has initially a larger y0 positioning it “higher” with respect to the base
of the triangle. It also follows a mostly symmetric trajectory which, here, goes above the pillar. This dynamics is
referred to as “Above”. For these two cases, the fiber does not approach the obstacle closely and nearly goes back
to its initial lateral position and angle far away downstream. However, for intermediate initial lateral positions the
fiber seems to establish contact with the pillar before passing either below or above it. The fiber in panel (c) has
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such an intermediate initial position and a slightly negative angle. In this case, the fiber strongly interacts with the
pillar. Its front remains blocked at the left edge of the obstacle for a short period of time, resulting in the rotation of
the fiber around the front followed by a switch of its front and rear. This dynamics is referred to as “Pole-vaulting”
motion. Here, the fiber does not go back to its initial configuration (θ0, y0) far away downstream. It migrates across
streamlines and remains laterally shifted as indicated in panel (c). Finally for panel (d) the fiber has a positive initial
angle and an intermediate initial lateral position. It gets trapped at the left tip of the pillar and finds an equilibrium
position there, which is referred to as “Trapping” in the following.

Despite slight differences observed that may be attributed to experimental imperfections, there is a very good
agreement in both space and time between the experiments and the simulations for identical initial conditions and
the characteristics of the four reported dynamics are reproduced in experiments and simulations. Movies of the four
cases presented in Fig. 4 are provided in the Supplementary Materials .

(a) (b)

(c) (d)

FIG. 4. The four different fiber dynamics observed experimentally and accurately reproduced by simulations. The first line
of each panel shows images from the experiments, the second line represents the chronophotograph of the simulation and the
third line compares the trajectories of the fiber center of mass in the experiment (dots) and in the simulation (solid line). (a)
The fiber goes below the pillar. (b) The fiber goes above the pillar. (c) Pole-vaulting. Vertical black double-arrow indicates
the lateral shift that results from the interaction with the obstacle. (d) Permanent trapping. The colors in the two last rows
of each panel indicate the time with the color-code indicated at the bottom of the figure. All figures share the same scale bar
(100 µm).

C. Effect of the initial conditions on the fiber dynamics

As illustrated in Fig. 4, the dynamics of the fibers is dependent on their initial angle θ0 and lateral position y0
when they enter the channel. This is shown more broadly in Fig. 5 where panel (a) is a comparison of the fiber
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dynamics observed experimentally (open symbols) and obtained numerically (closed symbols) for a large number of
initial configurations (θ0, y0), and for fiber length 0.5lobs ≤ L ≤ 1.5lobs in the experiments and L = 0.8lobs in the
simulations, which is the average length of the fibers in the experiments. The different dynamics are determined
visually from the trajectories, with the exception of the “Pole-vaulting” dynamics. As the velocity of the fiber head is
not always strictly zero during the rotation phase both in the experiments and simulations we consider the head of the
fiber to be “blocked” if Uhead < 0.01Umax in the simulations, and if it has no perceptible motion in the experiments.
In the experiments, most of the fibers enter the channel with a small initial angle (θ0 ≈ 0) due to the flow-focusing,
and very few of them have an initial angle |θ0| > 5. The black dashed line indicates the position of the flow separatrix
far away from the pillar. It separates the “Below” and “Above” dynamics well. The fibers that are initially located at
a certain distance below the separatrix go below the obstacle (red circles), and those that are initially located above
the separatrix pass above the obstacle (green squares) regardless of their initial angle. Most of these fibers exhibit a
mostly symmetric trajectory and do not approach the pillar very closely. The situation is more complex close to the
separatrix, where the fibers may interact directly with the pillar. Here, the four dynamics coexist and the behavior
of the fibers is strongly dependent on their initial angle. For negative initial angles, fibers above the separatrix are
more likely to have a pole-vaulting motion (blue triangles), while for positive angles they generally slide over the
pillar and pass above it. However, some pole-vaulting events also happen for positive angles. For these rare cases, the
fiber front reaches the left vertex of the pillar, rotates counter-clockwise and passes below the pillar. The fibers that
are initially located very close to the flow separatrix may also remain trapped for both positive and negative initial
angles (yellow diamonds). These events occur slightly above the separatrix for negative angles and slightly below the
separatrix for positive angles. Trapping events result from a balance of the hydrodynamic forces exerted on the fiber
on both sides of the contact point. Since the flow is stronger below the point of contact than above, the fiber chooses
an asymmetric configuration toward the top to balance the forces on the two sides (see Fig. 4d). Trapping events are
thus very sensitive to the position of this contact point and can only occur in a very narrow range of initial conditions.

The dynamics observed for the experiments and the simulations are in excellent agreement. In both cases, all the
trapping events are located very close to the separatrix and the pole-vaulting events are observed for the same range
of values of (θ0, y0). As trapping results from a very fine balance of the hydrodynamic forces acting on the fiber, it
is very sensitive to experimental noise such as disturbances of the flow field which could explain why there are fewer
trapping events observed in the experiments than in the simulations.

The length of the fibers also influences the resulting dynamics in some cases. Figure 5b shows the fiber dynamics
obtained from simulations while varying (θ0, y0) as well as the fiber length L. We recover the same regions as in panel
(a), with the “Below” and “Above” dynamics respectively for low and high y0, the diagonal of pole-vaulting for θ0 < 0,
and all the trapping events around the flow separatrix. The fiber length does not affect the resulting dynamics when
y0/hobs < 0.2 or y0/hobs > 0.5 because for these initial lateral positions the fiber only weakly interacts with the pillar.
It passes either below or above the pillar depending only on the value of y0. On the contrary, for y0/hobs ∈ [0.2; 0.5]
the fiber interacts closely with the pillar and the resulting dynamics also depends on the fiber length. At a given
(θ0, y0), long fibers are more likely to pole-vault or get trapped than short fibers, that generally follow the “Above”
or “Below” dynamics.
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(a) (b)

FIG. 5. Effect of the fiber initial configuration on the resulting dynamics. (a) Comparison between experiments (open symbols)
and simulations (closed symbols). The fiber lengths are 0.5lobs ≤ L ≤ 1.5lobs in the experiments and L = 0.8lobs in the
simulations, which is the average length of the fibers in the experiments. The dashed line shows the flow separatrix. (b)
Simulated dynamics for different fiber lengths ranging in 0.5lobs < L < 1.4lobs. Red circles: The fiber goes below the pillar;
Green squares: The fiber goes above the pillar; Blue triangles: Pole-vaulting; Yellow diamonds: Permanent trapping.

D. Fiber-obstacle interactions

So far, we have shown how the configuration at the channel entry governs the dynamics of the fiber when passing the
obstacle. At the inlet, the streamlines are almost straight because the flow disturbances from the obstacle are weak.
Closer to the obstacle the flow becomes more intricate and curved (see Fig. 3). Due to its finite size and elongated
shape, the fiber will not necessarily follow these streamlines or maintain its initial orientation as it approaches the
obstacle and it is the fiber configuration near the obstacle that ultimately determines its subsequent dynamics. For
instance, direct contact with obstacle is evidently involved in the “Trapping” and “Pole-vaulting” dynamics, but the
effect of close interactions on the “Below” and “Above” dynamics is less clear. This is why it is useful to analyze
the fiber conditions close to the obstacle, correlate them with the different dynamics and link them to the initial
conditions at the inlet.

We will specifically analyze fibers in direct contact with the obstacle in this section. We define direct contact to take
place when the repulsive force FR becomes non zero in the simulations. In the experiments we use visual observations
and define contact when no visible gap between fiber and pillar can be observed. The contact conditions between the
fiber and the pillar are characterized by the angle θc and the lateral position yc of the fiber when it first touches the
pillar (see Fig. 6a). Their influence on the motion of the fiber is discussed in what follows.

Figure 6b gives the resulting dynamics in simulations for which the fiber is initially placed directly in contact with
the pillar at a well controlled contact configuration θ0 = θc and y0 = yc. In these simulations, the fiber length is set
to L/lobs = 1. The four fiber dynamics occupy well distinct regions in the (θc, yc) space. Pole-vaulting events occur
when θc < 0 and 0.1 ≤ yc/hobs ≤ 0.4. The “Below” dynamics is obtained for both positive and negative contact
angles, and up to yc/hobs = 0.5. The “Above” and “Below” domains are well separated by a thin region of trapping
events, which reveals the existence of an equilibrium contact configuration between these two dynamics. There are
also some trapping events for yc/hobs = 0 and θc ≤ −30◦. For those cases, the fiber rotates and slides around the left
apex of the pillar, and it finds an equilibrium position where it remains trapped.

The motion of the fiber just after the contact, and thus its direction of rotation, results from the complex interplay
between the flow and the repulsive force. The angular velocity of the fiber ω can be decomposed as the sum of the
rotation induced by the contact and the rotation induced by the flow. It depends on both the orientation of the fiber
and its position along the edge of the pillar, which, themselves, vary over time. This is illustrated in Fig. 6c on an
example where the same lateral contact position leads to the four different dynamics when the contact angle is varied.
This sketch shows the evolution of four fibers starting at yc/hobs = 0.4 at t = t0 (light fibers), but with different
contact angles θc. The blue and red fibers have a high |θc| and therefore sample many streamlines and feel a high
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velocity gradient. The rotation of these fibers is mainly due to the flow which strongly pushes the blue one clockwise
(ω < 0) and the red one counter-clockwise (ω > 0). As a result, the blue fiber will have a pole-vaulting motion while
the red one will pass below the pillar at a later time. For intermediate contact angles, the fibers feel a lower velocity
gradient and so the contact force also plays a role in their rotation. The green and yellow fibers thus have a lower
angular velocity than the blue and red ones. They both rotate counter-clockwise, but the green one is pushed up by
the flow and slides over the edge of the pillar, and the yellow one rotates around its head and will find an equilibrium
position and remain trapped on the left apex of the pillar.

(a) (b) (c)

FIG. 6. Effect of the fiber contact configuration on the dynamics. (a) Definitions of the contact angle θc and the contact
position yc. (b) Phase diagram showing the dynamics of the fiber as a function of θc and yc in simulations where the fiber
is initially in contact with the pillar at a well-controlled position (θc = θ0, yc = y0). The fiber length is L/lobs = 1. Red
circles: The fiber goes below the pillar; Green squares: The fiber goes above the pillar; Blue triangles: Pole-vaulting; Yellow
diamonds: Permanent trapping. (c) Sketch showing the motion of fibers starting at a contact position yc/hobs = 0.4 and
θc = −45◦,−15◦, 15◦ and 45◦. Same color code as in panel (b) is used to represent the fiber dynamics, light colors correspond
to the contact position while darker colors to subsequent moment.

To investigate whether all contact conditions shown in Fig. 6b can be reached when the fiber approaches the
obstacle transported by the flow, we report in Fig. 7a the range of contact conditions obtained for experiments (open
symbols) and simulations (closed symbols) when fibers are released at the channel entry within the range of initial
conditions: −10◦ ≤ θ0 ≤ 10◦ and 0 ≤ y0/hobs ≤ 1. There is an overall good agreement between the dynamics
obtained experimentally and numerically in Fig. 7a. Some pole-vaulting events and one trapping event are observed
experimentally at higher yc/hobs compared to the simulations, which can be attributed to roughness effects and local
disturbances of the flow field. The fiber dynamics at a given (θc, yc) is the same in both Figs. 6b and 7a. This
means the fiber dynamics is uniquely determined by the configuration at contact θc and yc at a given fiber length.
Interestingly, several contact configurations cannot be reached and no data is observed in the top left and bottom
right corners of the plot.

It is therefore interesting to relate the contact configurations to the initial conditions. The mapping between the
contact configurations and the initial conditions

(θc, yc) = f(θ0, y0, L) (10)

is complex due to the triangular obstacle that disturbs the flow field in its vicinity and the coupling of the fiber
orientation and position due to its elongated shape. A thorough sensitivity analysis of the mapping is carried out in
Appendix B whereas we here briefly showcase the sensitivity of the function f with respect to its parameters. We
perturb each of these parameters independently in Fig. 7b. In the first panel, a small lateral shift above the separatrix
(δy0 = 0.15hobs) leads to a significantly higher contact point (δyc = 0.7hobs) and opposite orientations at contact.
This is due to the opposite curvature of the streamlines above and below the separatrix. Similarly, a small change in
the initial orientation leads to contact configurations with opposite orientations (see second panel). Finally, the fiber
length also affects the contact configuration: the longest fiber reaches the obstacle earlier than the shortest one, and
has therefore less time to rotate before contact (see third panel).
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(a) (b)

FIG. 7. (a) Phase diagram representing the dynamics of fibers initially located far away from the pillar as a function of their
contact configuration θc and yc. Open symbols: experiments; closed symbols: simulations at L/lobs = 1. (b) Typical examples
of chronophotographs illustrating the high sensitivity of the contact configuration on y0 (top), θ0 (middle) and L (bottom).

In this section we have analyzed the dynamics of fibers getting very close to the obstacle, corresponding to fibers
released close to the separatrix. In this range, small differences in the initial conditions lead to strong differences in
the fiber trajectories and orientation close to the obstacle due to the finite size effects in the complex disturbance
flow field around the obstacle. This explains why in the region close to the flow separatrix very different fiber
dynamics can be observed. Trajectories that do not enter into contact with the pillar just pass above or below the
obstacle. Only a limited range of initial conditions leads to fiber contact with the obstacle where all four dynamics
are observed. “Trapping” separates the “Above” and “Below” dynamics and “Pole-vaulting” is observed for specific
contact conditions.

To conclude this section, we briefly investigate the effect of obstacle roughness on the different dynamics, and more
particularly on the “Pole-vaulting” and “Trapping” cases. In Appendix C we compare the fiber dynamics obtained in
Fig. 5a for a rough obstacle, i.e. exerting tangential “friction” forces on the fiber at contact, with a perfectly smooth
obstacle, for which contact forces are strictly normal to the obstacle surface. Our simulations show that trapping
and pole-vaulting still occur in the absence of roughness, but over a smaller range of initial conditions. These results
confirm that roughness is not needed but promotes these two dynamics by increasing their likelihood at contact.

The last aspect we want to investigate in this study is the influence of fiber dynamics and contact with obstacles
on their lateral drift. This is addressed in the next section.

V. LATERAL DISPLACEMENT

The trajectories of the fibers are significantly affected by the presence of the pillar and many of them do not
remain on their initial streamline. They thus do not return to their initial lateral position far away downstream, after
the obstacle (e.g. Fig. 4c). Such lateral displacement could be used for fiber sorting applications and needs to be
understood in order to be leveraged. In this section, we first quantify the lateral displacement both in simulations
and experiments, then investigate the mechanisms at play and show that contact with the pillar enhances this effect.

A. Cross-stream migration

The lateral displacement is quantified by

δ =
yf − y0
hobs

(11)
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where y0 and yf are respectively the initial (upstream) and final (downstream) lateral positions of the fiber center
of mass at equilibrium far away from the pillar, and hobs is the pillar height. Note that due to the symmetry of the
streamlines, lateral displacement is only observed in the case of cross-stream migration.

(a) (b)

(c) (d)

FIG. 8. Effect of the fiber initial configuration and length on the lateral displacement δ. (a) Comparison between experiments
(thin edges) and simulations (thick edges). The fiber lengths are 0.5lobs ≤ L ≤ 1.5lobs in the experiments and L = 0.8lobs in
the simulations, which is the average fiber length in the experiments. The dashed line shows the flow separatrix. (b) Lateral
displacement computed by numerical simulations while varying the initial angle θ0, the initial lateral position y0 and the fiber
length L. (c) and (d) Typical examples of chronophotographs and trajectories showing the influence of the fiber length and
initial configuration on the lateral displacement.

Figure 8 shows the influence of the initial condition and the fiber length on the lateral displacement. Panel (a)
is a comparison of experimental data (thin edges) and simulated data (thick edges) at L = 0.8lobs (the mean fiber
length in the experiments), varying θ0 and y0, and panel (b) represents data extracted from the simulations while
varying θ0, y0 and L. The fiber dynamics are coded by the same symbols as in Fig. 5, with trapping states represented
as hollow diamonds as in this case no lateral displacement can be observed. In both panels, the darker the color,
the larger the deviation. This figure provides a link between the fiber dynamics and the lateral displacement. The
“Pole-vaulting” dynamics leads to strong lateral deviations, while the “Above” and “Below” dynamics result in very
small deviations, with the exception of initial conditions close to the flow separatrix (indicated by the dashed line in
panel (a)). Most lateral displacements are positive meaning that the fiber will be deviated towards larger y positions,
but some negative (and rather small) lateral deviations are observed in particular for negative initial angles θ0.
The lateral displacements obtained in the simulations are in rather good agreement with those observed experi-

mentally. In the experiments, δ is also larger close to the flow separatrix, i.e. in the range 0.3 ≤ y0/hobs ≤ 0.55 where
the fibers strongly interact with the pillar, and it is rather small outside this range, where the fibers do not or weakly
interact with the pillar.

Figure 8b shows the additional effect of the fiber length on δ. The lateral displacement increases with the fiber
length within the window 0.3 ≤ y0/hobs ≤ 0.55, which means that long fibers are more laterally shifted than short
fibers. This is illustrated in Fig. 8c which represents a typical example of chronophotographs and trajectories of
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a short and a long fiber following the “Pole-vaulting” dynamics. Both fibers have the same initial configuration
(θ0, y0) and thus they follow the same trajectory until they approach the pillar. Close to the pillar, the flow is highly
disturbed and because the fibers have different lengths they sample different streamlines and their trajectories start
to separate. Indeed, during the rotation around its tip, the short fiber’s center of mass is closer to the obstacle than
the center of mass of the long one. The two fibers thus follow different streamlines after rotating around their tip
during “Pole-vaulting”. At the apex of the pillar, the short fiber is horizontal and feels streamlines that are close to
the obstacle and descend abruptly behind the pillar, while the long fiber is oblique and samples streamlines with a
smaller vertical speed further downstream. As a result, the long fiber has a lateral displacement δ = 0.36 and the
short fiber δ = 0.07, and the two fibers end up well separated by a gap of about 0.29hobs far away downstream. This
indicates that under certain conditions (0.3 ≤ y0/hobs ≤ 0.55) it is therefore possible to sort fibers by length. Such a
sorting effect can occur regardless of the fiber dynamics, but is strongest for “Pole-vaulting” (see Fig. 8b).

The lateral displacement is also highly sensitive on the initial configuration of the fiber (θ0, y0). Slight variations of
the initial configuration can lead to very different lateral displacements, as illustrated in Fig. 8d. Both fibers have the
same length and the same initial angle, but they have a slightly different initial lateral position y0. The uppermost
fiber (orange, y0 = 0.525hobs) slides perpendicularly along the pillar and reorients only once it reaches the apex, so
that it remains in a higher lateral position, while the lowest one (purple, y0 = 0.5hobs) also slides but reorients earlier,
thus reaching the apex with a horizontal orientation and diving back down with the streamlines downstream. This
results in two very different lateral displacements (δ = 0.01 for the purple fiber, and δ = 0.19 for the orange one), and
thus a large gap between both fibers downstream.

B. Contact enhances lateral displacement

We have seen that significant lateral displacement is only observed for fibers released close to the separatrix that
thus pass very close to the obstacle. We now analyze the nature of the interactions between the fiber and the pillar
under these conditions. From the simulations we can identify fiber trajectories where direct contact between the fibers
and the pillar occurs. We recall that, in the simulations, contact is defined as the repulsive force between the fiber
and the pillar surface, FR becoming non zero. In the experiments, contact is assumed when no visible gap between
fiber and pillar can be observed.

Figure 9a shows whether contact has taken place (stars) or not (pointing-down triangles) and the corresponding
lateral displacement in our experiments and simulations at L/lobs = 0.8. When y0/hobs < 0.2 or y0/hobs > 0.55 the
fibers do not enter in direct contact with the pillar. In most cases, without contact, fibers nearly go back to their
initial lateral position with no or very small deviation (|δ| < 0.07). On the contrary when 0.2 ≤ y0/hobs ≤ 0.55
the fibers touch the pillar and their deviation is non-negligible. Direct contact with the pillar therefore significantly
enhances the lateral displacement.

This enhancement is quantified in Fig. 9b showing the probability distribution of lateral displacements with and
without contact. In the absence of contact, both simulations and experiments exhibit a peaked distribution around
δ = 0. When contact occurs, the distributions widen significantly: the standard deviation σδ increases by a factor 13
in the simulations (from σδ ≈ 0.0085 to ≈ 0.11) and by a factor 3.5 in the experiments (from σδ ≈ 0.026 to ≈ 0.092).

By reversing the flow after the fiber has passed the obstacle in the simulations we have tested the reversibility
of the trajectories. The trajectories where no contact between the fiber and the obstacle occurs remain reversible
(Fig. 9c) as required for flows at vanishing Reynolds numbers whereas trajectories with contact (Fig. 9d) are not
reversible. Contact thus strongly modifies the nature of the trajectories. The good agreement between experimental
and simulated trajectories in the case of contact confirms that contact properties but also the occurrence of contact are
correctly captured by the effective approach of the simulations and reasonably well detected by our visual observations.

Altogether, these results confirm that contact strongly enhances lateral displacements. However, we would like to
stress that contact is not necessary to induce asymmetric fiber trajectories and cross-stream migration. As shown
above and in Fig. 9c, δ can reach non-zero, yet small, values in the absence of contact, without breaking the reversibility
of the Stokes equations. It is well-known from Faxen’s laws that a finite object can migrate across streamlines in
the presence of a shear gradient if the flow has some curvature in the direction normal to the streamlines [32]. For
instance, the trajectory of a sphere transported by a uniform flow around a spherical obstacle is fore-aft symmetric,
but deviates from the streamlines as it approaches the obstacle, where the flow is curved, and follows them back as it
moves away. The situation is more complex for fibers whose orientation also strongly influences the flow sampled by
the object. Changes in orientation allow the fiber to jump streamlines asymmetrically with respect to the obstacle
but the trajectory remains reversible. When direct contact occurs between fiber and obstacle, as shown in Fig. 9d,
stronger cross-stream migration is observed, leading to larger deviations, and the trajectory becomes irreversible.
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(a) (b)

(c) (d)

FIG. 9. Influence of contact on the fiber trajectory. (a) Phase diagram showing a close link between direct contact and high
lateral deviation. (b) Probability of δ with and without contact in the simulations. Inset shows the experimental probabilities.
Initial conditions are: −10◦ < θ0 < 10◦, 0 < y0/hobs < 1, and 0.5 < L/lobs < 1.5. (c) Typical example of chronophotographs
and trajectories in the absence of contact (blue: flow form left to right, yellow: flow from right to left). Reversibility of the
fiber motion is shown by the superimposition of blue and yellow trajectories. Small lateral deviation, δ, is obtained (this case
corresponds to the highest observed value of δ in the absence of contact). (d) Typical example of chronophotographs and
trajectories in case of contact, showing irreversibility of the fiber motion (blue and yellow trajectories do not superimpose),
and larger lateral displacement is observed.

VI. CONCLUSIONS

In this work, we have presented a joint experimental and numerical investigation of the interaction between a rigid
fiber and a triangular obstacle in confined microchannel flow. One major output of this study is the identification and
classification of four dynamics based on the initial fiber conditions at the channel entry: lateral position y0, orientation
θ0, and length L.

When the lateral position is far enough from the flow separatrix, separating streamlines going above and below the
obstacle, y0/hobs > 0.55 or y0/hobs < 0.2, the fibers simply follow the streamlines, situations which are referred to as
the “Above” and “Below” dynamics. When the fibers are initially close to the separatrix, 0.2 ≤ y0/hobs ≤ 0.55, they
approach the obstacle very closely and two more interesting dynamics, “Pole-vaulting” and “Trapping”, appear. The
primary mechanism of the dynamics in this region is the competition between the rotation induced by the strong flow
disturbances around the obstacle and the contact force if the fiber directly touches the obstacle. Because of the low
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Reynolds number flow, the initial condition of the fiber (θ0, y0, L) determines its configuration in the vicinity of the
obstacle (θc, yc) determining the dynamics of the fiber.
Another important finding of the present study is the sorting potential of an individual triangular pillar for a rigid

fiber. Sorting occurs when fibers with different properties exhibit different cross-stream migration for identical initial
conditions. Such migration can have two origins, the interaction of the slender object with the complex disturbance
flow or direct fiber/obstacle contact. We show that reversible interactions with the disturbance flow can indeed lead
to small lateral deviations. However in our situation such reversible lateral displacements remain very small and
negligible compared to displacements induced by direct fiber/obstacle contact. Such contact leads to irreversible
trajectories and strong lateral displacement.

The fact that direct contact is the primary mechanism for cross-stream migration might seem surprising for transport
at small Reynolds number. The confined channel geometry we are working with concentrates the flow disturbance
very close to the obstacle and enhances velocity gradients there. Fiber trajectories are thus only affected when passing
very close to the pillar. On the other hand the concentration of streamlines near the obstacle also promotes fibers to
get very close to the obstacle. Together with the finite length of the fiber, which is larger or comparable to the scale
of the flow disturbance, this increases the probability of fiber/obstacle contact.

Longer fibers tend to have larger lateral deviations after passing the pillar than shorter fibers when the initial
positions are in the range of 0.2 ≤ y0/hobs ≤ 0.55. However, the obtained lateral displacement with a single pillar
remains overall rather small with a maximum of 60% of the obstacle height and leads to a limited sorting efficiency.
We have also shown that small variations of the initial condition within this range can have a large influence on the
lateral displacement, masking the effect of the fiber length. To obtain fiber sorting, a very precise control of the initial
condition is thus necessary, a condition that is difficult to fulfill in the experiments.

To increase the sorting potential one could in the future optimize the shape of an individual pillar to tune different
fiber dynamics and trajectories. Optimizing the microchannel for fiber sorting could also be possible by considering
more pillars and by arranging their layout. The sorting efficiency of such pillar arrays has been shown before in DLD
devices for spherical particles [10, 33], red blood cells [14, 34] and bacteria [13, 16]. And finally, as fiber/obstacle
contact is crucial for large lateral displacements one could for example modify the obstacle roughness to induce more
direct contacts. On the other hand the range of initial conditions where trapping occurs increases with increasing
fiber/obstacle frictions as would occur for rougher pillars. Trapping could lead to clogging, preventing fiber sorting.
Modifying the direct fiber obstacle interactions would thus have to be done very carefully.
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Appendix A: Effect of the channel depth on the flow field

The dimensions of the channel significantly alter the flow field around the pillar. Figure 10 shows the velocity fields
and the velocity profiles computed by the lattice Boltzmann method (LBM) in the neighborhood of the pillar for
three different channel heights: Hch = 40, 80 and 120 µm. The perturbation of the flow field induced by the presence
of the obstacle enlarges with the channel height, resulting in a lower velocity magnitude and lower gradients in the
vicinity of the pillar. Shallower channels are thus expected to promote interactions between the fibers and the pillar.
However, further decreasing the height of the channel below Hch = 40 µm would also make more difficult to focus
the fibers in the middle plane. This would result in many fibers flowing and aggregating close to the channel walls,
which is highly undesirable. In this work we chose a channel height Hch = 40 µm, which is shallow enough to have
strong interactions between the fibers and the pillar, and deep enough so that the lateral walls do not affect the fibers
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trajectories.

(a) (b) (c)

(d) (e)

FIG. 10. Velocity fields and profiles around the triangular pillar computed by LBM for different channel heights: (a) Hch =
40 µm, (b) Hch = 80 µm, (c) Hch = 120 µm. (d) and (e) respectively show the velocity profiles along the x and y axis.

Appendix B: Influence of the fiber initial position and length on the contact configuration

In this Appendix we carry out a sensitivity analysis of the mapping between the fiber initial position (θ0, y0) and
length L on the contact configuration (θc, yc) when the fiber first touches the pillar. The relation

(θc, yc) = f(θ0, y0, L)

is complex due to the strong disturbances of the flow field in the vicinity of the pillar and the elongated asymmetrical
shape of the fiber. Figure 11 provides insights of this complex mapping based on data extracted from numerical
simulations for which direct fiber/obstacle contact occurs.

Panel (a) explores the influence of θ0 and y0 on θc and yc at a given fiber length L/lobs = 1. The color and angle of
the lines respectively indicate the difference of lateral position, (yc − y0)/hobs, and orientation, θc − θ0, between the
initial and contact configurations. It shows that both (yc − y0)/hobs and θc − θ0 increase with the initial position y0
for a given initial angle. This is due to the curvature of the streamlines in the vicinity of the obstacle. Streamlines
above the flow separatrix are curved upwards to pass above the obstacle, while those below the separatrix are curved
downwards to pass below the obstacle. As the fibers overall follow the streamlines, those that are initially located at
a higher lateral position are transported by the upward-curved streamlines resulting in a higher (yc − y0)/hobs. It is
the opposite scenario for the fibers starting at a lower lateral position. This is illustrated in Fig. 7 (top) that displays
snapshots of the fibers framed in black (θ0 = −5◦, y0 = 0.35) and magenta (θ0 = −5◦, y0 = 0.5). The uppermost
fiber follows upward-curved streamlines, it is thus transported upwards (yc − y0 > 0) and rotated counter-clockwise
(θc − θ0 > 0) by the flow. It is the opposite for the black fiber which initially lies on the flow separatrix (that bends
downwards).

The difference of initial position (yc − y0)/hobs and orientation θc − θ0 also increases with the initial position θ0 at
a given y0. This is again illustrated in Fig. 7 (middle) showing snapshots of the same fiber framed in black (θ0 = −5◦,
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y0 = 0.35), and the one framed in green (θ0 = 2.5◦, y0 = 0.35). Both fibers are initially located on the flow separatrix,
but they sample different streamlines as they have different initial orientations. When the green fiber approaches
the obstacle, its head feels streamlines above the separatrix that bend upwards, while the head of the black fiber
feels streamlines that bend downwards. As a result, the green fiber rotates counter-clockwise (θc − θ0 > 0) and has
yc − y0 > 0, while the black fiber rotates clockwise (θc − θ0 < 0) and has yc − y0 < 0.

Panels (b) and (c) show the additional effect of the fiber length on the contact configuration. The lighter the color,
the longer the fiber. They reveal that shorter fibers rotate more (either clockwise or counter-clockwise) than longer
ones before touching the pillar. This is due to geometry effects, as illustrated in Fig. 11c which shows the difference of
orientation of the fiber with respect to the initial angle, ∆θ = θ(x)− θ0, during its transport by the flow. This figure
indicates that longer fibers reach the obstacle earlier than shorter ones which continue rotating until they touch the
pillar. The inset in Fig. 11c gives the trajectories of two fibers of length L/lobs = 0.6 and L/lobs = 1.4 starting at the
same initial configuration θ0 = −7.5◦ and y0/hobs = 0.425. When the longer fiber first hits the obstacle, the shorter
one is still carried and rotated by the flow, leading to two very different contact angles between both fibers.

Additionally, fibers which start from a higher y0 with θ0 > 0 or a lower y0 with θ0 < 0 have the same tendency to
follow the direction of the streamlines close to the obstacle. So, it is easier for them to bypass the obstacle without
contact, which explains why the data in panels (a) and (b) distributes into a parallelogram shape, with no data in
the bottom left and top right corners.

(a) (b) (c)

FIG. 11. Influence of the fiber initial position, initial orientation and length on the contact configuration. (a) Angle and lateral
position differences between the initial and first contact configurations as a function of (θ0, y0) for a fiber length L/lobs = 1.
The colors and angle of the lines respectively indicate (yc − y0)/hobs and θc − θ0. (b) Influence of the fiber length L and initial
condition (θ0, y0) on the contact angle θc. (c) Fiber orientation difference with respect to the initial angle, ∆θ = θ(x)− θ0, as a
function of the x-position of the fiber’s center of mass for y0/hobs = 0.425 and θ0 = −7.5◦. The triangular symbols and dashed
lines are the positions of the first contact with obstacle surface. The inset shows snapshots of two fibers of length L/lobs = 0.6
and L/lobs = 1.4 approaching the obstacle. When the longer fiber contacts the obstacle at t = t1 + 0.16 s, the shorter fiber
is still transported and rotated by the flow until it first touches the pillar at t = t1 + 0.28 s, leading to very different contact
angles between the two fibers.

Appendix C: Role of obstacle roughness on the fiber dynamics

1. Simulations with a perfectly smooth pillar

In all the simulations presented in Secs. IV and V, the fiber and the obstacle are discretized by spherical beads
of radius a = 2 µm and aobs = 0.6µm, repsectively. As discussed in Sec. III, this discretization using beads leads to
a repulsive force which is not strictly normal to the pillar surface, and therefore generates friction. To investigate
the role of obstacle roughness on the fiber dynamics, we also performed simulations with a perfectly smooth pillar
described by quadratic Bézier curves, and having the same shape as the pillar used in Secs. IV and V (see Fig. 12a).
This perfectly smooth pillar leads to purely normal repulsive forces between the fiber and the pillar, and thus allows us
to model contact in the absence of friction. More technical details on the computation of the repulsive force between
the fiber and the perfectly smooth pillar are provided in the next subsection.

Figures 12b and 12c respectively represent the phase diagrams of the fiber dynamics computed with roughness
(pillar discretized using beads) and without roughness (smooth pillar described by Bézier curves).
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(a) (b) (c)

FIG. 12. (a) Discretization of the pillar using beads (top) and 6 quadratic Bézier curves (bottom). (b) Phase diagram showing
the fiber dynamics computed with the rough pillar discretized using spherical beads (closed symbols: simulations, open symbols:
experiments). (c) Phase diagram showing the fiber dynamics computed with the perfectly smooth pillar described by Bézier
curves (computations are only made in the range 0.25 ≤ y0/hobs ≤ 0.5 for which direct fiber/pillar contact occurs.). The fiber
length in the simulations is L = 0.8lobs. Circles: Below; Squares: Above; Triangles: Pole-vaulting; Diamonds: Trapping.

As can be seen in panel (c), pole-vaulting and trapping events are also observed in the absence of roughness.
However, the number of pole-vaulting and trapping events is much smaller without roughness. This means friction is
not needed for the fiber to pole-vault or to remain trapped on the pillar, but it promotes pole-vaulting and trapping
by increasing the range of initial conditions leading to those events.

2. Computation of the repulsive force

The smooth pillar used in the simulations presented in Fig. 12c consists of 6 adjacent quadratic Bézier curves
B(t) = (X(t), Y (t)). Each of them is defined by 3 control points P0 = (x0, y0), P1 = (x1, y1) and P2 = (x2, y2) (see
Fig. 13) such as

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2, 0 ≤ t ≤ 1.

Rearranging terms gives second-order polynomials for X(t) and Y (t){
X(t) = axt

2 + bxt+ cx
Y (t) = ayt

2 + byt+ cy
0 ≤ t ≤ 1,

with

ax = x0 − 2x1 + x2 ay = y0 − 2y1 + y2

bx = 2(x1 − x0) and by = 2(y1 − y0)

cx = x0 cy = y0

Computing the repulsive force applied on a given fiber bead requires to compute the shortest distance between this
bead and each of the 6 Bézier curves. Let dij(t) be the distance between the center of mass of the ith fiber bead
ri = (x, y) and a given point X = (X(t), Y (t)) belonging to the jth Bézier curve of the pillar.

dij(t) =

√
(x−X(t))

2
+ (y − Y (t))

2
.

The shortest distance between the ith fiber bead and the jth Bézier curve is obtained by solving for d′ij(t) = 0 in the
range 0 ≤ t ≤ 1, with

d′ij(t) =
X ′X + Y ′Y√

(x−X)2 + (y − Y )2
.
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Solving for d′ij(t) = 0 is equivalent to computing the roots of the third-order polynomial P (t) defined as

P (t) = X ′X + Y ′Y = at3 + bt2 + ct+ d

with

a = 2(a2x + a2y)

b = 3(axbx + ayby)

c = 2
[
ax(cx − x) + ay(cy − y) + b2x + b2y

]
d = bx(cx − x) + by(cy − y)

Let t0 be the root of P (t) minimizing dij(t), and Rij = dij(t0). The repulsive force FR
ij acting on the ith fiber bead

due to the jth Bézier curve is then computed as

FR
ij =

−Fref

a

[
R2

ref−R2
ij

R2
ref−a2

]4
Rijn̂ if Rij < Rref

0 otherwise
(C1)

where n̂ = n/ |n| with n = (−Y ′(t0), X
′(t0)) is the unit vector normal to the Bézier curve at X0 = (X(t0), Y (t0)).

FIG. 13. Sketch showing the computation of the repulsive force between a fiber bead and a quadratric Bézier curve.
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