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Stabilization of Underactuated Linear Coupled Reaction-Diffusion
PDEs via Distributed or Boundary Actuation

Constantinos Kitsos and Emilia Fridman

Abstract—This work concerns the exponential stabilization
of underactuated linear homogeneous systems of m
parabolic partial differential equations (PDEs) in cascade
(reaction–diffusion systems), where only the first state is
controlled either internally or from the right boundary and in
which the diffusion coefficients are distinct. For the distributed
control case, a proportional-type stabilizing control is given
explicitly. After applying modal decomposition, the stabilizing
law is based on a transformation for the ordinary differential
equations (ODE) system corresponding to the comparatively
unstable modes into a target one, where the calculation of
the stabilization law is independent of the arbitrarily large
number of these modes. This is achieved by solving generalized
Sylvester equations recursively. For the boundary control case,
under appropriate sufficient conditions on the coupling matrix
(reaction term), the proposed controller is dynamic. A dynamic
extension technique via trigonometric change of variables that
places the control internally is first performed. Then, modal
decomposition is applied followed by a state transformation
of the ODE system, which must be stabilized in order to be
written in a form where a dynamic law can be established. For
both distributed and boundary control systems, a constructive
and scalable stabilization algorithm is proposed, as the choice
of the controller gains is independent of the number of unstable
modes and only relies on the stabilization of the reaction term.
The present approach solves the problem of stabilization of
underactuated systems when in the presence of distinct diffusion
coefficients, the problem is not directly solvable, similarly to the
scalar PDE case.

Keywords: Linear parabolic PDE systems, underactuated
systems, stabilization, modal decomposition

I. INTRODUCTION

The control of systems of coupled parabolic PDEs in which
not all states are controlled (underactuated systems) has at-
tracted much attention and has been posed as an open problem
in [44]. Lions [31] introduced the study of controllability of
cascade systems of parabolic PDEs. Such systems have been
studied theoretically meanwhile, (see survey [3], which col-
lects the plethora of recent studies concerning various notions
of controllability of underactuated coupled systems). As far
as the stabilization problem for such systems is concerned,
some answers to the problem of internal stabilization of
cascaded parabolic systems via distributed control placed on
one equation and acting in a part of the domain were given
in our preliminary conference version of this article [30]. To
the best of authors’ knowledge, the stabilization of similar
problems involving systems of m parabolic PDEs in cascade
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with one controlled state either internally or from the boundary
and in the presence of distinct diffusion coefficients has not
been solved yet.

The motivation behind the class of interconnected parabolic
systems we study comes from various areas including chem-
istry, electrophysiology, genetics, and combustion. More par-
ticularly, biological predator-prey models or population and
social dynamics phenomena are modeled by coupled parabolic
systems (“reaction-diffusion systems" [7], [9], see also the
work in [43] for applications to information diffusion in social
media, the work in [20] for tumor growth models, and the
work in [33] for microbial processes). Also, in chemical
processes [36], coupled temperature-concentration parabolic
PDEs are used to describe the process dynamics. In such
systems, the requirement of not controlling all states arises
naturally. Feedback stabilization for scalar parabolic PDEs
has been studied intensively [8], [13], [32], [38]. For the
vector case, boundary stabilization of parabolic systems where
all states are controlled has been achieved via backstepping
transformation [42] and via modal decomposition in [25].
When underactuation is assumed in coupled PDEs, boundary
stabilization has been achieved for some classes of hyperbolic
systems in [1], [14], [16] via backstepping. For these hyper-
bolic systems, boundary stabilization is possible when some
dissipativity property is fulfilled on the boundaries. For the
class of parabolic systems, when considering underactuations,
strict assumptions are imposed on the internal dynamics [4].
In the latter, boundary stabilization was achieved for only two
coupled parabolic PDEs with boundary control of the first
state when a minimum-phase assumption is met in addition
to other restrictions on plant and controller parameters. In that
work, the stabilization of a parabolic system of more than two
equations with fewer inputs than the number of states and in
the presence of distinct diffusion coefficients was posed as an
open problem.

Various studies have been devoted to the controllability of
underactuated systems with internal controls [10], [15], [18],
[21]. These manifest several difficulties which become more
complicated with the number of the states and with the number
of distinct diffusion coefficients as a result of the notion of
algebraic solvability [39]. The problem of internal stabilization
(via distributed control) of such systems runs deep (see for
instance [6], [12], [34], see also [11]). Similar complications
arise in boundary controllability and stabilizability studies [3].
It is also revealed that the problem of boundary controllability
for the vector parabolic case is significantly more difficult than
the internal one (distributed control in a part of the domain)
see [19]. It turns out that an underactuated boundary control
system is null controllable when the diffusion coefficients are
identical (see [3, Th. 6.1]). However, for distinct diffusion
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coefficients and more than two coupled equations, the problem
becomes more intricate. Some solutions to distributed observer
design problems with fewer observations than the number
of the states and with distinct diffusion coefficients, and
which demonstrate some degree of duality with regard to
stabilization problems, have been given in [28], while in [29]
and in [27, Ch. 3], the cases of three and m linear non-
homogeneous hyperbolic coupled PDEs were studied. In these
works, appropriate infinite-dimensional state transformations
solving operator Sylvester equations were introduced to deal
with distinct elements on the diagonal of the coefficient of
systems’ differential operators requiring the use of higher-
order spatial derivatives as measurements to yield Lyapunov
stabilization of the observer error. We further refer to [2] for
coupled systems in cascade.

In this work, taking a step beyond the controllability studies,
we solve the stabilization problem. We consider a system of m
parabolic PDEs in cascade with distinct diffusion coefficients,
where only the first equation is controlled, and we follow
a modal decomposition approach. For internal control, we
generalize methods mainly used for the scalar case (see [13]
on direct Lyapunov method for state feedback, see also [5]) to
the case of underactuated systems with one scalar controller.
We assume that the number of internal inputs appearing in
the first equation is equal to the number of unstable modes
and that the resulting matrix that multiplies control inputs
in the unstable modes is nonsingular. We then introduce a
novel state transformation for ordinary differential equations
(ODEs) with dimension equal to the number of coupled PDEs
and written as a polynomial matrix in the slower eigenvalues
of a related Stürm-Liouville problem, with order related to
the number of distinct diffusion coefficients. The coefficients
of this polynomial matrix are nilpotent matrices up to the
identity matrix, which are subject to recursive generalized
Sylvester equations and can be easily determined via a pro-
vided algorithm, while their values depend on the dynamics
of the parabolic system. The stabilizing law simply consists
in determining control gains stabilizing the reaction matrix
and also in calculating our introduced state transformation,
which depends on system dynamics. In this way, for any
given system specification we provide a construction of unified
and scalable control laws independently of the number of
eigenvalues needed to be stabilized, which can be arbitrarily
large. For boundary control, we follow an indirect approach
in order to place the controls internally and obtain a dynamic
control law (a PI controller). This is relevant since the Hautus
test might fail in the presence of distinct diffusion coefficients
when trying to stabilize directly by use of static feedback. We
assume that the control placed on the right boundary of the
first state is written as a sum of control components. Inspired
by the recent dynamic extension approach in [23] for the
scalar case, we adapt similar transformation to our vector case.
The system is first mapped into a new one where the control
components and their time-derivatives are placed internally in
the PDEs. We then apply modal decomposition followed by
another transformation to the eigenspectrum in order to place
control components in the first equation. In the next step, we
are in a position to choose the dynamic control law. It turns out

that for distributed control, we can achieve an arbitrarily fast
decay rate while for boundary control, this is not the case. This
work solves the problem of internal and boundary stabilization
of underactuated systems, for which backstepping approaches
have not been proven to give solutions yet and at the same
time it provides a scalable stabilization algorithm despite the
presence of distinct diffusion coefficients.

Our contribution is summarized by the following points:
(1) Constructive methods for a stabilization problem of un-
deractuated coupled PDE systems. These include a scalable
algorithm for the determination of a novel transformation
based on Sylvester equations and PI controllers for the bound-
ary control case via an introduced trigonometric extension.
(2) Introduction of a Sylvester-equation approach. Sylvester
equations are widely used in the context of finite-dimensional
systems and our method proposes the extension of such
approaches to the context of PDE systems. (3) Sufficient
conditions and a solution to the boundary stabilization problem
of underactuated parabolic systems. The problem that we have
identified was previously characterized as open and no solution
has yet been achieved via backstepping [4].

The rest of this article is organized as follows. The sys-
tem and the description of the problem of stabilization are
presented in Section II. The internal stabilization approach is
presented in Section III, where Theorem 1 provides the main
relevant result. Section IV concerns the boundary stabilization
problem, where Theorem 2 provides its solution. In Section
V, we apply our methodology to unstable reaction-diffusion
systems by applying either distributed or boundary control,
and in Section VI we provide some conclusions.

Notation: For a given x ∈ Rm, |x| denotes its usual
Euclidean norm and for a matrix Q ∈ Rm×m, Q> denotes its
transpose, |Q| := sup {|Qw| , |w| = 1} is its induced norm,
Sym(Q) = Q+Q>

2 stands for its symmetric part and λmin(Q),
λmax(Q) denote its minimum and maximum eigenvalue, re-
spectively. By diag{A1, . . . , Am} (or blkdiag) we denote the
diagonal (or block diagonal) matrix with elements A1, . . . , Am
scalars (or matrices). By Im we denote the identity matrix of
dimension m. By ⊗ we denote the Kronecker product. For
f, g in L2 (0, L;Rm), by 〈f, g〉 we denote the inner product
〈f, g〉 =

∫ L
0
f>(x)g(x)dx with induced norm ‖ · ‖L2(0,L;Rm),

where L2 (0, L;Rm) denotes the space of equivalence classes
of measurable functions f : [0, L] → Rm. By `2(N;Rm) we
denote the Hilbert space of the square summable sequences
x = (xn)+∞

n=1. By 1ω we denote the indicator function of the
set ω. By δij we denote the Kronecker delta δij = 1, if i = j
and δij = 0, otherwise and d·e stands for the ceiling function.

II. PROBLEM STATEMENT AND REQUIREMENTS

In this section, we present the underactuated system with
its requirements and the stabilization problem.

Consider a system of m coupled 1-D parabolic PDEs in a
finite domain with control acting on the first state only, written
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as follows for (t, x) in [0,+∞)× (0, L):

zt(t, x) = Dzxx(t, x) +Qz(t, x) + θB

N∑
j=1

bj(x)uj(t), (1a)

γ11z(t, 0) + γ12zx(t, 0) = 0,

γ21z(t, L) + γ22zx(t, L) = (1− θ)B
N∑
j=1

uj(t), (1b)

z(0, x) = z0(x). (1c)

System’s state is represented by z =
(
z1 . . . zm

)>
. Dif-

fusion matrix D = diag {d1, . . . , dm} consists of diffusion
coefficients d1, . . . , dm > 0. The coupling (reaction term) and
control matrices Q and B are assumed to be of the form

Q =



q1,1 · · · q1,m

q2,1

0
...

...
. . . . . . . . .

0 · · · 0 qm,m−1 qm,m


, B =



1
0
...
...

0


.

Scalar control actions u1(t), . . . , uN (t) with N to be deter-
mined later, act on the first equation and parameter θ taking
values in {0, 1} determines whether the control is placed
internally (θ = 1) or on the right boundary (θ = 0). Functions
b1(·), · · · , bN (·) in L2(0, L) describe how the internal control
actions are distributed in [0, L] and are subject to some
constraints given below. On the boundaries, we have γij ∈ R
satisfying γ2

i1 + γ2
i2 6= 0, i = 1, 2 when θ = 1, whereas for

θ = 0, we have the additional restriction that γ12 = 1 − γ11

and γ22 = 1 − γ21 with γ11, γ21 ∈ {0, 1}. Condition on γij
restricts the type of boundary conditions to either Neumann or
Dirichlet ones for the boundary control case, whereas for the
distributed control case, we can have more general boundary
conditions of mixed type. For boundary control, this stands as
a sufficient condition for invertibility of a matrix which leads
to stabilizability as it is revealed later. Systems of the form (1)
can model for instance Turing instability [41] and instability of
slime mold amoebae aggregation [26]. We make the following
assumption:

Assumption 1: The elements of the subdiagonal of Q satisfy

q2,1, q3,2, . . . , qm,m−1 6= 0, (2)

which stands as a controllability condition for the pair (Q,B).
Before presenting the stabilization method, consider the fol-
lowing family of scalar Stürm-Liouville eigenvalue problems
for each i = 1, . . . ,m :

diϕ
′′(x) + λ̄ϕ(x) =0, 0 < x < L,

γ11ϕ(0) + γ12ϕ
′(0) =γ21ϕ(L) + γ22ϕ

′(L) = 0,
(3)

admitting a sequence of eigenvalues λ̄n,i = diλn, where
λn are the eigenvalues of (3) with di = 1. This sequence
of eigenvalues corresponds to a sequence of eigenfunctions
(ϕn)+∞

n=1. The eigenvalues form an unbounded increasing and
non-negative sequence while the eigenfunctions form a com-
plete orthonormal system in L2(0, L). Note here that although

we can easily derive explicit formulas for eigenfunctions and
eigenvalues of the above Stürm-Liouville problems in the case
of Neumann or Dirichlet boundary conditions (when one of
the pairs (γ1,i, γ2,j), i, j = 1, 2 is zero), in the case of Robin
boundary conditions we do not have such explicit formulas.
However, we may get some estimates of the eigenvalues, see
for instance [35, Sec. 3.3.1].

When the control is placed internally, we make the follow-
ing assumption on shape functions bj(·).

Assumption 2: Matrix

BN×N :=

B
>
1
...
B>N

 (4)

consisting of Bn :=
(
b1,n · · · bN,n

)>
, which contain

projections bj,n :=
∫ L

0
bj(x)ϕn(x)dx, is nonsingular.

Assumption 2 leads to a stabilizability property as it is shown
in the following. Similar assumption appears in several works
in the context of stabilization of scalar parabolic PDEs, see
for instance [22]. The next assumption concerns only the case
of boundary control, namely, when θ = 0.

Assumption 3: When θ = 0, there exist δ0, kQ > 0 such
that

Sym (Q)−Ddiag{kQ, λ1, . . . , λ1}+ δ0Im � 0. (5)

Remark 1: The abovementioned condition on matrix Q
restricts the class of unstable reaction terms, we are allowed
us to consider when dealing with the boundary stabilization
problem. An even stronger version of it appears in [4] (see
Condition 2 in Section V therein) standing as a sufficient
condition to solve the boundary stabilization problem for
underactuated systems of two coupled parabolic PDEs via
backstepping method. The system considered there is similar
to the one we consider here, but with the restriction that
m = 2 only, i.e., two equations. In that work, it is also
assumed that for the reaction term taking the form of Q,
q22 is negative (a minimum phase assumption). In our case, a
weaker condition of the form q22 < d2λ1 would be sufficient
to guarantee that Assumption 3 holds. Note that in the same
work [4], it is concluded that for the case of m > 2 coupled
equations as in the system (1) we consider here, the problem of
boundary stabilization is open. Note also that we do not at all
invoke Assumption 3 when performing internal stabilization
via distributed control (see Section III below).

The rapid stabilization problem we wish to solve in this
work is stated as follows:

Problem 1: Suppose that Assumptions 1-3 hold true. Then,
determine stabilizing laws for the two following stabilization
problems, the internal one (θ = 1) and the boundary one (θ =
0).

i Case θ = 1: For any δ > 0, find N ∈ N and
internal stabilizing laws u1(t), . . . , uN (t) such that for
z0 in H1 (0, L;Rm) satisfying compatibility conditions,
solutions to (1) satisfy

‖z(t, ·)‖L2(0,L;Rm) ≤ `e−δt‖z0(·)‖L2(0,L;Rm),∀t ≥ 0
(6)
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with ` > 0.
ii Case θ = 0: For some δ0 > 0 satisfying (5), find
N ∈ N and boundary stabilizing dynamic laws for
u1(t), . . . , uN (t) such that for z0 in H2 (0, L;Rm) sat-
isfying γ11z

0(0) + (1− γ11)
(
z0
)′

(0) = γ21z
0(L) + (1−

γ21)
(
z0
)′

(L) = 0, solutions to (1) satisfy (6) with δ
substituted by δ0.

Answers to both cases (i) and (ii) of Problem 1 are given in
sections III and IV.

III. INTERNAL STABILIZATION

In this section, we provide a solution to internal stabilization
described by Problem 1 (case θ = 1). We first apply modal
decomposition. Then exploiting the fact that the eigenspectrum
of our operator is partitioned into an unstable (or slow) part
and a stable (or fast) one thanks to the countability and
monotonicity of the eigenvalues, we focus on the stabilization
of the comparatively unstable modes. To stabilize these modes,
we introduce a state transformation aiming at a stabilization
reduction from dimension mN to dimension m. This transfor-
mation is given explicitly after solving a family of generalized
Sylvester equations. Finally, by Lyapunov’s direct method, we
achieve to prove the stabilization result.

A. Modal Decomposition and Proportional-Type Controller

We apply modal decomposition and we study the finite-
dimensional system corresponding to the comparatively un-
stable modes.

Each of the states of (1) can be presented as

zi(t, ·) =

∞∑
n=1

zi,n(t)ϕn(·), i = 1 . . . ,m (7)

with coefficients zi,n given by

zi,n = 〈zi, ϕn〉 . (8)

Taking the time-derivative of (8), substituting dynamics (1),
and integrating by parts, we get the following dynamics for
zn =

(
z1,n · · · zm,n

)>
:

żn(t) =

∫ L

0

zt(t, x)ϕn(x)dx

= [Dzx(·)ϕn(·)−Dz(·)ϕ′n(·)]L0

+ (−λnD +Q) zn(t) +B

N∑
j=1

uj(t)

∫ L

0

ϕn(x)bj(x)dx,

which by virtue of homogeneous boundary conditions for
ϕn(x) and z(t, x), is written as follows:

żn(t) = (−λnD +Q) zn(t) +B

N∑
j=1

bj,nuj(t). (9)

Now, given a desired decay rate δ > 0, by taking into account
the countability and monotonicity of eigenvalues of the elliptic
operator, we can always find a N ∈ N large enough such that

−λN+1D + Sym(Q) + δIm < 0. (10)

By monotonicity of λn, the above implies that

−λnD + Sym(Q) + δIm < 0, ∀n ≥ N + 1. (11)

Using the notation Z = col{z1, . . . , zN} ∈ RmN , we obtain
the following system corresponding to the finite-dimensional
part of the eigenspectrum of the parabolic operator:

Ż(t) = AZ(t) + B̃u(t), (12)

where u(t) :=
(
u1(t) · · · uN (t)

)> ∈ RN ,

A :=blkdiag{−λ1D +Q, . . . ,−λND +Q}, (13)

and B̃ ∈ RmN×N is given by

B̃ := col
{
BB>1 , . . . , BB>N

}
= (IN ⊗B)BN×N .

By invoking the Hautus lemma, it is easy to see that the pair
(A, B̃) is stabilizable under Assumption 2.

We now seek for feedback controls of proportional type
written as

uj(t) =KjZ(t), (14)

where Kj ∈ R1×mN are controller gains to be found below.
Then, a direct stabilization approach of system (12) would
require to solve inequality Sym

(
P̃ (A+ B̃K)

)
+ δP̃ ≺ 0,

where P̃ in RmN×mN is symmetric positive definite and K :=
col {K1, . . . ,KN}. The above is written in the design linear
matrix inequalities (LMI) form

Sym
(
AP̃−1 + B̃O

)
+ δP̃−1 ≺ 0, (15)

where we denote the unknowns P̃−1 = P̃−1 and O = KP̃−1.
Then, the desired gain matrix is given by K = OP̃−1

−1 . This
LMI involves matrices of dimension mN .

In this work, we aim at reducing the dimension of the
stabilization from mN , which depends on the number N
of modes to be stabilized, to just the dimension m of the
coupled parabolic system, which is fixed. It turns out that
this requirement of stabilization is not directly met as a
consequence of the presence of distinct diffusion coefficients
di. In fact, we seek for stabilizing actuations uj(t), whose
calculation up to an inversion of matrix BN×N does not
depend on the number of the modes N but only on the number
of system’s equations m. Such property is important when
dealing with large instabilities in the dynamics or when one
would need to efficiently tune the decay rate. In other words,
stabilization of (12) should be based on the stabilization of an
m × m matrix, namely, reaction matrix Q and not on each
of the diagonal elements of A, which can be arbitrarily many
depending on the number of modes we need to stabilize at a
given rate δ.

In the next subsection, we will show via examples why sta-
bilization of (12) is not directly implementable when diffusion
coefficients are distinct.

At this point, let us denote

K = B−1
N×Nblkdiag{K̄1, . . . , K̄N} (16)
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with K̄1, . . . , K̄N ∈ R1×m to be determined later. Closing
the loop by use of feedback control (14) and after change of
feedback control variables (16), Z satisfies dynamics

Ż(t) = (A+ F )Z(t), (17)

where A is given by (13) and

F :=blkdiag{BK̄1, . . . BK̄N}. (18)

This block diagonal form of closed-loop system (17) will
permit us to apply later a universal stabilization law for all
blocks simultaneously as it is shown in the following analysis.

Remark 2: In more theoretical studies on controllability
issues for such coupled parabolic systems (see survey [3]), the
control term is usually of the form B1ωU(t, x), with control
U(·, ·) time and space-dependent and ω a given open subset
of [0, L]. We could have alternatively posed the present prob-
lem in this setting, however, in practical applications, shape
functions bj(x) are already given to be fixed (see, for instance,
[11]) and we seek for stabilizing actuations depending exclu-
sively on time as in the present analysis. In the first scenario,
we would have chosen a proportional-type controller (see [6]
(Chapter 2), see also [34] (Chapter 9) for the signle PDE case)
of the form U(t, x) =

∑N
j=1 K̄jβj(x)

∫ L
0
z(t, x)ϕj(x)dx,

where K̄j ∈ R1×m while functions βj(·) are chosen to be writ-
ten as βj(x) =

∑N
k=1 βjkϕk(x), j = 1, . . . , N, with coeffi-

cients βjk ∈ R satisfying
∑N
k=1 βjk

∫ L
0
1ωϕk(x)ϕn(x)dx =

δjn, for all j, n = 1, . . . , N. The previous equation,
thanks to the linear independence of eigenfunctions ϕn,
leads to a unique solution for unknown coefficients βjk.

This solution is represented as

β11 · · · β1N

...
...

βN1 · · · βNN


>

=

(∫ L
0
1ωϕi(x)ϕj(x)dx, i, j = 1, . . . , N

)−1

. Then, the finite-
dimensional part of the eigenspectrum satisfies the same
equations as in (17) and we may follow a similar approach
as the one presented below.

B. Problem of Stabilization of the Unstable Modes
We present below some scenarios of stabilization of the

finite-dimensional part of the eigenspectrum decomposition
revealing its difficulty when diffusion matrix D has distinct
elements, i.e., when our system has distinct diffusion coeffi-
cients.

Let us consider (17). To achieve exponential stability of this
system with decay rate δ, one would need to stabilize each of
the components −λnD + Q of the block diagonal matrix A
at this rate by choice of appropriate gains K̄n as in (15)-(16).
However, this stabilization strategy would require stabilization
of an mN×mN matrix, which is inefficient when N becomes
large. In order to reduce the stabilization problem for all N
modes to just the stabilization of the coupling matrix Q, we
need to follow an indirect strategy. Indeed, following a direct
approach and trying to stabilize only matrix Q, one would
choose gains K̄n = KQ, n = 1, . . . , N, where KQ ∈ R1×m

is chosen such that a Lyapunov matrix inequality of the form

Sym (P (Q+BKQ)) + qP < 0 (19)

is satisfied for P ∈ Rm×m symmetric positive definite, which
is nondiagonal, and some q > 0. This is always possible due
to the controllability of (Q,B). Then, to check asymptotic
stability of system (17), choose Lyapunov function of the form

V0(t) =
1

2
(zN (t))>P̄ zN (t) (20)

with P̄ = IN ⊗ P consisting of N diagonal blocks P . Then,
observe that Sym (P (−λnD +Q+BKQ)) appearing when
taking the time-derivative of V0 is of indefinite sign since
D and P do not commute when D has distinct diffusion
coefficients and because P is nondiagonal. This means that a
stabilizing law chosen to stabilize Q would not automatically
lead to the stabilization of all the modes we need to stabilize
at rate δ. Note that this complication arising from the lack
of a commutative property between the coefficient of the
differential operator (the diffusion matrix D here) and a
Lyapunov matrix P has been tackled in [27]. To understand
how the number of distinct diffusion coefficients plays a role
in the complexity of the problem, let us see the following
examples.

Example 1 (one diffusion coefficient) : Assume that all
diffusion coefficients di are identical, namely,

d1 = d2 = . . . = dm.

Then, the stabilization problem would be trivial. Indeed, the
gains of the stabilization law (14) via (16) can be chosen as

K̄n = KQ,

for all n = 1, . . . , N , where KQ ∈ R1×m is chosen such
that Lyapunov inequality (19) is satisfied for P symmetric
positive definite and q > 0 sufficiently large depending on the
choice of the desired decay rate δ. Then, by choice of Lya-
punov function (20), matrix Sym (P (−λnD +Q+BKQ)) =
Sym (P (−λndmIm +Q+BKQ)) is always negative definite
and the decay rate of system (17) can attain value δ after
appropriate choice of q, namely, q ≥ δ − λ1dm.

Example 2 (two diffusion coefficients) : Let us now see the
case where diffusion coefficients are identical up to the second
one, namely,

d1 6= d2 = . . . = dm.

We choose gains K̄n in (16) given as in Example 1, but with
an extra term, namely,

K̄n = −Gn +KQ, ∀n ∈ {1, . . . , N}, (21)

where Gn := λn (d2 − d1)B>. Again, the gain KQ ∈
R1×m is chosen to satisfy Lyapunov inequality (19) and
then by choice of Lyapunov function (20), system (17) is
stabilized at rate δ. This is possible by noting that matrix
Sym

(
P
(
−λnD +Q+BK̄n

))
, which by (21) is equal to

Sym (P (−λndmIm +Q+BKQ)), is negative definite by
(19) and the decay rate of system (17) can be equal to δ by
appropriate choice of q, namely, q ≥ δ − λ1dm.
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Example 3 (three diffusion coefficients) : We finally con-
sider the case with

d2 6= d3

and let us consider for simplicity a 3 × 3 system (m = 3).
Here, we might have 2 or 3 distinct diffusion coefficients and
this stabilization problem turns to be more complicated than
the previous ones. Indeed, to utilize the previously described
Lyapunov stabilization for (17), in the absence of commutative
property between P and D, we perform a transformation of
the form yn = Tnzn, for n = 1, . . . , N with

Tn = I3 + λn

0 κ 0
0 0 0
0 0 0

 ; κ :=
d3 − d2

q21
. (22)

Then, Y = col{y1, . . . , yN} ∈ R3N satisfies

Ẏ (t) =
(
Ã+ F̃

)
Y (t), (23)

where

Ã :=blkdiag{−λ1d3I3 +Q+BG1, . . . ,−λNd3I3 +Q+BGN};

Gn :=

 λn (d3 − d1 + κq21)
λ2
nκ (d1 − d2 − κq21) + λnκ (q22 − q11)

λnκq23

>

and F̃ := blkdiag{BK̄1T
−1
n , . . . , BK̄NT

−1
n }. Then, the sta-

bilizing gains are chosen to be of the form

K̄n = (−Gn +KQ)Tn, ∀n ∈ {1, . . . , N},

where the first term is needed to eliminate the undesired terms
BGn and, as in the previous examples, KQ ∈ R1×m is chosen
to satisfy (19) with q large enough, namely, q ≥ δ − λ1d3.

The abovementioned examples show that the problem of
stabilization of an underactuated system is more intricate when
diffusion coefficients are distinct, particularly when we have
more than two distinct ones. In fact, index

σ := min {i : di = dj ,∀j = i, i+ 1, . . . ,m} (24)

assigned to system (1) is an indicator of the complexity of the
stabilization problem. The larger the value of σ is, the more
complex is to determine the stabilization law. In our previous
examples, for system in Example 1, σ was equal to 1 (one
diffusion), while in Example 2, σ was equal to 2. Example 3
with σ = 3 provides us with intuition on an indirect strategy
we should follow for systems with σ > 3. In the next section,
considering all poisble values of σ, we provide a stabilization
law by determining a state transformation similarly as in (22)
for m = 3.

C. Stabilization Reduction and Main Result

In this section, we aim at determining gains Kn that lead to
a closed-loop system, for which we can prove exponential sta-
bility. Our main goal is to reduce the problem of stabilization
for the mN×mN system to a stabilization problem for system
of dimension as large as m. We seek for a state transformation
that transforms system (9) into a target one where this type of
control may be easily applied.

Based on the previous reasoning, we present a target system
which allows the derivation of the stabilizing law. Let us apply
a transformation yn = Tnzn to system (9) with Tn ∈ Rm×m
an invertible polynomial matrix given by

Tn =

{
Im +

∑σ̄
i=1 λ

i
nT̄i, 1 ≤ n ≤ N,

Im, n ≥ N + 1
, (25)

where
σ̄ := min{2σ − 3, 2m− 4}

with σ given by (24) and λin denoting the i-th power of λn.
Note that T := (Tn)+∞

n=1 : `2(N;Rm) → `2(N;Rm) is a
bounded operator with bounded inverse. Matrices T̄i ∈ Rm×m
are assumed to be nilpotent of the form (26) shown at the
bottom of the next page, where κ(i)

j,k are some constants to be
determined explicitly in the following, which strictly depend
on the dynamics of (1) and not on λn. Note that superscripts
(i) appearing in κ

(i)
j,k represent indices referring to each of

the matrices T̄i, while their subscripts (j, k) refer to their
position in matrices T̄i. By use of this transformation, we aim
at obtaining a target system, which after injection of control
(14) and by use of (16), can be written in the closed-loop form

ẏn(t) = (−λndmIm +Q+BGn
+BK̄nT

−1
n

)
yn(t), n ≤ N,

ẏn(t) = (−λnD +Q) yn(t)

+B

N∑
j=1

bj,nKjZ(t), n ≥ N + 1

(27)

with Gn given by

Gn = −B>
(

(Q− λndmIm)

(
σ̄∑
i=1

T̄iλ
i
n

)

+

(
σ̄∑
i=1

T̄iλ
i
n

)
(λnD −Q) + (D − dmIm)λn

)
T−1
n . (28)

Note that in target system (27), matrix λndmIm commutes
with any matrix P that we shall use to construct the Lyapunov
functional later. The importance of this commutative property
was revealed in the previous subsection. In addition, term
BGnyn(t) is undesired in the stabilization process but it will
be canceled by use of the gains K̄n, similarly as it was done
in examples 2 and 3 of the previous section.

Let us now assume that T̄i satisfy the following recursive
generalized Sylvester equations for all i ∈ {1, . . . , σ̄}:(
Im −BB>

) (
QT̄i − T̄iQ+ T̄i−1 (D − dmIm)

)
= 0, (29)

where we define T̄0 := Im. If (29) holds, then it is proven
later that Tn maps (9) to target system (27). We obtain the
following result on solutions to (29):

Lemma 1: If Condition (2) holds true, there exist matrices
T̄i of the form (26) shown at the bottom of the next page, satis-
fying generalized Sylvester equations (29). Their components
κij,k are obtained explicitly by Algorithm 1 as follows.
Proof: We are in a position to directly determine so-
lutions of this family of generalized Sylvester equa-
tions. Thanks to the special structure of T̄i, we can ap-
ply an elimination procedure of each element of matrix
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(
Im −BB>

) (
QT̄i − T̄iQ+ T̄i−1 (D − dmIm)

)
in a recur-

sive manner. For each row, we start from elimination of its
rightmost element and then we eliminate one by one all of its
elements by moving one position to the left. The procedure
initiates at the lowest row with nonzero elements and when
all elements of the current row are eliminated leftwards,
we recede to the rightmost element of one row before it
and we continue the same procedure until all elements are
eliminated. For each of these eliminations, we calculate an
element κij,k as the sole unknown in this entry, which is
written as a linear combination of elements that have been
already calculated in precedent eliminations. One can easily
check that retrieving a sole unknown component κij,k for
each of these eliminations is a consequence of the special
structure of (26) and controllability condition (2). More pre-
cisely, Algorithm 1 below describes in detail how to calculate
each of the elements κij,k of T̄i. By applying this algorithm,

Algorithm 1 Calculation of transformation Tn

1: procedure COMPUTE κij,k, FOR ALL i ∈ {1, . . . , σ̄}, j ∈
{1, . . . ,m− 1− d i2e}, k ∈ {d

i
2e+ 1, . . . ,m}.

2: T̄0 := Im and matrices T̄i have the form (26) for
i ∈ {1, . . . , σ̄}.

3: i = 1.
4: while i ≤ σ̄, do
5: j = m− 1− d i2e.
6: while j ≥ 1 do
7: k = m
8: while k ≥ j + d i2e do
9: Calculate κij,k by elim-

inating element (j, k) of matrix(
Im −BB>

) (
QT̄i − T̄iQ+ T̄i−1 (D − dmIm)

)
. In

each step, all calculated κij,k are written as linear
combinations of κij,k already calculated in previous steps.

10: k ← k − 1.
11: j ← j − 1.
12: i← i+ 1.

we achieve to calculate all constants κij,k appearing in (26).
Indeed, one can see that eliminating each of the elements of(
Im −BB>

) (
QT̄i − T̄iQ+ T̄i−1 (D − dmIm)

)
in the exact

order the abovementioned algorithm suggests, we obtain a

corresponding equation of the form

qj+1,jκ
i
j,k −

m−j−1− die2∑
l=0

κi
j+1,j+

die
2 +1+l

q
j+
die
2 +1+l,k

+

m−j−1− die2∑
l=0

qj+1,j+1+lκ
i
j+1+l,k + κi−1

j+1,k(dm − dk) = 0.

Each of the abovementioned equations has a unique solution
for κij,k by virtue of controllability condition (2). We therefore
directly obtain for all i ∈ {1, . . . , σ̄}, j ∈ {1, . . . ,m − 1 −
d i2e}, k ∈ {d

i
2e+ 1, . . . ,m} the following formula:

κij,k =
1

qj+1,j

m−j−1− die2∑
l=0

κi
j+1,j+

die
2 +1+l

q
j+
die
2 +1+l,k

−
m−j−1− die2∑

l=0

qj+1,j+1+lκ
i
j+1+l,k + κi−1

j+1,k(dm − dk)

 ,

(30)

where we define κ0
j+1,k := δj+1,k, for all j ∈ {1, . . . ,m −

2}, k ∈ {1, . . . ,m}. The above result can be verified by
invoking induction arguments.

Now, we are in a position to establish the following result
on internal stabilization (θ = 1).

Theorem 1: Consider parabolic system (1) with distributed
control (θ = 1) and initial condition z(0, ·) =: z0(·) ∈
H1 (0, L;Rm) satisfying compatibility conditions. Assume
that both controllability condition on (Q,B) in Assumption
1 and on shape functions bj(·) in Assumption 2 hold true.
Consider also polynomial matrices Tn given by (25) with
T̄i solving (29). Given a decay rate δ > 0, let N ∈ N be
subject to (10). Assume that there exist 0 ≺ P−1 ∈ Rm×m
and J ∈ R1×m satisfying the following LMI:

Sym (QP−1 +BJ) + (δ − λ1dm)P−1 ≺ 0. (31)

Denote KQ = JP−1
−1 . Let K̄n ∈ R1×m be given by K̄n =

(−Gn +KQ)Tn, for all n = 1, . . . , N, where via expression
(28) for Gn, the above is rewritten as

K̄n = B>
(

(Q− λndmIm)Tn + Tn (λnD −Q)
)

+KQTn.

(32)

T̄i =



0 · · · 0 κ
(i)

1,d i
2 e+1

κ
(i)

1,d i
2 e+2

· · · · · · κ
(i)
1,m

0 · · · 0 0 κ
(i)

2,d i
2 e+2

· · · · · · κ
(i)
2,m

...
. . . . . .

0 · · · 0 0 κ
(i)

m−2−d i
2 e,m−2

κ
(i)

m−2−d i
2 e,m−1

κ
(i)

m−2−d i
2 e,m

0 · · · 0 · · · 0 κ
(i)

m−1−d i
2 e,m−1

κ
(i)

m−1−d i
2 e,m

0 · · · 0 · · · 0 0 0
...

...
...

...
...

0 · · · 0 · · · 0 0 0


, i = 1, . . . , σ̄ (26)
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Then, controller (14) with gains Kn, defined by (16), ex-
ponentially stabilizes (1) with a decay rate δ, meaning that
the solutions of the closed-loop system satisfy the following
inequality:

‖z(t, ·)‖L2(0,L;Rm) ≤ `e−δt‖z0(·)‖L2(0,L;Rm),∀t ≥ 0 (33)

with ` > 0. Moreover, (31) is always feasible.
Proof: See Appendix A.

This result illustrates that stabilization just requires the
determination of a stabilizing gain KQ for coupling matrix
Q and also the calculation of a family of nilpotent matrices
T̄i ∈ Rm×m, whose number depends on the number of
distinct diffusion coefficients di (represented by σ̄) while their
values only depend on system’s dynamics. These matrices
T̄i are calculated easily by following the algorithm Lemma
1 suggests. Note for instance that for 3 × 3 systems, the
sole matrix T̄i needed has a single element [see (22)]. This
stabilization method is scalable up to the inversion of matrix
BN×N , given by (4), meaning that after stabilizing matrix Q,
if we want to change the number N of modes to stabilize, it is
not required to stabilize a new matrix. Note also, that as in the
description of part (i) of Problem 1, we achieve stabilization
at any decay rate δ.

Remark 3: The finite-dimensional transformation Tn (25)
is directly related to an infinite-dimensional one firstly in-
troduced in [27], [28] to solve an observer design problem
corresponding to various classes of coupled PDEs. In these
works, the corresponding transformation was a matrix operator
with high-order differentiations in its domain and being a
solution of a Sylvester operator equation. Note that those
works captured space-varying and nonlinear dynamics. Such
cases, being more general than the ones here, required strong
regularity assumptions and cannot be tackled by modal de-
composition.

IV. BOUNDARY STABILIZATION

In this section, we consider the boundary stabilization of
(1), in order to give an answer to part (ii) of Problem 1 (case
θ = 0), recalling also that for this case we assumed that on
the boundaries we have γ12 = 1 − γ11 and γ22 = 1 − γ21

with γ11, γ21 ∈ {0, 1}. The approach consists of a dynamic
extension via trigonometric change of variables, then modal
decomposition and finally, appropriately selecting the dynamic
law that the control actuations satisfy.

A. Dynamic Extension

In the following, we present the first step towards the
boundary stabilization of (1). It consists of the application of a
state transformation for dynamic extension followed by modal
decomposition. We then perform another transformation to the
eigenspectrum, in order to construct the dynamic control law.

Below, we apply a state transformation in order to place
the control internally. Such a type of transformation, but for
the scalar PDE system, has been introduced in [23] leading
to dynamic extension. We adapt this kind of transformation to
our vector PDE system with one control. Let us first choose
constants µj > 0, j = 1, . . . , N with µj 6= λn for all j =

1, . . . , N, n ∈ N. Let also ψj(·) ∈ C2[0, L], j = 1, . . . , N
be chosen to satisfy the following boundary-value problems,
which for given µj are uniquely solvable,

ψ′′j (x) + µjψj(x) =0, 0 < x < L,

γ11ψj(0) + (1− γ11)ψ′j(0) =0,

γ21ψj(L) + (1− γ21)ψ′j(L) =1,

(34)

recalling the restriction that γ12 = 1− γ11 and γ22 = 1− γ21

with γ11, γ21 ∈ {0, 1} as we assumed for the case of boundary
control (θ = 1). It is convenient to choose µj such that

√
µj =

√
µ̄j + 2µ0

π

L
, j = 1, . . . , N ; (35)√

µ̄j := (1− |γ11 − γ21|)
(
j − 1

2

)
π

L

+ |γ11 − γ21|j
π

L
, (36)

where µ0 ∈ N is some parameter to be chosen later. Then, the
unique solutions to (34) are given by

ψj(x) =(−1)j
(

1− γ21√
µj

+ γ21

)
×
(
(1− γ11) cos

(√
µjx

)
− γ11 sin

(√
µjx

))
, (37)

for all x ∈ [0, L].
Let us perform a transformation of the form

w(t, x) = z(t, x)−B
N∑
j=1

ψj(x)uj(t). (38)

System (1) is written in the new coordinates as

wt(t, x) = Dwxx(t, x) +Qw(t, x) +QB

N∑
j=1

ψj(x)uj(t)

− d1B

N∑
j=1

µjψj(x)uj(t)−B
N∑
j=1

ψj(x)u̇j(t)

γ11w(t, 0) + (1− γ11)wx(t, 0) = 0,

γ21w(t, L) + (1− γ21)wx(t, L) = 0. (39)

In the next step, we aim at determining appropriate dynamic
control law. To do this, we perform modal decomposition
of (39). Let us consider ansatz continuously differentiable
solutions z(t, ·) in L2 (0, L;Rm) with uj(·) ∈ C1[0,+∞) for
all j = 1 . . . , N . Existence of unique solutions to the closed-
loop system and their regularity are proven later in Appendix
B. Thus, we are in a position to present each of the states of
(39) as

wi(t, ·) =

∞∑
n=1

wi,n(t)ϕn(·), i = 1 . . . ,m (40)

with coefficients wi,n given by

wi,n = 〈wi, ϕn〉 . (41)



9

Taking the time-derivative of (41), substituting dynamics (1),
and integrating by parts, we obtain the following dynamics for
wn = (w1,n, . . . , wm,n)

>
:

ẇn(t) =

∫ L

0

wt(t, x)ϕn(x)dx

= [Dwx(·)ϕn(·)−Dw(·)ϕ′n(·)]L0

+ (−λnD +Q)wn(t) +QB

N∑
j=1

ψj,nuj(t)

− d1B

N∑
j=1

µjψj,nuj(t)−B
N∑
j=1

ψj,nu̇j(t)

with ψj,n := 〈ψj , ϕn〉 , (42)

which by virtue of boundary conditions for ϕn(x) and w(t, x),
is written as follows:

ẇn(t) = (−λnD +Q)wn(t) +QB

N∑
j=1

ψj,nuj(t)

− d1B

N∑
j=1

µjψj,nuj(t)−B
N∑
j=1

ψj,nu̇j(t). (43)

We notice here that it is not yet straightforward to determine
appropriate dynamic control law. This results from the fact
that one would need to first cancel terms uj from each of the
equations of system (43) by choice of the dynamics u̇j . This is
not yet possible since in the second equation of (43), although
uj appear due to the term QB

∑N
j=1 ψj,nuj(t), their time-

derivatives u̇j do not appear at all. Therefore, let us perform
a transformation of the form

w̄n =wn −


0

Ψ>n r1(t)
...

Ψ>n rm−1(t)

 (44)

for all n ∈ N, where Ψn :=
(
ψ1,n · · · ψN,n

)>
and ri ∈

C1
(
[0,+∞);RN

)
, i = 1, . . . ,m−1 are subject to appropriate

dynamics to be determined later. Then, system (43) is written
in the new coordinates as

˙̄wn(t) = (−λnD +Q) w̄n(t) + (−λnD +Q)


0

Ψ>n r1(t)
...

Ψ>n rm−1(t)


+QB

N∑
j=1

ψj,nuj(t)− d1B

N∑
j=1

µjψj,nuj(t)

−


Ψ>n u̇(t)
Ψ>n ṙ1(t)

...
Ψ>n ṙm−1(t)

 . (45)

Before choosing the dynamic control law, we are in a position
to show the following result. Let us first define

ΨN×N :=

Ψ>1
...

Ψ>N

 . (46)

Lemma 2: Assume that ψj are of the form (37) for all j ∈
{1, . . . , N}. Then, ΨN×N is invertible for all N ∈ N and
its inverse, denoted by Ψ−1

N×N = (χi,k; i, k = 1, . . . , N), has
elements

χi,k =

√
2(−1)k

2L

(
|γ11 − γ21|

(
γ21√
λk
− γ11√

µi

)
+

1− |γ11 − γ21|√
λk

(γ11 + (1− γ11)
√
µi)

)
χ̄i,k; (47)

χ̄i,k :=

N∏
`=1

(λk − µ`) (λ` − µi)

(µi − λk)

N∏
`=1
6̀=k

(λ` − λk)

N∏
`=1
` 6=i

(µi − µ`)

,

for i, k = 1, . . . , N.
Proof: Recalling that in this section we have assumed
γ11, γ21 ∈ {0, 1}, we can easily see that eigenvalues and
eigenfunctions of the Stürm-Liouville problem are of the form

λn = (1− |γ11 − γ21|)
n2π2

L2
+ |γ11 − γ21|

(
n− 1

2

)2
π2

L2
,

ϕn(x) =
√

2
(

(1− γ11) cos
(√

λnx
)

+ γ11 sin
(√

λnx
))

.

(48)

We next calculate ψj,n for all j, n = 1, . . . , N by (42) as

ψj,n =
(−1)nL

√
2

µj − λn

(
|γ11 − γ21|

(
γ21

√
λn − γ11

√
µj

)
+ (1− |γ11 − γ21|)

(
γ11

√
λn + (1− γ11)

√
λn
µj

))
. (49)

Then, Ψ>N×N = (ψj,n; j, n = 1 . . . , N) is written as

Ψ>N×N = L
√

2|γ11 − γ21|
(
γ21Cdiag

{
(−1)n

√
λn

}N
n=1

−γ11diag{√µj}Nj=1Cdiag{(−1)n}Nn=1

)
+ L
√

2 (1− |γ11 − γ21|)
(
γ11Cdiag{(−1)n

√
λn}Nn=1

+(1− γ11)diag
{

1
√
µj

}N
j=1

Cdiag{(−1)n
√
λn}Nn=1

)
,

(50)

where C :=
(

1
µj−λn

; j, n = 1, . . . , N
)

is a Hilbert-type
matrix. We now invoke result in [40, Lemma 2.1], which
shows that C is invertible with inverse explicitly calculated
in (2.1) therein. Using this result, it is easily verifiable that
the elements of the inverse Ψ−1

N×N are of the form (47).
For more general boundary conditions like the Robin ones, an
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analogous result as in the one of this lemma would be harder
to achieve.

Let us now denote u(t) := col {u1(t), . . . , uN (t)} ∈
RN , X(t) := col{u(t), r1(t), . . . , rm−1(t)} ∈ RmN . By
virtue of Lemma 2, we are in a position to construct dynamic
control law of the form

Ẋ(t) = HX(t)− (B ⊗ IN ) v(t) (51)

with

H :=−H0 +Q⊗ IN ; (52)

H0 := blkdiag
{
d1M,d2Ψ−1

N×NΛΨN×N , . . . , (53)

dmΨ−1
N×NΛΨN×N

}
,

M :=diag{µ1, . . . , µN},
Λ :=diag{λ1, . . . , λN}.

Matrix ΨN×N is given by (46) and v(t) :=
col{v1(t), . . . , vN (t)} ∈ RN is a control input to be
chosen appropriately later. Injecting the abovementioned
dynamical law in system (45), we get

˙̄wn(t) = (−λnD +Q) w̄n(t) +B

N∑
j=1

ψj,nvj(t), (54)

for all n ∈ N.
System (54) is written in a form resembling to the one

that would be derived after applying modal decomposition
for a system with internal actuations v1, . . . , vN multiplied
by shape functions ψ1, . . . , ψN , which are placed on the first
equation only (see (9) and the analysis of the previous section
on internal stabilization).

At this point, let us choose kQ and δ0 satisfying Assumption
3. For this decay rate δ0, at which we able to stabilize (54),
we can always find a N ∈ N large enough in such a way that

−λN+1D + Sym(Q) + δ0Im ≺ 0. (55)

thanks to the countability and monotonicity of the eigenvalues
of the parabolic operator. The latter implies also that

−λnD + Sym(Q) + δ0Im ≺ 0, ∀n ≥ N + 1. (56)

We now obtain the following system corresponding to the
finite-dimensional part of the eigenspectrum of the parabolic
operator:

˙̄W (t) = AW̄ (t) + B̃v(t), (57)

where we denote W̄ = col {w̄1, . . . , w̄N} ∈ RmN ,

A :=blkdiag{−λ1D +Q, . . . ,−λND +Q}, (58)

and B̃ ∈ RmN×N is given by

B̃ := col
{
BΨ>1 , . . . , BΨ>N

}
= (IN ⊗B) ΨN×N . (59)

Next, it is more convenient to apply transformation

X̄ = (Im ⊗ΨN×N )X (60)

for dynamic law (51). Then, we obtain dynamics

˙̄X(t) = H̄X̄(t)− (B ⊗ΨN×N ) v(t) (61)

with

H̄ :=− H̄0 +Q⊗ IN ; (62)

H̄0 := blkdiag
{
d1ΨN×NMΨ−1

N×N , d2Λ, . . . , dmΛ
}
.

In order to stabilize system (1), we shall select proportional-
type actuations vj to guarantee stabilization of system consist-
ing of (57) and (61). First, we see that by invoking the Hautus
lemma, we obtain the following result in conjunction with the
invertibility of ΨN×N from Lemma 2:

Lemma 3: Let ψj(·) be given by (37) for all j = 1, . . . , N .
Then, the pair (A, B̃) is stabilizable.

The abovementioned result guarantees stabilizability of
system (57) but not stabilizability of the composite system
consisting of (61) and (57). For this reason, we need to
guarantee that matrix H̄ appearing in dynamic control law
(61) satisfies a property of the form

Sym(H̄) ≺ −δ0ImN , for some µ0 ∈ N large enough, (63)

where µ0 appears inside µj , see (35). The latter is shown
to be possible as a result of Assumption 3. Based on the
above property, in conjunction with Lemma 3, we may choose
feedback control law of the form

vj(t) = KjW̄ (t), j = 1, . . . , N, (64)

where Kj ∈ R1×mN are controller gains to be found below.
Property (63) is a result of Assumption 3, which is rather
restrictive contrary to the case of internal stabilization (θ = 1),
where no particular conditions on the dynamics were imposed.
Stabilization of the symmetric part of H is achieved by choice
of parameter µ0 in (35), as it is shown in the following section.

B. Main Boundary Stabilization Result

We consider here the boundary stabilization of (1) by use
of dynamic control law (51) and after choice of feedback laws
vj . The stability analysis relies on Lyapunov’s direct method.

In order to highlight explicitly the dependence of the
feedback control (64) on dynamic control state X and solution
z to (1), we substitute transformations (44) and (38) and we
get

vj(t) =−KjΘX(t) +Kj


∫ L

0
ϕ1(x)z(t, x)dx

...∫ L
0
ϕN (x)z(t, x)dx

 , (65)

where

Θ := blkdiag{Im ⊗Ψ1, . . . , Im ⊗ΨN}. (66)

We are now in a position to establish our main result as a
solution to Problem 1(ii) presented in Section II.

Theorem 2: Consider parabolic system (1) with boundary
control (θ = 0), boundary conditions satisfying γ12 = 1− γ11

and γ22 = 1−γ21 with γ11, γ21 ∈ {0, 1}, and initial condition
z0 ∈ H2 (0, L;Rm) satisfying γ11z

0(0)+(1−γ11)
(
z0
)′

(0) =

γ21z
0(L) + (1 − γ21)

(
z0
)′

(L) = 0. Suppose that both
Assumption 1 on controllability of (Q,B) and Assumption
3 hold true and calculate some kQ, δ0 > 0 satisfying (5).
Let N ∈ N be subject to (55). Consider µj and ψj(·) given
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by (35)-(37) with projections ψj,n given by (42) and matrix
ΨN×N as in (46) with inverse explicitly given in Lemma 2.
Assume that there exists µ0 ∈ N large enough such that

Sym
(
ΨN×NMΨ−1

N×N
)
� kQIN . (67)

with M = diag{µ1, . . . , µN}. Moreover, let H be given by
(52), Θ by (66), and define

K = −Ψ−1
N×N

(
IN ⊗

(
d1kQB

>)) . (68)

Then, the boundary actuators uj(·), j = 1, . . . , N subject to
dynamic law

Ẋ(t) = (H −B ⊗ (KΘ))X(t)

+B ⊗

d1kQΨ−1
N×N

B>
∫ L

0
ϕ1(x)z(t, x)dx

...
B>

∫ L
0
ϕN (x)z(t, x)dx


 ,

(69)

(where X(t) = col {u(t), r1(t), . . . , rm−1(t)} , u(t) =
col {u1(t), . . . , uN (t)}) with initial data X(0) = 0, expo-
nentially stabilize (1) with a decay rate δ0, meaning that
the solutions to the closed-loop system satisfy the following
inequality:

‖z(t, ·)‖L2(0,L;Rm) ≤ `e−δ0t‖z0(·)‖L2(0,L;Rm),∀t ≥ 0 (70)

with ` > 0.
Moreover, inequality (67) is always feasible for µ0 large

enough.
Proof: See Appendix B.

The abovementioned result illustrates the existence of a
constructive algorithm to stabilize system from the boundary.
It mainly relies on the determination of a stabilizing scalar gain
kQ > 0 corresponding to matrix Q and satisfying (5), which is
independent of the number of unstable modes N . It also relies
on the determination of parameter µ0 subject to (67). Finally,
the inverse of matrix ΨN×N , given by (46), is essential to
determine the stabilization law, however, we get its explicit
formula by Lemma 2. Notice also, that (68) here resembles to
(16) of Section III, where all K̄j there are substituted here by
−d1kQB

>. This allows, when closing the loop of the ODE
system (57), to obtain a matrix with block diagonal elements
only, similarly as in (17) of the previous section, where each
of the blocks is stabilized by choice of gain kQ.

Remark 4: Note here that for the case of identical diffusion
coefficients, i.e., d1 = . . . = dm, we might solve the problem
by static feedback instead of the dynamic law of Theorem
2. In that case, system is stabilizable in accordance with
boundary controllability studies (see [19]) as a consequence of
the identical diffusion coefficients even if we omit Assumption
3. Indeed, by performing modal decomposition z(t, x) =∑+∞
n=1 zn(t)ϕn(x), we would obtain the following ODE sys-

tem for the first N modes: Ż(t) = AZ(t) + B̃u(t) with Z :=

col {z1, . . . , zN}, A given by (58) and B̃ =

 B̃1

...
B̃N

 ; B̃n =

dm ((1− γ2)ϕn(L)− γ2ϕ
′
n(L))B

(
1 · · · 1

)
. Then, since

D = dmIm, the eigenvalues of A are distinct and by the Hau-
tus lemma, system Z is stabilizable, whereas if we had distinct
diffusion coefficients, Hautus test would fail. We can, hence,
choose proportional controller uj(t) = KjZ(t), j = 1 . . . , N ,
where Kj are retrieved by a similar inequality as in (15)
in Section III. Then, we can follow similar procedure as in
the proof of Theorem 1 to show stability of the closed-loop
system. However, contrary to the method of Theorem 1 on
internal stabilization, we would need here to solve an LMI
involving square matrices of dimension mN .

Remark 5: It is worth noting that system (1) is a subclass
of the general form of controlled systems written abstractly
as ẏ + Ay = Bu, where A has a compact resolvent and a
finite number of unstable eigenvectors. Such general classes
have been considered for instance in [34, Ch. 9]. Although
constructive methods have been given in these works corre-
sponding to scalar cases, to the best of authors’ knowledge,
constructive stabilization methods for vector systems have
not yet appeared in the literature. The novelty of this work
consists in providing completely constructive methods for
both internal and boundary stabilization, when the presence
of distinct diffusion coefficients complicates the design. This
design is based upon modal decomposition combined with
Sylvester equations, LMIs and PI controllers. Recall that our
internal stabilization approach provides scalability and relevant
independence on the number of unstable modes and it is based
on a novel Sylvester-equation approach. For the boundary
stabilization approach, we provide a sufficient condition (see
Assumption 3) that leads to the constructive design of a PI
controller. For the latter case, there has not appeared a similar
approach so far and, to the best of authors’ knowledge, only
the 2×2 case has been tackled via backstepping under stronger
sufficient conditions than the ones here [4].

Remark 6: It would be reasonable to ask why system
(1) satisfies a cascade form and not a more general form,
where (Q,B) would be a controllable pair with no particular
structural properties.

(A) For the internal stabilization case, it turns out that the
assumed cascade structure is suitable for the determination of
a completely constructive method as in Lemma 1 in order to
determine transformation (25). The determination of a similar
constructive algorithm for more general pairs (Q,B) would be
a very difficult task. To the best of authors’ knowledge, similar
transformations as the ones we introduce here have not ap-
peared before. This transformation is subject to easily solvable
generalized Sylvester equations that we introduce in this work.
Note also that this Sylvester-equation approach is novel in the
context of control of PDE theory and it can become a powerful
tool not only for this theory but also for (finite-dimensional and
large-scale) networked control systems, where simultaneous
and scalable stabilization of diagonal systems as in [17] is
crucial.

(B) For the boundary control case, the chosen cascade
form leads to the design of a PI controller after applying
transformation (44). For more general cases of the pair (Q,B),
finding such a transformation is a difficult task and is left for
future research.

Note, however, that if B and Q considered here were
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both multiplied by a permutation matrix, we would be in a
position to follow the same methodology trivially. Such more
general pairs would describe alternative systems where the
m̄th equation is controlled (with 1 ≤ m̄ ≤ m), instead of the
first equation as in our case.

V. SIMULATION

In the following, we present simulations for both internal
and boundary stabilization. These illustrate the results of
theorems 1 and 2, respectively.

A. Internal stabilization example (θ = 1)

Let us illustrate the result of Theorem 1 on internal sta-
bilization of (1) via an example of m = 3 PDEs. Consider
L = π, γ11 = 0, γ12 = 1, γ21 = 1, γ22 = 0 meaning that we
have Neumann boundary conditions on the left and Dirichlet
ones on the right boundary. We choose diffusion matrix and
an unstable reaction term given by

D = diag{4, 3, 6}, Q =

10 4 8
1 10 2
0 1 20

 . (71)

Control is placed internally, hence θ = 1. We retrieve from
the Stürm-Liouville problem (3) the following eigenvalues and
eigenfunctions:

λn =

(
n− 1

2

)2

π2/L2, ϕn(x) =
√

2 cos(
√
λnx). (72)

Let us choose decay rate δ = 9. We select N = 3
satisfying inequality (10). Since m = 3, transformation
(25) is of the form (22) for all n ≤ N , namely,

Tn =

1 3λn 0
0 1 0
0 0 1

 . Shape functions are selected as

bj(x) = 1[0.1j,0.1j+0.1], j = 1, . . . , N, in such a way that

matrix BN×N =

0.1128 0.1099 0.1042
0.1123 0.1059 0.0934
0.2226 0.1937 0.1400

 satisfies As-

sumption 2 for N = 3. We then calculate KQ by solving LMI
(31), which is given by KQ =

(
−67.5 −3059 −5823

)
.

By invoking (32), we obtain K̄1 =(
−67.3 −3008 −5822

)
, K̄2 =

(
−65.3 −2558− 5809

)
,

K̄3 =
(
−61.26 −1442 −5786

)
. We finally calculate

the controller gains Kj by using (16), where B−1
N×N

= 103

 4.3906 −6.4537 1.0367
−6.7966 9.9474 −1.5763
2.4255 −3.5060 0.5404

 . Simulations of

all three PDE states of the closed-loop system with decay
rate δ = 9 are shown in figures 1-3 for choice of initial

condition z0(x) =

 cosx+ 1
6 cos x2 + 3
− cos x2 − 0.5

. Furthermore,

by using standard LMI solvers, our method illustrated in
Theorem 1 via transformation (25) to calculate stabilization
gains Kj in (14) is compared with LMI solving resulting
from the direct approach (15). For N = 3, our indirect
approach is approximately 2 times faster with respect to
elapsed time, while for N = 10 (corresponding to larger δ),

Fig. 1: Time and space evolution of first state (θ = 1)

Fig. 2: Time and space evolution of second state (θ = 1)

Fig. 3: Time and space evolution of third state (θ = 1)
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it was 200 times faster than standard LMI. Note also that
for large values of N , the non-scalable LMI (15) without
our transformation turns out to be computationally hard,
while our algorithm to calculate controller gains Kj does
not suffer from such limitations. Note also that our proposed
control method only relies on the inversion of BN×N in (4)
in order to calculate Kn in (16) and solution of LMI (31) of
dimension 3. This would not be computationally hard even
for large values of N , for instance N = 100, while it would
be extremely computationally hard to solve an LMI (15) of
dimension 3N (without our transformation).

B. Boundary stabilization example (θ = 0)

We illustrate here the result of Theorem 2 on boundary
stabilization (θ = 0) of (1) via an example of m = 3 equations.
Consider L = π and γ11 = 0, γ21 = 1 (same boundary
conditions as in the previous example of Subsection V-A).
Note here that if we select D and Q as in (71), Assumption
3 would not be satisfied, therefore, we select

D = diag{4, 5, 6} Q =

10 1 8
1 −10 2
0 −10 −20

 . (73)

Eigenvalues and eigenfunctions of the Stürm-Liouville prob-
lem (3) are again as in (72). We select kQ = 10 and δ0 = 9 sat-
isfying Assumption 3. We select N = 3 for which inequality
(55) is satisfied. Also, select µ0 = 5 in such a way that (67) is
satisfied. Then, µj satisfy √µj = j πL+2µ0

π
L (see (35)). Func-

tions ψj(·) (see (37)) are given by ψj(x) = (−1)j cos
(√
µjx

)
.

Matrices ΨN×N and its inverse are given by (see (46)

and (47)) ΨN×N =

−0.0064 −0.0054 −0.0047
0.0194 0.0165 0.0143
−0.0334 −0.0283 −0.0243

 ,

Ψ−1
N×N = 107

−0.3987 −0.1945 −0.0370
1.0829 0.5268 0.0996
−0.7110 −0.3452 −0.0650

 . We then

apply Theorem 2 by considering dynamic law as in (69)
with K = −40Ψ−1

N×N
(
IN ⊗B>

)
. In Figure 4, we see the

evolution of the L2 spatial norms of all three system states
with decay rate δ0 = 9 for choice of initial condition

z0(x) =

 cosx+ 1
6 cos x2 + 3
− cos x2 − 0.5

.

VI. CONCLUSION

The problem of both internal and boundary stabilization of
an underactuated parabolic system in a cascade form and in
the presence of distinct diffusion coefficients was considered.
For the internal stabilization problem, after performing modal
decomposition, the problem was reduced to just the stabiliza-
tion of the reaction term avoiding in that way a direct stabi-
lization of the whole system of ODEs corresponding to the
comparatively unstable modes, which might have arbitrarily
large dimension. An easily calculable state transformation of
dimension equal to the number of coupled PDEs as a solution
to a generalized Sylvester equation was introduced in order to
solve this stabilization reduction problem. For the boundary
stabilization problem, we used a dynamic extension technique

Fig. 4: Time evolution of the L2 spatial norms of the states
(θ = 0)

in such a way that the control components are placed internally
in the PDEs. Again, the stabilization problem was reduced to
just the stabilization of the reaction term.

In our future works, the present approach will be applied
to observer-based control and extended to nonlinear systems.
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APPENDIX A
PROOF OF THEOREM 1

Below, we prove Theorem 1 on internal stabilization of
Section III. Note first that transformation Tn appearing in
stabilization law is calculated via the constructive Algorithm
1 coming from Lemma 1. To see how Tn maps (9) to target
system (27) via control (14), let us apply it to (9). Therefore,
we obtain

ẏn(t) =
(
−λnTnDT−1

n + TnQT
−1
n +BKnT

−1
n

)
yn(t),

(74)

for all n = 1, . . . , N. Comparing the above system with target
system (27), the following equations must be satisfied for all
n = 1, . . . , N :

(Q− λndmIm)Tn + Tn (λnD −Q) +BGnTn = 0.

Substituting (25) in the previous equation, this is written as

(Q− λndmIm)

(
σ̄∑
i=1

T̄iλ
i
n

)
+

(
σ̄∑
i=1

T̄iλ
i
n

)
(λnD −Q)

+ (D − dmIm)λn +BGnTn = 0, n = 1, . . . , N. (75)

After injecting expression for Gn, (75) is written as(
Im −BB>

)(
(Q− λndmIm)

(
σ̄∑
i=1

T̄iλ
i
n

)

+

(
σ̄∑
i=1

T̄iλ
i
n

)
(λnD −Q) + (D − dmIm)λn

)
= 0. (76)

Then, eliminating all the coefficients of λin in (76) for all i
in {1, . . . , σ̄}, we obtain (29), which is assumed to hold true
for all T̄i, i ∈ {1, . . . , σ̄}. Therefore, (29) guarantees that, via
transformation Tn, we obtain target system (27).

At this point, let us remark that for given initial condition
z0 in H1 (0, L;Rm) satisfying compatibility conditions for
(1), unique existence of classical solutions to system (1)
with nonlocal feedback control (14) (θ = 1), namely z ∈
C1
(
[0,+∞);L2 (0, L;Rm)

)
, follows from simple argument

such as the Lumer-Philipps theorem, see for example ([37],
Corollary 4.4, Chapter 1.

Let us now prove L2 stability of the closed-loop system
applying direct Lyapunov method (see for example [24]). First,
observe that by injecting gains (32), Y := col{y1, . . . , yN} ∈
RmN satisfies dynamic law

Ẏ (t) = RY (t), (77)

https://arxiv.org/abs/2202.08801
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where R := blkdiag{R1, . . . , RN} with Rn := −λndmIm +
Q + BKQ, n = 1, . . . , N. Now, by the fact that (Q,B) is
controllable, we can stabilize matrix Q, in such a way that we
can find 0 ≺ P ∈ Rm×m, KQ ∈ R1×m, and ρ̄ > 0 such that(

Sym (P (Q+BKQ)) + (δ − λ1dm)P Im
Im −ρ̄Im

)
≺ 0, (78)

which is written in the design LMI form(
Sym (QP−1 +BJ) + (δ − λ1dm)P−1 Im

Im −ρ̄Im

)
≺ 0,

where P−1 = P−1 and J = KQP−1. The latter implies also
feasibility of LMI (31). Next, by virtue of (10), we can always
find ρ > 0 such that the following LMI is satisfied:(

−λN+1D + Sym(Q) + δIm
1√
2
Im

1√
2
Im −ρIm

)
≺ 0. (79)

To prove stability, defining first y(t, x) =
∑+∞
n=1 ϕn(x)yn(t),

consider Lyapunov functional V : L2 (0, L;Rm)→ R

V[y] =
1

2
Y >P̄ Y +

η

2

+∞∑
n=N+1

|yn|2, (80)

where η :=
2

ρρ̄β|K|2
;β := max

n=1,...,N
|T−1
n |2

N∑
j=1

‖bj(·)‖2L2(0,L)

(81)

with ρ > 0 satisfying (79), ρ̄ > 0 satisfying (78) and
K given by (16) (where K̄n are given by (32)). Also,
P̄ := IN ⊗ P . By invoking boundedness of T , T −1 in
`2 (N;Rm), the fact that yn = Tnzn, the Cauchy-Schwarz in-
equality, and Parseval’s identity, we get c‖z(t, ·)‖2L2(0,L;Rm) =

c
∑+∞
n=1 |zn(t)|2 ≤

∑+∞
n=1 |yn(t)|2 ≤ c̄‖z(t, ·)‖2L2(0,L;Rm),

where c := 1
maxn∈N |T−1

n |2
and c̄ := maxn∈N |Tn|2. By

continuous differentiability of solutions with respect to t for
all t ≥ 0, we are in a position to define V (t) := V[y](t)
for all t ≥ 0 and we may take its time-derivative V̇ (t) along
the solutions of target system (27). By use of the previous
inequality, we obtain for V (t)

c

2
min (λmin(P ), η) ‖z(t, ·)‖2L2(0,L;Rm) ≤ V (t)

≤ c̄

2
max (λmax(P ), η) ‖z(t, ·)‖2L2(0,L;Rm). (82)

Its derivative satisfies

V̇ (t) =Y >(t)Sym(P̄R)Y (t)

+ η

+∞∑
n=N+1

y>n (t) (−λnD + Sym (Q)) yn(t)

+ η

+∞∑
n=N+1

y>n (t)B

N∑
j=1

bj,nKjZ(t). (83)

By the Cauchy-Schwarz inequality and Parseval’s identity, last
term of (83) is bounded as follows:

η

+∞∑
n=N+1

y>n (t)B

N∑
j=1

bj,nKjZ(t) ≤ η 1

2ρ

+∞∑
n=N+1

|yn(t)|2

+ η
ρ

2
|Z(t)|2|K|2

+∞∑
n=N+1

|B>n |2

≤ η 1

2ρ

+∞∑
n=N+1

|yn(t)|2 + η
ρ

2
β|K|2|Y (t)|2

where ρ > 0 satisfies (79) and β is given by (81). After
substituting expression (81) for η, (83) is bounded as

V̇ (t) ≤ −2δV (t) + Y >(t)ΓY (t) + η

+∞∑
n=N+1

y>n (t)Ωnyn(t) (84)

where Γ := blkdiag{Sym(PR1) +

(
1

ρ̄
+ δP

)
Im, . . . ,

Sym(PRN ) +

(
1

ρ̄
+ δP

)
Im},

Ωn := −λnD + Sym(Q) +

(
1

2ρ
+ δ

)
Im.

Monotonicity of the eigenvalues, in conjunction with (78) and
(79), implies Γ < 0 and Ωn < 0, ∀n ≥ N + 1, respectively.
Thus, (84) in conjunction with (82) readily yields to a stability
inequality of the form (33).

The proof of Theorem 1 is complete. �

APPENDIX B
PROOF OF THEOREM 2

We prove here Theorem 2 in Section IV on boundary
stabilization.

We invoke first existence-uniqueness of solutions to the
closed loop system (1), (51) with θ = 0 by easily adapt-
ing a result given in [23] for the scalar case to our vec-
tor case (proof of Theorem 2.2 therein). More precisely,
for any given initial condition z0 ∈ H2 (0, L;Rm) satis-
fying γ11z

0(0) + (1 − γ11)
(
z0
)′

(0) = γ21z
0(L) + (1 −

γ21)
(
z0
)′

(L) = 0 (implying by (38) that w0(·) := w(0, ·) ∈
H2 (0, L;Rm) satisfying γ11w

0(0) + (1 − γ11)
(
w0
)′

(0) =

γ21w
0(L) + (1 − γ21)

(
w0
)′

(L) = 0) and input initial
conditions u(0) = 0, there exists a unique solution w ∈
C0 ([0,+∞)× [0, L];Rm) ∩ C1 ((0,+∞)× [0, L];Rm) with
w(t, ·) ∈ C2 ([0, L];Rm) of the closed loop system (39),
(69) implying also unique existence of z in the same
function spaces due to (38). Simultaneously, we get u ∈
C1
(
[0,+∞);RN

)
.

Next, notice that dynamic law (69) is directly deduced
by (51) after substituting expression for vj in (65) and also
gains (68). We also see that inequality (67) is feasible for
choice of µ0 large enough. Indeed, µj given by (35) are
written in the form µj = µ2

0

(
4 π

2

L2 + 4 πL
√
µ̄j

1
µ0

+
µ̄j

µ2
0

)
, j =

1, . . . , N . Then, recalling that M := diag{µ1, . . . , µN},
it is easy to see that whenever µ0 → +∞, we obtain
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Sym
(
ΨN×NMΨ−1

N×N
)

= O(µ2
0)IN , which yields feasibility

of (67).
In the next step, let us prove L2 stability of the closed-loop

system (54), (61) by applying direct Lyapunov method. First,
observe that by injecting control law (64) and gains (68) in
(57) and (61), W̄ and X̄ satisfy the following dynamics:

˙̄W (t) =Π1W̄ (t),

˙̄X(t) =H̄X̄(t) + Π2W̄ (t)
(85a)

where

Π1 :=blkdiag{Q−Ddiag{kQ, λn, . . . , λn}}Nn=1,

Π2 :=d1kQB ⊗
(
IN ⊗B>

)
, (85b)

and H̄ is given by (62). In addition, by (54), we get the
following dynamics for all n ≥ N + 1 :

˙̄wn(t) = (−λnD +Q) w̄n(t) +B

N∑
j=1

ψj,nKjW̄ (t), (85c)

Next, see that by by virtue of (55), we can always find a ρ > 0
such that the following LMI is satisfied:(

−λN+1D + Sym(Q) + δ0Im
1√
2
Im

1√
2
Im −ρIm

)
≺ 0. (86)

Now, notice that by Assymption 3,

Sym{Π1} = blkdiag{Sym(Q)−Ddiag{kQ, λn, . . . , λn}}Nn=1

� IN ⊗ (Sym(Q)−Ddiag{kQ, λ1, . . . , λ1}) � −δ0ImN ,

from which we can always find a ρ̄ > 0 such that

Sym(Π1) +
1

ρ̄
ImN ≺ −δ0ImN . (87)

Also, by invoking (67) and by virtue of Assumption 3, we get

Sym(H̄)

= −blkdiag
{
d1Sym

(
ΨN×NMΨ−1

N×N
)
, d2Λ, . . . , dmΛ

}
+ Sym(Q)⊗ IN
� −blkdiag {d1kQIN , d2λ1IN , . . . , dmλ1IN}
+ Sym(Q)⊗ IN � −δ0ImN ,

from which we can always find a ¯̄ρ > 0 such that

Sym(H̄) +
1
¯̄ρ
ImN ≺ −δ0ImN . (88)

The above is a desired property as it was already mentioned in
(63). To prove stability, defining w̄(t, x) =

∑+∞
n=1 φn(x)w̄n(t),

consider Lyapunov functional V : L2 (0, L;Rm)×RmN → R

V[w̄, X̄] =
1

2
|W̄ |2 +

η1
2

+∞∑
n=N+1

|w̄n|2 +
η2
2
|X̄|2, where (89)

η1 :=
1

ρ̄ρ
∑N

j=1 ‖ψj(·)‖2L2(0,L)
|K|2

, η2 :=
1

¯̄ρρd21k
2
Q

. (90)

By use of transformations (44), (60) and Parseval’s identity,
we obtain ‖w(t, ·)‖2L2(0,L;Rm) + c|X(t)|2 =

∑+∞
n=1 |wn(t)|2 +

c|X(t)|2 ≤
∑+∞
n=1 |w̄n(t)|2 + |X̄(t)|2 ≤ ‖w(t, ·)‖2L2(0,L;Rm) +

c̄|X(t)|2, where c := 1
|Ψ−1

N×N |2
+
∑+∞
n=1 |Ψn|2 =

1
|Ψ−1

N×N |2
+
∑N
j=1 ‖ψj(·)‖2L2(0,L) and c̄ := |ΨN×N |2 +∑N

j=1 ‖ψj(·)‖2L2(0,L). By continuous differentiability of solu-
tions with respect to t for all t ≥ 0, we are in a position to
define V (t) := V[w̄, X̄](t) for all t ≥ 0 and we may take its
time-derivative V̇ (t) along the solutions of system (85). By
use of the previous inequality, we obtain for V (t)

C1‖w(t, ·)‖2L2(0,L;Rm) + C2|X(t)|2 ≤ V (t)

≤ C̄1‖w(t, ·)‖2L2(0,L;Rm) + C̄2|X(t)|2, (91)

where C1 := 1
2 min{1, η1}, C2 := η2

c
2 and C̄1 :=

1
2 max{1, η1}, C̄2 := η2

c̄
2 . Differentiating V along the solu-

tions of (85), we obtain

V̇ (t) = W̄>(t)Sym(Π1)W̄ (t)

+ η1

+∞∑
n=N+1

w̄>
n (t) (−λnD + Sym (Q)) w̄n(t)

+
η1
2

+∞∑
n=N+1

w̄>
n (t)Bψj,nKjW̄ (t)

+
η1
2
W̄>(t)

+∞∑
n=N+1

K>
j ψj,nB

>w̄n(t)

+ η2X̄
>(t)Sym

(
H̄
)
X̄(t) +

η2
2
X̄>(t)Π2W̄ (t)

+
η2
2
W̄>(t)Π>

2 X̄(t). (92)

We apply next Young’s inequality for the cross terms in the
Lyapunov derivative as follows:

V̇ (t) ≤ W̄>(t)Sym(Π1)W̄ (t)

+ η1

+∞∑
n=N+1

w̄>
n (t) (−λnD + Sym (Q)) w̄n(t)

+ η1
1

2ρ

+∞∑
n=1

|w̄n|2 + η1
ρ

2

N∑
j=1

‖ψj(·)‖2L2(0,L)|K|
2|W̄ (t)|2

+ η2X̄
>(t)Sym

(
H̄
)
X̄(t) + η2

1

2¯̄ρ
|X̄(t)|2 + η2

¯̄ρ

2
d21k

2
Q|W̄ (t)|2.

By substituting (90) and by use of (86), (87), and (88),
we obtain V̇ (t) ≤ −δ0|W̄ (t)|2 −η1δ0

∑+∞
n=N+1 |w̄n(t)|2 −

η2δ0|X̄(t)|2 = −2δ0V (t), ∀t ≥ 0. Finally, by com-
bining the previous inequality with (91), the fact that
X(0) = 0, and the fact that from transformation
(38), we have ‖z(t, ·)‖2L2(0,L;Rm) ≤ ‖w(t, ·)‖2L2(0,L;Rm)

+
∑N
j=1 ‖ψj(·)‖2L2(0,L)|X(t)|2, we readily obtain (70). �
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