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Abstract

State-space models are a low-complexity al-
ternative to transformers for encoding long se-
quences and capturing long-term dependencies.
We propose LOCOST: an encoder-decoder ar-
chitecture based on state-space models for con-
ditional text generation with long context in-
puts. With a computational complexity of
O(L logL), this architecture can handle signif-
icantly longer sequences than state-of-the-art
models that are based on sparse attention pat-
terns. We evaluate our model on a series of long
document abstractive summarization tasks. The
model reaches a performance level that is 93-
96% comparable to the top-performing sparse
transformers of the same size while saving up
to 50% memory during training and up to 87%
during inference. Additionally, LOCOST effec-
tively handles inputs exceeding 600K tokens at
inference time, setting new state-of-the-art re-
sults on full-book summarization and opening
new perspectives for long input processing.

1 Introduction

Nowadays the design of efficient models for long
texts remains an open challenge despite the recent
progress achieved in natural language processing
(NLP). The introduction of transformer architec-
tures (Vaswani et al., 2017) indeed came as a major
bump in performance and scalability for text gener-
ation. However the quadratic complexity in the in-
put length still restricts the application of large pre-
trained models to long texts. For instance, BERT
(Devlin et al., 2019) and BART (Lewis et al., 2020)
are limited to a context size of 512 and 1024 tokens
respectively, which amounts to 2-3 paragraphs of
standard text.

To mitigate this issue, a straightforward ap-
proach is to leverage sparse-attention patterns
(Child et al., 2019) to better cope with long texts.

*Authors contributed equally to this work. Correspond-
ing authors: florian.le-bronnec@dauphine.psl.eu,
s.duong@criteo.com

2000 4000 6000 8000 10000 12000
12

14

16

18

20

22

24

LOCOST LongT5-base

LongT5-large

LED-base

SummScreenFD

2000 4000 6000 8000 10000 12000
32

34

36

38

40

42

44

LOCOST
LongT5-base

LongT5-large

LED-base

GovReport

Inference memory (MiB)

M
ea

n
R

ou
ge

Figure 1: Mean ROUGE score with inference mem-
ory usage on long-document summarization with input
length 16K (left: SummScreenFD dataset, right: Gov-
Report dataset). The size of the circles represents the
training memory usage. LOCOST demonstrates compet-
itive performances compared to state-of-the-art sparse
transformers of the same size, while being significantly
more memory-efficient at both training and inference.

As key examples, Guo et al. (2022) and Zaheer et al.
(2020) extended the context capacity of encoder-
decoder models (Raffel et al., 2020; Zhang et al.,
2020) and showed drastic increases in the perfor-
mance on long text summarization, motivating the
quest to incorporate longer contexts. However, in
practice, even the best sparse-transformers need
heavy computational resources to handle sequences
of length larger than 8K tokens (see Figure 4).

Deep state-space models (SSMs) (Gu et al.,
2022b) have been proposed for sequence process-
ing, with complexity O(L logL), initially for com-
puter vision and audio and more recently for text.
Their recurrent architectures are designed for cap-
turing long-range dependencies (Gu et al., 2020).
Up to now, their applications have been restrained
to either unconditional autoregressive generation,
i.e., with a decoder-only (Fu et al., 2023; Goel
et al., 2022) ; or sequence classification, i.e., with
an encoder-only (Gu et al., 2022b,a; Nguyen et al.,
2022). Tackling conditional text generation with
SSMs as required e.g. for summarization remains
yet unexplored.

In this paper, we propose LOCOST an encoder-



decoder architecture to explore the performance
of SSMs for conditional text generation tasks,
through the lens of abstractive summarization. We
demonstrate that SSMs can be competitive with
transformer-based models while drastically reduc-
ing their memory requirements. We opt for a
lightweight architecture design, comparable to the
average base transformers (roughly 250M parame-
ters) in order to process extremely long sequences
on standard compute resources. Our experimenta-
tions with extremely long sequences yield state-
of-the-art results on the challenging BookSum-
Book. With an increase of up to 2 points in average
ROUGE score compared to sparse attention base-
lines, our model is able to process entire books,
without truncation, and on a single GPU. Our con-
tributions are threefold:

• We propose a new encoder-decoder architecture
based on state-space models. By bypassing the
self-attention mechanism used in transformers,
the model enjoys a complexity of O(L logL) in-
stead of O(L2) as in traditional transformers.

• Compared with the best-performing sparse trans-
formers of the same size, the model achieves
93-96% of the best performance on various long
document abstractive summarization while being
up to 50% more memory-efficient during training
and up to 87% at inference time, see Figure 1.

• The model is able to process entire input se-
quences of up to 600K tokens, a length far out
of reach for sparse transformers. This allows
the model to achieve a new state-of-the-art on a
challenging full-book summarization task.

To the best of our knowledge, this is the first
encoder-decoder that performs competitively with
sparse transformers with no attention in the encoder.
Furthermore, this work represents the first success-
ful attempt at processing extremely long texts e.g.
entire books without any truncation, all in a single
pass. The proposed model opens new perspectives
for addressing long texts with lesser resources.*

2 Related Work

In this section, we first review memory-efficient
transformers and existing alternatives to the atten-
tion mechanism. Then, we discuss recent literature
on state-space models.

*Code and checkpoints available at https://github.
com/flbbb/locost-summarization.

Memory efficiency for transformers. Reducing
the memory consumption of transformers is an ac-
tive research field. Optimization at the hardware
level (Dao et al., 2022) helped to improve the scal-
ing of the attention computation on recent GPUs. A
line of work considers retrieving-augmented trans-
formers, like (Borgeaud et al., 2022; Wang et al.,
2023), that use additional modules to enhance the
language modeling backbone. While crucial in
developing memory-efficient architectures, we con-
sider these last two topics as being orthogonal to
our work that focuses on the models’ architecture.
Profuse literature focuses on tailoring the models’
architecture for long inputs. Since the computa-
tional complexity of attention comes from the com-
putation of the self-attention matrix, a straightfor-
ward way to reduce its cost is to approximate it
using sparse-attention patterns. These patterns typ-
ically incorporate a combination of local attention
and a set of carefully selected tokens. For instance,
in addition to global tokens, BigBird (Zaheer et al.,
2020) considers random tokens, while LSG (Con-
devaux and Harispe, 2023) considers sparse tokens
through various strategy of sparsification. LongT5
(Guo et al., 2022) chunks the sequence into blocks
and averages their representations, which gives a
number of global tokens equal to the number of
blocks. An overview of the complexity of various
sparse-transformers can be found in Table 1.

In contrast, we propose an alternative, compu-
tationally efficient architecture, without the need
of costly self-attention blocks nor sparse-attention
patterns.

Attention-free transformers. Some variants of
transformers already avoid the standard attention
mechanism. For example Katharopoulos et al.
(2020); Hua et al. (2022) approximate the softmax
similarity in the attention by a more efficient com-
putation. More recently, mixing architectures were
introduced in (Liu et al., 2021). They are the main
component of the FNet (Lee-Thorp et al., 2022)
model, an encoder that replaces self-attention with
a Discrete Fourier Transform (DFT). FNet has a
complexity of O(L logL) and is an encoder-only
model, thus restricted to classification and regres-
sion tasks.

Our proposed model also bypasses attention in
the encoder, reaching the same computational com-
plexity as encoders such as FNet, while being a
much more versatile model, specifically designed
for conditional text generation.

https://github.com/flbbb/locost-summarization
https://github.com/flbbb/locost-summarization


Encoder architecture Complexity per layer
Transformer (full) O(L2)
LED O(Lw)
BigBird O(Lw + L(g + r))
LSG O(Lw + L(g + s))
LongT5 (TGlobal) O(Lw + L ⌊L/c⌋)
LOCOST O(L log(L))

Table 1: Computational complexity per encoder layer as
a function of the input length L, the local window size
w (typically set to 256 tokens), the number of global
tokens g, random tokens r, sparse tokens s and the
chunk size c. LOCOST has a much lower complexity
than other sparse-attention baselines.

State-space models (SSMs). Deep learning im-
plementations of SSMs consist of emerging archi-
tectures, first presented in (Gu et al., 2020). These
architectures are particularly appealing for process-
ing long sequences due to their reduced complexity
compared to transformers, and their stronger the-
oretical guarantees compared to RNNs (Gu et al.,
2022b), more details in Section 3. In practical ap-
plications, SSMs have found success in both clas-
sification and unconditional autoregressive gener-
ation for language modeling. Gu et al. (2022b)
proposed a classification model that significantly
improved the Long-Range Arena benchmark (Tay
et al., 2021), which includes classification tasks
involving images, synthetic sequences, and texts.
Other studies have applied SSMs to video classifi-
cation (Nguyen et al., 2022) and text classification
(Wang et al., 2022). Regarding language modeling,
many researchers have leveraged the natural causal
formulation of SSMs, employing a decoder-only
architecture for tasks like audio generation (Goel
et al., 2022) and, more recently, autoregressive lan-
guage modeling (Fu et al., 2023).

In this work, we tackle the more challenging
task of conditional text generation and study the
performance of SSMs, used as an encoder-decoder
architecture, on long document abstractive sum-
marization. With our proposed architecture, we
demonstrate the abilities of our model to process
input sequences of up to 600K tokens, while being
competitive to sparse-transformers on long docu-
ment abstractive summarization.

3 Background

For contextualization, we leverage state-space mod-
els instead of self-attention. Throughout the paper,
L denotes the sequence length, H the embedding
dimension and N the dimension of the state-space
hidden state (to be introduced in Section 3). Before

delving into our model in Section 4, we describe
below the main components of the state-space ar-
chitecture and elaborate on their potential for long
sequence processing.

State-space models. For unidimensional inputs
u = (u0, ..., uL−1) ∈ RL, deep SSMs (Gu et al.,
2022b) are based on the recurrent equation:{

xj+1 = Axj + buj+1,

yj+1 = c⊤xj+1 + duj+1,
(1)

where xj is the SSM hidden state and yj the output
of the SSM. The state matrix A ∈ RN×N carries
and transforms the hidden state through the iter-
ations along with b ∈ RN , c ∈ RN , and d ∈ R
which are learned parameters.

State-space convolution. By unrolling the recur-
rence above, the output sequence y ∈ RL can
be expressed as: yj =

∑j
l=0 c

⊤Aj−lbul + duj ,
∀l ∈ {1, ..., L}. Let ∗ denote the causal convolu-
tion operator (details about this operator are in Ap-
pendix A). Then, we can define a convolution ker-
nel κ ∈ RL that depends on A, b, c. A SSM layer
is therefore parametrized by A, b, c, d through κ
and its output is defined by y as in the following
equation:y = κ ∗ u+ du,

κ =
(
c⊤b, c⊤Ab, . . . , c⊤AL−1b

)
.

(2)

For multidimensional u ∈ RL×H , we simply
compute H convolutions with one kernel κh for
each dimension.

SSMs efficiency. Due to the linear time-
dependency between hidden states, as shown in
Equation (1), we can compute the whole output
y directly as a convolution, without iteration over
the time dimension, as opposed to RNNs. A naive
implementation of (2) would incur a quadratic com-
plexity in the input length L, matching the com-
plexity of transformers and thus be prohibitive for
long sequences. However, thanks to the FFT, this
computation can be performed in O(L logL) (see
Appendix A for more details).

4 Model

In this section, we present the LOCOST model. We
first introduce the bidirectional deep state-space
model, then show how to use it to enable global
contextualization of the tokens. Then, we present
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Figure 2: The embedded sequence is contextualized
via a gated bidirectional SSM before passing through a
gated feedforward net.

the architecture of the LOCOST layer with an effi-
cient contextualization that can be used as a drop-
in replacement for the self-attention mechanism in
transformers.

4.1 Capturing local and global contexts

Intuition. In deep SSMs, information from pre-
vious tokens flows up to the current token through
the hidden states x. The convolution view provides
another angle: each output yj is a weighted sum of
the previous tokens u0, . . . ,uj , whose weights are
given by κ.

Bidirectional contextualization. To aggregate
information from both directions, we consider bidi-
rectional convolutions. A first kernel,←−κ performs
the regular causal convolution←−κ ∗u. A second ker-
nel−→κ is used to compute the cross-correlation with
u. The results of these two operations are summed
out (similar to bi-recurrent encoder). The overall
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Figure 3: Visualization of the kernels corresponding to
the first dimension for several layers of the pre-trained
model. Bins show the average decay of the forward and
backward kernels. This illustrates the different scales
of each kernel. Layers 1 and 10 capture short and extra-
short range contextualizations, while Layers 4 and 7
model extra-long and long contexts, respectively.

operation is described by the following equation:

yj =
∑
l≤j

←−κ j−l ⊙ ul +
∑
l≥j

−→κ l−j ⊙ ul + d⊙ uj

= BiSSM(U)j . (3)

In this equation, U ∈ RL×H is the embedding ma-
trix of the input text: (u0, . . . ,uL−1). The kernels
−→κ ,←−κ are computed as in Equation (2), with their
respective parameters (

−→
A,−→c ,

−→
b ) and (

←−
A,←−c ,

←−
b ).

The element-wise product is denoted by ⊙ and we
consider multidimensional inputs, with one kernel
per dimension.

The output yj is now contextualized as a
weighted sum of previous u≤j and subsequent u≥j

inputs. For scalar inputs, more insights on how far
in the future or in the past a scalar input ul con-
tributes to the scalar output yj are given by the
spectral radii ρ(

−→
A) and ρ(

←−
A). Indeed the sensi-

tivity of an output yj with respect to an input ul is
bounded by the following quantity:∣∣∣∣∂yj∂ul

∣∣∣∣ ≤
{
ρ(
←−
A)j−l|←−c ⊤←−b | if l < j,

ρ(
−→
A)l−j |−→c ⊤−→b | if l > j.

For multidimensional inputs, using a state-space
kernel for each dimension enables a fine-grained
adjustment of the spectral radii independently for
each of them. A small value corresponds to mod-
eling local contexts, while a large value captures
global ones.

Some of the corresponding kernel weights of
this convolution can be visualized on Figure 3. A



more complete visualization can be found in Ap-
pendix C.

4.2 Architecture

Encoder. Our encoder consists of a stack of LO-
COST layers, illustrated in Figure 2a. It is com-
puted as follows:

• Embedding matrix U ∈ RL×H is first projected
onto Q,V ∈ CL×H .

• V is contextualized through a BiSSM.

• A pointwise multiplication Q⊙BiSSM(V ) acts
as a first gate before passing the output through a
feedforward layer.

• This feedforward layer employs a second gating
mechanism (see Figure 2b). For this component,
we use gated GeLU that has shown to be efficient
by Shazeer (2020).

The architecture of the LOCOST layer (Figure 2a)
resembles that of a transformer layer except that
the self-attention mechanism is replaced by a gated
bidirectional state-space model. We follow Gu
et al. (2022a) for the parametrization and initial-
ization of the state-space models (more details in
Appendix E).

Decoder. Since our focus is on long input summa-
rization, the generation output length is very short
compared to the input. For decoding, we follow
the practice of other efficient architectures (Zaheer
et al., 2020; Beltagy et al., 2020; Guo et al., 2022)
and use a vanilla transformer decoder equipped
with dense self- and cross-attention. A full descrip-
tion of hyperparameters of the model is provided
in Appendix B.

Complexity. The LOCOST layer takesO(H2L+
HNL + HL logL) time and O(HNL) space to
compute. We refer to Appendix D for more details.

5 Experiments

To validate our experiments, we focus on the long
document abstractive summarization task as it rep-
resents a typical conditional generation problem
with long input requirements.

5.1 Experimental setup

Approach. We evaluate LOCOST following a
classical pre-training then fine-tuning approach.

For fine-tuning, we used the official train, valida-
tion and test splits of each dataset. We train all
models until convergence and select the best model
based on the validation Mean ROUGE (mean of
ROUGE-1/2/LSum) for test evaluation.

Metrics. We evaluate LOCOST both with
reference-based and reference-free metrics. For
reference-based summarization evaluation, we use
the traditional n-gram overlap summarization met-
rics ROUGE-1/2/Lsum (Lin, 2004). We average
them into a single score to compare with other base-
lines. We also report BERTScore (BS) (Zhang*
et al., 2020), a model-based metric. For reference-
free evaluation, we report the BLANC (BL) score
(Vasilyev et al., 2020), a metric that has been shown
to correlate well with human evaluations. We also
assess the throughput (samples per second) and the
memory usage (MiB of GPU RAM) of LOCOST
compared with other state-of-the-art sparse trans-
formers.

Inference. In all of our experiments, we inten-
tionally favored simplicity and opted for greedy
decoding.

5.2 Pre-training

Pre-training objective. To pre-train the model,
we leverage the gap-sentences generation (GSG)
unsupervised pre-training objective, which was in-
troduced by PEGASUS (Zhang et al., 2020) and
is well-suited for sequence-to-sequence generation.
Unlike BART (Lewis et al., 2020) or T5 (Raffel
et al., 2020) pre-training objectives, GSG endows
the model with zero-shot summarization capabil-
ities. GSG was successfully applied by subse-
quent generation models such as LongT5 (Guo
et al., 2022) and PEGASUS-X (Phang et al., 2022).
Namely, a document D is split into its M sentences:
D = {s1, . . . , sM}. Given a ratio α, GSG then
identifies K = ⌊αM⌋ sentences from D that max-
imize the ROUGE-1 (noted R-1) with the rest of
the document:

U = arg top-K
j

R-1
(⋃
i ̸=j

{si}, sj
)

(4)

The resulting subset U ⊆ {1, . . . ,M} splits the
document into a pseudo summary Ŷ = {si}i∈U
and a pseudo-source D̂ = {si}i/∈U , which are used
for pre-training with the standard cross-entropy
loss.



Pre-training data. We pre-train the model exclu-
sively on the C4 dataset (Raffel et al., 2020), in
BF16 for 1M steps, using an input sequence length
of 4,096 and an output sequence length of 910.

Pre-training optimization. The learning rate
scheduler we use is identical to T5, employing
an inverse square root function, with the warm-up
steps set to 10,000. We set the GSG-ratio α = 0.2
and do not employ dropout during this phase. We
follow closely the same pre-training as LongT5
(Guo et al., 2022).

5.3 Fine-tuning
Fine-tuning datasets. We evaluate LOCOST on
a series of long-input abstractive summarization
tasks. A table of statistics for all the datasets can
be found in Appendix F.

• arXiv (Cohan et al., 2018) Articles extracted
from arXiv using the core body document as the
input sequence and the abstract as the target se-
quence.

• PubMed (Cohan et al., 2018) Similar to arXiv,
but articles come from PubMed, a medical
database.

• GovReport (Huang et al., 2021) A long-
document summarization dataset of US govern-
ment reports with their executive summaries.

• SummScreenFD (Chen et al., 2022) A long-
document summarization dataset of TV series
transcripts of entire episodes with human-written
recaps of the episodes.

• BookSum (-Chapter & -Book) (Kryscinski
et al., 2022) A collection of chapters from vari-
ous books with a summary for each of them. We
also consider the book-level version where the
model has to summarize entire books.

Fine-tuning optimization. We fine-tune in BF16
using a constant learning rate of 5 × 10−4 and a
dropout rate of 0.1 for all datasets. We experiment
with lengths ranging from 4,096 to 32,768 for the
input and 512 for the output, except for GovReport
and BookSum-Book where we use 1024.

Baselines. We consider both competitive sparse
transformers, including LED (Beltagy et al., 2020),
BigBird (Zaheer et al., 2020), LongT5 (Guo et al.,
2022) and LSG (Condevaux and Harispe, 2023), as
well as dense encoder-decoders like BART (Lewis
et al., 2020), T5 (Raffel et al., 2020) and PEGASUS

(Zhang et al., 2020). For a fair comparison, we only
compare to sparse transformers architectures of
equivalent size (roughly 250M parameters).

5.4 Results

Long-input summarization. Table 2 and 3
present our experimental results. Across all
datasets, LOCOST reaches up to 96% of state-of-
the-art Mean ROUGE while being up to 3 times
more memory-efficient than the best model LongT5
during both training and inference for 16K long in-
puts, e.g. on GovReport or SummScreenFD. The
model is also twice as efficient as the local-attention
transformer LED and up to 17 times more efficient
than dense transformer BART at inference time.
LOCOST significantly improves Mean ROUGE
over LED and BigBird on all datasets while per-
forming competitively with respect to LSG. On all
datasets, the results for LongT5 and LED have been
obtained by fine-tuning from pre-trained check-
points, following recommended configurations in
(Guo et al., 2022) and (Beltagy et al., 2020) respec-
tively. The results for BigBird has been reported
from the original paper. LSG results are obtained
from evaluating the publicly fine-tuned checkpoints
on arXiv and PubMed and from our fine-tuning
on BookSum-Chapter. GovReport and Summ-
ScreenFD results are reported from the SCROLLS
test leaderboard (Shaham et al., 2022).

Throughput and Memory usage. We measure
the memory consumption of T5, LED, LongT5
and LOCOST on input lengths ranging from 1K
to 500K tokens, at training and inference time.
Results are presented on Figure 4. Compared to
LongT5, the best-performing baseline, LOCOST is
able to process up to 2× longer sequences during
training and 16× longer at inference time. This cor-
relates also with a higher throughput during both
training and inference, as shown in Table 4.

Qualitative evaluation: GPT-3.5 preference.
Since our input texts are very long, performing
a full human-based evaluation would be very costly
and time consuming. Instead, we perform a mock
human evaluation using GPT-3.5 *. This practice
has been used and has shown success in summary
evaluation (Shen et al., 2023; Gilardi et al., 2023;
Chiang and Lee, 2023). We ask the model to rate
the generated summary on four dimensions: rele-
vance, consistency, fluency, and coherence. More

*We use gpt-3.5-turbo-16k model for evaluation.



arXiv PubMed BookSum-Chapter
Model R-1 / R-2 / R-L BS BL % R-1 / R-2 / R-L BS BL % R-1 / R-2 / R-L BS BL %
PEGASUSbase 34.8 / 10.2 / 22.5 – – 64.5 40.0 / 15.2 / 25.2 – – 35.1 – – – –
LEDbase 41.3 / 16.4 / 37.7 60.1 10.6 91.3 42.9 / 19.6 / 39.7 63.1 15.9 89.2 17.3 / 2.6 / 15.7 41.7 4.4 46.3
BigBirdbase 41.2 / 16.4 / 37.0 – – 90.4 43.7 / 19.3 / 39.9 – – 89.8 – – – –
LSGbase 43.6 / 17.4 / 39.8 62.4 10.3 96.4 45.3 / 20.8 / 42.0 65.4 16.3 94.7 31.8 / 6.3 / 30.1 54.1 5.3 89.3
LongT5base 45.2 / 18.4 / 41.0 64.2 11.2 100 47.9 / 22.5 / 44.2 67.3 15.1 100 35.7 / 7.2 / 33.6 56.9 3.9 100
LOCOST 43.8 / 17.0 / 39.7 63.2 10.9 96.1 45.7 / 20.1 / 42.0 65.6 14.7 94.5 34.3 / 6.1 / 32.4 55.4 3.2 95.2

Table 2: Results on arXiv, PubMed and BookSum-Chapter with a input length of 4K, 4K and 8K tokens respectively.
% denotes the relative performance on the Mean ROUGE score w.r.t. LongT5, the best performing sparse-transformer
at the given size, which is indicated as 100%. BS stands for BERTScore and BL for BLANC.

GovReport SummScreenFD
Model L R-1 R-2 R-L % R-1 R-2 R-L % MEMtrain MEMinf

BARTbase 1K 47.9 18.6 22.7 74.9 27.2 4.9 16.7 74.5 ✗ 17.6×
LEDbase 16K 56.2 26.6 28.8 93.7 24.2 4.5 15.4 67.3 1.0× 2.3×
LongT5base 16K 57.7 30.0 31.4 100 34.8 9.6 21.1 100 2.9× 3.8×
LOCOST 16K 56.5 26.8 28.9 94.2 33.4 8.1 19.7 93.5 1.4 × 1.0×

Table 3: Results on the test set of SCROLLS for GovReport and SummScreenFD. L denotes the considered input
length. % denotes the relative performance on the Mean ROUGE score w.r.t. the reference LongT5. We reported
baselines’ results from the official SCROLLS test leaderboard. GovReport and SummScreen exhibit challenging
long contexts sizes even for sparse transformers, as reported by the memory usage during training (MEMtrain) and
inference (MEMinf) of the different architectures on 16K inputs. ✗ means out-of-memory.
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Figure 4: Memory consumption during a typical training (forward + backward) (left) and inference iteration (only
forward) (right). Batch size = 1. Ending cross means out-of-memory or architectural limitations after this point.

details are given in Appendix I.
We perform evaluation on 500 samples randomly

taken from PubMed. The results are shown in Ta-
ble 5. LOCOST produces summaries at a competi-
tive level with respect to LongT5 (93-97%).

5.5 Extrapolating to longer sequences

Because the lengths of the inputs considered during
training are often limited due to complexity issues,
a desirable property for a model would be to extrap-
olate at inference time to sequences much longer
than the ones used during training.

We train LOCOST on a maximum input length
of 4,096 and evaluate it on the test set of arXiv
with a maximum input length of 8,192 tokens. As

shown in Table 6, this experiment confirms that
LOCOST is indeed able to extrapolate to longer
sequences than those employed in training. Note
that LongT5 leverages relative positional encod-
ings, enabling extrapolation capability. However,
as previously mentioned, this comes at the expense
of an increased complexity compared to LOCOST.
In the next section, we push this idea further by
considering extra-long sequences.

5.6 Extra-long sequences: towards full-book
summarization

Effect of increasing contexts during training.
As shown previously, LOCOST exhibits a strong
capability to generalize well on sequences longer



Length 4K Length 16K
Model Inference (samples/s) Training (samples/s) Inference (samples/s) Training (samples/s)
LEDbase 3.57 1.69 1.67 0.45
T5base 2.27 1.49 0.34 ✗
LongT5base 2.94 2.94 1.49 0.64
LOCOST 3.03 3.03 1.69 0.81

Table 4: Throughput comparison for different models at 4K and 16K input length.

Model Rel Cons Flu Coh
LongT5base 4.6 4.7 3.7 3.7
LOCOST 4.3 4.4 3.6 3.5

Table 5: GPT3.5 evaluation on PubMed with 4K input
length using gpt-3.5-turbo-16k. Rel stands for rele-
vance, Cons for factual consistency, Flu for fluency and
Coh for coherence.

arXiv-4K arXiv-8K
Model L Mean-R Mean-R Gain (%)
LongT5base 4K 34.8 35.5 2.0
LOCOST 4K 33.5 34.3 2.4

Table 6: Extrapolating to longer sequences experiments.
L is the training sequence size. Gain represents the
relative Mean ROUGE (Mean-R) improvement from
evaluating on 4K to 8K maximum input length. The
ROUGE increase asserts that both models are able to
generalize to input lengths unseen during training.

than the ones seen during training. Due to the re-
duced memory usage at both train and inference
time, we conduct in this section an analysis of its
performances when facing extremely long texts
e.g. summarizing entire books. We consider the
book-level setting of BookSum. We train multiple
instances of LOCOST for 100 epochs on truncated
books with a context length ranging from 1K to
32K and select the best model on Mean ROUGE
on the validation set. We evaluate these models on
the test set with untruncated books, and report the
results in Figure 5. We found that increasing the
input length during training leads to an overall in-
crease in the test Mean ROUGE scores as more con-
texts are being considered for optimization. Once
more, this confirms the generalization capability of
LOCOST on extra-long sequence lengths.

Results on full-book summarization. Based on
the observations above, we put our best model
LOCOST-32K to the test and compare it with
LongT5 and current state-of-the-art models on
BookSum-Book. For LongT5, we fine-tune the
available checkpoint on the maximum possible in-

*For a fair comparison with already existing results, we
used ROUGE-L instead of ROUGE-Lsum on BookSum-Book.

BookSum-Book
Model #Params R-1 R-2 R-L* Mean-R
BARTlarge 406M 38.7 7.6 13.6 20.0
T5large 737M 39.9 8.0 14.0 20.6
PEGASUSlarge 568M 36.0 7.2 12.9 18.7
LongT5base 247M 33.9 7.2 15.6 18.9
LOCOST 234M 38.6 8.1 16.2 21.0

Table 7: Results on BookSum-Book. While being the
smallest model, LOCOST achieves state-of-the-art on
Mean ROUGE when summarizing entire books.
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Figure 5: LOCOST trained on increasing sequence
lengths evaluated on BookSum-Book dataset without
truncation, with texts reaching up to 600K tokens.

put length during training (16K) and report its per-
formance on the longest possible input length at
inference time (32K). For the other models, the
results come from the original papers, in which the
models initially produce individual summaries for
each paragraph of the book and then rank them ac-
cording to the model’s level of confidence. Results
are shown in Table 7. Despite being the model
with the least number of parameters, LOCOST
achieves state-of-the-art Mean ROUGE compared
to LongT5 and even large variants of BART, T5
and PEGASUS. LOCOST is also the only model
capable of processing the full documents without
truncation and handle sequence lengths of up to
600K tokens. This reveals that effectively process-
ing full contexts without truncation can lead to
strong performance enhancement.



6 Conclusion

Our paper explores a new encoder-decoder architec-
ture dedicated to handle long input texts. By replac-
ing the self-attention block by SSMs, we design a
low complexity and lightweight model able to pro-
cess long sequences up to 600K tokens at inference
time on a single GPU. Our model achieves com-
petitive results on summarization datasets. More-
over, surpassing the limits of existing sparse trans-
former alternatives, new state-of-the-art results are
obtained on the BookSum-Book dataset. To the
best of our knowledge, LOCOST is the first model
able to process entire books without truncation,
all in a single pass. These results offer exciting
possibilities for abstractive text-processing tasks
requiring extra-long sequences.

7 Limitations

Though we investigated lightweight models for
computational reasons, scaling the architecture to
a larger size could be studied. We focused on long
document abstractive summarization, we leave for
future work the study of SSMs on other long inputs
abstractive tasks. Although replacing self-attention
with state-space encoders drastically reduces the
computational complexity, the use of dense cross-
attention in the decoder still limits the output se-
quence length in terms of computation during train-
ing.

8 Ethics Statement

We performed pre-training on a subset of the C4
dataset, which has been identified to include in-
appropriate content like hate speech and explicit
material, as noted in the studies conducted by Luc-
cioni and Viviano (2021) and also exhibits nega-
tive biases towards certain ethnicities (Dodge et al.,
2021). It is important to investigate potential solu-
tions for mitigating these problems through more
meticulous preprocessing in order to prevent the
emergence of such undesirable attributes in future
research. Nevertheless, it is worth mentioning that
despite these concerns, the C4 dataset serves as
a benchmark within the community, and the re-
ported results solely focus on the quality of the
summaries, thereby avoiding any unethical impli-
cations. In this paper, we consider a relatively small
size for LOCOST. We believe our work could be
reproducible with limited resources. We tracked
the GPU power consumption during pre-training.

The average power usage was 190W per GPU. We
trained for 140 hours on 16 GPUs. Given the local
CO2 intensity of 58 gCO2/kWh *, we can estimate
that approximately 25kg of CO2 have been emit-
ted during the pre-training, to be compared with
the average emissions of 4.6t of CO2 par capita in
2019*.
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A Convolution

A.1 Causal convolution

In this section indices of sequence are represented
by bracketed numbers. The causal convolution be-
tween sequences u,κ ∈ RL denoted as ∗ presented
in section 3 is defined as:

(κ ∗ u)[j] =
j∑

l=0

κ[j − l]u[l]. (5)

A.2 Convolution and DFT

We are going to detail the link between convolu-
tion and the Discrete Fourier Transform. For that
purpose, we need another tool, the circular convo-
lution.

Circular convolution. Let’s define κ̃ the pe-
riodized version of κ as: ∀j ∈ N, κ̃[j] =
κ[j mod L]. For index 0 ≤ j ≤ L−1, the discrete
circular convolution between u and κ is defined
as:

(κ⊛ u)[j] =
L−1∑
l=0

κ̃[j − l]u[l]. (6)

Convolution theorem. The convolution theorem
states that (the derivation consists only in permut-
ing the

∑
symbols):

κ⊛ u = F−1 (κ̂⊙ û) , (7)

where .̂ designates the DFT of a sequence and ⊙
designates the element-wise multiplication.

Causal convolution with DFT. To compute κ∗u
with a DFT, a trick is to pad κ and u with L zeros
before taking their DFT. Indeed, if we replace κ
and u with their padded versions (hence vectors
of R2L) in eq. (6) we see immediately that it coin-
cides with the causal convolution (5). This means
that using the Fast Fourier Transform (FFT) algo-
rithm, the causal convolution can be computed in
O(L logL).

B Hyperparameters

The set of hyperparameters used are presented in
Table 8.

C Visualisation of learned kernels

A more complete visualization of the learned ker-
nels can be found in Figure 3 and 7.

Parameter Value
Embedding dimensions H 768
Vocabulary size 32100
Feedforward dimension 2048
Activation function GeLU
LayerNorm ε 1× 10−6

State-space dimension N 256
Number of encoder layers 12
Number of decoder layer 12
Decoder attention heads 12
AdamW (β1, β2) (0.9, 0.999)
AdamW weight decay 0
Pre-training LR schedule 2×104√

max(104, current step)

Pre-training dropout 0
Finetuning LR 5× 10−4

Finetuning LR schedule constant
Finetuning dropout 0.1

Table 8: LOCOST hyperparameters.

D Computational complexity of a
LOCOST layer

Projection onto Q and V takes O(LH2) time
and O(LH) space. Computing the SSM ker-
nel κ =

(
c⊤b, c⊤Ab, . . . , c⊤AL−1b

)
takes

O(LHN) time and space. Finally, calculat-
ing H convolutions in parallel with DFT takes
O(LH logL) time.

E State-space models implementation
details

Parametrization. We chose to follow the
parametrization exposed in (Gu et al., 2022a).

• The multi-dimensional state-tensor* A ∈
CH×N×N is made of H diagonal matrices Ah =
diag(λh) ∈ CN×N .

• For 0 ≤ h ≤ H and 0 ≤ n ≤ N , λ ∈ RH×N is
λh,n = exp

(
∆hλ

Re
h,n + i∆hλ

Im
h,n

)
.

• ∆ ∈ RH is a time-scaling parameter.

• We use N = 256. Most work chose either N =
64 or N = 256 (Gu et al., 2022a; Fu et al., 2023).
Since increasing N from 64 to 256 did only incur
a negligible increase in memory consumption, we
chose the latter, with the rationale that it should
give more expressive power to κ.

Initialization. As reported in (Gu et al., 2022a)
(see their Table 3), SSMs with special initialization
are tailored for long inputs processing. This has

*Using parameters in C gives better expressive power to
the convolution, see Gu et al. (2022a) for theoretical and
empirical justifications.
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Figure 6: Complete visualization of the kernel of the
first dimension of the model through all the 12 layers,
includes visualization from Figure 3.

been experimentally confirmed in (Zuo et al., 2022),
where they use non-trainable state-space layers to
provide long-range contextualization in addition to
local attention.

• λRe
h,n is initialized to −1

2
and λIm

h,n to πn.

• ∆h is initialized randomly following U([0, 1]).

• b, c ∈ CN×H are initialized randomly following
N (0, 1)*.

F Dataset details

Statistics. The statistics of the datasets can be
found in Table 9.

License. C4: ODC-BY, arXiv/PubMed: un-
known, BookSum: BSD-3-Clause, GovReport: un-
known, SummScreenFD: unknown.

Usage. All datasets were solely used for research
purposes. Note that they are all in english and we
refer to the original publications for more details.

Figure 7: Visualization of the kernel (in absolute value)
of size 768× 2048 for each of the 12 layers. We clearly
show that each layer has kernels of different scales that
will model different context ranges.

G Implementation details

Evaluation. For ROUGE score compu-
tations, we used the implementation from
https://github.com/google-research/
google-research/tree/master/rouge,
released under Apache 2.0 license.
BERTScore was computed using the pack-
age https://pypi.org/project/bert-score/
and is released under a MIT license. BLANC using
https://pypi.org/project/blanc/, released
under a MIT license.

Software. Our code is based on Pytorch (Paszke
et al., 2019), Huggingface (Wolf et al., 2020) and
H3 (Fu et al., 2023). LongT5, LED models and
weights are released under the Apache 2.0 license.
The license for the LSG model and weights is un-
known.

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://pypi.org/project/bert-score/
https://pypi.org/project/blanc/


#Examples per split Input Length
Dataset Train Validation Test Average Median Max 90th

arXiv 203,037 6,436 6,440 10,720.18 8,519 378,825 20,170
PubMed 119,924 6,633 6,658 4,747.97 3,883 452,915 8,883
GovReport 17,457 972 973 10,576.06 8,840 240,734 18,834
SummScreenFD 3,673 338 337 9,589.36 9,044 26,447 15,171
BookSum-Chapter 9,600 1,484 1,431 5986.47 4311 204,567 11,804
BookSum-Book 314 45 46 143,562.75 104,381 667,817 305,749

Table 9: Statistics for the summarization datasets. Input length is computed using a SentencePiece tokenizer.

H Sample outputs

Here is a sample summary (gold human abstract +
generated summary) from PubMed.

Ground Truth: "Background : the purpose of
this study was to perform the creating opportuni-
ties for parent empowerment ( cope ) program for
iranian mothers and evaluate its effectiveness on
stress, anxiety, and participation of mothers who
have premature infants hospitalized in neonatal in-
tensive care units ( nicus).materials and methods
: a randomized clinical trial was conducted with
90 mothers of premature infants hospitalized in
the educational neonatal nicus of state hospitals
affiliated to isfahan university of medical sciences.
For measuring the variables, state - trait anxiety
inventory, the parental stressor scale : neonatal in-
tensive care, and the index of parental participation
/ hospitalized infant were used. Intervention group
received two phases of cope program. This pro-
gram consisted of information and behavioral activ-
ities about the characteristics of premature infants.
Sessions interval was from 2 to 4 days. Stress
and anxiety were measured three times ( before
each phase and 2 - 4 days after the second phase ).
Mothers participation was evaluated 2 - 4 days after
the second phase. The t - test, 2, mann - whitney
u test, and repeated measurement test were used
for data analysis. Results : mothers in the inter-
vention group reported significantly less anxiety
and less stress in the nicu after performing each
phase of the cope program ( p 0.001 ), whereas
at this time, the level of stress in the comparison
group increased. Also, cope mothers participated
in their infants’ care rather than the mothers in the
comparison group ( p 0.001). Conclusion : cope
program was effective for iranian mothers. This
study shows that irrespective of any culture, giving
early and comprehensible educational - behavioral
information may have positive effect on maternal
psychological condition and maternal infant inter-
action."

LOCOST: "Background : the premature birth of

an infant and the following neonatal intensive care
cause psychological distress and can have a trau-
matizing effect on parents. The neonatal intensive
care unit ( nicu ) environment has the potential to
exacerbate stress for parents. The purpose of this
study was to create opportunities for parent empow-
erment ( cope ) program in this survey.materials
and methods : this is a quasi - experimental study.
The study population consisted of 90 mothers with
infants hospitalized in the nicu of isfahan, iran.
The cope program included information about the
behavior of infants, parenting role, and parenting
stressor scales. Data were collected through de-
mographic and infant variables questionnaire, state
anxiety inventory, and parental stressor scale at the
first contact point. Then, the cope program was
given to the mothers. Data were analyzed by spss
version 16 using descriptive statistics.results:the
study resulted in the Absence of any significant
difference in the state anxiety inventory and the
parental stressor scale results. Moreover, the mean
of maternal state anxiety inventory in the compar-
ison group was significantly higher than the inter-
vention group ( p 0.001 ). The parental stressor
scale results showed significant difference between
the two groups ( p 0.001 ). The state anxiety in-
ventory showed significant difference between the
two groups ( p 0.001 ). The parental stressor scale
results showed significant difference between the
two groups ( p 0.001). Conclusions : the cope pro-
gram was feasible and the mother - infant positive
interactions were high. Therefore, this study can
be done by providing the parents with strategies
that support them."

I GPT-3.5 evaluation

As a proxy for subjective assessment, we make use
of gpt-3.5-turbo-16k as a mock human evaluator.
We ask the model to rate the generated summary on
four dimensions: relevance, consistency, fluency,
and coherence with the following prompt:

“Imagine you are a human annotator now.



You will evaluate the quality of sum-
maries written for an article. Please fol-
low these steps: Carefully read the arti-
cle, and be aware of the information it
contains. Read the proposed summary.
Rate the summary on four dimensions:
relevance, consistency, fluency, and co-
herence. You should rate on a scale from
1 (worst) to 5 (best). Definitions are as
follows:

Relevance: The rating measures how
well the summary captures the key points
of the article. Consider whether all and
only the important aspects are contained
in the summary.

Consistency: The rating measures
whether the facts in the summary are con-
sistent with the facts in the original arti-
cle. Consider whether the summary does
reproduce all facts accurately and does
not make up untrue information.

Fluency: This rating measures the qual-
ity of individual sentences, whether they
are well-written and grammatically cor-
rect. Consider the quality of individual
sentences.

Coherence: The rating measures the qual-
ity of all sentences collectively, to fit to-
gether and sound natural. The article and
the summary are given below:

Article: {insert article}

Summary: {insert summary}.

Rate the summary in the following for-
mat:

Relevance:

Consistency:

Fluency:

Coherence:”


