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Abstract

This paper introduces a novel eXtended virtual element method, an extension of the conforming
virtual element method. The X-VEM is formulated by incorporating appropriate enrichment functions
in the local spaces. The method is designed to handle highly generic enrichment functions, including
singularities arising from fractured domains. By achieving consistency on the enrichment space, the
method is proven to achieve arbitrary approximation orders even in the presence of singular solutions.
The paper includes a complete convergence analysis under general assumptions on mesh regularity,
and numerical experiments validating the method’s accuracy on various mesh families, demonstrating
optimal convergence rates in the L2- and H1-norms on fractured or L-shaped domains.

Key words: X-VEM, polytopal method, corner singularities, fractured domains, error analysis, en-
riched method

1 Introduction

Introduced by [2, 27], the conforming virtual element method (VEM) is a modern numerical technique for
the discretisation of partial differential equations. At its core, VEM transcends traditional finite element
methods by allowing for a flexible and versatile discretisation strategy, wherein the computational domain is
partitioned into polytopes (polygons in 2D, polyhedra in 3D) of arbitrary shapes. Unlike conventional finite
elements, VEM does not necessitate predefined polynomial basis functions or a structured mesh, making it
particularly well-suited for problems involving irregular geometries and adaptive mesh refinement. In that
aspect, the VEM is one of several polytopal methods developed in the last couple of decades or so, which also
include Discontinuous Galerkin methods [3, 12, 15], Hybrid Discontinuous Galerkin [13, 14], Hybrid High-
Order (HHO) [16, 17], and Weak Galerkin [26], among others. We also note that some of these methods
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drew inspiration and/or turned out to be arbitrary-order methods of older low-order schemes, in particular
from the Mimetic Finite Differences or Finite Volume families [18–20, 22, 28]. VEM’s distinctive feature
lies in its use of a ‘virtual space’ for which basis functions are not known explicitly, avoiding the need for
predefined shape functions.

Errors estimates of arbitrary-order methods, including VEM, are typically limited by the regularity of
the exact solution. On non-smooth domains (such as regions with non-convex corners or those possessing
cracks) it is expected that the exact solution to elliptic problems will contain weak singularities [21]. Sin-
gular behaviour can also stem from the problem data, for example, the boundary conditions in the Motz
problem [25]. This lack of regularity is well documented in the finite element literature and is typically
overcome through enriched approximations based on a partition of unity method [6, 23]. The extended
finite element method [7, 24] is one such method, originally designed to handle discontinuities in crack
growth models. In particular, by enriching the local spaces with basis functions that are discontinuous
across the crack, the method allows for optimal approximation without the need for mesh refinement near
the discontinuity.

More recently, there has been a trend in the literature to defining enriched polytopal methods. The work
of [5] designs an enriched non-conforming virtual element method (NC-VEM) for the Poisson problem
targeting singularities arising from the domain geometry (such as corners or cracks). However, the analysis
there requires to assume a discrete trace inequality, which depends on the enrichment function. Following
this approach, the same authors have defined an enriched NC-VEM for a plane elasticity problem with
corner singularities [4]. An extended HHO method has been designed for the Poisson problem [29] targeting
general enrichments with (locally) square integrable Laplacian and Neumann traces and avoids the use of
discrete inequalities dependent on the enrichment function. To date, only [8, 9] have attempted to design
an enriched conforming virtual element method. However, both these methods only consider the lowest
order VEM and lack a complete error analysis. In this paper, an eXtended virtual element method (X-VEM)
is designed which is valid for highly generic enrichment functions, offers arbitrary approximation orders
and is accompanied with a robust analysis. Moreover, and contrary to the previously mentioned enriched
NC-VEM, the method is not specific to harmonic singularities or those arising from cracks or corners in the
domain, but is valid for a generic enrichment space satisfying Assumption 2.1 below. This assumption is
still valid for singularities arising from fractured domains – something the extended HHO method fails to
capture.

We perform the convergence analysis under suitable but still general assumptions on the mesh regularity,
and we derive the estimates for the approximation error. To assess the method’s behaviour and confirm
the theoretical expectations, we conduct a set of numerical experiments on several mesh families, including
meshes with convex and non-convex elements on the L-shaped domain with a corner singularity. Our results
assess the accuracy of the extended virtual element method and demonstrate its optimal rates of convergence
in the L2- and H1-norm.

The outline of the paper is as follows. In Section 2, we introduce the model problem and its extended
virtual element approximation (X-VEM). In Section 3, we present the convergence analysis of X-VEM. The
exposition is done in dimension 2 for simplicity, but can be generalised to dimension 3 in a straightforward
manner. In Section 4 we investigate the method’s performance on suitable numerical experiments. Finally,
in Section 5 we offer some concluding remarks.
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1.1 Notation and technicalities

Throughout this paper, we adopt the notation of Sobolev spaces of [1]. Accordingly, we denote the space of
square integrable functions defined on any open, bounded, connected domain D ⊂ R2 with boundary ∂D
by L2(D), and the Hilbert space of functions in L2(D) with all partial derivatives up to a positive integer m
also in L2(D) by Hm(D). The norm of L2(D) is written ∥·∥D, while the norm and semi-norm in Hm(D)
are respectively denoted by ∥·∥Hm(D) and |·|Hm(D); the latter is the sum of L2-norms of derivatives of order
m.

Let Ω ⊂ R2 be an open, bounded polygonal domain with boundary Γ. The virtual element method is
formulated on the mesh family

{
Ωh

}
h
, where each mesh Ωh is a partition of the computational domain

Ω into non-overlapping polygonal elements E. A polygonal element E is a compact subset of R2 with
boundary ∂E, area |E| centre of mass xE , and diameter hE = supx,y∈E |x − y|. The mesh elements Ωh

form a finite cover of Ω such that Ω = ∪E∈Ωh
E and the mesh size labelling each mesh Ωh is defined by

h = maxE∈Ωh
hE . A mesh edge e has centre xe and length he; a mesh vertex v has position vector xv. We

denote the set of mesh edges by Eh and the set of mesh vertices by Vh. We denote the set of mesh edges by
Eh and the set of mesh vertices by Vh.

The following regularity assumption is made on the mesh Ωh.

Assumption 1.1 (Regular mesh sequence) There exists a constant ϱ > 0 such that every E ∈ Ωh is star-
shaped with respect to a ball of radius ϱhE .

For any integer number ℓ ≥ 0, we let Pℓ(E) and Pℓ(e) denote the space of polynomials defined on the
element E and the edge e, respectively; Pℓ(Ωh) denotes the space of piecewise polynomials of degree ℓ on
the mesh Ωh.

2 The eXtended virtual element method

2.1 Model problem

We consider the Poisson problem with homogeneous Dirichlet boundary conditions

−∆u = f in Ω, (1a)

u = 0 on Γ, (1b)

for the scalar unknown u. The extension to non-homogeneous Dirichlet boundary conditions or to different
types of boundary conditions such as Neumann or Robin conditions is straightforward.

Let H1
0 (Ω) be the subspace of the Sobolev space of functions H1(Ω) with zero trace on Γ. The varia-

tional formulation of problem (1) reads as: Find u ∈ H1
0 (Ω) such that

a(u, v) =

∫
Ω
fv dx ∀v ∈ H1

0 (Ω), (2)

where the bilinear form a(·, ·) is given by

a(u, v) =

∫
Ω
∇u · ∇v dx. (3)
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The continuity and coercivity of the bilinear form a(·, ·) imply the existence and uniqueness of the solution
according to the Lax-Milgram lemma.

2.2 Enrichment space

We assume that the exact solution of the variational problem (2) is the sum of two terms

u = ur + ψ,

where ur is sufficiently smooth and ψ is the (weakly) singular part. We are interested in developing an
extended virtual element method that incorporates ψ in the design of the approximation space, in such
a way that the approximation properties of the scheme only depend on the regular component ur. The
singular component ψ is assumed to be an element of a finite dimensional enrichment space Ψ(Ω) satisfying
the following regularity requirements.

Assumption 2.1 (Regularity of the enrichment space)

1. Ψ(Ω) ⊂ H1(Ω) ∩ C0(Ω).

2. ∆Ψ(E) ⊂ L2(E) for all E ∈ Ωh.

Here and in the following, if U ⊂ Ω we set Ψ(U) := {w|U : w ∈ Ψ(Ω)}.

Remark 2.2 (Conforming enrichment space and local enrichment) The requirement that the enrichment
space is globally conforming is due to the fact that the analysis is based on splitting the X-VEM interpolant
into a singular component and a regular VEM interpolant (see Theorem 2.7 below). If the enrichment space
is not contained in H1(Ω), then by writing u = ur + ψ ∈ H1(Ω) it cannot hold that ur ∈ H1(Ω) and
thus its regular VEM interpolant is not defined. This has the major drawback of not allowing for enrichment
spaces defined piece-wise – a typical method of local enrichment, see e.g. [29] in the context of HHO meth-
ods. However, numerical tests suggest that locally enriching in this manner yields valid results (see Section
4).

An alternative, and perhaps more natural way to define the X-VEM interpolant, is as the element of the
X-VEM space with the same degrees of freedom as the function being interpolated. This would no longer
require splitting a function into its regular and singular components and interpolating them individually,
thus allowing for the weaker assumption Ψ(E) ⊂ H1(E) ∩ C0(E) for all E ∈ Ωh. However, proving
optimal approximation properties of an interpolant defined in this manner seems difficult; see Remark 2.8.

2.3 X-VEM spaces and elliptic projector

Consider an integer k ≥ 1 and set l = max{0, k − 2}. The following extended polynomial spaces are
defined on each element E ∈ Ωh,

PΨ
k (E) := Pk(E) + Ψ(E), P∆

l (E) := Pl(E) + ∆Ψ(E),

and the following space is defined on each edge e ∈ Eh,

PΨ
k (e) := Pk(e) + Ψ(e).
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The local X-VEM space is defined as

V Ψ
k,h(E) :=

{
vh ∈ H1(E) :∆vh ∈ P∆

l (E), vh|∂E ∈ C0(∂E), vh|e ∈ PΨ
k (e) ∀e ⊂ ∂E

}
.

We note that V Ψ
k,h(E) contains both the regular local VEM space of [27] and the extended polynomial space

PΨ
k (E). For each e ∈ Eh, we denote by Pe the L2-orthogonal complement of Pk(e) in PΨ

k (e), so that
PΨ
k (E) = Pk(e) ⊕ Pe, and we set PP

k−2(e) = Pk−2(e) ⊕ Pe. The L2-orthogonal projectors onto each of
the spaces P∆

l (E) and PP
k−2(e) are denoted by Π∆

l,E and ΠP
k−2,e, respectively. We show in Lemmas 2.3 and

2.5 below that each vh ∈ V Ψ
k,h(E) is uniquely characterised by the following degrees of freedom:

(D1) the values of vh at the vertices of E;

(D2) the L2-orthogonal projection ΠP
k−2,evh of vh onto the space PP

k−2(e) for each edge e ⊂ ∂E;

(D3) the L2-orthogonal projection Π∆
l,Evh of vh onto the space P∆

l (E).

Lemma 2.3 (Unisolvence of boundary values) The degrees of freedom (D1)–(D2) are unisolvent for the
trace space of V Ψ

k,h(E) on ∂E.

Proof. We have to show that, for any vh ∈ V Ψ
k,h(E), the degrees of freedom (D1)–(D2) entirely deter-

mine any vh|∂E , and that for any choice of the values (D1)–(D2), we can find w ∈ C0(∂E) with these
degrees of freedom such that w|e ∈ PΨ

k (e) for each e ⊂ ∂E.

Let vh ∈ V Ψ
k,h(E). To show that its boundary value is entirely determined by (D1)–(D2), we only have

to show that, for each e ∈ Eh, ve := vh|e is uniquely determined by its values at the endpoints of e and by
ΠP

k−2,eve. Since ve ∈ PΨ
k (e) = Pk(e) ⊕ Pe we can write ve = q + z with q ∈ Pk(e) and z ∈ Pe. We

first note that, by orthogonality of Pk(e) and Pe, ΠP
k−2,eve = Π0,e

k−2q + z, where Π0,e
k−2 is the L2-orthogonal

projection on Pk−2(e). Hence, letting Π0,P
e be the L2-orthogonal projection on Pe, we have

Π0,P
e (ΠP

k−2,eve) = Π0,P
e (Π0,e

k−2q + z) = z, (4)

where the conclusion follows from the orthogonality of Pk−2(e) and Pe.
We then recall that ve = q + z to write

Π0,e
k−2q = Π0,e

k−2(ve − z) = Π0,e
k−2(Π

P
k−2,eve), (5)

where the second equality is obtained using Pk−2(e) ⊂ PP
k−2(e) (which ensures that Π0,e

k−2 = Π0,e
k−2◦Π

P
k−2,e)

and the orthogonality of z and Pk−2(e). Moreover

q(a) = v(a)− z(a) for all a endpoint of e. (6)

The relation (4) uniquely determines z (and thus z(a) for any endpoint a of e) from ΠP
k−2,eve, and (5)–(6)

uniquely determines q ∈ Pk(e) form ΠP
k−2,eve and the values of ve − z at the endpoints of e, so ve = q + z

is also uniquely determined by this data.
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Conversely, take (ma)a∈Vh⊂∂E and (re)e∈Eh∩∂E values for (D1)–(D2) (each ma belongs to R, each re
belongs to PP

k−2(e)). Define w : ∂E → R the following way; for each e ⊂ ∂E, set ze = Π0,P
e re ∈ Pe,

define qe ∈ Pk−2(e) such that Π0,e
k−2qe = Π0,e

k−2re and qe(a) = ma − ze(a) for each endpoint a of e, and set
w|e = qe + ze. Then it can easily be checked that w ∈ C0(∂E) since its value at each vertex a ∈ ∂E is
ma (from either side of a), and the arguments developed above to establish (4)–(6) show that its degrees of
freedom (D1)–(D2) match the chosen values.

Remark 2.4 (Choice of boundary degrees of freedom) A seemingly more natural choice for (D2) would
be to consider the projection of vh on Pk−2(e) + Ψ(e) for each e ⊂ ∂E. However, such a choice does not
seem to ensure the unisolvence stated in Lemma 2.3.

Lemma 2.5 (Unisolvence) For all elements E ∈ Ωh, the values provided by the continuous linear func-
tionals (D1), (D2), (D3) are unisolvent in the virtual element space V Ψ

k,h(E).

Proof. Let V Ψ
k,h(∂E) be the trace space on ∂E of V Ψ

k,h(E). The mapping

V Ψ
k,h(∂E)× P∆

l (E) 7→ V Ψ
k,h(E)

(w, r) → vh such that −∆vh = r in E and vh|∂E = w

is an isomorphism, by definition of V Ψ
k,h(E) and the well-posedness of the Poisson problem. Hence, the

dimension of V Ψ
k,h(E) is equal to the dimension of V Ψ

k,h(∂E)×P∆
l (E) which, by Lemma 2.3, is identical to

the number of degrees of freedom (D1)–(D3).
Therefore, it remains to prove that if all DOFs of vh ∈ V Ψ

k,h(E) vanish, then vh = 0. By Lemma 2.3, we
already know that if (D1) and (D2) vanish, then vh = 0 on ∂E. Therefore, an integration by parts reveals∫

E
∇vh · ∇vh dx = −

∫
E
vh ·∆vh dx = −

∫
E
Π∆

l,Evh ·∆vh dx = 0,

where the last equality follows from Π∆
l,Evh = 0 as a result of (D3) vanishing. Therefore, vh = const, and

this constant must be zero due to vh = 0 on ∂E.

The extended elliptic projector Π∇,Ψ
k,E : V Ψ

k,h(E) → PΨ
k (E) projects the extended VEM space V Ψ

k,h(E)

onto the extended polynomial space PΨ
k (E). The projection Π∇,Ψ

k,E vh is the solution to the variational prob-
lem: ∫

E
∇Π∇,Ψ

k,E vh · ∇q dx =

∫
E
∇vh · ∇q dx q ∈ PΨ

k (E), (7)∫
E
Π∇,Ψ

k,E vh dx =

∫
E
vh dx. (8)

Clearly, Π∇,Ψ
k,E q = q for each q ∈ PΨ

k (E). For all mesh elements E and all virtual element functions

vh ∈ V Ψ
k,h(E), the extended projection Π∇,Ψ

k,E vh is computable from the DOFs as stated and proved in the
following lemma.
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Lemma 2.6 (Computability of the elliptic projector) LetE be an element of Ωh and vh ∈ V Ψ
k,h(E). Then,

the extended elliptic projection Π∇,Ψ
k,E vh ∈ PΨ

k (E) is computable using only the degrees of freedom (D1)–
(D3) of vh.

Proof. It holds, by an integration by parts, that for all q ∈ PΨ
k (E)∫

E
∇Π∇,Ψ

k,E vh · ∇q dx = −
∫
E
vh∆q dx+ ⟨nE · ∇q, vh⟩− 1

2
, 1
2
,∂E (9)

where ⟨·, ·⟩− 1
2
, 1
2
,∂E denotes the duality product between H−1/2(∂E) and H1/2(∂E). The moments of vh

against ∆q ∈ P∆
l (E) are known from (D3) and vh is known entirely on the boundary ∂E from (D1)–

(D2) (see Lemma 2.3. Therefore, all the terms in the right-hand side of (9) are computable, and so is
∇Π∇,Ψ

k,E vh. Since P∆
l (E) contains the constant functions, the integral of vh overE (and thus that of Π∇,Ψ

k,E vh)
is computable from (D3). The entire elliptic projector is therefore computable from the DOFs.

The global X-VEM space is constructed by patching the local spaces:

V Ψ
k,h :=

{
vh ∈ H1(Ω) : vh|E ∈ V Ψ

k,h(E) ∀E ∈ Ωh

}
.

Each vh ∈ V Ψ
k,h is uniquely defined by the following degrees of freedom:

(D1) the values of vh at each vertex of Vh;

(D2) the L2-orthogonal projection ΠP
k−2,evh of vh onto the space PP

k−2(e) for each edge e ∈ Eh;

(D3) the L2-orthogonal projection Π∆
l,Evh of vh onto the space P∆

l (E) for each element E ∈ Ωh.

2.4 Formulation of the scheme and main results

At this point, the construction of the X-VEM is straightforward and follows the usual procedural steps [27].
We define the discrete bilinear form ah : V Ψ

k,h × V Ψ
k,h → R by assembling all elemental contributions

ah(uh, vh) :=
∑
E∈Ωh

[
aE(Π∇,Ψ

k,E uh,Π
∇,Ψ
k,E vh) + SE(uh, vh)

]
, (10)

where

aE(u, v) =

∫
E
∇u · ∇v dx

and the stabilisation term SE(·, ·) : V Ψ
k,h(E) × V Ψ

k,h(E) → R can be any computable (from the DOFs),
symmetric, positive semi-definite bilinear form satisfying:

• Coercivity and boundedness on ker(Π∇,Ψ
k,E ). For all vh ∈ V Ψ

k,h(E) ∩ ker(Π∇,Ψ
k,E ):

h−2
E ∥Π∆

l,Evh∥2E + h−1
E ∥vh∥2∂E ≲ SE(vh, vh) ≲ h−2

E ∥Π∆
l,Evh∥2E + h−1

E ∥vh∥2∂E . (11)
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• Consistency on PΨ
k (E). For all wh ∈ PΨ

k (E) and vh ∈ V Ψ
k,h(E)

SE(wh, vh) = 0. (12)

Here and throughout the rest of this paper, the notation a ≲ b is used if there exists a constant C > 0
independent of the quantities a, b and the mesh size h such that a ≤ Cb. The hidden constant depends only
on Ω, k and the mesh regularity ϱ (see Assumption 1.1 below). An example of a suitable stabilisation term
is given by:

SE(uh, vh) = h−2
E

∫
E

(
Π∆

l,E(uh −Π∇,Ψ
k,E uh)

)(
Π∆

l,E(vh −Π∇,Ψ
k,E vh)

)
dx

+ h−1
E

∫
∂E

(
uh −Π∇,Ψ

k,E uh

)(
vh −Π∇,Ψ

k,E vh

)
ds.

(13)

Defining the local seminorm ∥·∥1,E : V Ψ
k,h(E) → R via

∥vh∥21,E := ∥∇Π∇,Ψ
k,E vh∥

2
E + h−2

E ∥Π∆
l,E(vh −Π∇,Ψ

k,E vh)∥
2
E + h−1

E ∥vh −Π∇,Ψ
k,E vh∥

2
∂E ,

and the global seminorm ∥·∥1,h : V Ψ
k,h → R via

∥vh∥21,h :=
∑
E∈Ωh

∥vh∥21,E , (14)

we infer from the definition (10) of ah and (11) that

∥vh∥21,h ≲ ah(vh, vh) ≲ ∥vh∥21,h. (15)

For the stabilisation defined by (13), these inequalities are equalities. We prove in Section 3 that ∥·∥1,h (and,
thus, ah(·, ·)

1
2 ) defines a norm on the homogeneous subspace

V Ψ
k,h,0 := {vh ∈ V Ψ

k,h : vh|∂Ω = 0}.

To approximate the volumetric term on the right-hand side of (2), the forcing term f is replaced with its
orthogonal projection fh|E = Π∆

l,Ef for all E ∈ Ωh, which shows that∫
Ω
fhvh dx :=

∑
E∈Ωh

∫
E
(Π∆

l,Ef)vh dx =
∑
E∈Ωh

∫
E
f(Π∆

l,Evh) dx (16)

is computable from the DOFs of vh since f is known. The X-VEM scheme then reads: Find uh ∈ V Ψ
k,h,0

such that
ah(uh, vh) =

∫
Ω
fhvh ∀vh ∈ V Ψ

k,h,0. (17)

Theorem 2.7 (Discrete Energy Error) Let uh ∈ V Ψ
k,h,0 denote the solution to the X-VEM scheme (17) and

u = ur + ψ ∈ H1
0 (Ω), with ur ∈ Hk+1(Ωh) and ψ ∈ Ψ(Ω), the solution to the continuous problem (2).

Under Assumption 2.1, the following energy error estimate holds:

∥uh − Ik,hu∥1,h ≲ hk|ur|Hk+1(Ωh)
, (18)

where Ik,hu = Îk,hur + ψ ∈ V Ψ
k,h,0 with Îk,h : H1(Ω) → V h

k the standard VEM interpolant of ur, see [2].
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We note in passing that splitting the interpolant Ik,h into a singular component and an element of the
regular VEM space is crucial to the analysis and relies on the fact that the space V Ψ

k,h(E) contains the regular
VEM space.

Remark 2.8 (Alternate interpolator and local enrichment) A more natural way to define the interpolant
on V Ψ

k,h is to take Ik,hv as the unique virtual function that has ((Π∆
l,Ev)E∈Ωh

, (ΠP
k−2,ev)e∈Eh , (v(ν))ν∈Vh

)
as degrees of freedom (D1)–(D3). With this definition, Ik,h leaves the enrichment space Ψ invariant, and
allows for local enrichment as briefly discussed in Remark 2.2.

For the upcoming analysis, we would need to establish optimal approximation properties of Π∇,Ψ
k,E Ik,h,

which essentially requires to prove the boundedness of this mapping (defined on H2(E)) in a scaled H2-
seminorm (see [17, Lemma 1.43 and Section 5.5.6.2]). Proving this boundedness is however not a trivial
matter for the extended VEM, as discrete inverse and trace inequalities are not readily available in the
non-polynomial spaces PΨ

k (E) and P∆
l (E) (we note that it is already quite challenging for the regular VEM

[10]). A more flexible approach to go in this direction would perhaps to use a fully discrete analysis (without
direct usage of virtual functions, that are difficult to estimate), in the spirit of [29].

3 Convergence analysis

We provide in this section a proof of Theorem 2.7. The proof hinges on the consistency of the scheme
which we state in Theorem 3.5. We begin with the following lemma which guarantees the stability and well-
posedness of the scheme, and is also crucial in validating Theorem 2.7. Given a mesh sequence satisfying
Assumption 1.1, the following continuous trace inequality holds [11]:

Lemma 3.1 (Continuous trace inequality) For all E ∈ Ωh and v ∈ H1(E), it holds,

hE∥v∥2∂E ≲ ∥v∥2E + h2E∥∇v∥2E , (19)

where the hidden constant depends only on the mesh regularity parameter ϱ.

Lemma 3.2 The mapping ∥·∥1,h : V Ψ
k,h,0 → [0,∞) defined by (14) is a norm.

Proof. As ∥·∥1,h is clearly a seminorm, we only have to prove that if ∥vh∥1,h = 0 for some vh ∈ V Ψ
k,h,0,

then vh = 0. To this end, we note that ∥vh∥1,h = 0 implies ∥∇Π∇,Ψ
k,E vh∥E = 0 for each E ∈ Ωh,

and thus that Π∇,Ψ
k,E vh is constant on each E ∈ Ωh. The condition ∥vh − Π∇,Ψ

k,E vh∥∂E = 0 shows that

vh|∂E = (Π∇,Ψ
k,E vh)|∂E is also constant. Working from neighbour to neighbour and using the homogeneous

condition vh|∂Ω = 0, we infer that those constants are all zero. Combining with the condition

∥Π∆
l,E(vh −Π∇,Ψ

k,E vh)∥E = 0

we infer that for all E ∈ Ωh, Π∆
l,Evh = 0. Therefore all the DOFs of vh vanish, and thus vh = 0.
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Lemma 3.3 (Consistency of SE) Let SE : V Ψ
k,h(E) × V Ψ

k,h(E) → R be a stabilisation term satisfying
equation (11). Then it holds for all v = vr + ψ ∈ H1(E) with vr ∈ Hk+1(E) and ψ ∈ Ψ(E) that

SE(Ik,hv, Ik,hv) ≲
[
hkE |vr|Hk+1(E)

]2
. (20)

Proof. It follows from the definition of Ik,h and the PΨ
k (E)-consistency (12) of SE together with the

fact that ψ +Π∇,Ψ
k,E Îk,hvr ∈ PΨ

k (E) that

SE(Ik,hv, Ik,hv) = SE(Îk,hvr + ψ, Îk,hvr + ψ) = SE(Îk,hvr −Π∇,Ψ
k,E Îk,hvr, Îk,hvr −Π∇,Ψ

k,E Îk,hvr).

Therefore, we infer from equation (11) that

SE(Ik,hv, Ik,hv) ≲ h−2
E ∥Π∆

l,E(Îk,h −Π∇,Ψ
k,E Îk,h)vr∥2E + h−1

E ∥(Îk,h −Π∇,Ψ
k,E Îk,h)vr∥2∂E . (21)

By the L2-boundedness of Π∆
l,E and applying the continuous trace inequality (19) on the boundary term it

follows that

h−2
E ∥Π∆

l,E(Îk,h −Π∇,Ψ
k,E Îk,h)vr∥2E + h−1

E ∥(Îk,h −Π∇,Ψ
k,E Îk,h)vr∥2∂E

≲ h−2
E ∥(Îk,h −Π∇,Ψ

k,E Îk,h)vr∥2E + ∥∇(Îk,h −Π∇,Ψ
k,E Îk,h)vr∥2E . (22)

Substituting (22) into (21) and applying a Poincaré–Wirtinger inequality (due to the zero mean value of
(Îk,h −Π∇,Ψ

k,E Îk,h)vr on E) yields

SE(Ik,hv, Ik,hv) ≲ ∥∇(Îk,h −Π∇,Ψ
k,E Îk,h)vr∥2E ≤ ∥∇(Îk,h −Π∇,E

k Îk,h)vr∥2E ,

where the substitution of Π∇,Ψ
k,E with Π∇,E

k (the elliptic projector on Pk(E)) is justified by the definition of

Π∇,Ψ
k,E , which ensures that ∇Π∇,Ψ

k,E Îk,hvr is the best L2-approximation of ∇Îk,hvr in ∇PΨ
k (E) ⊃ ∇Pk(E),

while ∇Π∇,E
k Îk,hvr ∈ ∇Pk(E). The proof of the consistency property (20) is complete by invoking the

optimal approximation properties of Π∇,E
k Îk,h stated in [10, Lemma 2.23].

Lemma 3.4 It holds for all vh ∈ V Ψ
k,h(E) that

∥∇Π∇,Ψ
k,E vh∥E + h−1

E ∥Π∆
l,Evh −Π∇,Ψ

k,E vh∥E + h
− 1

2
E ∥vh −Π∇,Ψ

k,E vh∥∂E + SE(vh, vh)
1
2 ≲ ∥vh∥1,E . (23)

Proof. As each of ∥∇Π∇,Ψ
k,E vh∥E and h

− 1
2

E ∥vh − Π∇,Ψ
k,E vh∥∂E appear in the definition of ∥·∥1,E , their

boundedness follows trivially. The boundedness of SE(vh, vh)
1
2 is a direct result of (11) applied to vh −

Π∇,Ψ
k,E vh and of the consistency (12) which gives SE(vh−Π∇,Ψ

k,E vh, vh−Π∇,Ψ
k,E vh) = SE(vh, vh). It remains

only to show that
h−1
E ∥Π∆

l,Evh −Π∇,Ψ
k,E vh∥E ≲ ∥vh∥1,E .

10



To see this, we add and subtract the term Π∆
l,EΠ

∇,Ψ
k,E vh and apply a triangle inequality to yield

h−1
E ∥Π∆

l,Evh −Π∇,Ψ
k,E vh∥E ≤ h−1

E ∥Π∆
l,Evh −Π∆

l,EΠ
∇,Ψ
k,E vh∥E + h−1

E ∥Π∆
l,EΠ

∇,Ψ
k,E vh −Π∇,Ψ

k,E vh∥E .

The bound
h−1
E ∥Π∆

l,Evh −Π∆
l,EΠ

∇,Ψ
k,E vh∥E ≤ ∥vh∥1,E

follows trivially from the definition of ∥·∥1,E . As orthogonal projectors are the best approximations for their
norm, and Pl(E) ⊂ P∆

l (E) it holds that

h−1
E ∥Π∆

l,EΠ
∇,Ψ
k,E vh −Π∇,Ψ

k,E vh∥E ≤ h−1
E ∥Π0,E

l Π∇,Ψ
k,E vh −Π∇,Ψ

k,E vh∥E ,

where Π0,E
l is the L2(E)-orthogonal projector on Pl(E). Applying the approximation properties of Π0,E

l to
yield

h−1
E ∥Π0,E

l Π∇,Ψ
k,E vh −Π∇,Ψ

k,E vh∥E ≲ ∥∇Π∇,Ψ
k,E vh∥E

completes the proof.

With u the exact solution to (2), the consistency error is given by the linear form E(u; ·) : V Ψ
k,h,0 → R

defined for all vh ∈ V Ψ
k,h,0 as

E(u; vh) :=
∫
Ω
fhvh dx− ah(Ik,hu, vh).

Theorem 3.5 (Consistency error) Recalling that the exact solution to (2) is written u = ur + ψ, the con-
sistency error satisfies the estimate

|E(u; vh)| ≲ hk|ur|Hk+1(Ωh)
∥vh∥1,h. (24)

Proof. Applying the definition (10) of ah and the orthogonality properties of Π∇,Ψ
k,E , it holds that

ah(Ik,hu, vh) =
∑
E∈Ωh

(∫
E
∇Ik,hu · ∇Π∇,Ψ

k,E vh dx+ SE(Ik,hu, vh)
)
. (25)

Consider now, on each element E ∈ Ωh,

−
∫
E
∆uΠ∆

l,Evh dx = −
∫
E
∆u(Π∆

l,Evh −Π∇,Ψ
k,E vh) dx+

∫
E
∇u · ∇Π∇,Ψ

k,E vh dx

− ⟨∇u · n,Π∇,Ψ
k,E vh⟩− 1

2
, 1
2
,∂E ,

(26)

which follows by adding and subtracting the term
∫
T ∆uΠ∇,Ψ

k,E vh dx and integrating by parts. By the con-
tinuity of the virtual function vh and of the normal fluxes ∇u · n across the mesh edges and vh|∂Ω = 0, it
holds that

0 = ⟨∇u · n, vh⟩− 1
2
, 1
2
,∂Ω =

∑
E∈Ωh

⟨∇u · nE , vh⟩− 1
2
, 1
2
,∂E . (27)

11



Adding (27) to (26) and summing over all elements E ∈ Ωh, it follows that

−
∫
Ω
∆uΠ∆

l,Evh dx =
∑
E∈Ωh

[
−
∫
E
∆u(Π∆

l,Evh −Π∇,Ψ
k,E vh) dx+

∫
E
∇u · ∇Π∇,Ψ

k,E vh dx

+ ⟨∇u · n, vh −Π∇,Ψ
k,E vh⟩− 1

2
, 1
2
,∂E

]
. (28)

Let z ∈ PΨ
k (E). Since ∆z ∈ ∆PΨ

k (E) ⊂ P∆
l (E) and Π∆

l,E is the L2-projector on that space, we have∫
E
∆z(Π∆

l,Evh −Π∇,Ψ
k,E vh) dx =

∫
E
∆z(vh −Π∇,Ψ

k,E vh) dx.

Hence, integrating by part and using the definition (7) of Π∇,Ψ
k,E ,

−
∫
E
∆z(Π∆

l,Evh −Π∇,Ψ
k,E vh) dx+ ⟨∇z · n, vh −Π∇,Ψ

k,E vh⟩− 1
2
, 1
2
,∂E =

∫
E
∇z · ∇(vh −Π∇,Ψ

k,E vh) dx = 0.

Applying this to z = ψ + Π∇,E
k ur ∈ PΨ

k (E), we can cancel in the following expression the singular
component ψ of u and introduce the term Π∇,E

k ur to write

−
∫
E
∆u(Π∆

l,Evh −Π∇,Ψ
k,E vh) dx+ ⟨∇u · n, vh −Π∇,Ψ

k,E vh⟩− 1
2
, 1
2
,∂E

= −
∫
E
∆(ur −Π∇,E

k ur)(Π∆
l,Evh −Π∇,Ψ

k,E vh) dx+ ⟨∇(ur −Π∇,E
k ur) · n, vh −Π∇,Ψ

k,E vh⟩− 1
2
, 1
2
,∂E .

Substituting back into (28) yields

−
∫
Ω
∆uΠ∆

l,Evh dx =
∑
E∈Ωh

[ ∫
E
∇u · ∇Π∇,Ψ

k,E vh dx

−
∫
E
∆(ur −Π∇,E

k ur)(Π∆
l,Evh −Π∇,Ψ

k,E vh) dx+

∫
∂E

∇(ur −Π∇,E
k ur) · n(vh −Π∇,Ψ

k,E vh) ds

]
, (29)

where we have replaced the ⟨·, ·⟩− 1
2
, 1
2
,∂E duality product with the integral notation due to the regularity of

ur. Therefore, combining (29) and (25), and recalling (16) and that f = −∆u,

E(u; vh) =
∑
E∈Ωh

[ ∫
E
∇(u− Ik,hu) · ∇Π∇,Ψ

k,E vh dx− SE(Ik,hu, vh)

−
∫
E
∆(ur −Π∇,E

k ur)(Π∆
l,Evh −Π∇,Ψ

k,E vh) dx+

∫
∂E

∇(ur −Π∇,E
k ur) · n(vh −Π∇,Ψ

k,E vh) ds

]
.

By applying Cauchy–Schwarz inequalities to each of the terms and (23) we obtain

E(u; vh) ≲
∑
E∈Ωh

∥vh∥1,E
[
∥∇(u− Ik,hu)∥E + SE(Ik,hu, Ik,hu)

1
2

+ hE∥∆(ur −Π∇,E
k ur)∥E + h

1
2
E∥∇(ur −Π∇,E

k ur) · n∥∂E
]
.

12



It follows from the definition of Ik,h that u − Ik,hu = ur − Îk,hur and thus applying the approximation
properties of Îk,h [10, Lemma 2.23] yields the bound

∥∇(u− Ik,hu)∥E ≲ hkE |ur|Hk+1(E).

Combining with the consistency (20) of SE and the approximation properties of Π∇,E
k , it is clear that

E(u; vh) ≲
∑
E∈Ωh

∥vh∥1,EhkE |ur|Hk+1(E).

The result follows from a Cauchy–Schwarz inequality and the bound hE ≤ h.

The proof of Theorem 2.7 now follows trivially.
Proof of Theorem 2.7. It follows from the coercivity property (15) and the Third Strang Lemma [17,

Lemma A.7] that
∥uh − Ik,hu∥1,h ≲ sup

∥vh∥1,h=1
|E(u; vh)|.

The proof then follows from the residual error (24).

4 Numerical experiments

The XVEM method described in Section 2 is implemented using the open-source C++ library PolyMesh
(https://github.com/liamyemm/PolyMesh). We focus here on testing the method on domains
possessing fractures or re-entrant corners. For both these cases, the exact solution is not expected to be H2,
and so a classical virtual element method is expected to converge sub-optimally for all k.

Enriching elements and edges with singular functions far from the location of the singularity can cause
severe ill-conditioning due to these functions being well-approximated by polynomials. This is typically
mitigated through local enrichment [5, 29]. However, the analysis of the method described in this paper
requires splitting the interpolant into a singular part, and an classical VEM interpolant on the regular part
(see Remarks 2.2 and 2.8). This requires the enrichment function to be globally H1-conforming. As such, a
sufficiently smooth cut-off function would be required to facilitate local enrichment.

However, numerical tests suggest that removing the additional DOFs far from the singularity still leads
to a valid scheme. In particular, we can enrich the local spaces on the elements and their edges only if the
element intersects the disk of radius γ > 0 centred at the singularity. For all tests the local enrichment
parameter is taken as γ = 0.15. While such an enrichment is not accounted for by the analysis in this paper,
the tests show that locally enriching in this manner achieves optimal results.

4.1 Fractured domain

Consider the fractured domain Ω = (−1, 1)2\{(x, y) : y = 0, x > 0}. The solution to problem (1) posed in
this domain is expected to contain a singularity at the fracture tip of the form [21]

ψ(r, θ) = r
1
2 sin(

1

2
θ).
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As such, we test with an exact solution

u = sin(πx) sin(πy) + ψ

and enrich the local spaces with the function ψ.
A sequence of Cartesian meshes of the domain Ω is considered. The parameters of these meshes are

displayed in Table 1 and two meshes are plotted in Figure 1 showing the fracture and the local enrichment
scheme.

Mesh # h Nb. Elements Nb. Edges Nb. Vertices

1 0.7071 16 40 25
2 0.3536 64 144 81
3 0.1768 256 544 289
4 0.0884 1,024 2,112 1,089
5 0.0442 4,096 8,320 4,225
6 0.0221 16,384 33,024 16,641

Table 1: Mesh data used for the fractured domain test

Figure 1: Plots of meshes 2 and 3 used in the fractured domain test. The fracture is coloured blue and
enriched elements are coloured red.

The solution to the discrete problem (17) is denoted by uh and the solution to the continuous problem
(1) is denoted by u. The accuracy of the scheme is determined by the following relative errors (respectively
measuring the error in an L2-like norm and an H1-like seminorm):

E2
0,h :=

∑
E∈Ωh

∥Π∇,Ψ
k,E (uh − u)∥2E∑

E∈Ωh
∥Π∇,Ψ

k,E u∥2E
and E2

1,h :=

∑
E∈Ωh

|Π∇,Ψ
k,E (uh − u)|2H1(E)∑

E∈Ωh
|Π∇,Ψ

k,E u|2H1(E)

.
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As enriching the virtual element method increases the number of degrees of freedom, it is most ap-
propriate to plot the error against the degrees of freedom. After static condensation is performed, and the
boundary degrees of freedom are fixed, the only remaining degrees of freedom are those corresponding to
the internal edges and vertices. As the number of DOFs grows linearly with the number of elements, which
is of order ∼ h−2 for our meshes, the O(hk) error estimate predicted for the error in (H1-like) energy norm
by (18) translates to O((♯DOFs)−k/2) in our graphs.

In Figure 2, the error of the scheme is plotted against these remaining DOFs for a non-enriched, globally
enriched and locally enriched scheme. The ill-conditioning of the globally enriched method is apparent due
to the scheme failing on Meshes 5 & 6 when k = 2, 3. Moreover, for a given mesh and polynomial
degree k, the globally enriched scheme typically has a worse H1 error than the locally enriched scheme,
suggesting that ill-conditioning is plaguing the scheme. When k = 1, 2, the non-enriched scheme converges
optimally in L2 error, however the convergence rate is sub-optimal in H1 error. For k = 2 the non-enriched
scheme converges sub-optimally in both L2 andH1 error and is significantly outperformed by both enriched
schemes. The locally enriched scheme converges optimally in all cases and is clearly the best performing
scheme.

Remark 4.1 (Superconvergence in L2 norm) For k = 1, 3 we note a superconvergence in L2-norm, with
an error decaying as O((♯DOFs)−(k+1)/2). This superconvergence does not occur for k = 2. Given our
choice of (depleted) element unknowns in the VEM space, the VEM scheme for k = 2 can be compared with
the (depleted) HHO scheme for (k, ℓ) = (1, 0) [17, Chapter 5.1], for which the loss of superconvergence in
L2-norm is a well documented phenomenon (see [17, Remark 5.17 and Section 5.1.8]).

4.2 L-shaped domain

Consider the fractured domain Ω = (−1, 1)2\(0, 1)2. The solution in this domain has a singularity located
at the re-entrant corner of the form

ψ(r, θ) = r
2
3 sin(

2

3
(θ − π

2
)).

Analogous to the fractured domain test, we consider an exact solution of the form

u = sin(πx) sin(πy) + ψ

and enrich the local spaces with the function ψ.
A sequence of hexagonal meshes of the domain Ω is considered. The parameters of these meshes are

displayed in Table 2 and two meshes are plotted in Figure 3 showing the enrichment scheme considered for
the locally enriched tests.

Figure 4 illustrates the error of the method plotted against the remaining internal DOFs after static
condensation for a non-enriched, globally enriched, and locally enriched scheme. As with the fractured
domain, the globally enriched approach exhibits evident ill-conditioning, as observed by its failure on Mesh
7 when k = 1, Mesh 6 & 7 when k = 2 and on Mesh 4, 5, 6 & 7 when k = 3. Indeed, for k = 1, 2, the error
is greater for the globally enriched scheme than for either the non-enriched or locally enriched schemes. As
with the fractured domain test, the locally enriched scheme is the best performing and converges optimally
in all cases.
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(f) E1,h vs DOFs, k = 3

Figure 2: Tests on fractured domain
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Mesh # h Nb. Elements Nb. Edges Nb. Vertices

1 0.7454 21 76 56
2 0.4177 65 224 160
3 0.2992 133 444 312
4 0.1665 481 1,536 1,056
5 0.1019 1,281 4,000 2,720
6 0.0514 4,961 15,200 10,240
7 0.0257 19,521 59,200 39,680

Table 2: Mesh data used for the L-shaped domain test

Figure 3: Plots of meshes 2 and 4 used in the L-shaped domain test. The enriched elements are coloured
red.

5 Conclusions

In this paper, a novel extension of the virtual element method has been introduced, which achieves consis-
tency on highly generic enrichment spaces. This is applicable to problems posed in complex geometries,
where singularities are known to exist near corners and fractures. However, the method also has applicability
to any scenario where some component of the solution can be asymptotically obtained. This could include,
for example, singular behaviour in the source term, or a highly oscillatory component of the solution. While
the method was formulated for the Poisson problem in two dimensions, it has natural extensions to higher
dimensions and more general linear elliptic problems.

We performed a complete analysis of the proposed method, proving its capacity to achieve optimal
convergence rate in energy norm. Numerical tests support the theoretical findings in the presence of corner
and fracture singularities in both L2- and H1-norm. However, ill-conditioning issues plagues the globally
enriched scheme – something also observed by [5, 29]. The analysis in this paper does not account for the
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Figure 4: Tests on L-shaped domain

method of local enrichment considered in Section 4, however, numerical tests show optimal convergence.
Providing a robust analysis for the X-VEM with discontinuous enrichment spaces is a potential avenue of
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future research.
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