
HAL Id: hal-04438306
https://hal.science/hal-04438306

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

A Middleware-Based Approach for Multi-Scale Mobility
Simulation

Xavier Boulet, Mahdi Zargayouna, Gérard Scemama, Fabien Leurent

To cite this version:
Xavier Boulet, Mahdi Zargayouna, Gérard Scemama, Fabien Leurent. A Middleware-Based Approach
for Multi-Scale Mobility Simulation. Future internet, 2021, 13 (2), pp.21. �10.3390/fi13020022�. �hal-
04438306�

https://hal.science/hal-04438306
https://hal.archives-ouvertes.fr

future internet

Article

A Middleware-Based Approach for Multi-Scale
Mobility Simulation

Xavier Boulet 1,2, Mahdi Zargayouna 2,* , Gérard Scemama 2 and Fabien Leurent 3

����������
�������

Citation: Boulet, X.; Zargayouna, M.;

Scemama, G.; Leurent, F. A

Middleware-Based Approach for

Multi-Scale Mobility Simulation.

Future Internet 2021, 3, 22.

https://doi.org/10.3390/fi13020022

Received: 22 December 2020

Accepted: 17 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institut de Recherche Technologique SystemX, 91120 Palaiseau, France; xavierganj0@gmail.com
2 COSYS-GRETTIA, Université Gustave Eiffel, IFSTTAR, F-77454 Marne-la-Vallée, France;

gerard.scemama@univ-eiffel.fr
3 LVMT, Université Gustave Eiffel, IFSTTAR, Ecole des Ponts, F-77454 Marne-la-Vallée, France;

fabien.leurent@enpc.fr
* Correspondence: mahdi.zargayouna@univ-eiffel.fr

Abstract: Modeling and simulation play an important role in transportation networks analysis.
In the literature, authors have proposed many traffic and mobility simulations, with different
features and corresponding to different contexts and objectives. They notably consider different
scales of simulations. The scales refer to the represented entities, as well as to the space and the time
representation of the transportation environment. However, we often need to represent different
scales in the same simulation, for instance to represent a neighborhood interacting with a wider
region. In this paper, we advocate for the reuse of existing simulations to build a new multi-scale
simulation. To do so, we propose a middleware model to couple independent mobility simulations,
working at different scales. We consider all the necessary processing and workflow to allow for a
coherent orchestration of these simulations. We also propose a prototype implementation of the
middleware. The results show that such a middleware is capable of creating a new multi-scale
mobility simulation from existing ones, while minimizing the incoherence between them. They also
suggest that, to have a maximal benefit from the middleware, existing mobility simulation platforms
should allow for an external control of the simulations, allowing for executing a time step several
times if necessary.

Keywords: transportation; mobility; simulation; modeling; multi-scale; middleware

1. Introduction

In their objective of optimizing the transport activity and minimizing its impact on the
environment and the society, the transportation actors need support systems to assist them
in their decisions. These decisions could concern the transportation supply (infrastruc-
ture [1], vehicles timetables [2], etc.), the transportation demand (traveler information [3],
route guidance [4], pricing [5], etc.) or the regulation policies (speed limitations [6], access
control [7], etc.). In this context, simulation is one of the important tools allowing the
decision makers to test strategies and multiple scenarios without impacting the real traf-
fic [8]. Some local mobility issues need a detailed representation of a neighborhood, such
as crowd management [9]. However, simulating the only zone of interest is short-sighted
and simulations should consider the surrounding areas, which can influence the status
of the local area [10]. Indeed, an event occurring at a city or region scale might have a
serious impact of the flows entering or leaving the considered neighborhood. Conversely,
a high variation in the mobility status of the local area could have consequences on the
regional scale. More generally, there exist many scenarios where one would need several
simulations at different scales. For instance, we could think of a wide region simulation, in
which we desire to zoom, and get more details, on certain areas; or a distributed mobility
simulation platform that needs to synchronize the different computation units (as in [11]).
The scale does not refer necessarily to the space dimension. It could concern the time

Future Internet 2021, 3, 22. https://doi.org/10.3390/fi3020022 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-1221-8977
https://doi.org/10.3390/fi3020022
https://doi.org/10.3390/fi3020022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi3020022
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/13/2/22?type=check_update&version=2

Future Internet 2021, 3, 22 2 of 21

dimension as well. For instance, we could have a running online simulation that needs a
second faster-than-real-time simulation to test several scenarios before execution [12]. The
scale could also refer to the represented entities (e.g., travelers) as well. Indeed, we could
be interested in the individual representation of the travelers for a certain zone, and a flow
representation for another zone, as in [13]. When dealing with different scales (space, time,
or entities), the designer is tempted to create a new simulation allowing for representing
properly the behavior of the modeled system, with all the necessary scales. However,
provided the large number of possibilities for scales combinations, this would lead to an
unnecessary explosion in the number of new simulation platforms. In the literature, au-
thors have proposed several specific methods to couple simulations that consider different
scales. To the best of our knowledge, there exists no proposal of a generic model to couple
such simulations. Our purpose in this paper is to propose a model allowing for a reuse of
existing simulation platforms to create multi-scale simulations. This model paves the way
for interoperability between simulations and participates in time and resources efficiency
in mobility models development.

The remainder of this paper is structured as follows. We describe previous works on
multi-scale simulations, on middleware, and we discuss simulations validity in Section 2.
In Section 3, we define the middleware model, its components, operators, and functions. In
Section 4, we provide algorithms for simulations scheduling in case of inter-dependency
between them. We provide our experimental setup and results in Section 5. We discuss the
applicability of our proposal in section and conclude the paper in Section 6.

2. Literature Review
2.1. Scales in Mobility Simulations

In [14], the authors provide an overview of the three possibilities for the orchestration
of different simulations to perform a multi-scale analysis, which we describe in Figure 1.
First, both models could be executed separately; then, the user performs a global analysis
based on the results. In this independent orchestration, the simulations never interact
with each others. Second, one model can be executed entirely first, then its output is
used by a second model. This is a sequential orchestration. Third, both models could be
executed together in a parallel orchestration. This is the most complex orchestration, since
simulations exchange data during their execution. This paper focuses on this complex type
of orchestration.

Figure 1. Simulations orchestrations (independent (left), sequential (middle), and parallel (right)).

In the literature, authors have proposed several methods to compose a pair of simula-
tions, with several use cases. Vissim [15], which is the microscopic simulation model from
PTV®, proposes a sequential orchestration of multi-scale simulations. Indeed, the simula-
tion offers the possibility to use a network topology and an origin–destination (OD) matrix
that are imported from Visum, which is the macroscopic static model assignment from the
same company. There are some older examples of a macroscopic static model whose output
is used in a traffic simulation over a small sub-part of the global network as in [16]. In [17],
the output of a macroscopic simulation is used to provide an OD matrix to a microscopic
simulation of traffic. If the results of the microscopic simulation do not have an impact on
the behavior of the macroscopic simulation, such a sequentially orchestrated multi-scale

Future Internet 2021, 3, 22 3 of 21

simulation is satisfactory. However, if the two represented areas are interconnected and
influence each others, then the two simulations need to continuously interact.

In a parallel multi-scale simulation, both models feed each other. For instance, AIM-
SUN [18], a simulation-based traffic prediction solution with a macroscopic model and
a microscopic model, proposes this kind of orchestration. A third (so-called mesoscopic)
model can also be used in relation with the microscopic model, when the area to simulate is
too large. Parallel orchestration is often studied in the literature, especially when the level
of representation details is dynamic, i.e., when the scale of a given area can be dynamically
changed during the simulation. For instance, the authors in [19] present a hybrid traffic
simulation mixing individual drivers (represented as agents) and flows of drivers. The
authors describe how to transform agents into flows and vice versa, when a “zoom” is
performed on any area of the simulated zone.

In [20], the authors state that the simulation scales should not be defined before the
beginning of the simulation and that they should be always dynamically defined during
execution. They define a hierarchy between the simulated elements (creating so called
“holonic” systems), which allows for aggregating them at will, and to create the “best” scale
depending on the context. The work reported in [21] is based on the same holonic idea but
adapts this concept to multi-agent vehicle simulations. The authors in [22,23] propose a
method to aggregate and disaggregate agents of the simulation in groups such that the size
of the groups and the level of aggregation can be chosen during the simulation.

The state-of-the-art approaches for multi-scale simulations are generally either ad
hoc or specific to certain simulations. However, some approaches are concerned with
genericity and with the provision of general guidelines to a great number of existing
simulations. The authors in [24], for instance, propose a framework to coupling any
mesoscopic pedestrian simulation model with any microscopic simulation. To do so, they
propose transition zones between the two types of simulations and a method to synchronize
two models whatever their simulation time step. The authors in [25] propose a multi-scale
modeling framework for the coupling of any macroscopic model with any microscopic
model; they highlight the importance of two forms of consistency: the global consistency
concerns the characteristics of the vehicles and the local consistency concerns the vehicles
passing from one model to another. A phenomenon that is observed at the edge of one
model is observed in the other model as well. In contrast with these proposals, we propose
in this paper an original middleware solution to allow virtually any two existing mobility
simulations to work in coordination.

The authors in [26] define a middleware as “the software that assists an application to
interact or communicate with other applications, networks, hardware, and/or operating
systems. This software assists programmers by relieving them of complex connections
needed in a distributed system”.

2.2. Simulations Validity

The middleware that we propose for coupling multi-scale simulations is based, among
other things, on the assumption of an a priori knowledge of which simulation would have
the most valid behavior on certain aspects (viz. the demand, the assignment, and the travel
times), i.e., the one providing the most likely correct results. This information is essential to
resolve behavioral conflicts between simulations, and to know which simulation corrects
the other. This information depends mostly on the relevance of the input data considered
by the simulations. For example, a local simulation, working with up-to-date fine-grained
local survey-based data, is a priori more relevant for the representation of local behaviors
(e.g., travelers’ speeds) than a regional simulation, working with long term regional data.
However, the validity of a simulation also depends on the validity of the underlying model.
If one of the two models has not been properly calibrated and validated, the behaviors
induced by the corresponding simulation should be considered, even if the input data are
less detailed.

Future Internet 2021, 3, 22 4 of 21

Calibration of mobility simulations has received varying degrees of attention in the
literature, with the notable exception of the European COST Action Multitude. The most
important property of a simulation model is, however, its validity [27]. Only a model
that is valid enough is able to produce reliable results. Basically, validity means that the
right model is used [28]. Only if the model is valid can the answers derived from its
simulation be taken as answers for questions directed to the original system. Validation
then is generally defined as “the process of determining whether a simulation model is an
accurate representation of the system, for the particular objectives of the study” [29].

Checking the validity of a model against an observed reality fits Equation (1) [30]:

Prob(|Simulation− Reality| ≤ d) > α (1)

Simulation corresponds to the output values of the simulation, Reality corresponds to
the values observed in the real world, d is the tolerable deviation, and α is the confidence
level. Ideally, the values d and α have been determined beforehand by the analyst.

Only a model for which a validation process has been performed is considered valid.
In the remainder of this paper, when we assume that one simulation corrects another,
it means:

• either the corrector simulation uses more relevant data than the second simulation,
• or the corrector simulation was validated and the second one wasn’t, or was validated

with a lower α.

2.3. Simulation Scales

Mobility simulations are traditionally classified as microscopic, mesoscopic, or macro-
scopic, depending on the level of details of the represented entities and the chosen traffic
model. However, these terms do not always refer to the same concepts which often depend
on the context or use case. The author in [31] provides a definition of four simulation scales:

• Macroscopic scale: this scale uses traffic flows and only aggregate variables such as
vehicle density and average speed over an arc of the network. Lateral movements
such as lane changes are not modeled.

• Mesoscopic scale: This scale also works with traffic flows but also uses probability
functions to determine the possibility of a vehicle at a certain position, a certain time,
and a certain speed.

• The microscopic scale: This scale represents individual vehicles with their own trajec-
tory and speed. The behavior of the vehicles is modeled by a car-following model or
by a cellular transmission model.

• Picoscopic scale: This scale represents individual vehicles with their own trajectory
and speed. In contrast to the microscopic scale, the speed and trajectory of a vehicle
are in two dimensions, on the road axis and laterally. In the most detailed models, the
vehicle and the driver are two separate entities interacting with each other.

The authors in [32] propose avoiding the use of such rigid scales and to classify
the simulations based on their characteristics. The authors consider two characteristics:
the representation of the entities (which can be individual or as a flow) and the traffic model
(which can be individual or global). This classification is arguable since the representation
of travelers and the traffic model are often linked. For instance, simulations that model
travelers as flows necessarily have a global traffic model. However, the idea to classify
simulations using their characteristics is interesting. Based on this idea, we determine three
characteristics to determine the scale of a simulation:

1. The representation of the travelers (noted ω). Three main modalities are defined
for this scale: individual representation (called microscopic by abuse of language),
representation by groups of individuals (called mesoscopic), and representation by
flow (called macroscopic).

2. Space (noted σ). Several modalities are possible for this dimension. We could refer to
the levels of detail of the OGC CityGML standard [33], for which the authors in [34]

Future Internet 2021, 3, 22 5 of 21

specify for transportation modeling. However, mobility simulations rarely explicitly
refer to the CityGML standard, so we decide to refer instead to two main modalities
used in simulation and traffic assignment, following the existing layers in commercial
maps: either a very detailed representation of networks (including small streets and
directional restrictions, i.e., one-way restrictions, turning bans, etc.), or an aggregated
representation, which represent only the main traffic axes.

3. Time (noted θ). We identify three main modalities corresponding to the orders of
magnitude of the represented time dimension. The order of seconds corresponds
to very detailed mobility simulations, the order of minutes corresponds to dynamic
traffic assignment models, and the order of hours corresponds to static assignment
models (considering stationary time, usually referring to peak hours).

Unlike [32], we choose to not consider the traffic model as a characteristic because
it depends on the three other axes. Indeed, the flow representation does not allow a car-
following model, a time step of one hour is too long to consider local interaction between
pedestrians and a two-dimensional movement cannot be considered if we are using an
aggregated graph with a one-dimensional axis.

3. The Model

This section describes the model of a middleware for multi-scale simulations.
The model is made of components and operators, which specify the functionalities of

the middleware.

3.1. Dynamic Inputs

A first assumption is defined for the model, to allow for a middleware-based solution
to multi-scale simulations. The purpose of the defined assumptions is to circumscribe our
study to a specific context. The proposed middleware model and algorithms are applicable
to the systems adopting the same assumptions.

Assumption 1 (Dynamic inputs). The considered mobility simulations can receive data dynami-
cally. More precisely, they allow for exchange data at each simulated time step.

This first assumption is necessary because, if the simulations do not allow for interven-
tion during execution, the middleware has no leverage to influence their behavior. The only
possible common use of the simulations in this case is to use them in sequence, which is of
little interest in the context of this work. Fortunately, a large number of simulations are
open source. Thus, even if some of them do not allow, by design, an interaction at each time
step or an outside simulation control, they can be modified to do so. These modifications
only involve interactions with the simulations and do not alter the core of their operation.

3.2. Model Components

In the remainder of this paper, the following concepts definitions are considered.
A mobility model is an abstract representation of a mobility system. A mobility simulation
is an application of a particular mobility model to visualize its behavior over a given period
of time. A simulation is a computer program that performs simulations [35].

A simulation can be described as a function y = f (u, params) with:

• u = {Mod, G} the generic input parameters that are considered by the middleware,
with Mod the origin–destination matrix and G the transportation graph.

• params are all the other input parameters that are specific to each simulation (e.g., drivers’
aggressiveness for a microscopic simulation). These parameters will be omitted in the
remainder of the presentation, since the middleware does not consider them.

• y the simulation’s output = {(G, ti)i=0...n, Mod,tii = 0 . . . n}, which shows the succes-
sive states of G, and the remaining demand through time.

The middleware is inserted between two simulations, and is described by an image of
f , taking as input one simulation outputs and providing the other simulation with new

Future Internet 2021, 3, 22 6 of 21

origin–destination and a new definition of G. Thus, the only levers for the middleware to
influence the behavior of the simulations to be composed are the definitions of the graphs
and the travelers to be transported (whatever their representation).

We propose an abstract description of the characteristics of a simulation in the form of
Equation (2):

S = 〈ω, σ, θ,P〉 (2)

with ω the internal representation of the entities (flows, groups, or individuals), σ the
spatial representation of G (detailed or aggregated) and θ the temporal scale (seconds,
minutes or hours) and which determines the difference between each pair (ti, ti+1) in u.

P represents the simulation process. We propose an abstraction of mobility simu-
lations, based on these three main functions, inspired by the four-stage models. Step 1
(trip generation), step 2 (trip distribution), and step 3 (modal choice—the choice of trans-
portation mode) are merged into a single Demand function, since a simulation usually
has origin–destination matrices as inputs. The second function is Assign (which path the
travelers take). The third function is Move, representing the dynamic positions of travelers
at each time step. P is then described by its three functions Equation (3):

P = {Demand, Assign, Move} (3)

• Demand management (Demand function). This function defines how the origins and
destinations of travelers in Mod are handled.

• The assignment (function Assign). Given a request, the assignment consists of deter-
mining the path travelers will take. Each simulation may have its own method of
assigning travelers and the paths determined may be different from one simulation to
another. The simulations usually look for a Wardrop’s equilibrium situation where no
traveler would gain from changing his currently chosen itinerary [36].

• Travel times (function Move). The travel time indicates the time it takes travelers to
travel, with a certain speed, through each arc of the route to which they are assigned.

Let the
⊗

operator allow for coupling two simulations. It is defined as follows
Equation (4):

S1
⊗
S2 = 〈ω1 ◦ω2, σ1 • σ2, θ1 � θ2,P1 ⊕P2〉 (4)

With ω1 (resp. ω2), σ1 (resp. σ2), θ1 (resp. θ2), P1 (resp. P1) the properties and pro-
cesses of the simulation 1 (resp. simulation 2). A middleware composing two simulations
has to implement the

⊗
operator. The remainder of the presentation focuses on how to

define the operators ◦, allowing the reconciliation of the representations of the entities,
• allowing the reconciliation of the spatial representations, � allowing the reconciliation of
the time steps of the simulations and finally ⊕, allowing the composition of the processes
of the two simulations (the three functions Demand, Assign, Move).

3.3. Synchronizing Simulations (The Time Dimension): The Operator ◦
Two simulations S1 and S2 to be composed that are executed in parallel and at different

scales θ1 and θ2 have to be synchronized. The time step of a simulation is the smallest time
interval between two simulation states (ti − ti−1 in u). A time step is atomic and cannot be
divided. The middleware is inserted between these two simulations and will have a time
step that is equal to Equation (5):

θmiddleware = min(θ1, θ2) (5)

In order to be able to execute its own time step ti, each simulation needs to know:

1. the demand (the portion of Mod that is being simulated at the moment ti),
2. the route that these travelers will take from their origin to their destination.

Future Internet 2021, 3, 22 7 of 21

Let S1 and S2 be two mobility simulations, with θ1 > θ2, θmiddleware is then equal to θ2.
The ◦ operator is implemented by the middleware by saving the consecutive u2 output of
S2 until the next time step of S1 is reached. At this point, the various saved outputs are
composed and provided as input to the S1 simulation. The output u1 of S1 is also retrieved,
and provided to S2 at its next time step.

The method to compose the different received u2 and provided to S1 depends on
the three functions Demand, Assign, Move and will be described when describing the ⊕
operator (in Section 3.6).

3.4. Composing the Representations of Travelers: The • Operator

Consider two simulations S1 and S2 with two different representations ω1 and ω2.
The • operator transforms the two representations ω1 and ω2 to each other. We consider
two bi-directional transformations: conversion of agents into flows (and vice versa) and
(dis)aggregation of groups of agents.

To transform agents to flows, the middleware calculates a density and an average
speed. We adopt the approach of [19] to do so:

• For each vehicle, a function of its position x is defined: if the vehicle is present in x,
then the function returns a positive constant, 0 otherwise.

• Next, all previously defined functions are summed to create a new function. This new
function thus returns a positive constant for each x position where a vehicle is present,
0 if no vehicle is present. This function is called D(x).

• Finally, if the cells of the model are spaced by ∆x, we obtain the density ρk of traffic on
the parts of the arc, necessary for the macroscopic model with the following function:

ρk =
1

∆x

∫ (k+1)∆x

k∆x
D(x)dx (6)

To transform flows to individual representation, it is necessary to create information
for the individual agents. Indeed, a detailed simulation uses individual data that is not
present in a simulation representing entities as flows. As a consequence, these data must be
generated. To do so, we adopt the method of [19], who propose to create agents at positions
determined by probabilities, following a Poisson process.

On the other side, to transform agents in groups of agents, we adopt the approach
of [23], who propose to determine which agents to aggregate by defining distance functions
between them and to aggregate the closest ones. However, two agents that are physically
close cannot be aggregated if the probability that they will remain close in the future is low.
We then use the similarity between itineraries instead of the similarity between positions.

The transformation of groups to individual agents follows the same procedure as the
flows to agents transformation.

3.5. Composing Spatial Representations: The � Operator

Not all simulations represent the transportation network (σ) in the same way. The level
of detail is not the same in a simulation of a few roads and in a simulation of an entire
region. In some simulations where the represented area is wide, the transportation net-
work is usually simplified. Some arcs of the network can be aggregated together or even
deleted to optimize computation times, as explained in [37]. Figure 2 is an example of two
representations of the same transportation network where the red nodes are present in
both networks while the blue nodes are only found in the detailed representation.

Future Internet 2021, 3, 22 8 of 21

Figure 2. Different representations of the same area: aggregated (left) and disaggregated (right).

Assumption 2 (Nodes co-existence). It is assumed that each node belonging to an aggregated
representation of G exists also in the detailed representation. Moreover, for each arc present in
the aggregated representation, there is at least one path in the detailed representation between the
origin and the destination of this arc that does not pass through another node of the aggregated
representation.

Therefore, we assume that, if there is a path from a node n1* to a node n4* in the
aggregate representation without passing by a node n3* in the aggregated representation,
then there is also a path in the detailed representation satisfying the same constraint.

3.6. Composing Processes: The ⊕ Operator

In this section, we detail the composition of the three functions of a simulation
(Demand, Assign, Move). For clarity, the simulation noted S1 in this section is always
the one that corrects the considered function in the other simulation.

3.6.1. Composing Travel Times-Move Functions

As a general rule, to correct the Move function of a simulation S2 by a simulation S1,
the middleware modifies the travel times on the arcs traveled by S2 by the average travel
times observed on S1. This is done by changing the valuations of the relevant arcs in the
graph G input of S2. This allows S2, whatever its scale, to apply its traffic model with the
corrected travel times and speeds.

In the case of different ω (composed with the ◦ operator) between S1 and S2, the mid-
dleware sends to S2 a G graph with the observed average travel times.

In the case of different θ (composed with the � operator), the middleware executes
as many time steps of S1 until it covers a full time step of S2 before executing S2 with the
right valuations of the G graph.

When we have a difference of spatial representation σ (composed with the • operator),
the composition of the Move functions is performed as follows. An arc in an aggregated
spatial representation might represent one or several paths in the detailed spatial represen-
tation. To obtain the same travel times for travelers in each simulation, the average travel
time of each arc in the aggregated representation has to be the same as the average travel
time of its corresponding paths in the detailed representation.

Figure 3 shows the transition from the detailed network to the aggregated network.
We compute the travel time of the aggregated link, as the average of the travel times of its
corresponding paths. In the example of Figure 3, we obtain Equations (7) and (8):

T(
−−−−→
n2*, n4*)agg =

1
4

T(
−−−−→
n2*, n5)det + T(

−−−−→
n5, n4*)det+

T(
−−−−→
n2*, n6)det + T(

−−−−→
n6, n4*)det

(7)

T(
−−−−→
n2*, n4*)agg = 17.5 s (8)

Future Internet 2021, 3, 22 9 of 21

Figure 3. From travel times in the detailed representation (left) to the travel times in the aggregated
representation (right).

Figure 4 shows the transition from aggregated to detailed representation. Once again,
our goal is to obtain a travel time of the aggregated arcs equal to the average travel time of
the corresponding paths in the detailed representation.

Figure 4. Calculation of the travel time of an arc of the detailed representation (right) from the
aggregated representation (left).

We then obtain the system of linear Equations (9)–(11):

T(
−−−−→
n1*, n2*)agg =T(

−−−−→
n1*, n5)det + T(

−−−−→
n5, n2*)det (9)

T(
−−−−→
n1*, n4*)agg =

1
2

T(
−−−−→
n1*, n5)det+

T(
−−−−→
n5, n4*)det + T(

−−−−→
n1*, n4*)detr

(10)

T(
−−−−→
n2*, n4*)agg =T(

−−−−→
n2*, n4*)det (11)

There is an infinite number of solutions, such as:

T(
−−−−→
n1*, n5)det = 5 s, T(

−−−−→
n5, n2*)det = 5 s, T(

−−−−→
n5, n4*)det = 10 s

T(
−−−−→
n1*, n5)det = 6 s, T(

−−−−→
n5, n2*)det = 4 s, T(

−−−−→
n5, n4*)det = 11 s

. . .

Between all the available solutions, we choose the one offering the most homogeneous
speeds (travel distance divided by the travel time).

3.6.2. Composing Demand: Demand Functions

Each simulation has its own Mod matrix. Whatever the scenario and scale considered,
as soon as two simulations interact, they have to exchange travelers and inconsistencies may
occur. This difference between the origin–destination matrices is taken into account in the
two simulations (which are determined before execution) and the dynamic demand (which

Future Internet 2021, 3, 22 10 of 21

is calculated or obtained at each time step) must be taken into account when composing
the Demand functions of S1 and S2. In the general case, the middleware provides Mod1 to
S2 at each time step, which it will consider instead of its own matrix.

In the case of a different σ with σ1 more detailed than σ2, one must potentially find
new origin and destination nodes for travelers in Mod2, since the nodes referenced in Mod1
may not exist in Mod2. In this case, the middleware creates the travelers in the closest nodes.
This case is not encountered if σ2 is more detailed than σ1 since all nodes of the detailed
simulation exist in the aggregate simulation (cf. Assumption 2).

3.6.3. Composing Assignment: Assign Functions

The correction of the assignment is achieved by the middleware through the valuation
of the arcs in G, which makes the calculation of shorter path by S∈ follow the result of the
assignment made by S1 (remember that the simulation noted S1 is the one that corrects the
considered function).

In the case of different ω (composed with the ◦ operator), the middleware has nothing
particular to do, since the assignment concerns the valuation of arcs of G only.

In the case of different θ (composed with the � operator), the middleware will have to
execute as many time steps of S1 until it covers a full time step of S2 before executing S2
with the correct valuations of the G graph. This is necessary to execute S2 with the right
travel times.

In the case of a different σ (composed with the • operator), some paths existing in one
representation do not exist in the other. The same procedure described for th Demand is
applied here.

4. Inter-Dependency between Simulations

In the individual description of the ⊕ operator, we have considered individual func-
tions compositions. However, in a multi-scale simulation, a first simulation usually corrects
some function, while the second simulation corrects some other functions. In this case,
in addition to the individual processes described earlier, some scheduling needs to be
performed by the middleware. The processes described in this section are possible only if
the considered simulations obey the following assumption.

Assumption 3 (Simulation Control). Some middleware features are applicable only to simula-
tions that allow outside simulation control. Indeed, some corrections are only possible if we can
momentarily stop a simulation, or restart a time step several times.

This assumption is necessary if the differences between the representations of the
simulations can only be reconciled by controlling the simulations.

In Table 1, the second and third column present the functions that are considered valid
for each simulation. The last column indicates if this type of inter-dependency needs to be
treated in this section. Cases 1 and 2 are already covered by the previous section: There is
no inter-dependency, and a simulation is fully dependent on the other.

Future Internet 2021, 3, 22 11 of 21

Table 1. The different types of inter-dependency between multi-scale simulations.

S1’s Valid Function (s) S2’s Valid Function (s) Inter-Dependency?

1 Demand, Assign, Move - ×
2 - Demand, Assign, Move ×
3 Demand Assign, Move

√

4 Assign Demand, Move
√

5 Move Demand, Assign
√

6 Demand, Assign Move
√

7 Demand, Move Assign
√

8 Assign, Move Demand
√

The algorithms described in the next subsections materialize a natural scheduling of
the different functions Demand, Assign and Move in a four-step model. Indeed, we first
define the demand, then we assign it and finally we simulate the travelers’ mobility. As a
consequence, the simulation with the correct demand has to execute its time step first,
then the simulation with the correct assignment, and finally the simulation with the right
movements. The different cases in Table 1 are tackled in the following subsections, two
by two.

4.1. Cases 3 and 8

In these cases, one simulation has a valid Demand function and the other has valid
Assign and Move. Both simulations have to correct each others. This case can represent
a situation where a local neighborhood simulation has a very detailed and validated
modeling of the crowd dynamics, but its demand is coming from a wide-region simulation
(e.g., in [38]). In this situation, the middleware needs to execute Algorithm 1 (called D-AM
for Demand (first simulation)-Assign and Move (second simulation)).

Algorithm 1 D-AM algorithm.

Require:Sd = 〈ωd, σd, θd,Pd〉; Sam = 〈ωam, σam, θam,Pam〉,
Ensure:Sdam = Sd

⊗ Sam
(1) ωdam ← ωd ◦ωam
(2) σdam ← σd • σam
(3) θdam ← θd � θam
while ¬End do

(4) execute Sd and save its demand Mod,Sd
in Sdam

(5) execute Sam with the demand Mod,Sd
and save the resulting GSam in Sdam

(6) execute Sd again with GSam and save its demand Mod,Sd
in Sdam

end while
(7) Return Sdam

Instructions (1)–(3) allow for composing the scales of the involved simulations. To
compose the processes, the middleware iteratively executes Sd → Sam → Sd, so that
Sd provides the right demand to Sam, which in turn provides the right valuations of the
transportation graph (instructions (4)–(6)). Note that we use a simplified notation for the
“execute” instruction: It actually means to execute as many time steps as necessary to cover
a time step of the other simulation, as described in Section 3.3. The boolean End is set to
true when the maximum time step is reached by one of the simulations.

In all the algorithms of this section, instruction (6) is the one that might be impossible
to execute for all mobility simulations. Indeed, it implies re-executing the same time step
of a simulation (a kind of rollback), but with different data. Since it is not always possible,
we test in the experiments the case where only instructions (4) and (5) are executed (a
unidirectional correction).

Future Internet 2021, 3, 22 12 of 21

4.2. Cases 4 and 7

In these cases, one simulation has a valid Assign function and the second simulation
has valid Demand and Move functions. This case can represent a situation where a simu-
lation has its own valid demand (resulting from a recent survey for instance) and a valid
traffic model (a properly calibrated car-following model for instance as in [39]), but the
itineraries choice comes from a simulation-based traffic assignment (e.g., [40]).

In this situation, the middleware needs to execute Algorithm 2 (called A-DM for
Assign-Demand and Move). Instructions (1)–(3) allow for composing the scales of the
involved simulations. To compose the processes, the middleware iteratively executes
Sdm → Sa → Sdm, so that Sdm provides the right demand to Sa, which in turn provides the
right valuations of the transportation graph (instructions (4)–(6)). Again, instruction (6)
re-executes the same time step of Sdm with a different graph (GSa).

Algorithm 2 A-DM algorithm.

Require:Sa = 〈ωa, σa, θa,Pa〉; Sdm = 〈ωdm, σdm, θdm,Pdm〉,
Ensure:Sadm = Sa

⊗ Sdm
(1) ωadm ← ωa ◦ωdm
(2) σadm ← σa • σdm
(3) θadm ← θa � θdm
while ¬End do

(4) execute Sdm and save its demand Mod,Sdm
in Sadm

(5) execute Sa with the demand Mod,Sdm
and save the resulting GSa in Sadm

(6) execute Sdm again with GSa and save its demand Mod,Sdm
in Sadm

end while
(7) Return Sadm

4.3. Cases 5 and 6

In these cases, one simulation has a valid Move function and the second simulation
has valid Demand and Assign. In this situation, the middleware needs to execute
Algorithm 3 (called M-DA for Move-Demand and Assign). Instructions (1)–(3) allow
for composing the scales of the involved simulations. To compose the processes, the
middleware iteratively executes Sda → Sm → Sda, so that Sda provides the right demand
to Sm, which in turn provides the right valuations of the transportation graph (instructions
(4), (5), and (6)). Again, instruction (6) re-executes the same time step of Sda with a different
graph (GSm).

Algorithm 3 M-DA algorithm.

Require:Sm = 〈ωm, σm, θm,Pm〉; Sda = 〈ωda, σda, θda,Pda〉,
Ensure:Smda = Sm

⊗ Sda
(1) ωmda ← ωm ◦ωda
(2) σmda ← σm • σda
(3) θmda ← θm � θda
while ¬End do

(4) execute Sda and save its demand Mod,Sda
in Smda

(5) execute Sm with the demand Mod,Sda
and save the resulting GSm Smda

(6) execute Sda again with GSm and save its demand Mod,Sda
in Smda

end while
(7) Return Smda

5. Experiments and Results
5.1. Case Study

This work is part of the MSM (Mobility Solution Modeling) project of the SystemX
research institute. The MSM project is particularly interested in the issues of better knowl-
edge and management of people’s mobility at the scale of a neighborhood. In this context,

Future Internet 2021, 3, 22 13 of 21

we imagine the tasks of a “neighborhood manager”, responsible for mobility management
at the level of a given major neighborhood. In the project, we consider La Défense business
district in the Paris region, with 180,000 employees and 20,000 inhabitants. The modes of
transportation available in La Défense are multimodal, each managed by a different opera-
tor. The manager is interested in all the mobility taking place at La Défense (cf. Figure 5. To
do so, it uses a multi-agent mobility simulation, which represents travelers individually,
executes a few seconds time step and represents all the spatial details of the area.

However, as the neighborhood is not isolated from the world, mobility inside the
neighborhood is highly dependent on travelers’ flows and transportation services upstream
and downstream of the neighborhood. If an unforeseen event occurs at a location in the
regional network (e.g., Châtelet—les Halles, a major multimodal hub in Paris), it is likely to
have a great impact on the flows passing through or destined for La Défense. It is therefore
necessary to have a knowledge of the dynamic status of the mobility at the region scale.
However, it is neither necessary nor useful to represent regional flows as finely as the
neighborhood (11 million travels/day in the Île de France region). Therefore, the regional
simulation uses a mobility simulation where travelers are expressed in terms of flows, the
network is represented in an aggregated way, and the time steps are several minutes long.

Figure 5. Use case study area (La Défense is located inside the red ellipse).

5.2. Middleware Implementation

We have implemented a middleware as a Java project, which implements all the
model operators. The middleware interacts with interfaces, translating the input and
output data from the involved simulations (cf. Figure 6). The use of these interfaces
serves to keep the middleware independent from the languages and data types used by the
simulations. When a new couple of simulations are considered, only the interfaces need to
be implemented, and the middleware remains unchanged.

Parameters are defined for the middleware, in an XML file specifying, for each in-
volved simulation:

• The representation of travelers (flows, groups, or individual).
• The length of a simulation time step in seconds.
• The considered transportation network (following a defined XSD schema).

Future Internet 2021, 3, 22 14 of 21

• the functions that are considered valid for each simulation (Assign, Demand, and Move).

Figure 6. Middleware implementation.

5.3. Setup

We use two simulations that we have developed in the context of the MSM project.
The considered territories correspond to the use case described earlier (Île de France region
and La Défense business district).

• The first simulation is implemented in Java, and operates with traveler flows, on an
aggregated network and with a time step of 10 min. It assigns travelers’ flows on the
shortest route at Wardrop’s equilibrium using the transfer-and-equalize method [41].
The input of the simulation is:

1. The temporized origin–destination matrix on a region scale. These data are based
on a National survey [42].

2. The aggregated network of the region (main streets only).

Its output is the valuated graph every ten minutes.
• The second simulation is implemented in Java, works with agents representing indi-

vidual travelers, on a very detailed network and with a time step of 20 s. It assigns
travelers using a K-shortest path algorithm [43]. This simulation uses a car-following
model for travelers movements (Simplified Gipp Model from [44]). The inputs of this
simulation are:

1. The temporized origin–destination matrix on the local scale. To obtain a matrix
that is not too different from the regional matrix, we use the method described
in [38] to infer a local matrix from a regional one. Then, we introduce some noise,
by randomly multiplying the number of travelers in the matrix by a number in
[−10, . . . , 10%].

2. The detailed network of the local area.

In the following, we assume that the regional simulation corrects the Demand and
Assign functions, while the local simulation corrects the Move function. Therefore, the mid-
dleware applies the M-DA Algorithm (Algorithm 3).

Since the simulations and the middleware are all implemented in the same language,
there is no need for an interface between them, and all interactions are performed using
Java RMI (cf. Section 6 for a discussion on this aspect).

All the experiments have been performed using a unit under Linux Mint 17.2 Rafaela
(kernel version 3.16.0-38-generic) with an Intel® Core processor CPU (Santa Clara, CA,
USA) i5-7400 with 16 GB of memory.

Future Internet 2021, 3, 22 15 of 21

5.4. Hypotheses

One of the objectives of the middleware is to harmonize the behaviors of simulations.
More precisely, it allows for “correcting” the behavior of a simulation, based on another
(valid) one. Four hypotheses are tested in the experiments.

Hypothesis 1 (Impact of the middleware). The use of the middleware allows for the behavioral
convergence of two mobility simulations.

This is the first justification for using a middleware. We would expect that the differ-
ence in travel times or speeds are limited when using the middleware.

Hypothesis 2 (Impact of the difference in simulations’ behavior). The use of the middleware
is more positive when the simulations have a big behavioral difference.

We would expect the middleware to have a bigger impact with simulations that have
very different output (when used in isolation).

Hypothesis 3 (Impact of the scheduling). In case of inter-dependency, bidirectional corrections
via the middleware provides better results than unidirectional corrections.

Not all simulation platforms allow for an external scheduling (by the middleware)
allowing notably to execute several times (but with different inputs) the same time step
(instructions (6) in Algorithms 1–3). If external scheduling is possible, we expect the
middleware to have a higher impact. If this hypothesis is valid, it would be a strong
argument for the simulation platforms to invest in the development of the right interfaces
to allow an external scheduling.

Hypothesis 4 (Computational cost of the use of the middleware). The use of the middleware
comes with a reasonable computational cost.

Interactive synchronized simulations come surely with a cost. However, we expect
this cost to remain reasonable, i.e., not very far from max(ΘS1, ΘS2), with ΘS1 (resp. ΘS2)
the simulation time of S1 (resp. S2).

5.5. Scenarios

We simulate six different scenarios:

1. S1: we use each simulation independently. The demand is stable. To have a stable
demand, we distribute the number of origin–destination equally over the available
time slots in both regional and local origin–destination matrices.

2. S2: we use each simulation independently. The demand is variable (we use the
original origin–destination matrices).

3. S3: we use the simulations interacting via the middleware. The interaction is unidirec-
tional, meaning that a time step is not executed twice as defined in Section 4. Demand
is stable.

4. S4: we use the simulations interacting via the middleware. The interaction is unidirec-
tional, meaning that a time step is not executed twice as defined in Section 4. Demand
is variable.

5. S5: we use the simulations interacting via the middleware. The interaction is bidirec-
tional, meaning that a time step is executed twice as defined in Section 4. Demand
is stable.

6. S6: we use the simulations interacting via the middleware. The interaction is bidirec-
tional, meaning that a time step is executed twice as defined in Section 4. Demand
is variable.

Future Internet 2021, 3, 22 16 of 21

In every scenario, we compute the average speed observed in La Défense area (the
local area). Indeed, since the local area is represented in both simulations, the impact
of the middleware use is visible in this area. As we can observe in the input definition,
the only source of randomness in our inputs concerns the temporized origin–destination
matrix. To verify its impact, every set of scenarios is executed 10 times, with a different
temporized origin–destination matrix. We observe a standard deviation of less than
0.2 km/h between the different executions of the same scenario. The results below report
the average observed values.

The executed simulations represent 6 h and 40 min of travels. This corresponds to
1200 time steps of the local simulation and to 40 time steps of the regional simulation. In
addition, 20,000 travelers are simulated in the local area during all the simulation.

5.6. Results

In Figures 7–12, the x-axis represents the time steps of the local simulation, while the
y-axis represents the observed average speeds.

Figure 7. Average speeds for Scenario S1.

Figure 8. Average speeds for Scenario S2.

Future Internet 2021, 3, 22 17 of 21

Figure 9. Average speeds for Scenario S3.

Figure 10. Average speeds for Scenario S4.

Figure 11. Average speeds for Scenario S5.

Future Internet 2021, 3, 22 18 of 21

Figure 12. Average speeds for Scenario S6.

5.6.1. Hypothesis 1

To verify this hypothesis (the use of the middleware allows for the behavioral con-
vergence of two mobility simulations), we compare the scenario 1 (Figure 7) on the one
side (average speeds for individual simulations) and scenarios 3 and 5 (average speeds
for composed simulations) on the other side (Figures 9 and 11). We note that the middle-
ware succeeds in limiting (S3) and even eliminating (S5) the incoherence between the two
simulations. The standard deviation of average speeds between the regional simulation
and the local simulation is of 0.63 km/h in S1, 0.46 km/h in S3, and 0 km/h in S5. The
difference may look small, but recall that the origin–destinations of the two simulations are
quite similar (±10%). Hypothesis 1 is then valid.

5.6.2. Hypothesis 2

To verify this hypothesis (the use of the middleware is more positive when the simu-
lations have big behavioral difference), we compare the scenario 2 (Figure 8) on the one
side (average speeds for individual simulations, with varying demand) and scenarios 4
and 6 (average speeds for composed simulations, with varying speeds) on the other side
(Figures 10 and 12). We note that the corrections of the middleware succeeds in limiting
(S3) and even eliminating (S5) the incoherence between the two simulations. The stan-
dard deviation of average speeds is 0.92 km/h in S2, 0.52 km/h in S4 and 0 km/h in S6.
The marginal correction is then of 0.4 (S4 compared to S2) and 0.92 (S6 compared to S2),
while it was 0.17 (S3 compared to S1) and 0.63 (S5 compared to S1) with stable demand.
Even if not very big, the difference is clearly there. Hypothesis 2 is then valid.

5.6.3. Hypothesis 3

To verify this hypothesis (bidirectional corrections via the middleware provides better
results than unidirectional corrections), we compare the scenarios 3 and 5 on the one side
(middleware without scheduling, cf. Figures 9 and 11) and scenarios 4 and 6 on the other
side (middleware wit scheduling, cf. Figures 10 and 12). The standard deviations between
average speeds is zero with the scheduling, while it is positive without it. Hypothesis 3
is valid.

5.6.4. Hypothesis 4

To verify this Hypothesis (the use of the middleware comes with a reasonable com-
putational cost), we refer to Table 2 providing the computational times for the different
scenarios. The use of the middleware with unidirectional correction provides reasonable

Future Internet 2021, 3, 22 19 of 21

increase in computational times compared to the regional simulation (which is the longest
simulation between the two): 55% (S3 compared to S1) and 65% (S4 compared to S2) . How-
ever, the use of the middleware with bidirectional correction results in a big increase in the
computational times: 301% (S5 compared to S1) and 369% (S6 compared to S2) increase.
The difference is big, and Hypothesis 4 is then not valid. Bidirectional correction has clear
benefits, but it should be used when there are no tight constraints on execution times.

Table 2. Execution times (in seconds) of the different scenarios in seconds.

Scenario Regional Simulation Local Simulation Composition

1 1100 3200 -

2 1532 3840 -

3 - - 4945

4 - - 6340

5 - - 12,840

6 - - 18,017

6. Conclusions

In the domain of software engineering, a lot of effort has been put for decades on
applications’ interoperability. Now, several W3C standards, and industrial de facto stan-
dards, exist for applications deployed as web services (e.g., WS-* and Restful Web services)
and on network representation (e.g., Openstreetmap). On the other side, in the domain of
mobility simulations, the efforts on reusability of applications have mainly taken the form
of open source deployment of simulations (e.g., SUMO [45], Matsim [46], etc.).

However, from a multi-scale simulation perspective, the designer of the middleware
does not need to deeply master the implementation of the simulations; it only needs to use
them as a service. It would therefore be very relevant to deploy mobility simulations as
Web services, allowing for executing them, and to interact with them at a time step tempo.
This effort is really worth it, since it would greatly simplify the design and implementation
of new multi-scale simulations, with our middleware-based approach. In addition, this
collective effort towards standard descriptions and use a service of simulations would
greatly simplify the implementation of the interfaces described in Figure 6.

There is virtually an infinity of possible scenarios for mobility simulations. When
facing a complex mobility scenario, involving several representation details (either spatial
details, temporal details or details concerning the entities), the designer is often tempted to
create a new simulation platform, fitting to his exact needs. However, tens of simulation
platforms already exist, either as a research product or an industrial product. In many
cases, there is no need to create a new simulation, and coupling existing simulations could
be sufficient. If there is a general recommendation in this paper, it would be to consider
carefully the creation of a new mobility simulation, and to verify if a composition of existing
platforms fits the requirements of the scenario at hand.

For these cases, we propose a middleware model allowing for gluing existing mobility
simulations working on different scales. Many of the presented methods in this paper are
adaptations of existing methods in the literature. The results on a case study show that the
use of the middleware limits, and can eliminate the incoherence between two simulations.
However, having a perfect composition of the simulations with the middleware, includ-
ing bidirectional correction, comes with a high computational cost. Depending on the
requirements in terms of execution times, the designer might choose to use bidirectional or
unidirectional corrections.

Our future work implies a great additional development effort: we will perform a
systematic review of the existing mobility simulation platforms, create specific interfaces to
interact with them (when possible), and use the middleware to assess the impact of the

Future Internet 2021, 3, 22 20 of 21

middleware on public mobility platforms and the relative easiness of coupling them with a
middleware.

Author Contributions: Conceptualization, X.B. and M.Z.; methodology, M.Z.; software, X.B.; vali-
dation, X.B.; formal analysis, M.Z.; investigation, X.B.; resources, G.S. and F.L.; data curation, X.B.;
writing—original draft preparation, X.B. and M.Z.; visualization, X.B.; supervision, M.Z., G.S., and
F.L.; project administration, G.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available on request due to privacy restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nipa, T.J.; Kermanshachi, S.; Ramaji, I. Comparative analysis of strengths and limitations of infrastructure resilience measurement

methods. In Proceedings of the 7th CSCE International Construction Specialty Conference (ICSC), Laval, QC, Canada, 12–15 June
2019; pp. 12–15.

2. Ortega, F.A.; Pozo, M.A.; Puerto, J. On-line timetable rescheduling in a transit line. Transp. Sci. 2018, 52, 1106–1121. [CrossRef]
3. Gan, H.; Ye, X. Will commute drivers switch to park-and-ride under the influence of multimodal traveler information? A stated

preference investigation. Transp. Res. Part Traffic Psychol. Behav. 2018, 56, 354–361. [CrossRef]
4. Bhattacharya, D.; Painho, M.; Mishra, S.; Gupta, A. Mobile traffic alert and tourist route guidance system design using geospatial

data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 11–18. [CrossRef]
5. Nourinejad, M.; Roorda, M.J. Impact of hourly parking pricing on travel demand. Transp. Res. Part Policy Pract. 2017, 98, 28–45.

[CrossRef]
6. D’Ariano, A. Innovative decision support system for railway traffic control. IEEE Intell. Transp. Syst. Mag. 2009, 1, 8–16.

[CrossRef]
7. Toahchoodee, M.; Ray, I.; Anastasakis, K.; Georg, G.; Bordbar, B. Ensuring spatio-temporal access control for real-world

applications. In Proceedings of the 14th ACM Symposium on Access Control Models and Technologies, Stresa, Italy, 3–5 June 2009;
pp. 13–22.

8. Zargayouna, M.; Othman, A.; Scemama, G.; Zeddini, B. Multiagent Simulation of Real-Time Passenger Information on Transit
Networks. IEEE Intell. Transp. Syst. Mag. 2020, 12, 50–63. [CrossRef]

9. Crociani, L.; Lämmel, G.; Vizzari, G. Multi-scale simulation for crowd management: a case study in an urban scenario.
In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, Singapore, 9–13 May 2016;
pp. 147–162.

10. Zia, K.; Farrahi, K.; Riener, A.; Ferscha, A. An agent-based parallel geo-simulation of urban mobility during city-scale evacuation.
Simulation 2013, 89, 1184–1214. [CrossRef]

11. Mastio, M.; Zargayouna, M.; Scemama, G.; Rana, O. Distributed agent-based traffic simulations. IEEE Intell. Transp. Syst. Mag.
2018, 10, 145–156. [CrossRef]

12. Anagnostopoulos, D. A methodological approach for model validation in faster than real-time simulation. Simul. Model.
Pract. Theory 2002, 10, 121–139. [CrossRef]

13. Hsu, C.; Lian, F.; Huang, C. A Systematic Spatiotemporal Modeling Framework for Characterizing Traffic Dynamics Using
Hierarchical Gaussian Mixture Modeling and Entropy Analysis. IEEE Syst. J. 2014, 8, 1129–1138.

14. Holmgren, J.; Ramstedt, L.; Davidsson, P.; Edwards, H.; Persson, J.A. Combining macro-level and agent-based modeling for
improved freight transport analysis. Procedia Comput. Sci. 2014, 32, 380–387. [CrossRef]

15. Fellendorf, M.; Vortisch, P. Microscopic traffic flow simulator VISSIM. In Fundamentals of Traffic Simulation; Springer: New York,
NY, USA, 2010; pp. 63–93.

16. Vliet, D.V. The Saturn Users Manual; Institute for Transportation Studies: Leeds, UK, 1998.
17. Montero, L.; Codina, E.; Barceló, J.; Barceló, P. Combining macroscopic and microscopic approaches for transportation planning

and design of road networks. In Proceedings of the 19 th ARRB Transport Research Conference, Sydney, Australia, 7–11
December 1998; pp. 93–108.

18. Barceló, J.; Casas, J. Dynamic network simulation with AIMSUN. In Simulation Approaches in Transportation Analysis; Springer:
New York, NY, USA, 2005; pp. 57–98.

19. Sewall, J.; Wilkie, D.; Lin, M.C. Interactive hybrid simulation of large-scale traffic. ACM Trans. Graph. 2011, 30, 135. [CrossRef]
20. Gaud, N.; Galland, S.; Gechter, F.; Hilaire, V.; Koukam, A. Holonic multilevel simulation of complex systems: Application to

real-time pedestrians simulation in virtual urban environment. Simul. Model. Pract. Theory 2008, 16, 1659–1676. [CrossRef]
21. Haman, I.T.; Kamla, V.C.; Galland, S.; Kamgang, J.C. Towards an multilevel agent-based model for traffic simulation.

Procedia Comput. Sci. 2017, 109, 887–892. [CrossRef]

http://doi.org/10.1287/trsc.2017.0807
http://dx.doi.org/10.1016/j.trf.2018.05.015
http://dx.doi.org/10.5194/isprs-archives-XLII-4-W3-11-2017
http://dx.doi.org/10.1016/j.tra.2017.01.023
http://dx.doi.org/10.1109/MITS.2010.935910
http://dx.doi.org/10.1109/MITS.2018.2879166
http://dx.doi.org/10.1177/0037549713485468
http://dx.doi.org/10.1109/MITS.2017.2776162
http://dx.doi.org/10.1016/S1569-190X(02)00091-6
http://dx.doi.org/10.1016/j.procs.2014.05.438
http://dx.doi.org/10.1145/2070781.2024169
http://dx.doi.org/10.1016/j.simpat.2008.08.015
http://dx.doi.org/10.1016/j.procs.2017.05.416

Future Internet 2021, 3, 22 21 of 21

22. Navarro, L.; Flacher, F.; Corruble, V. Dynamic level of detail for large scale agent-based urban simulations. In Proceedings of
the 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, Taipei, Taiwan, 2–6 May 2011;
pp. 701–708.

23. Navarro, L.; Corruble, V.; Flacher, F.; Zucker, J.D. A flexible approach to multi-level agent-based simulation with the mesoscopic
representation. In Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems, Saint Paul,
MN, USA, 6–10 May 2013; pp. 159–166.

24. Biedermann, D.H.; Kielar, P.M.; Handel, O.; Borrmann, A. Towards TransiTUM: A generic framework for multiscale coupling of
pedestrian simulation models based on transition zones. Transp. Res. Procedia 2014, 2, 495–500. [CrossRef]

25. Joueiai, M.; Van Lint, H.; Hoogendoom, S.P. Multiscale traffic flow modeling in mixed networks. Transp. Res. Rec. 2014,
2421, 142–150. [CrossRef]

26. Bishop, T.A.; Karne, R.K. A Survey of Middleware. In Proceedings of the ISCA 18th International Conference Computers and
Their Applications, Honolulu, HI, USA, 26–28 March 2003; ISCA 2003; pp. 254–258.

27. Klügl, F. A validation methodology for agent-based simulations. In Proceedings of the 2008 ACM Symposium on Applied
Computing, Fortaleza, Brazil, 16–20 March 2008; pp. 39–43.

28. Balci, O. Validation, verification, and testing techniques throughout the life cycle of a simulation study. Ann. Oper. Res. 1994,
53, 121–173. [CrossRef]

29. Law, A.M. How to build valid and credible simulation models. In Proceedings of the Winter Simulation Conference, Orlando,
FL, USA, 4–7 December 2005.

30. Bayarri, M.; Berger, J.O.; Molina, G.; Rouphail, N.M.; Sacks, J. Assessing uncertainties in traffic simulation: A key component in
model calibration and validation. Transp. Res. Rec. 2004, 1876, 32–40. [CrossRef]

31. Ni, D. Multiscale modeling of traffic flow. Math. Aeterna 2011, 1, 27–54.
32. Bourrel, E.; Lesort, J.B. Mixing microscopic and macroscopic representations of traffic flow: hybrid model based on Lighthill–

Whitham–Richards theory. Transp. Res. Rec. 2003, 1852, 193–200. [CrossRef]
33. Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.H. OGC City Geography Markup Language (CityGML) Encoding Standard; Technical

Report; Open Geospatial Consortium: Wayland, MA, USA, 2012.
34. Beil, C.; Kolbe, T.H. CityGML and the streets of New York-A proposal for detailed street space modelling. In Proceedings of the

12th International 3D GeoInfo Conference 2017, Melbourne, Australia, 26–27 October 2017; pp. 9–16.
35. Lok, L.; Brent, R. Automatic generation of cellular reaction networks with Moleculizer 1.0. Nat. Biotechnol. 2005, 23, 131–136.

[CrossRef] [PubMed]
36. Szeto, W.; Wong, S. Dynamic traffic assignment: model classifications and recent advances in travel choice principles. Cent. Eur.

J. Eng. 2012, 2, 1–18. [CrossRef]
37. Connors, R.D.; Watling, D.P. Assessing the demand vulnerability of equilibrium traffic networks via network aggregation.

Netw. Spat. Econ. 2015, 15, 367–395. [CrossRef]
38. Ksontini, F.; Zargayouna, M.; Scemama, G.; Leroy, B. Building a Realistic Data Environment for Multiagent Mobility Simulation.

In Agent and Multi-Agent Systems: Technologies and Applications; Springer: New York, NY, USA, 2016; pp. 57–67.
39. Raju, N.; Arkatkar, S.; Joshi, G. Evaluating performance of selected vehicle following models using trajectory data under mixed

traffic conditions. J. Intell. Transp. Syst. 2019, 24, 617–634. [CrossRef]
40. Szeto, W.Y. Dynamic modeling for intelligent transportation system applications. J. Intell. Transp. Syst. 2014, 18, 323–326.

[CrossRef]
41. Leurent, F. The theory and practice of a dual criteria assignment model with a continuously distributed value-of-time. In Proceed-

ings of the Transportation and Traffic Theory Proceedings of the ISTTT Conference, Lyon, France, 24–26 July 1996; pp. 455–477.
42. INSEE. Enquête Globale Transport. 2010. Available online: http://www.omnil.fr/IMG/pdf/-4.pdf (accessed on 19 January 2021).
43. Eppstein, D. Finding the k shortest paths. SIAM J. Comput. 1998, 28, 652–673. [CrossRef]
44. Treiber, M.; Kesting, A. Traffic flow dynamics. In Traffic Flow Dynamics: Data, Models and Simulation; Springer: Berlin/Heidelberg,

Germany, 2013.
45. Behrisch, M.; Bieker, L.; Erdmann, J.; Krajzewicz, D. SUMO- Simulation of Urban MObility—An Overview. In Proceedings of the

Third International Conference on Advances in System Simulation, Barcelona, Spain, 23–28 October 2011; pp. 55–60.
46. Maciejewski, M.; Nagel, K. Towards Multi-agent Simulation of the Dynamic Vehicle Routing Problem in MATSim. In Proceedings

of the 9th International Conference on Parallel Processing and Applied Mathematics, Naleczow, Poland, 9–12 September 2012;
pp. 551–560.

http://dx.doi.org/10.1016/j.trpro.2014.09.065
http://dx.doi.org/10.3141/2421-16
http://dx.doi.org/10.1007/BF02136828
http://dx.doi.org/10.3141/1876-04
http://dx.doi.org/10.3141/1852-24
http://dx.doi.org/10.1038/nbt1054
http://www.ncbi.nlm.nih.gov/pubmed/15637632
http://dx.doi.org/10.2478/s13531-011-0057-y
http://dx.doi.org/10.1007/s11067-014-9251-9
http://dx.doi.org/10.1080/15472450.2019.1675522
http://dx.doi.org/10.1080/15472450.2013.834770
http://www.omnil.fr/IMG/pdf/-4.pdf
http://dx.doi.org/10.1137/S0097539795290477

	Introduction
	Literature Review
	Scales in Mobility Simulations
	Simulations Validity
	Simulation Scales

	The Model
	Dynamic Inputs
	Model Components
	Synchronizing Simulations (The Time Dimension): The Operator
	Composing the Representations of Travelers: The Operator
	Composing Spatial Representations: The Operator
	Composing Processes: The Operator
	Composing Travel Times-Move Functions
	Composing Demand: Demand Functions
	Composing Assignment: Assign Functions

	Inter-Dependency between Simulations
	Cases 3 and 8
	Cases 4 and 7
	Cases 5 and 6

	Experiments and Results
	Case Study
	Middleware Implementation
	Setup
	Hypotheses
	Scenarios
	Results
	Hypothesis 1
	Hypothesis 2
	Hypothesis 3
	Hypothesis 4

	Conclusions
	References

