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Neural quantum state (NQS) ansätze have shown promise in variational Monte Carlo algorithms by
their theoretical capability of representing any quantum state. However, the reason behind the practical
improvement in their performance with an increase in the number of parameters is not fully understood.
In this work, we systematically study the efficiency of restricted Boltzmann Machines (RBMs) to repre-
sent the ground states in different phases of the spin-1 bilinear-biquadratic model, as the hidden layer
density α increases. We train our ansatz by minimizing two different loss functions: 1) energy, and
2) infidelity of the NQS ansatz w.r.t. that of the exact ground state. We observe that the accuracy of
our ansatz saturates with α in both cases. We demonstrate that this can be explained by looking at
the spectrum of the quantum geometric tensor (QGT). We find that the rank of the QGT saturates be-
yond a certain α, and we emphasize that it corresponds to the dimension of the relevant manifold for
an optimized NQS. This provides a useful diagnostics for the practical representation power of an NQS
ansatz.

I. INTRODUCTION

Recent years have seen an immense growth in the use
of machine learning (ML) methods in the field of quan-
tum many-body physics. Central to this intersection are
Neural Quantum States (NQSs), which are currently rev-
olutionizing Variational Monte Carlo (VMC) approaches
and related applications [1–8]. Their success relies on
the expressivity of Neural-Networks (NNs), which have
the theoretical capacity to represent any state, with a
large enough number of parameters. This is formal-
ized by so called (i) universal representation theorems,
asserting that the approximation error inherent in a
neural network (and by extension, in an NQS) can ap-
proach zero asymptotically as one increases the network’s
width or depth, contingent on locating the global mini-
mum of the loss function [9–12]. Additionally, it is well-
understood in the standard machine learning context that
(ii) increasing the number of parameters beyond the over-
parameterization limit leads to a smoother loss landscape
and faster convergence [13, 14].

Building on those principles, numerous variational
studies have increased the width or depth of NNs in or-
der to check convergence in calculations where the ground
state is found by energy minimization [1, 15–17]. The
most striking example is given by Fig. 2 of ref. [17] where
convergence to numerical precision is achieved by grad-
ually increasing the number of parameters of a CNN-
ResNet from ∼ 104 to ∼ 2× 105. This approach is quite
general and is also employed when simulating the real-
time dynamics [18], and the steady-state in open quan-
tum systems [5, 19].

However, exceptions to this rule do emerge in practi-
cal calculations, i.e. instances in which an NQS fails to
become more accurate as the number of parameters in-
creases. We will call this situation a practical breakdown
of universal representability. We stress that this is not

in opposition to the representation theorems, which are
theoretical concepts valid only when the global minimum
can be found, in the limit of a sufficiently large num-
ber of parameters. This practical breakdown of universal
representability, given a specific minimization algorithm,
might happen either because the global minima cannot be
found with a reasonable computational budget, or because
the additional parameters cannot be used effectively even
when the minimization algorithm has converged.

Moreover, it is unclear what the additional parame-
ters encode once the optimization has converged. Several
results in standard ML tasks [20–22], and Variational
Quantum Algorithms [23] document the existence of re-
dundant directions in the parameter space, suggesting
that the encodings are locally highly degenerate. This is
in clear opposition to tensor networks and matrix product
states in particular, where increasing the bond dimension
is linked with the increase in the maximal entanglement
entropy of the state [24, 25]. Instead, while it has been
shown that even simple NQSs can encode states with
arbitrary entanglement [26–28], we do not know what
states NQSs with a finite number of parameters cannot
encode. The role of parameters in an NQS and their rela-
tionship to the overall accuracy of a calculation is there-
fore unclear. And while in some cases it is possible to
invoke some theorems as an explanation for the effective-
ness of increasing the number of parameters, we still do
not understand what happens in presence of a practical
breakdown of universal representability.

Nevertheless, it is possible to quantify the role of pa-
rameters in an NQS by looking at the Quantum Geomet-
ric Tensor (QGT), which is a special case of the Fisher
information matrix (FIM), defined in the context of vari-
ational wavefunctions [29, 30]. A few studies have used
the QGT to define an effective dimension of a variational
ansatz, and to identify redundant directions in the param-
eter space [31, 32]. This can be used in the case of a prac-
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tical breakdown of universal representability to identify
whether it is caused by the inefficiency of the NQS to use
the newly added parameters.

In this work, we investigate such a scenario in a sim-
ple setting: the search for the ground state of a one-
dimensional quantum spin model. We choose the spin-1
bilinear-biquadratic (BLBQ) model, which contains a di-
verse set of phases including the gapped Haldane phase,
and a gapless extended critical phase. Our VMC results
do not show a systematic improvement in the converged
infidelities/energies upon increasing α, for various phases
of the BLBQ model. This contradicts the usual expecta-
tion that the accuracy of the ansatz should improve as we
progress towards the limit where universal representa-
tion theorems hold. With this observation, we perform
a conceptually simpler task of optimizing the infidelity
of the same NQS ansatz w.r.t. the true ground state, as
the loss function, to directly investigate the representa-
tion ability of the ansätze while increasing the density
of the NN. We use an NQS ansatz given by a modified
restricted Boltzmann machine (see supplementary mate-
rial VI) for spin-1 systems [15]. The optimization of the
infidelity is done by computing the infidelity and its gradi-
ent exactly to exclude biases induced from sampling in the
Monte Carlo procedure. We demonstrate that the rank
and spectrum of the QGT provide very useful insights into
the number of relevant parameters that are used in prac-
tice to represent the wave-function, and how the network
makes uses of these parameters as its size is increased.

II. THE BILINEAR BIQUADRATIC SPIN-1 CHAIN

Model. The spin-1 bilinear-biquadratic (BLBQ) model
in one dimension is defined by the Hamiltonian:

H =∑
i

J
[
Si ·Si+1 + tan(θ) (Si ·Si+1)2

]
. (1)

The model is parametrized by an angular variable θ, and
Si = (Six,Si y,Siz) is the spin operator acting on the local
spin-1 Hilbert space at site i. The above Hamiltonian has
a gapped Haldane phase [33, 34] for −π/4< θ <π/4, an ex-
tended critical phase [35–39] for π/4≤ θ <π/2, a ferromag-
netic phase for π/2 ≤ θ < 5π/4, and a dimerized phase for
−3π/4< θ <−π/4 [40, 41] (Fig. 1). We focus on the Haldane
phase and the extended critical phase in this work. The
Haldane phase describes the isotropic Heisenberg antifer-
romagnet at θ = 0. It is characterized by a hidden topolog-
ical order, which is the strongest for the Affleck-Kennedy-
Lieb-Tasaki (AKLT) state [42–44] at θ = arctan(1/3). The
AKLT state is a valence-bond state, which can be repre-
sented by two spin-1/2 particles at each site, forming sin-
glets with the spins of the neighboring sites (see supple-
mentary material sec. VI A). The AKLT state has an ex-
act matrix product state (MPS) representation with bond
dimension 2 [45]. It is also the state that has the low-
est bipartite entanglement in comparison to other val-
ues of θ [46]. The Haldane phase is gapped and has

a ground state with an exponentially decaying antifer-
romagnetic spin-spin correlation in the thermodynamic
limit. Up to the AKLT point, the correlation function be-
haves as 〈Sα

0 ·Sα
j 〉 ≈ (−1) j exp(− j/ξ)/

√
j with a correlation

length ξ = 1/ln(3) for the AKLT state. For arctan(1/3) <
θ < π/4, the modulation wave-vector shifts away from
k = π to reach k = 2π/3 at θ = π/4. The Haldane gap
closes at θ = π/4, marking a critical point, known as the
Uimin-Lai-Sutherland (ULS) point [37, 38, 47], across a
Berezinskii-Kosterlitz-Thouless (BKT) transition [39, 48].
At this point, the model has an exact SU(3) symmetry
and is integrable. Its low-energy physics is described by
the Wess-Zumino-Witten (SU(3)k=1) conformal field the-
ory [39, 43, 48]. The model remains gapless in the ther-
modynamic limit throughout the region π/4 ≤ θ < π/2. In
this phase, the dominant correlations are of quadrupolar
nature, with wavevector k = ±2π/3 and decay as a power
law with exponent η= 4/3 [35, 39].

Haldane
 phase

Critical
 phase

Ferromagnetic
 phase

Dimerized
 phase

1.  AFH ( = 0)

2.  AKLT ( = arctan(1/3))

3.  Critical ( = /4)
4.  Critical ( = arctan(2))

= /2

FIG. 1. Phase diagram of the spin-1 bilinear-biquadratic (BLBQ)
model. We perform infidelity (Eq. (3)) minimization, and energy
(Eq. (2)) minimization with an NQS ansatz given by a modified
RBM for spin-1 models [15] (described in Methods V) at the four
marked points in the phase diagram.

III. RESULTS

In this work, we search for the NQS approximations of
the ground states in the Haldane and the critical phases
of the BLBQ model by minimizing two loss functions: 1)
the energy, using the VMC algorithm,

E = 〈H〉 =∑
n

pθ(n)
〈n|H ∣∣ψθ

〉〈
n
∣∣ψθ

〉 , (2)

and 2) the infidelity with respect to the exact ground state
|Ω〉 (see Methods V for more details),

I= 1−
〈
ψθ

∣∣Ω〉〈
Ω

∣∣ψθ

〉〈
ψθ

∣∣ψθ

〉〈Ω|Ω〉 . (3)

Here
∣∣ψθ

〉 = ∑
nψθ(n) |n〉 is the NQS and pθ(n) =

|ψθ(n)|2/
〈
ψθ

∣∣ψθ

〉
is the probability distribution over

states |n〉 in the computational basis. The degree to
which the NQS ansatz represents the true ground state



3

4 8 12 16 2010 6

10 5

10 4

10 3

10 2

10 1

100

In
fid

el
ity

 (
)

(a) L=8
Infidelity optimization
Energy optimization (VMC)

4 8 12 16 20 24 28 32 3610 6

10 5

10 4

10 3

10 2

10 1

100

(b) L=10
AFH ( = 0)
AKLT ( = arctan(1/3))
critical point ( = /4)
critical region ( = arctan(2))

4 8 12 1610 6

10 5

10 4

10 3

10 2

10 1

100

(c) L=12
NQS optimization on the spin-1 Bilinear-Biquadratic chain

FIG. 2. This figure shows the infidelities (I) after the convergence of an exact infidelity optimization procedure, and a Variational
Monte Carlo (VMC) procedure (see Methods V), as a function of α, for the four points in the phase diagram (see Fig. 1) of the spin-1
Bilinear Biquadratic (BLBQ) chain of length (a) L = 8, (b) L = 10, and (c) L = 12 with open boundary conditions. The NQS is a
modified RBM for spin-1 systems [15] (see Methods V). The optimization of the NQS for a given model, for a given size L and a
given α, is done starting from few (10 for the infidelity optimization procedure, and at least 25 for the VMC procedure) different
initializations of the parameters of the NQS, and we choose the one with the smallest infidelity on convergence.

is given by the fidelity F = 1− I. To quantify this for the
VMC solutions, we show the infidelities (Eq. (3)) of the
NQSs after the energy minimizations (as dashed lines)
in Fig 2(a,b), for different hidden layer densities α, and
lengths L = 8, 10. We find that the infidelities of the NQS
do not improve with α beyond a certain value for the VMC
results. To investigate this saturation of the infidelity fur-
ther, we also minimize the infidelity (Eq. (3)) with the
same NQS ansatz (see Methods V), while increasing α.
For the rest of the paper, we focus on the results of the
infidelity minimization procedure. We plot the converged
infidelities (as solid lines) in Fig. 2, for different sizes of
the BLBQ chain.

We observe that the converged infidelities, for the dif-
ferent phases, improve until a certain value of α and sat-
urate therafter, with some oscillations, for different sizes
of the chain. This coincides with our observations for the
case of energy minimization. Further, note that the NQS
for the AKLT point has the minimum infidelity for most
of the cases. This is likely due to the fact that the AKLT
state has the lowest entanglement (has an exact MPS re-
spresentation with bond dimension 2), among all other
phases. However, note that in the VMC solution (dashed
lines in Fig. 2(a,b)), the NQS for the AKLT point is not
the most accurate [49]. This could be due to the fact that
the AKLT Hamiltonian has a degenerate ground state (in
case of an open boundary condition; see supplementary
material sec. VI A), which makes the energy minimization
problematic.

As we want to study the representation power of the
NQS ansätze, we perform the infidelity minimization ex-
actly in order to exclude biases and artefacts originating
from the Monte Carlo sampling [50] in the optimization
procedure and in the accuracy of the NQS. In other words,
we compute all quantities during the infidelity minimiza-
tion procedure by a full summation over the relevant sub-
space of the Hilbert space.

Additionally, we check that the infidelity minimization
has converged well by inspecting the local infidelity land-
scape through the Hessian for L = 8 (see supplemen-
tary material VI C). Our solutions lie in a deep valley
(many large positive eigenvalues), which has a few in-
finitesimally small downward slopes (few very small neg-
ative eigenvalues) as commonly seen in the ML litera-
ture [51, 52].

In order to understand the saturation of the accuracy
of the NQS ansatz with an increase in α, we look at the
quantum geometric tensor (QGT) [29, 30]. As we shall
see in the next paragraph, the QGT gives a measure of
the relevant directions in the parameter space [31, 32].

Quantum Geometric Tensor (QGT) The QGT provides
a metric ds2 over the space of variational quantum states.
Starting from the Fubini-Study distance between two
such states associated with parameters θ and φ:

FS(ψθ,ψφ)= arccos


√√√√〈

ψθ

∣∣ψφ

〉〈
ψφ

∣∣ψθ

〉〈
ψθ

∣∣ψθ

〉〈
ψφ

∣∣ψφ

〉
 . (4)

One obtains, for an infinitesimal variation φ = θ+dθ, up
to second order in dθ:

ds2 =FS(ψθ,ψθ+δθ)2 = ∑
α,β

Gαβdθ∗αdθβ, (5)

In this expression, the QGT Gαβ reads [53]:

Gαβ =
〈
∂ψθ

∂θα

∣∣∣∣∂ψθ

∂θβ

〉
−

〈
∂ψθ

∂θα

∣∣∣∣ψθ

〉〈
ψθ

∣∣∣∣∂ψθ

∂θβ

〉
(6)

Let us note that the infidelity between two states differ-
ing by dθ is given by I ≃FS2. Hence, the QGT appears as
a metric in the second order expansion of the infidelity
between two infinitesimally close variational quantum
states. The QGT is hermitian, and its eigenvalues quan-
tify how much the FS distance changes when we move
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FIG. 3. This figure shows the rank of the quantum geometric tensor (QGT) after convergence of the infidelity minimization. The rank
is computed as the number of eigenvalues of the QGT which are greater than 10−16. (a), (b), (c) show the QGT ranks, after 120K
infidelity minimization steps, for the AFH, AKLT, and the two critical phases for the BLBQ chain (with open boundary condition),
with lengths L = 8, 10, 12 respectively.
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FIG. 4. This figure shows the spectra of the quantum geometric tensor (QGT) after convergence of the infidelity minimization. The
plots show the distribution of the normalized eigenvalues (w.r.t. the maximum eigenvalue) of the QGT, in log10 scale, after 120K
iterations of infidelity minimization on the spin-1 BLBQ chain of length L = 10 for four points in the BLBQ phase diagram (see
Fig. 1). Normalized eigenvalues with magnitudes greater than 10−16 (cutoff to compute the rank) are shown in the plots. The insets
show the cumulative distribution of the eigenvalues (no. of eigenvalues greater than the value on the x axis) for each case. The
dashed line in the inset marks the cutoff 10−16.
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infinitesimally along the corresponding eigenvectors. In
the vicinity of a local minimum of the infidelity w.r.t. the
true ground state (Eq. (3)), the eigenvectors of the QGT
with non-zero eigenvalues are the ones that change the
NQS ansatz away from that at the minimum. In con-
trast, the eigenvectors with zero eigenvalues are the re-
dundant directions that do not change the ansatz from
that at the minimum. Therefore, at convergence, the rank
of the QGT gives the number of relevant parameters that
the variational ansatz uses to represent a given quantum
state.

Note that when the wavefunction amplitudes are real
and positive, the QGT (Eq. (6)) takes the form

Gαβ =1
4

〈
∂ log pθ(n)

∂θα

∂ log pθ(n)
∂θβ

〉
− 1

4

〈
∂ log pθ(n)

∂θα

〉〈
∂ log pθ(n)

∂θβ

〉
= 1

4
Fαβ, (7)

where the averages are taken w.r.t. the Born probabil-
ity distribution pθ(n) over states |n〉, and F is the Fisher
information matrix (FIM) associated with the probability
distribution pθ(n). The FIM is obtained as a metric from
the second order expansion of the Kullback–Leibler diver-
gence, which is a measure of the proximity between two
probability distributions. In our case, the wavefunction
amplitudes are complex, and thus the QGT can be seen
as a generalization of the FIM to complex probability am-
plitudes.

Rank of the QGT. We compute the QGT at conver-
gence in the infidelity minimization procedure for each
case, and plot the rank as a function of α in Fig. 3. The
rank of the QGT saturates with α for chain lengths L = 8
and 10 (see Fig. 3(a,b)), suggesting that the optimized
NQS is unable to leverage the new parameters to im-
prove the approximation for the ground state, as we in-
crease α beyond a certain value. This is consistent with
the apparent saturation of the infidelities (Fig. 2) as we
increase α. Note that the limiting value of the rank is
higher for phases within the critical region than in the
Haldane phases, suggesting that the optimized NQS for
the critical phases has a larger number of relevant pa-
rameters. Specifically, we observe that the limiting rank
is the lowest for the AKLT state and highest for the criti-
cal region at tanθ = 2. This implies that the NQS for the
AKLT point utilizes the fewest parameters, reflecting the
fact that the wave-function at the AKLT state is inher-
ently the simplest in the phase diagram. We also remark
that the rank of the QGT for a particular phase, at fixed α,
increases as we increase the size of the chain. It should be
noted that the rank of the QGT for the BLBQ chain with
L = 12 (Fig. 3(c)) has not yet saturated with α for the four
phases, suggesting that the NQS is still adding relevant
parameters with an increase in α.

Spectrum of the QGT. Although the rank counts the
number of relevant directions, it does not describe how the
local metric of the FS distance evolves with an increase in
α. This can be characterized by the distribution of the
eigenvalues of the QGT. We plot the spectrum of the QGT,

for each solution with L = 10, as a histogram in Fig. 4,
where the eigenvalues of the QGT are normalized w.r.t.
the maximum eigenvalue. The bulk of the distribution
of the QGT eigenvalues eventually converges to a limit-
ing distribution while we increase α. As α increases, the
additional eigenvalues accumulate around numerical ze-
ros (< 10−16). The latter can be seen from the cumulative
distribution functions in the respective insets of Fig. 4,
which gives the number of eigenvectors with eigenvalues
greater than a particular value. This indeed confirms that
the NQS ansatz no longer utilizes the newly added di-
rections to represent the ground states, as suggested by
the saturation of the rank (in Fig. 3(b)). Note that the
QGT spectrum is strikingly different for the AKLT phase,
where the limiting distribution is multimodal with the
shortest maximum height and displays the fastest con-
vergence with α (around α = 16). This is consistent with
the fact that the limiting rank is the lowest for the AKLT
phase, and reaches a plateau earlier than other phases
(see Fig. 3(b)). We also see similar phenomena in the spec-
trum, and the rank of the QGT in case of the energy min-
imization (VMC), as seen in Figs. 8, 9 in the supplemen-
tary material sec. VI E.

IV. DISCUSSION

In summary, we have performed a large number of
numerical experiments to find ground states in various
phases of the spin-1 BLBQ chain using a 1-layer NQS
ansatz (Eq. (8)). We minimize both energy (Eq. (2)) and in-
fidelity (Eq. (3)). Increasing the hidden layer density α of
the network, we observe a crossover between two regimes:
at low densities, increasing α leads to higher accuracy, but
eventually we observe a threshold above which increasing
α does not lead to systematic improvements. This holds
true for both energy minimization (VMC) and infidelity
minimization procedures to optimize the NQS for repre-
senting various ground states of the spin-1 BLBQ model
(Eq. (1)). To address the dependency from random ini-
tial conditions, we perform optimizations with many ini-
tial states for the NQS, and choose the solution with the
lowest infidelity (Eq. (3)), for each case.

We investigated how the optimized NQS leverages the
increasing number of variational parameters by means
of the spectrum of the QGT. Our key finding is that
the dimension of the relevant manifold for the optimized
NQS, given by the rank of the QGT at convergence, sat-
urates around a given value for independent (energy or
infidelity) optimizations at different values of α for the
ansatz. This is consistent with the fact that the accu-
racy of the NQS ansatz ceases to improve on increasing
the width of the ansatz, since the increase in parameters
mostly contributes to an increase in locally redundant di-
rections in the parameter space, in the vicinity of the con-
verged solution. This asserts a limitation in the practical
representation ability of our NQS ansatz as the width of
the single hidden layer increases, and poses as an appar-
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ent hurdle for the NQS to reach the regime of universal
representability.

Our analysis of the QGT provides a general diagnosis
of the performance of an NQS ansatz, especially when
it fails to systematically improve the approximation for
the ground state on increasing the number of parameters
of the ansatz, i.e. in situations of a practical breakdown
of universal representability. The presence of a practical
breakdown of universal representability is consistent with
established findings in the ML literature which highlight
that a substantial number of directions in the parame-
ter space exhibit redundancy [20, 21]. This is in contrast
to the density matrix renormalization group algorithms,
with tensor network ansätze, where each variational pa-
rameter contributes to the entanglement entropy of the
variational ansatz [25].

Furthermore, the onset of such a practical breakdown
of universal representability might depend on the archi-
tecture of the NN ansatz. For instance, this might occur
earlier (w.r.t. the parameter count) in shallow NN ansätze
than in deeper NNs, given that deeper NNs poses a higher
representation ability [54]. In future studies, it would be
interesting to investigate this phenomenon for deep mul-
tilayer perceptrons and other NN architectures. It would
also be interesting to study this with optimization algo-
rithms based on the Newton methods, which promise to
avoid saddle points efficiently [51, 55], but can only be
implemented for smaller NNs. Besides, a compelling ap-
plication of our analysis lies in characterizing different
methods of encoding the input for a given NQS architec-
ture. This involves an inspection of the rank of the QGT
at initialization for different encodings, and choosing the
encoding with the highest rank of the QGT, which would
ensure that the chosen ansatz is the easiest to optimize.

To summarize the performance of our NQS ansatz
across the four phases of the BLBQ spin chain considered
in this work, we note that the NQS represents states in
the gapped Haldane phase with a lower limiting dimen-
sion of the relevant manifold in parameter space than in
the critical gapless phase. The NQS approximation for the
AKLT state requires the least number of relevant param-
eters, owing to the simple yet non-trivial entanglement
structure of the AKLT state. The NQS approximation for
the critical phase at tanθ = 2 is the worst in both energy
and infidelity minimization results, and has the largest
relevant manifold in the parameter space. It is interesting
to note, in contrast, that the ULS critical point at θ = π/4
is more accurately represented by our NQS ansatzthan
the critical region at tanθ = 2. This may be due to the fact
that the Hamiltonian at the ULS point has an enhanced
SU(3) symmetry [35, 48].

In conclusion, we believe that the emergence of a prac-
tical breakdown of universal representability shows that
practical calculations with NQS-based ansätze can dif-
fer considerably from the asymptotic regime addressed
by universal representation theorems. We have shown
that the spectrum of the QGT can diagnose the fact that,
in some cases additional parameters are completely ig-

nored by the variational optimization procedure. The
QGT shares the eigenvalues with the Neural Tangent
Kernel [17], which has a dimension equal to the number
of samples, and is hence easier to diagonalize when the
number of parameters is large. Therefore, the informa-
tion about the QGT spectrum can be accessed at a rea-
sonable computational cost even for large networks, and
could be integrated into an advanced optimization or reg-
ularization procedure in order to ensure the efficient us-
age of the network parameters.
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V. METHODS

We use a modified version of the RBM, adapted for spin-
1 systems [15], as the wavefunction ansätz (NQS) ψθ(σ)=∑

h exp[E (σ,h)], where

E (σ,h)=
L∑

i=1
aiσi +

L∑
i=1

A iσ
2
i +

M∑
i=1

L∑
j=1

wi jhiσ j

+
M∑

i=1

L∑
j=1

Wi jhiσ
2
j +

M∑
i=1

hibi (8)

is the energy function of the spin-1 RBM. Here θ =
{{ai}, {A i}, {bi}, {wi j}, {Wi j}} is the set of all 2L+ M +2ML
complex parameters of the spin-1 RBM, L is the number
of sites in the spin chain (no. of units in the visible layer),
M = αL is the number of units in the hidden layer, and
σ = {σi} denotes a spin-configuration on the lattice. Note
from Eq. (8) that the NQS ansatz given by the spin-1 RBM
is holomorphic, i.e. ψθ(σ) depends only on θ, and not on
θ∗.

We use this NQS ansatz (Eq. (8)) to represent the
ground states of the BLBQ model in different parameter
regimes. We use the infidelity measured w.r.t. the ex-
act ground state as the loss function, for optimizing our
NQS ansatz for most of our results. In addition, we also
perform variational Monte Carlo, where we optimize the
expectation value of the Hamiltonian, for a few cases.
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Infidelity Optimization

For the infidelity optimization, we use the loss function
given by the infidelity of the NQS w.r.t. the exact ground
state,

L = I = 1−
〈
ψθ

∣∣Ω〉〈
Ω

∣∣ψθ

〉〈
ψθ

∣∣ψθ

〉〈Ω|Ω〉 , (9)

where |Ω〉 is the exact ground state, and θ ∈CN . The loss
function is minimized by methods based on the stochastic
gradient descent algorithm, in which we use the conjugate
gradient of the loss function,

F = ∂L

∂θ∗
=−

〈
Ω

∣∣ψθ

〉〈
ψθ

∣∣ψθ

〉〈Ω|Ω〉 ∑
n
〈n|Ω〉 ∂ψ

∗
θ
(n)

∂θ∗

+
∣∣〈ψθ

∣∣Ω〉∣∣2〈
ψθ

∣∣ψθ

〉2 〈Ω|Ω〉
∑
n
ψθ(n)

∂ψ∗
θ
(n)

∂θ∗
. (10)

We compute the infidelity and the gradient exactly, by
summing over the complete basis of the total Sz = 0 sec-
tor of the Hilbert space. We use a combination of the
ADAM [56] and YOGI [57] optimizers for our gradient de-
scent optimization. More details of the optimization pro-
cedure are given in the supplementary material sec. VI B.

Variational Monte Carlo (VMC)

In the variational Monte Carlo (VMC) procedure, the loss
function is taken to be the expectation value of the Hamil-
tonian,

L = 〈H〉 =∑
n

pθ(n)
〈n|H ∣∣ψθ

〉〈
n
∣∣ψθ

〉 . (11)

Here |n〉 represents the basis states, and pθ(n) =
|ψθ(n)|2/

〈
ψθ

∣∣ψθ

〉
. We approximate the above sum by a

Monte Carlo sampling procedure, where we generate ba-
sis configurations as Markov chains by the Metropolis-
Hastings algorithm. The Metropolis-Hastings algorithm
proposes a new configuration n′, starting from n, and ac-
cepts it with probability

Pacc(n → n′)=min
{

1,
|ψθ(n′)|2 g(n|n′)
|ψθ(n)|2 g(n′|n)

}
, (12)

where g(n|n′) is the conditional probability of proposing
the configuration n, given n′.

The conjugate gradient of the loss function Eq. (11) is
given by

F = ∂L

∂θ∗
=∑

n
pθ(n)

[
∂ logψ∗

θ
(n)

∂θ∗
〈n|H ∣∣ψθ

〉
ψθ(n)

+ 〈H〉∂ logψ∗
θ
(n)

∂θ∗

]
, (13)

for a holomorphic wavefunction ansatz. The gradient in
the above equation is also estimated approximately by the

Monte Carlo procedure described above. We use stochas-
tic gradient descent (SGD), in combination with stochastic
reconfiguration (SR) [58, 59] for the energy minimization.
With SR, the parameters of the ansatz are updated as

θµ→ θµ−η
∑
ν

[G+ϵ1]−1
µν Fν, (14)

where G is the quantum geometric tensor (QGT), η is the
learning rate, and ϵ is a small regularization constant,
which is taken to be 10−3. More details of the optimiza-
tion procedure are given in the supplementary material
sec. VI B.
The energy minimization (VMC) with SGD+SR method,
and the infidelity minimization (with ADAM and YOGI
optimizers from the optax library [60]) were implemented
with the software library NetKet [61–64].
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VI. SUPPLEMENTARY MATERIAL

A. The AKLT state

The AKLT state, also known as a valence-bond
solid [42], is the ground state of the spin-1 BLBQ chain
for θ = arctan(1/3):

HAKLT =
N−1∑
i=1

J
[
Si ·Si+1 + 1

3
(Si ·Si+1)2

]
, (15)

where Si = (Six,Si y,Siz) is the spin-1 operator acting on
site i. The AKLT state is exactly known and can be repre-
sented by expressing the spin-1 particle by two auxiliary
spin-1/2 particles. The spin-1 computational basis can be
represented in terms of the triplet states formed with two
spin-1/2 particles:

|+〉 =ψ11 = |↑↑〉 , (16)

|0〉 =ψ12 = 1p
2

(|↑↓〉+ |↓↑〉)=ψ21, (17)

|−〉 =ψ22 = |↓↓〉 , (18)

where {|+〉 , |0〉 , |−〉} is the basis for the spin-1 system, and
{|↑〉 , |↓〉} is the spin-1/2 basis. Then, the AKLT state is
given by∣∣ΨAKLT(α, β)

〉= 2−(N−1)/2 ψαβ1ϵ
β1α2ψα2β2ϵ

β2α3 · · ·ψαiβiϵ
βiαi+1

×·· ·ψαN−1βN−1ϵ
βN−1αNψαNβ ,

(19)

where ϵ is the Levi-Civita tensor of rank 2, and repeated
indices imply a summation. Note that the AKLT state
Eq. (19) is written for the case of an open boundary con-
dition, and has two free spin-1/2 variables α, β which cor-
respond to the two outermost spin-1/2s on the chain. This
leads to a four-fold degeneracy of the AKLT state. In the
total Sz = 0 sector, the AKLT state is two-fold degener-
ate. It is interesting to note in the AKLT state that two
adjacent spin-1 variables are never aligned ferromagnet-
ically (both +s or both −s). This can be realized from
Eq. (19), given that the Levi-Civita tensor only has off-
diagonal terms. A broader consequence of this is that a +
(−) can only be followed by a 0 or a − (+), i.e. a state of
the form |+0000000000+〉 is not allowed. Whereas a typ-
ical state could take the form |00+0−+000−0+00−0〉,
which essentially has a Néel order when we remove all
0s. This is a consequence of a non-local order, character-
ized by the string order parameter

Oi j =< Siz eiπ
∑

i<k< j Skz S jz >, (20)

in the Haldane phase, which attains the maximum value
at the AKLT point.

Furthermore, the AKLT Hamiltonian Eq. (15) can be
written as a sum of projection operators into the spin-
2 subspace for every two neighboring sites, P̂S=2(i, i+1).

The projection operator can be written by inspecting the
eigenvalues of the operator X̂ = (Si +Si+1)2, S(S + 1) =
0, 2, 6 for S = 0, S = 1, S = 2 subspaces respectively. Note
that the eigenspaces of the operator X̂, are shared with
that of the projection operators. Therefore, we can write

P̂S=2(i, i+1)= 1
24

X̂(X̂−2)

= 1
2

Si ·Si+1 + 1
6

(Si ·Si+1)2 + 1
3

, (21)

where we have used the fact that X̂=S2
i +S2

i+1+2Si ·Si+1 =
4+2Si ·Si+1. As a consequence of Eq. (21), we can write
the AKLT Hamiltonian Eq. (15) as

HAKLT = 2J
N−1∑
i=1

P̂S=2(i, i+1)− 2J
3

(N −1) (22)

An interesting observation from Eq. (22) is that the AKLT
state has no two adjacent spin-1s living in the S = 2 sector,
so as to have the minimum energy. In the picture of the
auxiliary spin-1/2 particles, this leads to the formation of
singlet states (S = 0) between two spin-1/2 particles in the
adjacent sites.

Additionally, the AKLT state can be expressed exactly
as an MPS with the lowest non-trivial bond dimension
χ= 2 [45]:∣∣ΨAKLT(α,β)

〉=∑
|σ〉

A(σ1)i1
α A(σ2)i2

i1
· · ·A(σN )β

iN−1
|σ1,σ2, · · · ,σN〉 ,

(23)

where repeated indices imply a summation, |σi〉 denotes
the local computational basis for the spin-1 particle at site
i, with σi =+, 0, −, and

A(+) =
[

0
√

2
3

0 0

]
, A(0) =

[− 1p
3

0
0 1p

3

]
, A(−) =

[
0 0

−
√

2
3 0

]
.

(24)

α, β in Eq. (23) are the free indices, corresponding to the
two auxiliary spin-1/2s at the boundary for the case of an
open-boundary condition. The bond dimension of the re-
quired MPS to represent the AKLT state is just one unit
higher than that for the product states (which can be rep-
resented as MPSs with bond dimension χ= 1), making it
the simplest entangled quantum state.

B. Details of the energy (VMC) and infidelity
minimization

The evolution of the energy in the variational Monte
Carlo (VMC) procedure, for various phases of the spin-
1 bilinear-biquadratic (BLBQ) chain of length L = 8, is
shown in Fig. 5(a)-(e). The details of the computations
are given in table I. In Fig. 5(f), we plot the relative error
in the energy of the NQS (w.r.t. the true ground state en-
ergy), after convergence of the VMC procedure, as a func-
tion of α.



9

We observe that the relative error in the energy (calcu-
lated exactly in Fig. 5(f)) saturates beyond a certain value
of α for the four phases of the BLBQ model that we study
in this paper. This corroborates with the infidelities of the
optimized NQSs w.r.t. the exact ground states (dashed
lines in Fig. 2(a)), for the VMC optimization, which also
cease to improve beyond a certain α. Furthermore as we
discussed in the main text, this apparent saturation in
the accuracy of the NQS with the number of parameters of
the ansatz also reappears when we perform an infidelity
minimization exactly with the same ansatz.

L Model Symmetry
of NQS

MC
samples

Iterations Initial
states

8 AFH (θ =
0)

global
spin-flip

1000 5×104 (3×
104 for α=
8)

25 (100
for α =
8,12)

AKLT (θ =
arctan(1/3))

global
spin-flip

1000 5×104 (3×
104 for α=
8)

25 (100
for α =
8,12)

critical
(θ =π/4)

NA 1500 5×104 25

critical
(θ =
arctan(2))

NA 1500 5×104 25

10 AFH (θ =
0)

global
spin-flip

1250 6×104 (5×
104 for α=
12)

25 (70
for
α= 12)

AKLT (θ =
arctan(1/3))

global
spin-flip

1250 6×104 (5×
104 for α=
12)

25 (100
for α =
12)

critical
(θ =π/4)

NA 1900 6×104 25 (100
for α =
12)

critical
(θ =
arctan(2))

NA 1900 6×104 25 (94
for
α= 12)

TABLE I. Details of the VMC optimization for the spin-1 BLBQ
chain (with open boundary condition) of length L = 8, 10. The
NQS ansatz is given by the spin-1 RBM Eq. (8). The same
values are used for the simulations with all values of α (α =
4, 8, 12, 16, 20 for L = 8, and α = 4, 8, 12, 16, 20 for L = 10)
except when mentioned. All computations were done with the
symmetry constraint

∑L
i=1 Siz = 0. The learning rate for all op-

timizations was 1.5×10−3.

We show the infidelity optimization curves in Fig. 6, for
various phases of the spin-1 BLBQ chain with length L =
10. The details of the optimization are given in table II.

We impose a global spin-flip symmetry on the NQS an-
sätze for the AFH (θ = 0) and the AKLT (θ = arctan(1/3))
states as prescribed in ref. [65]:

ψθ(σ)= 1
2

[
ψθ(σ)+ψθ(−σ)

]
, (25)

for both infidelity and energy minimization procedures.
Here σ denotes a configuration of the spin-1s on the lat-
tice.

L Model Symmetry
of NQS

Iterations Initial
states

8, 10,
12

AFH (θ =
0)

global
spin-flip

1.2×105 10

AKLT (θ =
arctan(1/3))

global
spin-flip

1.2×105 10

critical
(θ =π/4)

NA 1.2×105 10

critical
(θ =
arctan(2))

NA 1.2×105 10

TABLE II. Details of the infidelity minimization procedure for
the spin-1 BLBQ chain (with open boundary condition) with
lengths L = 8, 10, and 12. The NQS ansatz is given by the spin-1
RBM Eq. (8). The values shown in the table are used for the
simulations with all values of α (α = 2, 4, 8, 12, 16 for L = 8,
α = 4, 8, 12, 16, 24, 28, 32, 36 for L = 10, and α = 4, 8, 12, 16
for L = 12). Note that all computations were done by a full sum-
mation over the subspace of the Hilbert space defined by the
symmetry constraint

∑L
i=1 Siz = 0. During the infidelity mini-

mization, first 3000 steps were performed with the ADAM algo-
rithm [56] with a learning rate 5×10−4, and the remaining min-
imization steps were performed with the YOGI algorithm [57]
with a learning rate 3×10−4.

C. Hessian of the infidelity loss function and its
relation to QGT

The loss function in Eq. (9) (or Eq. (11)) is a scalar
real valued function from CN to R, L : CN → R. It
is straightforward to see that the loss function depends
on both θ and θ∗, and hence is non-holomorphic. For
convenience while working with complex derivatives of
non-holomorphic functions, we use the following nota-
tions [66]:

θc =
[
θ

θ∗
]

,
∂

∂θc
= [

∂
∂θ

∂
∂θ∗

]
; θ,θ∗ ∈CN . (26)

Then, we can write the complex Hessian of the loss
function, following ref. [66], as

H=
(
∂

∂θc

)† ∂L

∂θc
(27)

=
 ∂2L
∂θ∗∂θ

∂2L
∂θ∗∂θ∗

∂2L
∂θ∂θ

∂2L
∂θ∂θ∗

 . (28)

The generic elements of the blocks (1,1) and (1,2) in the
above equation, when the loss function is given by the in-
fidelity Eq. 9, are given by
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VMC optimization curves for the four phases of the BLBQ chain with L = 8

FIG. 5. This figure shows the evolution of the energy of the NQS during the VMC procedure for AFH, AKLT and two critical phases
of the spin-1 BLBQ chain (with open boundary condition) with L=8 (a, b, c, d, e for α= 4, 8, 12, 16, 20 respectively), and the relative
errors in the converged energies with α (f). Note that the energy of the converged NQS is calculated exactly (by a full summation
over the relevant subspace of the Hilbert space), to exclude biases from the Monte Carlo sampling. However, all quantities during
the VMC optimization procedure are computed approximately by the Monte Carlo sampling procedure.
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Infidelity minimization curves for the four phases of the BLBQ chain with L = 10

FIG. 6. This figure shows the evolution of the infidelity of the NQS w.r.t. the true ground state during the infidelity minimization
procedure for the AFH, AKLT and two critical phases of the spin-1 BLBQ chain (with open boundary condition) with L=10. Each
subplot shows the optimization curves for a different density (α) of the spin-1 RBM (Eq. (8)), and the corresponding insets show the
optimization curves for the last 2000 iterations.
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Spectrum of the Hessian, for the spin-1 BLBQ chain with L=8

FIG. 7. This figure shows the distribution of the normalized eigenvalues (w.r.t. the maximum eigenvalue) of the Hessian, in log10
scale, after 1.2× 105 iterations of infidelity minimization on the spin-1 BLBQ chain (with open boundary condition) with length
L = 8 for the four points (a, b, c, d) in the BLBQ phase diagram (see Fig. 1). The left panel of each subplot shows the distribution
of (normalized magnitudes) of the negative eigenvalues, and the right panel of each subplot shows the distribution of the positive
eigenvalues of the Hessian. In each subplot, the x-axis of the right panel increases from left to right, and that of the left panels
increases from right to left.

∂2L

∂θ∗i ∂θ j
=−

〈
∂ψθ
∂θi

∣∣∣Ω〉〈
Ω

∣∣∣ ∂ψθ∂θ j

〉
〈
ψθ

∣∣ψθ

〉〈Ω|Ω〉 +
〈
ψθ

∣∣Ω〉〈
Ω

∣∣∣ ∂ψθ∂θ j

〉
〈
ψθ

∣∣ψθ

〉2 〈Ω|Ω〉

〈
∂ψθ

∂θi

∣∣∣∣ψθ

〉
+

〈
∂ψθ
∂θi

∣∣∣Ω〉〈
Ω

∣∣ψθ

〉
〈
ψθ

∣∣ψθ

〉2 〈Ω|Ω〉

〈
ψθ

∣∣∣∣∂ψθ

∂θ j

〉

+
∣∣〈ψθ

∣∣Ω〉∣∣2〈
ψθ

∣∣ψθ

〉2 〈Ω|Ω〉

〈
∂ψθ

∂θi

∣∣∣∣∂ψθ

∂θ j

〉
−2

∣∣〈ψθ

∣∣Ω〉∣∣2〈
ψθ

∣∣ψθ

〉3 〈Ω|Ω〉

〈
ψθ

∣∣∣∣∂ψθ

∂θ j

〉〈
∂ψθ

∂θi

∣∣∣∣ψθ

〉
, (29)

∂2L

∂θ∗i ∂θ
∗
j
=−

〈
∂2ψθ
∂θi∂θ j

∣∣∣Ω〉〈
Ω

∣∣ψθ

〉
〈
ψθ

∣∣ψθ

〉〈Ω|Ω〉 +

〈
∂ψθ
∂θ j

∣∣∣Ω〉〈
Ω

∣∣ψθ

〉
〈
ψθ

∣∣ψθ

〉2 〈Ω|Ω〉

〈
∂ψθ

∂θi

∣∣∣∣ψθ

〉
+

〈
∂ψθ
∂θi

∣∣∣Ω〉〈
Ω

∣∣ψθ

〉
〈
ψθ

∣∣ψθ

〉〈Ω|Ω〉
〈
∂ψθ

∂θ j

∣∣∣∣ψθ

〉

+
∣∣〈ψθ

∣∣Ω〉∣∣2〈
ψθ

∣∣ψθ

〉2 〈Ω|Ω〉

〈
∂2ψθ

∂θi∂θ j

∣∣∣∣ψθ

〉
−2

∣∣〈ψθ

∣∣Ω〉∣∣2〈
ψθ

∣∣ψθ

〉3 〈Ω|Ω〉

〈
∂ψθ

∂θ j

∣∣∣∣ψθ

〉〈
∂ψθ

∂θi

∣∣∣∣ψθ

〉
(30)

respectively. The blocks (1,1) and (2,2) are complex
conjugates of each other, and are both Hermitian. The
blocks (1,2) and (2,1) are Hermitian conjugates (as well
as complex conjugates) of each other. As a result, the
complex Hessian matrix Eq. (28) is Hermitian.

It is interesting to note that when we are at the mini-

mum of the infidelity landscape, i.e. when |Ω〉 = ∣∣ψθ

〉
,

∂2L

∂θ∗i ∂θ j
=

〈
∂ψθ
∂θi

∣∣∣ ∂ψθ∂θ j

〉
〈
ψθ

∣∣ψθ

〉 −

〈
∂ψθ
∂θi

∣∣∣ψθ

〉〈
ψθ

∣∣∣ ∂ψθ∂θ j

〉
〈
ψθ

∣∣ψθ

〉2 =Gi j,

which is the quantum geometric tensor (QGT), and

∂2L

∂θ∗i ∂θ
∗
j
= ∂2L

∂θi∂θ j
= 0.
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In this case, the Hessian becomes

H||Ω〉=|ψθ〉 =
[

G 0

0 G∗

]
, (31)

Hence, at the minimum of the infidelity landscape, the
eigenvalues of the Hessian (of the infidelity loss function)
are the same as that of the quantum geometric tensor
(QGT), but with a degeneracy 2.

D. Spectra of the Hessian for infidelity minimization on
the BLBQ chain with L = 8

We plot the spectra of the Hessian (Eq. (31)) as his-
tograms in Fig. 7, at the end of the infidelity minimiza-
tion for the four phases of the BLBQ chain (Fig. 1) with
length L = 8. Eigenvalues are normalized w.r.t. the max-
imum eigenvalue. The positive and negative eigenvalues
are shown separately in the subplots of Fig. 7 for clarity
on the nature of the landscape around the solution.

We observe that the positive eigenvalues dominate
around the converged NQSs, for all the phases that we
studied. The magnitudes of the negative eigenvalues are
smaller than the largest positive eigenvalue at most by a
factor ∼ 10−6. This suggests that we have converged rea-
sonably in a valley with steep positive curvatures along
most directions (for all values of α = 2, 4, 8, 12, 16), and
only a few almost flat directions (with very small negative
curvatures).

E. Spectra of the QGT for VMC computations on the
BLBQ chain with L = 8

We plot the spectra of the QGT (Eq. (6)), as histograms
in Fig. 8 at the end of the energy minimization (VMC)
procedure for the four phases of the BLBQ chain (Fig. 1)
with length L = 8, along with the cumulative distributions
in the respective insets. We normalize the eigenvalues of
the QGT w.r.t. the maximum eigenvalue for each case.

We observe that the distributions eventually converge
to a limiting one as we increase α. As we further keep
increasing α after the distributions converge, we only
add eigenvalues which are essentially numerical zeros (<
10−16), signifying redundant directions in the parameter
space. This reiterates our observation from the QGT at
the end of the infidelity minimization procedure (Fig. 4),
that the NQS stops using the newly added parameters
to represent the ground states more accurately. Further-
more, the distribution of the QGT converges at the small-
est α for the AKLT state, as we also saw from the infidelity
minimization results.

We also plot the rank of the QGT in Fig. 9 for the en-
ergy minimization results on the BLBQ chain with L = 8,
and L = 10. The rank of the QGT for all phases at L = 8,
saturates as expected from the spectra in Fig. 8, confirm-
ing the presence of redundant directions in the parameter
space.

Therefore, we conclude that the NQS ansatz given by
the spin-1 RBM (Eq. (8)), does not efficiently use all of its
parameters as we increase the width of the network, both
in cases of energy and infidelity minimization.
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Spectrum of the QGT after convergence of VMC for the spin-1 BLBQ chain with L=8

FIG. 8. This figure shows the distribution of the normalized eigenvalues (w.r.t. the maximum eigenvalue) of the QGT, in log10 scale,
after the convergence of the VMC procedure on the spin-1 BLBQ chain (with open boundary condition) with length L = 8 for the (a)
AFH, (b) AKLT, and (c,d) two critical phases in the BLBQ phase diagram (see Fig. 1). Computations were done starting with atleast
25 different initializations of the NQS ansatz, and the solution with the best infidelity was chosen. The plots show normalized
eigenvalues with magnitudes greater than 10−16, which is taken as a cutoff. The eigenvalues below this cutoff are considered
numerical zeros. Note that while the VMC procedure involved MC sampling for computing the energies, gradients, and the QGT to
implement the stochastic reconfiguration method, we compute the QGT at the end of the optimization exactly by a full summation
over the relevant subspace of the Hilbert space. The insets show the cumulative distribution of the eigenvalues (no. of eigenvalues
greater than the value on the x axis) for each case. The dashed line in the inset marks the cutoff 10−16.
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Rank of the QGT, for VMC results on the spin-1 BLBQ chain

FIG. 9. This figure shows the rank of the QGT after the convergence of the VMC procedure on the spin-1 BLBQ chain (with open
boundary condition) with lengths (a) L = 8, and (b) L = 10 for the four phases in the BLBQ phase diagram (see Fig. 1). The rank is
computed by using a cutoff of 10−16 in the eigenvalues of the QGT.
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