Efficiency of neural quantum states in light of the quantum geometric tensor
Sidhartha Dash, Filippo Vicentini, Michel Ferrero, Antoine Georges

To cite this version:
Sidhartha Dash, Filippo Vicentini, Michel Ferrero, Antoine Georges. Efficiency of neural quantum states in light of the quantum geometric tensor. 2024. hal-04438272

HAL Id: hal-04438272
https://hal.science/hal-04438272
Preprint submitted on 6 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Efficiency of neural quantum states in light of the quantum geometric tensor

Sidhartha Dash, 1 Filippo Vicentini, 2, 1 Michel Ferrero, 2, 1 and Antoine Georges 1, 3, 2, 4

1 Collège de France, Université PSL, 11 place Marcelin Berthelot, 75005 Paris, France
2 CPHT, CNRS, École Polytechnique, IP Paris, F-91128 Palaiseau, France.
3 Center for Computational Quantum Physics, Flatiron Institute, New York, New York, 10010, USA.
4 DQMP, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève, Switzerland.

(Dated: February 5, 2024)

Neural quantum state (NQS) ansätze have shown promise in variational Monte Carlo algorithms by their theoretical capability of representing any quantum state. However, the reason behind the practical improvement in their performance with an increase in the number of parameters is not fully understood. In this work, we systematically study the efficiency of restricted Boltzmann Machines (RBMs) to represent the ground states in different phases of the spin-1 bilinear-biquadratic model, as the hidden layer density \(a\) increases. We train our ansatz by minimizing two different loss functions: 1) energy, and 2) infidelity of the NQS ansatz w.r.t. that of the exact ground state. We observe that the accuracy of our ansatz saturates with \(a\) in both cases. We demonstrate that this can be explained by looking at the spectrum of the quantum geometric tensor (QGT). We find that the rank of the QGT saturates beyond a certain \(a\), and we emphasize that it corresponds to the dimension of the relevant manifold for an optimized NQS. This provides a useful diagnostics for the practical representation power of an NQS ansatz.

I. INTRODUCTION

Recent years have seen an immense growth in the use of machine learning (ML) methods in the field of quantum many-body physics. Central to this intersection are Neural Quantum States (NQSs), which are currently revolutionizing Variational Monte Carlo (VMC) approaches and related applications [1][8]. Their success relies on the expressivity of Neural-Networks (NNs), which have the theoretical capacity to represent any state, with a large enough number of parameters. This is formalized by so called (i) universal representation theorems, asserting that the approximation error inherent in a neural network (and by extension, in an NQS) can approach zero asymptotically as one increases the network's width or depth, contingent on locating the global minimum of the loss function [9][12]. Additionally, it is well-understood in the standard machine learning context that (ii) increasing the number of parameters beyond the over-parameterization limit leads to a smoother loss landscape and faster convergence [13][14].

Building on those principles, numerous variational studies have increased the width or depth of NNs in order to check convergence in calculations where the ground state is found by energy minimization [1][15][17]. The most striking example is given by Fig. 2 of ref. [17] where convergence to numerical precision is achieved by gradually increasing the number of parameters of a CNN-ResNet from \(10^4\) to \(2 \times 10^5\). This approach is quite general and is also employed when simulating the real-time dynamics [13], and the steady-state in open quantum systems [5][19].

However, exceptions to this rule do emerge in practical calculations, i.e. instances in which an NQS fails to become more accurate as the number of parameters increases. We will call this situation a practical breakdown of universal representability. We stress that this is not in opposition to the representation theorems, which are theoretical concepts valid only when the global minimum can be found, in the limit of a sufficiently large number of parameters. This practical breakdown of universal representability, given a specific minimization algorithm, might happen either because the global minimas cannot be found with a reasonable computational budget, or because the additional parameters cannot be used effectively even when the minimization algorithm has converged.

Moreover, it is unclear what the additional parameters encode once the optimization has converged. Several results in standard ML tasks [20][22], and Variational Quantum Algorithms [23] document the existence of redundant directions in the parameter space, suggesting that the encodings are locally highly degenerate. This is in clear opposition to tensor networks and matrix product states in particular, where increasing the bond dimension is linked with the increase in the maximal entanglement entropy of the state [24][25]. Instead, while it has been shown that even simple NQSs can encode states with arbitrary entanglement [26][28], we do not know what states NQSs with a finite number of parameters cannot encode. The role of parameters in an NQS and their relationship to the overall accuracy of a calculation is therefore unclear. And while in some cases it is possible to invoke some theorems as an explanation for the effectiveness of increasing the number of parameters, we still do not understand what happens in presence of a practical breakdown of universal representability.

Nevertheless, it is possible to quantify the role of parameters in an NQS by looking at the Quantum Geometric Tensor (QGT), which is a special case of the Fisher information matrix (FIM), defined in the context of variational wavefunctions [29][30]. A few studies have used the QGT to define an effective dimension of a variational ansatz, and to identify redundant directions in the parameter space [31][32]. This can be used in the case of a prac-
tical breakdown of universal representability to identify whether it is caused by the inefficiency of the NQS to use the newly added parameters.

In this work, we investigate such a scenario in a simple setting: the search for the ground state of a one-dimensional quantum spin model. We choose the spin-1 bilinear-biquadratic (BLBQ) model, which contains a diverse set of phases including the gapped Haldane phase, and a gapless extended critical phase. Our VMC results do not show a systematic improvement in the converged infidelities/energies upon increasing \(a \), for various phases of the BLBQ model. This contradicts the usual expectation that the accuracy of the ansatz should improve as we progress towards the limit where universal representation theorems hold. With this observation, we perform a conceptually simpler task of optimizing the infidelity of the same NQS ansatz w.r.t. the true ground state, as the loss function, to directly investigate the representation ability of the ansätze while increasing the density of the NN. We use an NQS ansatz given by a modified restricted Boltzmann machine (see supplementary material [VI] for spin-1 systems [15]). The optimization of the infidelity is done by computing the infidelity and its gradient exactly to exclude biases induced from sampling in the Monte Carlo procedure. We demonstrate that the rank and spectrum of the QGT provide very useful insights into the number of relevant parameters that are used in practice to represent the wave-function, and how the network makes uses of these parameters as its size is increased.

II. THE BILINEAR BIQUADRATIC SPIN-1 CHAIN

Model. The spin-1 bilinear-biquadratic (BLBQ) model in one dimension is defined by the Hamiltonian:

\[
H = \sum_i J \left[S_i \cdot S_{i+1} + \tan(\theta)(S_i \cdot S_{i+1})^2 \right].
\]

(1)

The model is parametrized by an angular variable \(\theta \), and \(S_i = (S_{ix}, S_{iy}, S_{iz}) \) is the spin operator acting on the local spin-1 Hilbert space at site \(i \). The above Hamiltonian has a gapped Haldane phase \([33,34]\) for \(-\pi/4 < \theta < \pi/4 \), an extended critical phase \([35,39]\) for \(\pi/4 \leq \theta < \pi/2 \), a ferromagnetic phase for \(\pi/2 \leq \theta < 5\pi/4 \), and a dimerized phase for \(-3\pi/4 < \theta < -\pi/4 \) \([40,41]\) (Fig. 1). We focus on the Haldane phase and the extended critical phase in this work. The Haldane phase describes the isotropic Heisenberg antiferromagnet at \(\theta = 0 \). It is characterized by a hidden topological order, which is the strongest for the Affleck-Kennedy-Lieb-Tasaki (AKLT) state \([42,44]\) at \(\theta = \arctan(1/3) \). The AKLT state is a valence-bond state, which can be represented by two spin-1/2 particles at each site, forming singlets with the spins of the neighboring sites (see supplementary material sec. [VI.A]). The AKLT state has an exact matrix product state (MPS) representation with bond dimension 2 \([45]\). It is also the state that has the lowest bipartite entanglement in comparison to other values of \(\theta \) \([46]\). The Haldane phase is gapped and has a ground state with an exponentially decaying antiferromagnetic spin-spin correlation in the thermodynamic limit. Up to the AKLT point, the correlation function behaves as \(\langle S_{ij}^a S_{ik}^a \rangle \approx (-1)^i \exp(-j/\xi) / \sqrt{2} \) with a correlation length \(\xi = 1/\ln(3) \) for the AKLT state. For \(\arctan(1/3) < \theta < \pi/4 \), the modulation wave-vector shifts away from \(k = \pi \) to reach \(k = 2\pi/3 \) at \(\theta = \pi/4 \). The Haldane gap closes at \(\theta = \pi/4 \), marking a critical point, known as the Uimin-Lai-Sutherland (ULS) point \([37,38,47]\), across a Berezinskii-Kosterlitz-Thouless (BKT) transition \([39,48]\).

At this point, the model has an exact SU(3) symmetry and is integrable. Its low-energy physics is described by the Wess-Zumino-Witten (SU(3) \(\kappa = 1 \)) conformal field theory \([39,43,48]\). The model remains gapless in the thermodynamic limit throughout the region \(\pi/4 \leq \theta < \pi/2 \). In this phase, the dominant correlations are of quadrupolar nature, with wavevector \(k = \pm 2\pi/3 \) and decay as a power law with exponent \(\eta = 4/3 \) \([35,39]\).

![FIG. 1. Phase diagram of the spin-1 bilinear-biquadratic (BLBQ) model. We perform infidelity (Eq. (3)) minimization, and energy (Eq. (2)) minimization with an NQS ansatz given by a modified RBM for spin-1 models \([15]\) described in Methods [V] at the four marked points in the phase diagram.](image)

III. RESULTS

In this work, we search for the NQS approximations of the ground states in the Haldane and the critical phases of the BLBQ model by minimizing two loss functions: 1) the energy, using the VMC algorithm,

\[
E = \langle H \rangle = \sum_n p_\theta(n) \frac{\langle n | H | \psi_\theta \rangle}{\langle n | \psi_\theta \rangle},
\]

(2)

and 2) the infidelity with respect to the exact ground state \(| \Omega \rangle \) (see Methods [V] for more details),

\[
I = 1 - \frac{\langle \psi_\theta | \Omega \rangle \langle \Omega | \psi_\theta \rangle}{\langle \psi_\theta | \psi_\theta \rangle \langle \Omega | \Omega \rangle}.
\]

(3)

Here \(| \psi_\theta \rangle = \sum_n \psi_\theta(n) | n \rangle \) is the NQS and \(p_\theta(n) = | \langle \psi_\theta(n) \rangle |^2 / \langle \psi_\theta | \psi_\theta \rangle \) is the probability distribution over states \(| n \rangle \) in the computational basis. The degree to which the NQS ansatz represents the true ground state
Bilinear Biquadratic (BLBQ) chain of length \(L \), lengths in Fig 2(a,b), for different hidden layer densities \(NQS \) after the energy minimizations (as dashed lines) VMC solutions, we show the infidelities (Eq. (3)) of the modified RBM for spin-1 systems [15] (see Methods V). The optimization of the NQS for a given model, for a given size \(L \) and a given \(\alpha \) is done starting from few (10 for the infidelity optimization procedure, and at least 25 for the VMC procedure) different initializations of the parameters of the NQS, and we choose the one with the smallest infidelity on convergence.

Additionally, we check that the infidelity minimization has converged well by inspecting the local infidelity landscape through the Hessian for \(L = 8 \) (see supplementary material VI C). In other words, we compute all quantities during the infidelity minimization procedure by a full summation over the relevant subspace of the Hilbert space.

As we observe that the converged infidelities, for the different phases, improve until a certain value of \(\alpha \) and saturate thereafter, with some oscillations, for different sizes of the chain. This coincides with our observations for the case of energy minimization. Further, note that the NQS for the AKLT point has the minimum infidelity for most of the cases. This is likely due to the fact that the AKLT state has the lowest entanglement (has an exact MPS representation with bond dimension 2), among all other phases. However, note that in the VMC solution (dashed lines in Fig. 2(a,b)), the NQS for the AKLT point is not the most accurate [49]. This could be due to the fact that the AKLT Hamiltonian has a degenerate ground state (in case of an open boundary condition; see supplementary material sec. VI A), which makes the energy minimization problematic.

As we want to study the convergence power of the NQS ansätze, we perform the infidelity minimization exactly in order to exclude biases and artefacts originating from the Monte Carlo sampling [50] in the optimization procedure and in the accuracy of the NQS. In other words, we compute all quantities during the infidelity minimization procedure by a full summation over the relevant subspace of the Hilbert space.

Quantum Geometric Tensor (QGT) The QGT provides a metric \(ds^2 \) over the space of variational quantum states. Starting from the Fubini-Study distance between two such states associated with parameters \(\theta \) and \(\phi \):

\[
FS(\psi_\theta, \psi_\phi) = \arccos \left(\frac{\langle \psi_\theta | \psi_\phi \rangle \langle \psi_\phi | \psi_\theta \rangle}{\langle \psi_\theta | \psi_\theta \rangle \langle \psi_\phi | \psi_\phi \rangle} \right).
\] (4)

One obtains, for an infinitesimal variation \(\phi = \theta + d\theta \), up to second order in \(d\theta \):

\[
ds^2 = FS(\psi_\theta, \psi_{\theta+d\theta})^2 = \sum_{\alpha, \beta} G_{\alpha\beta} d\theta_\alpha d\theta_\beta, \] (5)

In this expression, the QGT \(G_{\alpha\beta} \) reads [53]:

\[
G_{\alpha\beta} = \left\langle \frac{\partial \psi_\theta}{\partial \theta_\alpha} \left| \frac{\partial \psi_\theta}{\partial \theta_\beta} \right| \psi_\theta \right\rangle - \left\langle \frac{\partial \psi_\theta}{\partial \theta_\alpha} \right\rangle \left\langle \frac{\partial \psi_\theta}{\partial \theta_\beta} \right\rangle \left\langle \psi_\theta | \psi_\theta \rangle \right\rangle.
\] (6)

Let us note that the infidelity between two states differing by \(d\theta \) is given by \(I = FS^2 \). Hence, the QGT appears as a metric in the second order expansion of the infidelity between two infinitesimally close variational quantum states. The QGT is hermitian, and its eigenvalues quantify how much the FS distance changes when we move...
Rank of the Quantum Geometric tensor (QGT), for the spin-1 Bilinear Biquadratic chain

(a) L=8
AFH (= 0)
AKLT (= arctan(1/3))
critical point (= \pi/4)
critical region (= arctan(2))

(b) L=10

(c) L=12

FIG. 3. This figure shows the rank of the quantum geometric tensor (QGT) after convergence of the infidelity minimization. The rank is computed as the number of eigenvalues of the QGT which are greater than 10^{-16}. (a), (b), (c) show the QGT ranks, after 120K infidelity minimization steps, for the AFH, AKLT, and the two critical phases for the BLBQ chain (with open boundary condition), with lengths $L = 8, 10, 12$ respectively.

Spectrum of the QGT, for spin-1 Bilinear-Biquadratic chain with L=10

(a) AFH (= 0)

(b) AKLT (= arctan(1/3))

(c) critical point (= \pi/4)

(d) critical region (= arctan(2))

FIG. 4. This figure shows the spectra of the quantum geometric tensor (QGT) after convergence of the infidelity minimization. The plots show the distribution of the normalized eigenvalues (w.r.t. the maximum eigenvalue) of the QGT, in log$_{10}$ scale, after 120K iterations of infidelity minimization on the spin-1 BLBQ chain of length $L = 10$ for four points in the BLBQ phase diagram (see Fig. 1). Normalized eigenvalues with magnitudes greater than 10^{-16} (cutoff to compute the rank) are shown in the plots. The insets show the cumulative distribution of the eigenvalues (no. of eigenvalues greater than the value on the x axis) for each case. The dashed line in the inset marks the cutoff 10^{-16}.
in the vicinity of a local minimum of the infidelity w.r.t. the true ground state (Eq. (3)), the eigenvectors of the QGT with non-zero eigenvalues are the ones that change the NQS ansatz away from that at the minimum. In contrast, the eigenvectors with zero eigenvalues are the redundant directions that do not change the ansatz from that at the minimum. Therefore, at convergence, the rank of the QGT gives the number of relevant parameters that the variational ansatz uses to represent a given quantum state.

Note that when the wavefunction amplitudes are real and positive, the QGT (Eq. (6)) takes the form

$$G_{\alpha\beta} = \frac{1}{4} \left< \frac{\partial \log p_\alpha(n)}{\partial \theta_\alpha} \frac{\partial \log p_\beta(n)}{\partial \theta_\beta} \right> - \frac{1}{4} \left< \frac{\partial \log p_\alpha(n)}{\partial \theta_\alpha} \right> \left< \frac{\partial \log p_\beta(n)}{\partial \theta_\beta} \right> = \frac{1}{4} F_{\alpha\beta}, \quad (7)$$

where the averages are taken w.r.t. the Born probability distribution $p_\alpha(n)$ over states $|n\rangle$, and F is the Fisher information matrix (FIM) associated with the probability distribution $p_\alpha(n)$. The FIM is obtained as a metric from the second order expansion of the Kullback–Leibler divergence, which is a measure of the proximity between two probability distributions. In our case, the wavefunction amplitudes are complex, and thus the QGT can be seen as a generalization of the FIM to complex probability amplitudes.

Rank of the QGT. We compute the QGT at convergence in the infidelity minimization procedure for each case, and plot the rank as a function of α in Fig. 3. The rank of the QGT saturates with α for chain lengths $L = 8$ and 10 (see Fig. 3(a,b)), suggesting that the optimized NQS is unable to leverage the new parameters to improve the approximation for the ground state, as we increase α beyond a certain value. This is consistent with the apparent saturation of the infidelities (Fig. 2) as we increase α. Note that the limiting value of the rank is higher for phases within the critical region than in the Haldane phases, suggesting that the optimized NQS for the critical phases has a larger number of relevant parameters. Specifically, we observe that the limiting rank is the lowest for the AKLT state and highest for the critical region at $\tan \theta = 2$. This implies that the NQS for the AKLT point utilizes the fewest parameters, reflecting the fact that the wave-function at the AKLT state is inherently the simplest in the phase diagram. We also remark that the rank of the QGT for a particular phase, at fixed α, increases as we increase the size of the chain. It should be noted that the rank of the QGT for the BLBQ chain with $L = 12$ (Fig. 3(c)) has not yet saturated with α for the four phases, suggesting that the NQS is still adding relevant parameters with an increase in α.

Spectrum of the QGT. Although the rank counts the number of relevant directions, it does not describe how the local metric of the FS distance evolves with an increase in α. This can be characterized by the distribution of the eigenvalues of the QGT. We plot the spectrum of the QGT, for each solution with $L = 10$, as a histogram in Fig. 4, where the eigenvalues of the QGT are normalized w.r.t. the maximum eigenvalue. The bulk of the distribution of the QGT eigenvalues eventually converges to a limiting distribution while we increase α. As α increases, the additional eigenvalues accumulate around numerical zeros ($< 10^{-16}$). The latter can be seen from the cumulative distribution functions in the respective insets of Fig. 4, which gives the number of eigenvectors with eigenvalues greater than a particular value. This indeed confirms that the NQS ansatz no longer utilizes the newly added directions to represent the ground states, as suggested by the saturation of the rank (in Fig. 3(b)). Note that the QGT spectrum is strikingly different for the AKLT phase, where the limiting distribution is multimodal with the shortest maximum height and displays the fastest convergence with α (around $\alpha = 16$). This is consistent with the fact that the limiting rank is the lowest for the AKLT phase, and reaches a plateau earlier than other phases (see Fig. 3(b)). We also see similar phenomena in the spectrum, and the rank of the QGT in case of the energy minimization (VMC), as seen in Figs. 8, 9 in the supplementary material sec. VI E.

IV. DISCUSSION

In summary, we have performed a large number of numerical experiments to find ground states in various phases of the spin-1 BLBQ chain using a 1-layer NQS ansatz (Eq. (5)). We minimize both energy (Eq. (2)) and infidelity (Eq. (3)). Increasing the hidden layer density α of the network, we observe a crossover between two regimes: at low densities, increasing α leads to higher accuracy, but eventually we observe a threshold above which increasing α does not lead to systematic improvements. This holds true for both energy minimization (VMC) and infidelity minimization procedures to optimize the NQS for representing various ground states of the spin-1 BLBQ model (Eq. (1)). To address the dependency from random initial conditions, we perform optimizations with many initial states for the NQS, and choose the solution with the lowest infidelity (Eq. (3)), for each case.

We investigated how the optimized NQS leverages the increasing number of variational parameters by means of the spectrum of the QGT. Our key finding is that the dimension of the relevant manifold for the optimized NQS, given by the rank of the QGT at convergence, saturates around a given value for independent (energy or infidelity) optimizations at different values of α for the ansatz. This is consistent with the fact that the accuracy of the NQS ansatz ceases to improve on increasing the width of the ansatz, since the increase in parameters mostly contributes to an increase in locally redundant directions in the parameter space, in the vicinity of the converged solution. This asserts a limitation in the practical representation ability of our NQS ansatz as the width of the single hidden layer increases, and poses as an appa-
ent hurdle for the NQS to reach the regime of universal representability.

Our analysis of the QGT provides a general diagnosis of the performance of an NQS ansatz, especially when it fails to systematically improve the approximation for the ground state on increasing the number of parameters of the ansatz, i.e., in situations of a practical breakdown of universal representability. The presence of a practical breakdown of universal representability is consistent with established findings in the ML literature which highlight that a substantial number of directions in the parameter space exhibit redundancy \[20,21\]. This is in contrast to the density matrix renormalization group algorithms, with tensor network ansätze, where each variational parameter contributes to the entanglement entropy of the variational ansatz \[25\].

Furthermore, the onset of such a practical breakdown of universal representability might depend on the architecture of the NN ansatz. For instance, this might occur earlier (w.r.t. the parameter count) in shallow NN ansätze than in deeper NNs, given that deeper NNs pose a higher representation ability \[54\]. In future studies, it would be interesting to investigate this phenomenon for deep multilayer perceptrons and other NN architectures. It would also be interesting to study this with optimization algorithms based on the Newton methods, which promise to avoid saddle points efficiently \[51,55\], but can only be implemented for smaller NNs. Besides, a compelling application of our analysis lies in characterizing different methods of encoding the input for a given NN architecture. This involves an inspection of the rank of the QGT at initialization for different encodings, and choosing the encoding with the highest rank of the QGT, which would ensure that the chosen ansatz is the easiest to optimize.

To summarize the performance of our NQS ansatz across the four phases of the BLBQ spin chain considered in this work, we note that the NQS represents states in the gapped Haldane phase with a lower limiting dimension of the relevant manifold in parameter space than in the critical gapless phase. The NQS approximation for the AKLT state requires the least number of relevant parameters, owing to the simple yet non-trivial entanglement structure of the AKLT state. The NQS approximation for the critical phase at \(\tan \theta = 2\) is the worst in both energy and infidelity minimization results, and has the largest relevant manifold in the parameter space. It is interesting to note, in contrast, that the ULS critical point at \(\theta = \pi/4\) is more accurately represented by our NQS ansatz than the critical region at \(\tan \theta = 2\). This may be due to the fact that the Hamiltonian at the ULS point has an enhanced SU(3) symmetry \[35,48\].

In conclusion, we believe that the emergence of a practical breakdown of universal representability shows that practical calculations with NQS-based ansätze can differ considerably from the asymptotic regime addressed by universal representation theorems. We have shown that the spectrum of the QGT can diagnose the fact that, in some cases additional parameters are completely ignored by the variational optimization procedure. The QGT shares the eigenvalues with the Neural Tangent Kernel \[17\], which has a dimension equal to the number of samples, and is hence easier to diagonalize when the number of parameters is large. Therefore, the information about the QGT spectrum can be accessed at a reasonable computational cost even for large networks, and could be integrated into an advanced optimization or regularization procedure in order to ensure the efficient usage of the network parameters.

Acknowledgements

We are grateful to Giuseppe Carleo, Juan Carrasquilla, Michele Casula, Stephen Clark, Anna Dawid, Matija Medvidović, Frédéric Mila, Schuyler Moss, Javier Robledo Moreno, Christopher Roth, André-Marie Tremblay and Agnes Valenti or useful discussions. S.D. would like to thank Olivier Simard for a careful reading of the manuscript. F.V. acknowledges support by the French Agence Nationale de la Recherche through the NDQM project, grant ANR-23-CE30-0018. This work was granted access to the HPC resources of TGCC and IDRIS under the allocation A0150510609 attributed by GENCI (Grand Equipement National de Calcul Intensif). We also acknowledge the use of computing resources at the Flatiron Institute, a division of the Simons Foundation.

V. Methods

We use a modified version of the RBM, adapted for spin-1 systems \[15\], as the wavefunction ansätz (NQS) \(\psi_\theta(\sigma) = \sum_h \exp[\mathcal{E}(\sigma, h)]\), where

\[
\mathcal{E}(\sigma, h) = \sum_{i=1}^L a_i \sigma_i + \sum_{i=1}^L A_i \sigma_i^2 + \sum_{i=1,j=1}^M w_{ij} h_i \sigma_j + \sum_{i=1,j=1}^M W_{ij} h_i \sigma_j^2 + \sum_{i=1}^M h_i b_i
\]

is the energy function of the spin-1 RBM. Here \(\theta = (|a_i|, |A_i|, |b_i|, |w_{ij}|, |W_{ij}|)\) is the set of all \(2L + M + 2ML\) complex parameters of the spin-1 RBM, \(L\) is the number of sites in the spin chain (no. of units in the visible layer), \(M = aL\) is the number of units in the hidden layer, and \(\sigma = \{|\sigma_i|\}\) denotes a spin-configuration on the lattice. Note from Eq. (8) that the NQS ansatz given by the spin-1 RBM is holomorphic, i.e. \(\psi_\theta(\sigma)\) depends only on \(\theta^*\).

We use this NQS ansatz (Eq. (5)) to represent the ground states of the BLBQ model in different parameter regimes. We use the infidelity measured w.r.t. the exact ground state as the loss function, for optimizing our NQS ansatz for most of our results. In addition, we also perform variational Monte Carlo, where we optimize the expectation value of the Hamiltonian, for a few cases.
Infidelity Optimization

For the infidelity optimization, we use the loss function given by the infidelity of the NQS w.r.t. the exact ground state,
\[\mathcal{L} = 1 - \frac{\langle \psi_0 | \Omega \rangle}{\langle \psi_0 | \psi_0 \rangle} \frac{\langle \Omega | \psi_0 \rangle}{\langle \Omega | \Omega \rangle}, \]
where $|\Omega\rangle$ is the exact ground state, and $\theta \in \mathbb{C}^N$. The loss function is minimized by methods based on the stochastic gradient descent algorithm, in which we use the conjugate gradient of the loss function,
\[F = \frac{\partial \mathcal{L}}{\partial \theta^*} = -\frac{\langle \Omega | \psi_0 \rangle}{\langle \psi_0 | \psi_0 \rangle} \frac{\langle \psi_0 | \Omega \rangle}{\langle \Omega | \Omega \rangle} \sum_n \langle n | \Omega \rangle \frac{\partial \psi^*_\theta(n)}{\partial \theta^*} \]
\[+ \frac{|\langle \psi_0 | \Omega \rangle|^2}{\langle \psi_0 | \psi_0 \rangle^2} \frac{\langle \psi_0 | \psi_0 \rangle}{\langle \Omega | \Omega \rangle} \sum_n \psi_\theta(n) \frac{\partial \psi^*_\theta(n)}{\partial \theta^*}. \]

We compute the infidelity and the gradient exactly, by summing over the complete basis of the total $S_z = 0$ sector of the Hilbert space. We use a combination of the ADAM [56] and YOGI [57] optimizers for our gradient descent optimization. More details of the optimization procedure are given in the supplementary material sec. [VB].

Variational Monte Carlo (VMC)

In the variational Monte Carlo (VMC) procedure, the loss function is taken to be the expectation value of the Hamiltonian,
\[\mathcal{L} = \langle H \rangle = \sum_n p_\theta(n) \frac{\langle n | H | \psi_\theta \rangle}{\langle n | \psi_\theta \rangle}. \]
Here $|n\rangle$ represents the basis states, and $p_\theta(n) = |\psi_\theta(n)|^2/\langle \psi_\theta | \psi_\theta \rangle$. We approximate the above sum by a Monte Carlo sampling procedure, where we generate basis configurations as Markov chains by the Metropolis-Hastings algorithm. The Metropolis-Hastings algorithm proposes a new configuration n', starting from n, and accepts it with probability
\[P_{\text{acc}}(n \rightarrow n') = \min \left\{ 1, \frac{|\psi_\theta(n')|^2 g(n|n')}{|\psi_\theta(n)|^2 g(n'|n)} \right\}, \]
where $g(n|n')$ is the conditional probability of proposing the configuration n, given n'. The conjugate gradient of the loss function Eq. (11) is given by
\[F = \frac{\partial \mathcal{L}}{\partial \theta^*} = \sum_n p_\theta(n) \left[\frac{\partial \log \psi^*_\theta(n)}{\partial \theta^*} \frac{\langle n | H | \psi_\theta \rangle}{\psi_\theta(n)} \right] + \langle H \rangle \frac{\partial \log \psi^*_\theta(n)}{\partial \theta^*}, \]
for a holomorphic wavefunction ansatz. The gradient in the above equation is also estimated approximately by the Monte Carlo procedure described above. We use stochastic gradient descent (SGD), in combination with stochastic reconfiguration (SR) [58, 59] for the energy minimization. With SR, the parameters of the ansatz are updated as
\[\theta_\mu \rightarrow \theta_\mu - \eta \sum_v (G + \epsilon 1)_{\mu v}^{-1} F_v, \]
where G is the quantum geometric tensor (QGT), η is the learning rate, and ϵ is a small regularization constant, which is taken to be 10^{-3}. More details of the optimization procedure are given in the supplementary material sec. [VB].
VI. SUPPLEMENTARY MATERIAL

A. The AKLT state

The AKLT state, also known as a valence-bond solid \[42\], is the ground state of the spin-1 BLBQ chain for \(\theta = \arctan(1/3)\):

\[
H_{\text{AKLT}} = \sum_{i=1}^{N-1} J \left[S_i \cdot S_{i+1} + \frac{1}{3} (S_i \cdot S_{i+1})^2 \right],
\]

where \(S_i = (S_{ix}, S_{iy}, S_{iz})\) is the spin-1 operator acting on site \(i\). The AKLT state is exactly known and can be represented by expressing the spin-1 particle by two auxiliary spin-1/2 particles. The spin-1 computational basis can be represented in terms of the triplet states formed with two spin-1/2 particles:

\[
|+\rangle = \psi_{11} = |\uparrow\uparrow\rangle, \\
|0\rangle = \psi_{12} = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) = \psi_{21}, \\
|\rangle = \psi_{22} = |\downarrow\downarrow\rangle,
\]

where \(|(+), |0\rangle, |\rangle\) is the basis for the spin-1 system, and \(|\uparrow\rangle, |\downarrow\rangle\) is the spin-1/2 basis. Then, the AKLT state is given by

\[
|\Psi_{\text{AKLT}}(\alpha, \beta)\rangle = 2^{-(N-1)/2} \psi_{a_1 \beta_1} \epsilon_{\beta_1 \alpha_2} \psi_{a_2 \beta_2} \epsilon_{\beta_2 \alpha_3} \ldots \psi_{a_{N-1} \beta_{N-1}} \epsilon_{\beta_{N-1} \alpha_1} |\cdots |\psi_{a_N \beta_N} |\uparrow\uparrow\uparrow\uparrow\rangle,
\]

where \(\epsilon\) is the Levi-Civita tensor of rank 2, and repeated indices imply a summation. Note that the AKLT state Eq. \[19\] is written for the case of an open boundary condition, and has two free spin-1/2 variables \(\alpha, \beta\) which correspond to the two outermost spin-1/2s on the chain. This leads to a four-fold degeneracy of the AKLT state. In the total \(S_z = 0\) sector, the AKLT state is two-fold degenerate. It is interesting to note in the AKLT state that two adjacent spin-1 variables are never aligned ferromagnetically (both + or both −). This can be realized from Eq. \[19\], given that the Levi-Civita tensor only has off-diagonal terms. A broader consequence of this is that a + (−) can only be followed by a 0 or a − (+, i.e. a state of the form \(|+0000000000\rangle\) is not allowed. Whereas a typical state could take the form \(|00+00−00000\rangle\), which essentially has a Néel order when we remove all 0s. This is a consequence of a non-local order, characterized by the string order parameter

\[
O_{ij} = \langle S_i e^{i\pi \sum_{k<l} S_{ik} S_{kj}} S_j \rangle,
\]

in the Haldane phase, which attains the maximum value at the AKLT point.

Furthermore, the AKLT Hamiltonian Eq. \[15\] can be written as a sum of projection operators into the spin-2 subspace for every two neighboring sites, \(\hat{P}_{S=2}(i,i+1)\).

The projection operator can be written by inspecting the eigenvalues of the operator \(\hat{X} = (S_i + S_{i+1})^2\) for various phases of the spin-1 bilinear-biquadratic (BLBQ) chain of length \(L = 8\), is shown in Fig. 5(a)-(e). The details of the computations are given in Table I. In Fig. 5(d), we plot the relative error in the energy of the NQS (w.r.t. the true ground state energy), after convergence of the VMC procedure, as a function of \(\alpha\).
We observe that the relative error in the energy (calculated exactly in Fig. [3]) saturates beyond a certain value of α for the four phases of the BLBQ model that we study in this paper. This corroborates with the infidelities of the optimized NQSs w.r.t. the exact ground states (dashed lines in Fig. [2]), for the VMC optimization, which also cease to improve beyond a certain α. Furthermore, as we discussed in the main text, this apparent saturation in the accuracy of the NQS with the number of parameters of the ansatz also reappears when we perform an infidelity minimization exactly with the same ansatz.

<table>
<thead>
<tr>
<th>L</th>
<th>Model</th>
<th>Symmetry of NQS</th>
<th>MC samples</th>
<th>Iterations</th>
<th>Initial states</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>APH ($\theta = 0$)</td>
<td>global spin-flip</td>
<td>1000</td>
<td>$5 \times 10^4 \times (3 \times 10^4$ for $\alpha = 8$)</td>
<td>25 (100 for $\alpha = 8, 12$)</td>
</tr>
<tr>
<td></td>
<td>AKLT ($\theta = \arctan(1/3)$)</td>
<td>global spin-flip</td>
<td>1000</td>
<td>$5 \times 10^4 \times (3 \times 10^4$ for $\alpha = 8$)</td>
<td>25 (100 for $\alpha = 8, 12$)</td>
</tr>
<tr>
<td></td>
<td>critical ($\theta = \pi/4$)</td>
<td>NA</td>
<td>1500</td>
<td>5×10^4</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>critical ($\theta = \arctan(2)$)</td>
<td>NA</td>
<td>1500</td>
<td>5×10^4</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>APH ($\theta = 0$)</td>
<td>global spin-flip</td>
<td>1250</td>
<td>$6 \times 10^2 \times (5 \times 10^2$ for $\alpha = 12$)</td>
<td>25 (70 for $\alpha = 12$)</td>
</tr>
<tr>
<td></td>
<td>AKLT ($\theta = \arctan(1/3)$)</td>
<td>global spin-flip</td>
<td>1250</td>
<td>$6 \times 10^2 \times (5 \times 10^2$ for $\alpha = 12$)</td>
<td>25 (100 for $\alpha = 12$)</td>
</tr>
<tr>
<td></td>
<td>critical ($\theta = \pi/4$)</td>
<td>NA</td>
<td>1900</td>
<td>6×10^4</td>
<td>25 (100 for $\alpha = 12$)</td>
</tr>
<tr>
<td></td>
<td>critical ($\theta = \arctan(2)$)</td>
<td>NA</td>
<td>1900</td>
<td>6×10^4</td>
<td>25 (94 for $\alpha = 12$)</td>
</tr>
</tbody>
</table>

TABLE I. Details of the VMC optimization for the spin-1 BLBQ chain (open boundary condition) of length $L = 8, 10$. The NQS ansatz is given by the spin-1 RBM Eq. (5). The same values are used for the simulations with all values of α ($\alpha = 2, 4, 8, 12, 16$ for $L = 8$, $\alpha = 4, 8, 12, 16, 24, 28, 32, 36$ for $L = 10$, and $\alpha = 4, 8, 12, 16, 24$ for $L = 12$). Note that all computations were done by a full summation over the subspace of the Hilbert space defined by the symmetry constraint $\sum_{i=1}^{L} S_{i2} = 0$. The learning rate for all optimizations was 1.5×10^{-3}.

We show the infidelity optimization curves in Fig. [6] for various phases of the spin-1 BLBQ chain with length $L = 10$. The details of the optimization are given in Table I.

We impose a global spin-flip symmetry on the NQS ansätze for the APH ($\theta = 0$) and the AKLT ($\theta = \arctan(1/3)$) states as prescribed in ref. [65]:

$$\psi_\theta(\sigma) = \frac{1}{2} [\psi_\theta(\sigma) + \psi_\theta(-\sigma)],$$

for both infidelity and energy minimization procedures. Here σ denotes a configuration of the spin-1s on the lattice.

<table>
<thead>
<tr>
<th>L</th>
<th>Model</th>
<th>Symmetry of NQS</th>
<th>Iterations</th>
<th>Initial states</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 10, 12</td>
<td>APH ($\theta = 0$)</td>
<td>global spin-flip</td>
<td>1.2×10^4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>AKLT ($\theta = \arctan(1/3)$)</td>
<td>global spin-flip</td>
<td>1.2×10^4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>critical ($\theta = \pi/4$)</td>
<td>NA</td>
<td>1.2×10^4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>critical ($\theta = \arctan(2)$)</td>
<td>NA</td>
<td>1.2×10^4</td>
<td>10</td>
</tr>
</tbody>
</table>

TABLE II. Details of the infidelity minimization procedure for the spin-1 BLBQ chain (open boundary condition) with lengths $L = 8, 10$, and 12. The NQS ansatz is given by the spin-1 RBM Eq. (5). The values shown in the table are used for the simulations with all values of α ($\alpha = 2, 4, 8, 12, 16$ for $L = 8$, $\alpha = 4, 8, 12, 16, 24, 28, 32, 36$ for $L = 10$, and $\alpha = 4, 8, 12, 16, 24$ for $L = 12$). Note that all computations were done by a full summation over the subspace of the Hilbert space defined by the symmetry constraint $\sum_{i=1}^{L} S_{i2} = 0$. During the infidelity minimization, first 3000 steps were performed with the ADAM algorithm [57] with a learning rate 5×10^{-4}, and the remaining minimization steps were performed with the YOGI algorithm [57] with a learning rate 3×10^{-4}.

C. Hessian of the infidelity loss function and its relation to QGT

The loss function in Eq. (9) (or Eq. (11)) is a scalar real valued function from \mathbb{C}^N to \mathbb{R}, $\mathcal{L} : \mathbb{C}^N \to \mathbb{R}$. It is straightforward to see that the loss function depends on both θ and θ^*, and hence is non-holomorphic. For convenience while working with complex derivatives of non-holomorphic functions, we use the following notations [66]:

$$\theta_c = \left[\begin{array}{c} \theta \\ \theta^* \end{array} \right], \quad \frac{\partial}{\partial \theta} = \left[\begin{array}{c} \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \theta^*} \end{array} \right]; \theta, \theta^* \in \mathbb{C}^N.$$ (26)

Then, we can write the complex Hessian of the loss function, following ref. [66], as

$$\mathbb{H} = \left(\frac{\partial}{\partial \theta_c} \right)^\dagger \frac{\partial^2 \mathcal{L}}{\partial \theta_c \partial \theta_c}.$$ (27)

$$= \left[\begin{array}{cc} \frac{\partial^2 \mathcal{L}}{\partial \theta \partial \theta} & \frac{\partial^2 \mathcal{L}}{\partial \theta \partial \theta^*} \\ \frac{\partial^2 \mathcal{L}}{\partial \theta^* \partial \theta} & \frac{\partial^2 \mathcal{L}}{\partial \theta^* \partial \theta^*} \end{array} \right].$$ (28)

The generic elements of the blocks (1,1) and (1,2) in the above equation, when the loss function is given by the infidelity Eq. [9] are given by
FIG. 5. This figure shows the evolution of the energy of the NQS during the VMC procedure for AFH, AKLT and two critical phases of the spin-1 BLBQ chain (with open boundary condition) with $L=8$ (a, b, c, d, e for $\alpha = 4, 8, 12, 16, 20$ respectively), and the relative errors in the converged energies with α (f). Note that the energy of the converged NQS is calculated exactly (by a full summation over the relevant subspace of the Hilbert space), to exclude biases from the Monte Carlo sampling. However, all quantities during the VMC optimization procedure are computed approximately by the Monte Carlo sampling procedure.

FIG. 6. This figure shows the evolution of the infidelity of the NQS w.r.t the true ground state during the infidelity minimization procedure for the AFH, AKLT and two critical phases of the spin-1 BLBQ chain (with open boundary condition) with $L=10$. Each subplot shows the optimization curves for a different density (α) of the spin-1 RBM (Eq. (8)), and the corresponding insets show the optimization curves for the last 2000 iterations.
FIG. 7. This figure shows the distribution of the normalized eigenvalues (w.r.t. the maximum eigenvalue) of the Hessian, in log\(_{10}\) scale, after 1.2 \times 10^{5} iterations of infidelity minimization on the spin-1 BLBQ chain (with open boundary condition) with length \(L = 8\) for the four points (a, b, c, d) in the BLBQ phase diagram (see Fig. 1). The left panel of each subplot shows the distribution (normalized magnitudes) of the negative eigenvalues, and the right panel of each subplot shows the distribution of the positive eigenvalues of the Hessian. In each subplot, the x-axis of the right panel increases from left to right, and that of the left panels increases from right to left.

\[
\frac{\partial^2 \mathcal{L}}{\partial \theta_i \partial \theta_j} = -\frac{\langle \psi_\theta | \Omega \rangle \langle \Omega | \psi_\theta \rangle}{\langle \psi_\theta | \psi_\theta \rangle} \frac{\partial^2 \psi_\theta}{\partial \theta_i \partial \theta_j} + \frac{|\langle \psi_\theta | \Omega \rangle|^2}{\langle \psi_\theta | \psi_\theta \rangle^2} \frac{\partial \psi_\theta}{\partial \theta_i} \frac{\partial \psi_\theta}{\partial \theta_j} - 2 \frac{|\langle \psi_\theta | \Omega \rangle|^2}{\langle \psi_\theta | \psi_\theta \rangle^2} \langle \psi_\theta | \partial \theta_i \frac{\partial \psi_\theta}{\partial \theta_j} \psi_\theta \rangle + \frac{\langle \psi_\theta | \Omega \rangle \langle \Omega | \psi_\theta \rangle}{\langle \psi_\theta | \psi_\theta \rangle^2} \frac{\partial \psi_\theta}{\partial \theta_i} \frac{\partial \psi_\theta}{\partial \theta_j} - 2 \frac{|\langle \psi_\theta | \Omega \rangle|^2}{\langle \psi_\theta | \psi_\theta \rangle^2} \langle \psi_\theta | \partial \theta_i \frac{\partial \psi_\theta}{\partial \theta_j} \psi_\theta \rangle
\]

\[
\frac{\partial^2 \mathcal{L}}{\partial \theta_i^* \partial \theta_j} = \frac{\langle \psi_\theta | \Omega \rangle \langle \Omega | \psi_\theta \rangle}{\langle \psi_\theta | \psi_\theta \rangle^3} \frac{\partial^2 \psi_\theta}{\partial \theta_i \partial \theta_j} + \frac{\langle \psi_\theta | \Omega \rangle \langle \Omega | \psi_\theta \rangle}{\langle \psi_\theta | \psi_\theta \rangle^2} \frac{\partial \psi_\theta}{\partial \theta_i} \frac{\partial \psi_\theta}{\partial \theta_j} - 2 \frac{|\langle \psi_\theta | \Omega \rangle|^2}{\langle \psi_\theta | \psi_\theta \rangle^2} \langle \psi_\theta | \partial \theta_i \frac{\partial \psi_\theta}{\partial \theta_j} \psi_\theta \rangle
\]

respectively. The blocks (1,1) and (2,2) are complex conjugates of each other, and are both Hermitian. The blocks (1,2) and (2,1) are Hermitian conjugates (as well as complex conjugates) of each other. As a result, the complex Hessian matrix Eq. (28) is Hermitian.

It is interesting to note that when we are at the minimum of the infidelity landscape, i.e. when \(\Omega = |\psi_\theta\rangle\),

\[
\frac{\partial^2 \mathcal{L}}{\partial \theta_i \partial \theta_j} = \frac{\langle \psi_\theta | \Omega \rangle \langle \Omega | \psi_\theta \rangle}{\langle \psi_\theta | \psi_\theta \rangle^2} \frac{\partial \psi_\theta}{\partial \theta_i} \frac{\partial \psi_\theta}{\partial \theta_j} = G_{ij},
\]

which is the quantum geometric tensor (QGT), and

\[
\frac{\partial^2 \mathcal{L}}{\partial \theta_i^* \partial \theta_j} = \frac{\partial^2 \mathcal{L}}{\partial \theta_i \partial \theta_j} = 0.
\]
In this case, the Hessian becomes

$$H_{\Omega} = \begin{pmatrix} G & 0 \\ 0 & G^* \end{pmatrix}, \quad (31)$$

Hence, at the minimum of the infidelity landscape, the eigenvalues of the Hessian (of the infidelity loss function) are the same as that of the quantum geometric tensor (QGT), but with a degeneracy 2.

D. Spectra of the Hessian for infidelity minimization on the BLBQ chain with $L = 8$

We plot the spectra of the Hessian (Eq. (31)) as histograms in Fig. 7 at the end of the infidelity minimization for the four phases of the BLBQ chain (Fig. 1) with length $L = 8$. Eigenvalues are normalized w.r.t. the maximum eigenvalue. The positive and negative eigenvalues are shown separately in the subplots of Fig. 7 for clarity on the nature of the landscape around the solution.

We observe that the positive eigenvalues dominate around the converged NQSs, for all the phases that we studied. The magnitudes of the negative eigenvalues are smaller than the largest positive eigenvalue at most by a factor $\sim 10^{-6}$. This suggests that we have converged reasonably in a valley with steep positive curvatures along most directions (for all values of $\alpha = 2, 4, 8, 12, 16$), and only a few almost flat directions (with very small negative curvatures).

E. Spectra of the QGT for VMC computations on the BLBQ chain with $L = 8$

We plot the spectra of the QGT (Eq. (6)), as histograms in Fig. 8 at the end of the energy minimization (VMC) procedure for the four phases of the BLBQ chain (Fig. 1) with length $L = 8$, along with the cumulative distributions in the respective insets. We normalize the eigenvalues of the QGT w.r.t. the maximum eigenvalue for each case.

We observe that the distributions eventually converge to a limiting one as we increase α. As we further keep increasing α after the distributions converge, we only add eigenvalues which are essentially numerical zeros ($< 10^{-16}$), signifying redundant directions in the parameter space. This reiterates our observation from the QGT at the end of the infidelity minimization procedure (Fig. 4), that the NQS stops using the newly added parameters to represent the ground states more accurately. Furthermore, the distribution of the QGT converges at the smallest α for the AKLT state, as we also saw from the infidelity minimization results.

We also plot the rank of the QGT in Fig. 9 for the energy minimization results on the BLBQ chain with $L = 8$, and $L = 10$. The rank of the QGT for all phases at $L = 8$, saturates as expected from the spectra in Fig. 8, confirming the presence of redundant directions in the parameter space.

Therefore, we conclude that the NQS ansatz given by the spin-1 RBM (Eq. (8)), does not efficiently use all of its parameters as we increase the width of the network, both in cases of energy and infidelity minimization.
FIG. 8. This figure shows the distribution of the normalized eigenvalues (w.r.t. the maximum eigenvalue) of the QGT, in \(\log_{10} \) scale, after the convergence of the VMC procedure on the spin-1 BLBQ chain (with open boundary condition) with length \(L = 8 \) for the (a) AFH, (b) AKLT, and (c,d) two critical phases in the BLBQ phase diagram (see Fig. 1). Computations were done starting with at least 25 different initializations of the NQS ansatz, and the solution with the best infidelity was chosen. The plots show normalized eigenvalues with magnitudes greater than \(10^{-16} \), which is taken as a cutoff. The eigenvalues below this cutoff are considered numerical zeros. Note that while the VMC procedure involved MC sampling for computing the energies, gradients, and the QGT to implement the stochastic reconfiguration method, we compute the QGT at the end of the optimization exactly by a full summation over the relevant subspace of the Hilbert space. The insets show the cumulative distribution of the eigenvalues (no. of eigenvalues greater than the value on the x axis) for each case. The dashed line in the inset marks the cutoff \(10^{-16} \).

FIG. 9. This figure shows the rank of the QGT after the convergence of the VMC procedure on the spin-1 BLBQ chain (with open boundary condition) with lengths (a) \(L = 8 \), and (b) \(L = 10 \) for the four phases in the BLBQ phase diagram (see Fig. 1). The rank is computed by using a cutoff of \(10^{-16} \) in the eigenvalues of the QGT.
[49] We compute the infidelity Eq. (3) of the NQS for the AKLT state w.r.t. the projection of the NQS into the degenerate subspace. In other words, \(|\Omega\rangle = \langle \Omega_1 | \psi_0 \rangle |\Omega_1\rangle + \langle \Omega_2 | \psi_0 \rangle |\Omega_2\rangle\), where \(|\Omega_1\rangle, |\Omega_2\rangle\) span the degenerate subspace.
[53] This expression holds for the case when the variational state \(|\psi_0\rangle\) is normalized. In the general case, the QGT takes the form \(G_{ij} = \frac{\langle \Delta \psi | \delta \psi \rangle_{ij}}{\langle \psi | \Delta \psi \rangle} = \frac{\langle \psi | \Delta \psi \rangle \langle \Delta \psi | \psi \rangle}{\langle \psi | \Delta \psi \rangle^2} \).