
HAL Id: hal-04438239
https://hal.science/hal-04438239

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A solution method for mixed-variable constrained
blackbox optimization problems

Marie-Ange Dahito, Laurent Genest, Alessandro Maddaloni, José Neto

To cite this version:
Marie-Ange Dahito, Laurent Genest, Alessandro Maddaloni, José Neto. A solution method for
mixed-variable constrained blackbox optimization problems. Optimization and Engineering, 2023,
�10.1007/s11081-023-09874-0�. �hal-04438239�

https://hal.science/hal-04438239
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A solution method for mixed-variable constrained
blackbox optimization problems

Marie-Ange Dahito · Laurent Genest ·
Alessandro Maddaloni · José Neto

Received: date / Accepted: date

Abstract Many real-world application problems encountered in industry have
no analytical formulation, that is they are blackbox optimization problems,
and often make use of expensive numerical simulations. We propose a new
blackbox optimization algorithm named BOA to solve mixed-variable con-
strained blackbox optimization problems where the evaluations of the black-
box functions are computationally expensive. The algorithm is two-phased: in
the first phase it looks for a feasible solution and in the second phase it tries to
find other feasible solutions with better objective values. Our implementation
of the algorithm constructs surrogates approximating the blackbox functions
and defines subproblems based on these models. The open-source blackbox
optimization solver NOMAD is used for the resolution of the subproblems.
Experiments performed on instances stemming from the literature and two
automotive applications encountered at Stellantis show promising results of
BOA in particular with cubic RBF models. The latter generally outperforms
two surrogate-assisted NOMAD variants on the considered problems.

Keywords Derivative-free optimization · blackbox optimization · mixed-
variable blackbox · constrained optimization

1 Introduction

Many real-world applications necessitate solving challenging optimization prob-
lems whose hardness may stem from different factors. In particular, such prob-

Marie-Ange Dahito · Alessandro Maddaloni · José Neto
SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France
E-mail: marie-ange.dahito@polymtl.ca, alessandro.maddaloni@telecom-sudparis.eu,
jose.neto@telecom-sudparis.eu

Laurent Genest
Stellantis, CEMR A, Boulevard de l’Europe, 78300 Poissy, France
E-mail: laurent.genest@stellantis.com

2 Marie-Ange Dahito et al.

lems may involve different types of variables and functions whose derivatives
are not available and whose evaluations result from expensive simulation runs.
The present study is namely motivated by structural design optimization con-
cerns raised by the multinational automotive manufacturing corporation Stel-
lantis. They can be translated into a general form of constrained blackbox
optimization problems for which we propose a method.

1.1 Considered blackbox optimization problems

In this work, we consider mixed-variable constrained blackbox optimization
problems involving both an objective and constraint functions that are com-
putationally costly to evaluate. Such problems may be formulated as follows:

min
x∈X

f(x)

s.t. gj(x) ≤ 0, ∀j ∈ J,

xi ∈ R, ∀i ∈ C,

xi ∈ Z, ∀i ∈ I,

xi ∈ Di, ∀i ∈ D,

(P)

where

– (C, I,D) is a partition of the indices of the variables into the subsets of
indices corresponding to the continuous, integer and discrete variables, re-
spectively, such that C ∪ I ∪D := {1, 2, . . . , n} and n is the dimension of
the problem,

– Di is a finite set of ordered real values, for all i ∈ D,
– X := {x ∈ Rn, li ≤ xi ≤ ui,∀i ∈ C ∪ I ∪D} is the admissible subset, where

li, ui are the lower and upper bounds of each component xi of x,
– f : X → R is the objective function to minimize,
– gj : X → R, ∀j ∈ J are the constraint functions, with J a finite index set.

It is also assumed that all or part of the functions f and gj are not known
explicitly, and that each evaluation of these so-called blackbox functions at
any given point demands important computational resources in terms of time
and/or memory requirements. In particular, no analytical or derivative infor-
mation about them is available. Besides, the constraints (gj)j∈J are considered
quantifiable and relaxable and the presence of hidden constraints is envisaged
[42].

Note that, unlike categorical variables, discrete variables have an intrinsic
ordering. Indeed, although categorical values may be represented by numerical
values, they are qualitative variables and their ordering may have no physical
meaning. Discrete variables include granular values that are regularly spaced.
Integer values are then a special case of granular values. The objective is
to design a derivative-free optimization method providing an esteemed “good”
solution of (P) with a limited number of blackbox function evaluations. In what

BOA: Blackbox Optimization Algorithm 3

follows, by one evaluation at some given point x we mean the computation
of the objective and all the constraints at this point. In this work we assume
that all the functions (objective and constraints) are deterministic and without
noise.

1.2 Practical relevance of blackbox optimization problems

Problems of the form (P) are relevant to many applications such as reservoir
engineering [34,81], reliability design [12,14] or structural optimization [50,
71]. Solving this kind of problems is more and more requested as it can have
decisive impacts, for instance in reducing greenhouse gases emissions or im-
proving system performance. In our case, the interest for this type of problems
is related to applications in the automotive manufacturing group Stellantis. A
typical optimization problem is the minimization of the weight of a body-in-
white structure subject to physical constraints, where all functions come from
expensive computer simulations so that their differentiabilities are unknown.
The variable space is usually mixed with, for instance, continuous shape pa-
rameters and discrete sheet metal thicknesses.

An additional relevant feature to be pointed out is that the problems we are
interested in are presently considered as medium- to high-dimensional prob-
lems in this context since they involve more than 10 variables.

1.3 Solution approaches

Problems such as (P) are tackled making use of derivative-free optimization
(DFO) and blackbox optimization (BBO) methods. A survey of DFO meth-
ods and comparisons on 502 problems are presented in [67]. The majority of
the compared solvers in this study can only handle continuous variables. Three
main approaches seem to emerge: evolutionary algorithms, direct search meth-
ods, and surrogate-based methods. They are not exclusive: there have been de-
velopments on so called hybrid methods combining some of these approaches,
in particular the use of surrogate models in metaheuristics or direct search
methods.

1.3.1 Evolutionary and swarm intelligence algorithms

An evolutionary algorithm (EA) is a derivative-free iterative method inspired
from nature. From a set of points called the parent population, an offspring is
generated by applying genetic operators, often crossovers and mutations. The
best children according to some fitness estimate are chosen to generate the
next parent population and the cycle is repeated until a stopping criterion is
satisfied. EAs generally provide no convergence guarantee to a local optimum,
nor indication about the quality of the obtained solution. Besides, for high-
dimensional problems, the number of function evaluations to get an acceptable
solution may be high.

4 Marie-Ange Dahito et al.

The use of surrogates to accelerate the convergence of EAs is not rare, in
particular for continuous expensive optimization problems. An example is the
Constrained Evolutionary Programming assisted by Radial Basis Functions
surrogates (CEP-RBF) [62], where RBF models guide the choice of the most
promising children. The developed CEP-RBF is compared to other heuristic
methods, including the RBF-based constrLMSRBF, on 18 benchmark prob-
lems and the 124-dimensional MOPTA08 automotive problem. The results
show appreciable improvements when an evolutionary algorithm is assisted by
RBF models, and substantial to important advantages compared with other
methods in the context of very limited budget. Another example of RBF-
assisted EA is the CONstrained Optimization by Particle swarm Using Sur-
rogates (CONOPUS) [63], which shows advantages compared with alternative
methods on 12 problems stemming from the literature and the MOPTA08
automotive application problem.

Other examples are the surrogate-assisted stochastic ranking evolution
strategy of [68], the kriging-assisted scatter search SSKm [18] or the use of
neural networks in [31].

Ensemble surrogates to improve the performance and robustness of EAs
are employed in [44,45] for surrogate-assisted memetic algorithms or [78] on
a surrogate-assisted particle swarm optimization relying on committee-based
active learning.

Developments to deal with mixed-variable optimization problems include
the mixed-integer evolution strategy of [85] using RBF and the Kendall rank
correlation coefficient, [43] also using RBF networks and the approach of [32]
for algorithm configuration problems.

1.3.2 Direct search methods

Direct search methods, that are used in DFO and BBO, proceed iteratively
with the evaluation of sample points according to a certain strategy and include
pattern search methods. One of the most known direct local search methods
is the Mesh Adaptive Direct Search (MADS) [2,5,6], which is an extension of
the Generalized Pattern Search (GPS) [74]. Under appropriate assumptions,
many direct search methods guarantee convergence to a stationary point. It is
the case for MADS which exhibits global convergence properties.

As its name indicates, MADS proceeds on a mesh and first performs a
global search, from an initial guess. If the incumbent cannot be replaced by a
better point after this phase, a set of points is evaluated in its neighbourhood:
it is called the poll. The two phases are performed until a stopping criterion is
met. The poll points are defined from a set of positive spanning directions that
are updated iteratively and become asymptotically dense in Rn. Two grid pa-
rameters called the poll size and the mesh size are updated at every iteration
such that they increase when a better candidate is found and decrease other-
wise. The algorithm is implemented in the Nonlinear Optimization with the
MADS algorithm (NOMAD) open-source software [7] which handles blackbox
constraints as well as integer, granular and categorical variables. The global

BOA: Blackbox Optimization Algorithm 5

convergence of MADS relies on the poll step of the algorithm and is proven, un-
der some assumptions such as bounded level sets of the objective function, for
several cases including continuous [5] but also mixed-variable [1] optimization
problems.

The fact of using surrogate models inside direct search methods enables to
guide the search. A surrogate management framework (SMF) is presented in
[10] for optimizing expensive bound-constrained blackbox optimization prob-
lems on which the use of traditional quasi-Newton methods is not appropriate.
It is a pattern search method using surrogate approximations and featuring a
search and a poll phase. In [49], kriging models and biharmonic splines mod-
els are used in the SMF for the resolution of trailing-edge shape optimization
problems of maximum 5 variables. The experiments exhibit robustness and
effectiveness of the SMF. Another example of use of the SMF with MADS is
[48] for the resolution of cardiovascular geometries problems.

This framework is adapted to general constraints in [23] where treed Gaus-
sian processes are used in the search step of MADS. The proposed extension
is tested on 5 problems arising from the literature and real-world applications
with dimensions between 2 and 8 and show improving performance on the
MADS algorithm.

Adaptations to mixed variables also exist. The resolution of constrained
expensive blackbox optimization problems with mixed variables is tackled in
[15]. To do that, a testbed of 37 literature and physical problems with 2 to
20 variables is used as well as a 32-dimensional application modelling a ther-
mal insulation system. Experiments show better efficiency and robustness of
NOMAD when combined with RBF.

1.3.3 Surrogate model-based methods

The basic idea of surrogate-based methods for blackbox optimization is to
make use of so called surrogate functions, also referred to as metamodels or
response surfaces, instead of the blackbox ones to guide the search to an opti-
mal solution, while avoiding costly evaluations. The whole process of surrogate-
based methods may then be summarized in a very generic way by the following
steps:

– Step 1 [Initialization]: Generate some set of points, called the Design of
Experiment (DOE), and evaluate the blackbox functions at each of those

points. Use these evaluations to determine initial surrogates f̂ , ĝj , j ∈ J ,
approximating the objective and constraints, respectively.

– Step 2 [Sample point(s) generation]: Determine a restricted set of points
Γ on which to evaluate the blackbox functions with a selection procedure
involving the current surrogates.

– Step 3 [Evaluation of sample point(s)]: Evaluate the blackbox functions at
each point of Γ .

– Step 4 [Surrogate update]: Update the surrogates using all the available
evaluations, and return to Step 2 until some stopping criterion is satisfied.

6 Marie-Ange Dahito et al.

There are many possible ways of implementing each of these four steps for
which the reader is referred to, e.g. [52,76] and the references therein.

Several papers review the state-of-the-art surrogate models. As examples,
[20] and [77] review the main types of metamodels for surrogate-based opti-
mization and the authors of [3] study surrogate techniques with applications
to groundwater modelling.

Some kriging and RBF-based approaches are investigated in [65] to solve
constrained blackbox global optimization problems where at least one func-
tion among the objective and constraints is expensive to evaluate. The RBF-
based optimization methods include COBRA [61], ConstrLMSRBF [60] and
CONORBIT [66].

COBRA first finds a feasible sample by iteratively minimizing the sum
of the squared constraint violations subject to the constraints added with
slacks, and minimum distance constraint to already evaluated points. Then,
it looks for a better sample by iteratively solving other subproblems with
the same constraints but minimizing the objective function. The MATLAB
function fmincon, using a gradient-based sequential quadratic programming
(SQP) method, is used for the subproblems. Variants called COBRA-R [38]
and SACOBRA [8] aim at dealing with respectively the difficulty of finding a
feasible point of the subproblems and the sensitivity to the parameterization.

ConstrLMSRBF is a heuristic that also uses RBF models for the objec-
tive and constraints and where the sample points are selected among random
generations of points, usually from a Gaussian distribution around the incum-
bent. Among the generated points with the minimum number of predicted
constraint violations, a sample point is chosen according to two criteria that
are the predicted objective function value and the minimum distance from
previous samples. An extended ConstrLMSRBF presented in [61] deals with
finding an initial feasible point by using the two-phase approach of COBRA.

Finally, CONORBIT [66] is a trust-region algorithm that is an extension
of the ORBIT algorithm [80]. It builds RBF models of the objective and con-
straints by selecting points only in a trust region of the current iterate. The
next sample point is chosen by minimizing a local subproblem defined by the
surrogates and a small margin for the RBF constraints. Another example using
RBF in a trust-region algorithm is TARBF of [46].

Kriging-based approaches include the Efficient Global Optimization (EGO)
method introduced in [36] and its extensions to constrained optimization such
as SuperEGO proposed in [70] that uses a penalized expected improvement in
case of inequality constraints. Extensions of SuperEGO to constrained high-
dimensional problems, called SEGOKPLS(+K) [11], use kriging with partial
least squares.

Some methods handle discrete problems as is the case for SO-I, presented
in [55], that solves integer constrained expensive blackbox optimization prob-
lems using RBF functions. When no feasible point is known, it first iteratively
minimizes the sum of constraint violations. Once a feasible point is found,
the second phase consists in minimizing a penalty augmented objective func-
tion. Experiments show that the RBF-based methods, including SO-I, have a

BOA: Blackbox Optimization Algorithm 7

generally better performance than the other compared methods. CONDOR is
introduced in [64]. It is an RBF-based method for high-dimensional discrete
blackbox problems that performs various perturbations of the incumbent to
find a better point. It exhibits promising results on a 222-dimensional auto-
motive problem with 54 constraints.

Few surrogate-based methods handle mixed variables. MISO [52] is a frame-
work using RBF for the resolution of mixed-integer unconstrained blackbox
optimization problems. It implements different sampling strategies and shows
efficiency in solution improvement with cubic RBF models, compared with
NOMAD version 3.6.2 and MATLAB’s genetic algorithm. SO-MI [54] also
deals with mixed-integer problems using RBF but also handle constraints. The
DOE is assumed to contain at least one feasible point and the method models
a penalty augmented objective function to evaluate 4 points at each iteration.
The experiments on 21 problems arising from the literature or applications
show it is generally better than the compared methods: a branch-and-bound
algorithm, a genetic algorithm and NOMAD version 3.5. Multivariate Adap-
tive Regression Spline (MARS) is used in MARSOPT [50], a mixed-integer
linear program to optimize non-convex piecewise linear MARS models with
constraints involving linear regression and piecewise linear MARS models. The
method is tested in the context of a vehicle crash on a safety system design
application with mixed continuous and binary variables and 50 constraints. On
this problem, different MARSOPT models were compared with a customized
genetic algorithm using penalties, showing a better efficiency of MARSOPT
to find good solutions.

Other methods for dealing with mixed variables include GOSAC of [56]
using RBF for mixed-integer problems with expensive constraints and a cheap
objective.

1.4 Our contributions

We introduce a generic solution method which integrates ideas emanating from
different recent research papers and some original features are proposed with
the aim of dealing with instances that are presently considered as “medium-”
and “high-dimensional” in the area of BBO. The proposed method, described
in Sect. 2, does not require an initial feasible solution and is intended to pro-
vide competitive solutions for mixed-variable BBO problems with expensive
objective and constraint functions. Our implementation takes into account the
possibility of failures of the blackbox that can occur in real-world optimiza-
tion problems. A parallel version of the algorithm is also designed to make use
of the possibility of simultaneous blackbox calls. Sect. 3 presents benchmarks
from the literature and some practical problems including structural design
optimization problems from the automotive industry. These optimization in-
stances are used for computational experiments in Sect. 4, which provide some
hints on the relative contributions of different key parts of the algorithm for its
performance. Finally, the results of the numerical tests and some perspectives

8 Marie-Ange Dahito et al.

are discussed in Sect. 5.

Notation. Let S be a real subspace, S+ denotes its nonnegative values, S∗

means that 0 is removed and S∗
+ stands for the strictly positive values of S.

The cardinality of a set I is indicated as |I|. Furthermore, we use ∥ · ∥ for the
Euclidean norm. Finally, f̂ is used to denote a surrogate model of a real-valued
function f .

2 Description of the proposed algorithm

This section presents a Blackbox Optimization Algorithm, called BOA, through
its structure and main features.

2.1 The overall layout of BOA

2.1.1 General description

As is usually the case in constrained BBO algorithms not requiring an initial
feasible solution in the inputs, the proposed method BOA is made up of two
successive phases that we call “Phase I” and “Phase II”, respectively. Phase I is
intended to identify a feasible solution of (P), while Phase II aims at iteratively
improving the best feasible solution found so far, both phases taking into
account a limited budget w.r.t. the number of function evaluations.

The general layout of BOA is described in Algorithm 1 and starts with an
initialization of the algorithm parameters, that we introduce later in Sect. 2.1.3.
Then, an initial DOE is evaluated, among which a best point is identified and
initialized as xbest. This best solution, which will be updated after each itera-
tion of BOA, is chosen among the evaluated points as a point that minimizes
the sum of the squared constraint violations if all evaluated points are infeasi-
ble with respect to (P), otherwise as a feasible point minimizing the objective
value. If xbest violates at least one constraint of (P), BOA begins Phase I
and then switches to Phase II as soon as a feasible solution is found and if
some fixed maximum number Nmax of function evaluations is not reached yet.
Otherwise, if xbest is feasible, Phase I is skipped and BOA directly switches
to Phase II. The algorithm stops when the maximum evaluation budget is
reached.

In Phase I, surrogate models of the objective and constraint functions of
(P) are built iteratively, taking into account all the evaluations already done.
These surrogates are used in optimization problem formulations – solved by
an external solver – to identify a promising feasible point with respect to (P),
namely a feasible point with low objective value. These formulations, explicitly
given in Sect. 2.1.2, globally aim at minimizing the sum of squared surrogate
constraint violations. Phase I together with the proposed management of the
involved parameters are described in Algorithm 2. It takes namely (but not

BOA: Blackbox Optimization Algorithm 9

only) account of the set of violated surrogate constraints to adjust parame-
ters. Important key points, that rely on several parameters, are that i) the
minimization of the surrogate objective value is already considered in Phase I
but with a secondary importance compared to the surrogate constraints sat-
isfaction, ii) each surrogate constraint is more or less relaxed, thanks to its
own adaptive slack parameter, to take into account modelling errors, and iii)
exploration of the variable space of (P) is managed by a minimum distance
requirement to points that were already evaluated with the original objective
and constraint functions.

Surrogates are also iteratively updated in Phase II to be used in opti-
mization problem formulations. Phase II still involves parameters aiming at
favouring feasible and diverse solutions, namely slack parameters for each sur-
rogate constraint and a minimum distance requirement to already evaluated
points. However, the optimization problems solved focus more on the decrease
of the original objective value, compared to Phase I. As Phase II is entered
only after a feasible solution of (P) is found, the best point xbest is updated
only if a new feasible point with lower objective value w.r.t. (P) is evaluated.
The proposed management of Phase II is described in Algorithm 3.

Apart from the initial settings and parameters updates which are specific
to each phase, both Phase I and Phase II make use of the following strategy
which is detailed in Algorithm 4. Considering the predicted constraint values
in Phase I and the real constraint values in Phase II, if the solution to some
formulation violates a constraint, the slack corresponding to the surrogate
constraint is increased to favour its satisfaction. On the contrary, if a constraint
is satisfied by the solution of the formulation, after a certain amount kfeas ∈
N∗

+ of successive satisfactions of this constraint, the corresponding slack is
decreased to lay less stress on that constraint. We describe each phase in more
details in Sect.2.1.2 and the different parameter updates in Sect.2.1.3.

2.1.2 The surrogate-based subproblems considered

In Phase I, a feasible solution is sought but, differently from what is usually
done, we minimize the sum of squared surrogate constraint violations added
with a fraction of the surrogate objective function. Similarly to the method
COBRA, in order to raise the chance of producing truly feasible points, the
constraints ĝj(x)+ ϵj ≤ 0 (with ϵj ≥ 0) are added and a minimum distance to
evaluated points is enforced to favour exploration. Thus, the first phase aims
at solving

min
x∈X

∑
j∈J max(0, ĝj(x))

2 + λf̂(x)

s.t. ĝj(x) + ϵj ≤ 0, ∀j ∈ J,
dmin −min

y∈P
∥x− y∥ ≤ 0,

(OBJλ,ϵ
PhaseI)

where λ and (ϵj)j∈J stand for some nonnegative scalar values, dmin is a positive
value and P is the set of points that have been evaluated with the real blackbox
functions f and (gj)j∈J . In our solution procedure, λ and (ϵj)j∈J are iteratively

10 Marie-Ange Dahito et al.

updated inside each iteration of Phase I so that the “leading” term of the
objective in (OBJλ,ϵ

PhaseI) is the first one, that is the sum of squared surrogate
constraint violations. By adding a fraction of the surrogate objective we aim
at favouring the search of better feasible solutions, in terms of the original
objective.

As long as the solution x̂ of (OBJλ,ϵ
PhaseI) calculated by Algorithm 2 at line 6

or line 12 is such that ĝj(x̂) > 0, for some j ∈ J and there is a considered
reasonable decrease of the surrogate constraint violations, this subproblem is
iteratively solved with updated λ and (ϵj)j∈J (while loop at line 9 of Algo-

rithm 2).
The surrogate-based subproblem is solved with an external algorithm and

its computed solution x̂ is not guaranteed to be feasible for (OBJλ,ϵ
PhaseI),

whether its feasible set is empty or not. If x̂ is not feasible for (OBJλ,ϵ
PhaseI), it is

not evaluated and the problem is relaxed to find another solution to evaluate.
The first relaxation (line 19 of Algorithm 2) consists in temporarily multiply-
ing all (ϵj)j∈J by −1. Indeed, the harder a constraint is and the bigger is the
corresponding slack so, by taking the opposite, the corresponding surrogate
constraint in (OBJλ,ϵ

PhaseI) becomes easier to satisfy. Thus, the first relaxation
corresponds to

min
x∈X

∑
j∈J max(0, ĝj(x))

2 + λf̂(x)

s.t. ĝj(x)− ϵj ≤ 0, ∀j ∈ J,
dmin −min

y∈P
∥x− y∥ ≤ 0.

(OBJλ,−ϵ
PhaseI)

In case the newly calculated solution x̂ is not feasible for (OBJλ,−ϵ
PhaseI) , we

focus on the distance criterion by keeping it as the only constraint (line 21 of
Algorithm 2). However, the constraints satisfaction is still considered through
the objective of the subproblem. Hence, the second relaxation can be written
as follows

min
x∈X

∑
j∈J max(0, ĝj(x))

2 + λf̂(x)

s.t. dmin −min
y∈P
∥x− y∥ ≤ 0.

(OBJλ)

If this last relaxation is considered, x̂ is updated as the calculated solution
of (OBJλ). Therefore, at the end of an iteration of Phase I, the point x̂ is a

feasible solution of (OBJλ,ϵ
PhaseI) if such a point is found. Otherwise, at least

one relaxation problem is solved and x̂ is thus either a feasible solution of
(OBJλ,−ϵ

PhaseI) if one is found, or is a candidate solution of (OBJλ). The com-
puted x̂ is evaluated with the blackbox functions, even if it is not feasible for
(OBJλ,ϵ

PhaseI), (OBJλ,−ϵ
PhaseI) or (OBJλ). This new evaluation is used to update

the best point xbest and the surrogates for the next iteration.
The minimum distance dmin is updated at the end of each iteration depend-

ing on the number of function evaluations already performed and according to
the quality of the new evaluated point. Indeed, if at least 90% of the maximum
number Nmax of function evaluations has already been used, dmin is updated
only if xbest shows an improvement that is lower than 5% in terms of the sum

BOA: Blackbox Optimization Algorithm 11

of squared constraint violations (using the original functions), compared to
the previous best solution, in which case it is decreased to favour local search.
Otherwise, that is if the remaining allowed number of function evaluations is
greater than 10% of Nmax, then dmin is increased to favour exploration if the
new best solution is considered as a good improvement compared to the previ-
ous one, and is decreased otherwise. The corresponding implementation of our
strategy to update dmin (lines 26 to 34 of Algorithm 2) involves a discrete set
of positive values ∆ = {d1, . . . , d|∆|} ordered in increasing order and is further
described in Sect. 2.1.3. In any case, the value of dmin is limited by a lower
bound γ which depends on the types of variables involved in (P).

The whole process is repeated until a feasible solution of the original prob-
lem (P) is found or the maximum evaluation budget is reached (lines 3 to 36 of
Algorithm 2). In case no feasible solution of the original problem (P) is found
within the maximum number of function evaluations Nmax, then a point in P
minimizing the sum of squared constraint violations is returned. Otherwise,
as soon as a feasible solution of (P) is found (i.e. the first time the condition
on line 10 of Algorithm 1 given hereafter is verified), Phase II starts.

The goal of Phase II, described by Algorithm 3, is to improve the objective
value of the best feasible solution. We aim at solving

min
x∈X

f̂(x)

s.t. ĝj(x) + ϵj ≤ 0, ∀j ∈ J,
dmin −min

y∈P
∥x− y∥ ≤ 0.

(OBJϵ
PhaseII)

Observe that the feasible region of this problem may be empty. Similarly to
the first phase, (OBJϵ

PhaseII) is solved iteratively and relaxed in case no feasible
solution is found. The first relaxation uses the opposite values of (ϵj)j∈J and,
thus, minimizes

min
x∈X

f̂(x)

s.t. ĝj(x)− ϵj ≤ 0, ∀j ∈ J,
dmin −min

y∈P
∥x− y∥ ≤ 0.

(OBJ−ϵ
PhaseII)

In case no feasible solution of (OBJ−ϵ
PhaseII) is found, only the distance

constraint is kept. However, in order to take into account the constraints of
the original problem, the sum of squared constraint violations is added to the
objective. This second relaxation of Phase II solves (OBJλ) with λ equals
1: we denote this relaxation problem (OBJ1). Similarly to what is done in
Phase I, the calculated solution x̂ of the last subproblem solved is evaluated
with the blackbox functions and is used to update the best point xbest, as well
as the surrogate functions for the next iteration.

Unlike the first phase, (ϵj)j∈J are updated only once per iteration and

this is done with respect to the true constraint values (and not the surrogate
predictions). The procedure to update (ϵj)j∈J is presented in Algorithm 4 and
detailed in Sect. 2.1.3.

12 Marie-Ange Dahito et al.

Like in Phase I, the minimum distance dmin is updated at the end of each
iteration of Phase II (lines 14 to 22 of Algorithm 3), but here using the im-
provement in the original objective function value as criterion instead of the
sum of squared constraint violations. Its value is still limited by the lower
bound γ.

The whole process of Phase II is repeated until the evaluation budget Nmax

is reached, in which case the algorithm returns xbest which is, among the
evaluated points, a feasible solution of (P) minimizing the objective function
value.

Algorithm 1: BOA

1 Initialize phase number: phase← 1
2 Initialize slacks: ϵmax > 0, ϵj ← 0, ∀j ∈ J .

3 Initialize slack factors: σinc > 1, σdec ← 1
σinc

, ρ ∈ (0, 1), kfeas ∈ N∗.

4 Initialize distance parameters: γ ≥ 0, ∆ = {d1, d2, . . . , d|∆|} ⊂ R∗
+,

ν ∈ {1, 2, . . . , |∆|}
5 dmin ← max{γ, dν ·min(ui − li,∀i ∈ C ∪ I ∪D)}
6 Determine a set of points P0 ⊂ X (|P0| ≤ Nmax), P ← P0

7 Evaluate the functions f , (gj)j∈J at each point in P0.

8 Initialize xbest.

9 Initialize hbest ←
∑

j∈J max (0, gj(xbest))
2.

10 if maxj∈J gj(xbest) ≤ 0 then
11 phase← 2 // xbest is a feasible point in P.
12 Update xbest with Algorithm 3 // BOA-Phase II

13 else
14 Update xbest, phase with Algorithm 2 // BOA-Phase I

15 if phase = 2 then
16 Update xbest with Algorithm 3 // BOA-Phase II

BOA: Blackbox Optimization Algorithm 13

Algorithm 2: BOA-Phase I

1 Given phase, xbest, hbest, P, Nmax, ∆, ν, γ, dmin, ϵmax, σinc, σdec, ρ, kfeas,
ϵj , ∀j ∈ J

2 Initialize κj ← 0, ∀j ∈ J , threshold ∈ (0, 1), λ0 ∈ (0, 1)
3 while phase = 1 and |P| < Nmax do

4 From P, build surrogate functions f̂ , (ĝj)j∈J .

5 Initialize dec lambda← true, λ← λ0.

6 x̂← Solve
(
OBJλ,ϵ

PhaseI

)
// Compute a solution x̂ of (OBJλ,ϵ

PhaseI).

7 Evaluate f̂(x̂), (ĝj(x̂))j∈J

8 ĥ←
∑

j∈J max (0, ĝj(x̂))
2

/* If x̂ not feasible w.r.t. the surrogate constraints ĝj (x̂) ≤ 0 for

all j ∈ J, try to improve constraint satisfaction reducing λ and

adjusting slacks (ϵj)j∈J. */

9 while maxj∈J ĝj (x̂) > 0 and dec lambda is true do
10 λ← 1

2
min

(
λ;maxj∈J ĝj (x̂)

)
11 Update ϵj , κj , ∀j ∈ J with Algorithm 4 and the predicted constraint values

(ĝj(x̂))j∈J

12 x̂← Solve
(
OBJλ,ϵ

PhaseI

)
13 Evaluate f̂(x̂), (ĝj(x̂))j∈J

14 ĥold ← ĥ

15 ĥ←
∑

j∈J max (0, ĝj(x̂))
2

16 if ĥold − ĥ < threshold then
17 dec lambda← false.

18 if dmin −miny∈P (∥x̂− y∥) > 0 or maxj∈J (ĝj(x) + ϵj) > 0 then

19 x̂← Solve
(
OBJλ,−ϵ

PhaseI

)
// Relax all ϵj in -ϵj.

20 if dmin −miny∈P (∥x̂− y∥) > 0 or maxj∈J (ĝj(x)− ϵj) > 0 then
21 x̂← Solve (OBJλ)

22 Evaluate f(x̂), (gj(x̂))j∈J

23 hold ← hbest
24 Update xbest

25 hbest ←
∑

j∈J max (0, gj(xbest))
2, P ← P ∪ {x̂}

26 if |P| ≥ 0.9 ·Nmax then
27 if hbest > 0.95 · hold then
28 dmin ← max

(
γ, 1

2
·min(d1, dmin)

)
29 else
30 if hbest > 0.95 · hold then
31 ν ← max(1, ν − 1)

32 else
33 ν ← min(|∆|, ν + 1)

34 dmin ← max (γ, dν ·min(ui − li, ∀i ∈ C ∪ I ∪D))

35 if maxj∈J gj (x̂) ≤ 0 then
36 phase← 2 // x̂ is feasible.

14 Marie-Ange Dahito et al.

Algorithm 3: BOA-Phase II

1 Given xbest, hbest, P, Nmax, ∆, ν, γ, dmin, ϵmax, σinc, σdec, ρ, kfeas, ϵj , ∀j ∈ J
2 Initialize κj ← 0, ∀j ∈ J
3 while |P| < Nmax do
4 fold ← f(xbest)

5 From P, build surrogate functions f̂ , (ĝj)j∈J

6 x̂← Solve (OBJϵ
PhaseII)

7 if dmin −miny∈P (∥x̂− y∥) > 0 or maxj∈J (ĝj(x) + ϵj) > 0 then

8 x̂← Solve
(
OBJ−ϵ

PhaseII

)
// Relax all ϵj in -ϵj.

9 if dmin −miny∈P (∥x̂− y∥) > 0 or maxj∈J (ĝj(x)− ϵj) > 0 then
10 x̂← Solve (OBJ1) // Solve (OBJλ) with λ = 1.

11 Evaluate f(x̂), (gj(x̂))j∈J

12 Update xbest, P ← P ∪ {x̂}
13 Update ϵj , κj , ∀j ∈ J with Algorithm 4 and the real constraint values

(gj(x̂))j∈J

14 if |P| ≥ 0.9 ·Nmax then
15 if f(xbest) > 0.95 · fold then
16 dmin ← max

(
γ, 1

2
·min(d1, dmin)

)
17 else
18 if f(xbest) > 0.95 · fold then
19 ν ← max(1, ν − 1)

20 else
21 ν ← min(|∆|, ν + 1)

22 dmin ← max (γ, dν ·min(ui − li, ∀i ∈ C ∪ I ∪D))

Algorithm 4: BOA-Update ϵ, κ

1 Given σinc, σdec, ρ, kfeas, ϵmax, ϵj , κj ,∀j ∈ J
2 Given g̃j(x̂),∀j ∈ J // Predicted or real constraint values at x̂.

3 for each j ∈ J do
4 if g̃j (x̂) > 0 then
5 κj ← 0 // Reset feasibility counter.

6 g̃trunc ← min (1, g̃j (x̂))
7 ϵj ← min (max (σinc · ϵj ; ρ · g̃trunc) , ϵmax) // Increase ϵj.

8 else
9 κj ← κj + 1

10 if κj ≥ kfeas then
11 ϵj ← σdec · ϵj // Decrease ϵj.

12 Return ϵj , κj ,∀j ∈ J

2.1.3 Parameters update

The parameter λ involved in Phase I is reinitialized after each update of the
surrogate models of the objective and constraint functions (line 5 of Algo-

BOA: Blackbox Optimization Algorithm 15

rithm 2). It is then iteratively decreased (line 10 of Algorithm 2) as long as

the solution x̂ of (OBJλ,ϵ
PhaseI) is not feasible w.r.t. the surrogate constraints

(i.e. ĝj (x̂) > 0 for some j ∈ J) and the sum of squared constraint violations
is sufficiently reduced w.r.t a fixed threshold (Algorithm 2, lines 9-17). The
idea is to give more importance to the objective of finding a feasible solu-
tion, provided that decreasing λ effectively contributes to favour constraints
satisfaction.

The slacks (ϵj)j∈J are computed according to the predicted (in Phase I) or

real (in Phase II) constraint values. After kfeas ∈ N∗
+ successive satisfactions

of the constraint j ∈ J , the corresponding slack is decreased whereas it is
increased as soon as the constraint is not satisfied, with respect to the real or
predicted values depending on the phase. By waiting before decreasing a slack,
we want to make sure that the satisfaction of the corresponding constraint is
“robust/reliable”. The increase of ϵj is done taking namely account of the
amount of violation of constraint j and an upper bound ϵmax (line 7 of Algo-
rithm 4). In addition to kfeas, three other fixed input parameters (σinc, σdec
and ρ) are used to modulate the changes of the slack values. The procedure is
detailed in Algorithm 4. The data used to build the surrogate models is scaled,
so that all the input and output values are upper bounded by one in abso-
lute value. This however does not preclude the constructed surrogate functions
from returning values out of this range. This motivates the truncation made
on line 6 of Algorithm 4 to avoid sudden important increases of slacks in such
situations.

The minimum distance parameter dmin is updated after every iteration in
both phases according to the quality of the new evaluated point. It is set ac-
cording to the minimum edge length of X , an ordered finite set of positive
values ∆ = {d1, d2, . . . , d|∆|} and a lower bound γ. The latter depends on the
nature of the variables: it is equal to 0 when there is at least one continuous
variable and, otherwise, to the positive minimum gap between distinct admissi-
ble discrete or integer values. Let ν ∈ {1, 2, . . . , |∆|} be the index of the chosen
value from ∆, dmin is initialized as max{γ, dν ·min(ui−li,∀i ∈ C∪I∪D)}. The
minimum distance is updated at each iteration: it can be increased to enforce
exploration after a considered good improvement in feasibility, and decreased
otherwise to enable local exploitation. This is simply done by increasing or
decreasing ν. In order to refine the solution of (P), lower values of dmin are
allowed after a ratio of the evaluation budget (see lines 26 to 34 of Algorithm 2
and lines 14 to 22 of Algorithm 3).

The best point xbest (line 8 of Algorithm 1, line 24 of Algorithm 2 and
line 12 of Algorithm 3) is defined in P as the one (or one of those) minimizing
the sum of the squared constraint violations if all points are infeasible, other-
wise among the feasible points in P, it is the one (or one of those) minimizing
the objective value.

16 Marie-Ange Dahito et al.

2.2 Distinctive features of BOA

BOA shares similarities with several surrogate-based BBO solvers like CO-
BRA. The latter also performs a two-phase optimization where the first part
aims at finding a feasible candidate. However both methods differ in many
aspects. We point out some of them hereafter.

COBRA is based on RBF interpolations and reported results in [61] only
make use of this surrogate, unlike the proposed method for which we report
experiments with different types of surrogates. Besides, the distance parameter
is adapted in BOA according to the quality of the solution found at each iter-
ation. The resolutions of the subproblems are also different. COBRA handles
continuous variables only and uses the MATLAB function fmincon that em-
ploys a SQP method. BOA is designed for problems involving discrete variables
and our implementation uses the direct search solver NOMAD. Furthermore,
the best iterate xbest of the first phase of BOA is chosen directly based on
the sum of squared constraint violations instead of the number of violated
constraints or the maximum amount of one constraint violation. As other dis-
tinctive features, BOA updates its slacks already in Phase I, they may not be
equal for all constraints and they are decreased as soon as the corresponding
(predicted or original) constraints are not satisfied.

Differently from other methods such as SO-MI or CONDOR, the proposed
method does not require an initial feasible solution. We solve an auxiliary
problem to determine a candidate point whereas CONDOR proceeds to differ-
ent types of perturbations of the currently best solution, taking into account
integrality constraints. At each iteration, SO-MI evaluates 4 candidates that
are chosen from 4 groups. Each group is generated by random perturbations
of the variables and uniform random points generations.

2.3 Adaptation of BOA to parallel evaluations

The BOA algorithm described above conducts sequential evaluations of the
blackbox. However, when the expensive optimization problem and the calcu-
lation resources enable parallel evaluations, it may be interesting to adapt the
method by taking advantage of the parallelization and, hopefully, considerably
reduce the total computational time. As an example, typical size optimization
problems encountered at Stellantis are solved by proceeding to an order of
25 parallel evaluations of the finite element models. With this in mind, an
extension of BOA to deal with parallel evaluations was designed.

Let B ∈ N∗ stand for the number of allowed parallel calls to the black-
box. Apart from the initial DOE, the points evaluated in BOA come from
the resolution of a surrogate subproblem. The idea now is to solve a batch
of B subproblems where originally only one was solved in BOA, which leads
to B points {x̂(1), . . . , x̂(B)} to evaluate with the expensive functions at each
iteration. The subproblems can be solved in parallel or sequentially as they
only involve surrogate calls which are assumed computationally negligible com-

BOA: Blackbox Optimization Algorithm 17

pared to the real blackbox evaluations. Thus, lines 6 to 21 of Algorithm 2 and
lines 6 to 10 of Algorithm 3 are executed B times per iteration of the respective
algorithm.

To do this, for each resolution b of a batch, a slack ϵbj is declined for each
constraint, with an associated decrease counter κbj , for all (b, j) ∈ {1, 2, . . . , B}×
{1, 2, . . . , |J |}, as well as there is a parameter λb for each subproblem of a batch
in Phase I. The second phase of BOA starts as soon as one feasible point with
respect to the real blackbox functions is found.

All candidates examined by the subproblem solver during an iteration are
stored and sorted according to a lexicographic order of:

∑
j∈J

max (0, ĝj(x))
2
, f̂(x)

 .

With this sorting, feasible points are preferred to infeasible ones, and lower
objective values and constraint violation of the feasible and infeasible points,
respectively, are favoured. Let P̂b denote the points considered during the
bth resolution of a batch of subproblems, with b ∈ {1, 2, . . . , B}, and let V =
∪Bb=1P̂b be the union of the B sets of candidate points. Let us assume that V is
sorted according to the above lexicographic order. The points {x̂(1), . . . , x̂(B)}
to evaluate with the expensive functions are iteratively selected from V such
that the distance to P and to the already selected points is greater than dmin.
If needed, this distance is halved until we actually get B points for the parallel
blackbox evaluations. This enables to not consider duplicate or very close
points, and to favour exploration.

When a starting point is needed by an algorithm to solve a subproblem,
as it is the case for MADS for instance, B points are chosen from the set of
already evaluated points P, considering two measures. The first one is defined
by the following application:

φ : x 7→
{
f(x) if gj(x) ≤ 0,∀j ∈ J

fmax +
∑

j∈J max (0, gj(x))
2
if ∃ j ∈ {1, 2, . . . , |J |}, gj(x) > 0,

where fmax is the highest feasible objective value so far. The second crite-
rion is the distance to the other evaluated points, that is to be maximized.
Hence, the points of P are ranked in non-dominated sets according to the mea-
sures (φ(x),−miny∈P\{x}(∥x − y∥)), similarly to the non-dominated sorting
of NSGA-II [17]: the sorting is iteratively done, removing the already chosen
points, until B points are selected.

The respect of the evaluation budget is controlled before the parallel eval-
uations: if the remaining allowed number of blackbox calls is lower than the
batch size B, then the latter is updated to (Nmax− |P|) and only this number
of points is chosen for the expensive evaluations.

18 Marie-Ange Dahito et al.

2.4 Description of the components of BOA

2.4.1 Initial DOE

As is very often the case in surrogate based BBO methods present in the lit-
erature, the DOE method we use for our experiments is a symmetric Latin
Hypercube Design (SLHD) [82]. It is a variant of the space filling Latin hy-
percube sampling developed by [51].

By default, the algorithm starts with a DOE consisting of (n + 1) SLHD
vectors. If the vectors are not linearly independent, random points are added
to the DOE until it contains (n + 1) independent vectors. The independence
requirement is also used in MISO for the starting points generation as it guar-
antees a unique setting for the RBF parameters.

2.4.2 Considered surrogate models

In this study, we consider radial basis functions, kriging models and MARS
models that have shown good performance in the literature.

RBF, polynomial, kriging and MARS models are investigated in [35] on
13 nonlinear mathematical problems where RBF exhibit an overall best per-
formance regarding, among others, accuracy, robustness and efficiency. On
a high-dimensional automotive benchmark problem, the authors of [60] con-
clude that the methods using RBF are performing better than other methods
including a kriging-based NOMAD and a sequential quadratic programming
algorithm. The work of [53] investigates the influence of the surrogate type
and the sampling strategy used in the resolution of expensive blackbox op-
timization problems subject to box constraints. The study notably includes
cubic RBF, Gaussian kriging models and MARS models. The results on 15
continuous problems show that the ensembles including the cubic RBF often
outperform those that do not use this type of surrogate.

Gaussian processes are also commonly used. In [37], RBF, kriging and
polynomial surrogates are used to model 18 literature functions. The results
exhibit a globally higher accuracy, robustness and efficiency of the kriging
models, except on low-order nonlinear functions when the size of the DOE is
small.

Linear, splines, kriging, neural networks, a support vector machine regres-
sion and random forests models are compared in [75] on a corn cultivation
application study. The quality of the metamodels is evaluated for N2O predic-
tion and for N leaching prediction according to different measures. Splines and
kriging based methods have the best results with small and medium training
datasets.

Radial basis functions [28] are interpolating radially symmetric functions
depending only on the distance between the input and some fixed point. They
are generally used with the Euclidean norm for function approximation in an
optimization framework. The RBF approximation s(x) of an objective value

BOA: Blackbox Optimization Algorithm 19

f(x) is built as a weighted sum of basis functions:

s(x) =

N∑
i=1

ωiϕ(∥x− c(i)∥),

where x ∈ Rn, ϕ(∥x − c(i)∥) are the basis functions evaluations, c(i) ∈ Rn is
the ith out of N ∈ N∗ basis function centres and the weights wi ∈ R can easily
be estimated by interpolation or least squares. Below are some examples of
fixed and parametric basis functions:

– linear ϕ : r 7→ r
– cubic ϕ : r 7→ r3

– thin plate spline ϕ : r 7→ r2ln(r)

– Gaussian ϕ : r 7→ e−
r2

2σ2

– multi-quadric ϕ : r 7→ (r2 + σ2)
1
2

– inverse multi-quadric ϕ : r 7→ (r2 + σ2)−
1
2

where σ represents a real parameter value. Additional terms such as polyno-
mials can be added to the RBF formulation to increase its flexibility. In this
study, we focus on cubic basis functions added with a polynomial tail.

Kriging models are well-known interpolation surrogates developed by [39]
and that reduce the mean squared error of the approximation of a function.
The variant of [69] lies on Gaussian processes based on prior covariances for
the approximations.

Let x ∈ Rn be a point where the expensive function f is not known, the
value of f(x) is considered as the realization of a normally distributed random
variable Y (x) = µ(x) + Z(x), where µ(x) is the deterministic mean and Z is
a Gaussian process of mean 0. In case the mean is a constant value, if it is
known the kriging is qualified as simple, otherwise it is ordinary if the constant
value is unknown. In the latter case, µ(x) is often assigned the mean value of
the approximations. Finally, if µ(x) is a linear combination of basis regression
functions of x, the kriging is said to be universal. The covariance of Z at two
points x and x̃ can be simply expressed as:

Cov(Z(x), Z(x̃)) = σ2R(θ, ∥x− x̃∥),

where σ2 is the process variance and R is a correlation function with parameter
θ.

There exists different families of correlation functions and below are those
used in this paper:

– Gaussian R : τ 7→ e−
τ2

2θ2

– exponential R : τ 7→ e−
|τ |
θ

– Matérn 3/2 R : τ 7→ (1 +
√
3|τ |
θ)e−

√
3|τ |
θ

20 Marie-Ange Dahito et al.

– Matérn 5/2 R : τ 7→ (1 +
√
5|τ |
θ +

√
5τ2

3θ2)e−
√
5|τ |
θ ,

where θ is the parameter of the correlation models.

The parameters µ, σ2 and θ are calculated in order to maximize the likeli-
hood function of the observed data, and often the log of the likelihood function.
Kriging can be used for an efficient global optimization with use of a merit
function such as the expected improvement (EI) and an enrichment strategy.
Indeed, once the model is built from the DOE, the maximization of the EI gives
promising points to evaluate and these points can be used to enrich the kriging
model. Maximizing the EI actually simultaneously reduces the standard de-
viation (representing the uncertainty of the model) and the objective function.

Multivariate Adaptive Regression Spline is a surrogate model intro-
duced in [21] that makes use of piecewise linear regression models to capture
the non-linearities of a function. The search space is split into disjoint sub-
regions, defined by points that are called knots, where regression models are
built. A MARS model has the following form:

s(x) = α0 +
M∑

m=1

αmBm(x),

where the variable x is in Rn with n the dimension of the variable space,
{Bm}Mm=1 are M ∈ N∗ maximum linearly independent interaction basis func-
tions, α0 is the intercept coefficient that is the mean of the responses and αm

is the coefficient associated to the mth basis function. The basis functions are
the product of at least two truncated linear functions, namely functions that
are linear on a bounded domain, defined between two knots, and equal to zero
elsewhere. These truncated functions or hinge functions are univariate basis
functions.

Let xi denote the unidimensional variable corresponding to a hinge basis
function H, where i ∈ {1, . . . , n}, H has the form:

H(xi) = max(0, xi − k) or H(xi) = max(0, k − xi),

with k its respective knot. The mth interaction basis function is defined as the
product of Lm ∈ N∗ truncated linear functions:

Bm(x) =

Lm∏
l=1

max(0, sml(xi(m,l) − kml)),

where sml = ±1, xi(m,l) is the ith variable on which the lth hinge function of

the mth basis function depends and kml is the knot corresponding to xi(m,l).

BOA: Blackbox Optimization Algorithm 21

2.4.3 Constraint handling

Slack factors are used in BOA to manage constraint satisfaction. The moti-
vation behind this comes from [61] where conducted preliminary experiments
exhibited solutions of the subproblems at the boundaries, where the surrogates
are not accurate. As a result, in many cases these points were infeasible with
respect to the true blackbox constraints. Although the subproblem formulation
of the second phase is common, BOA considers the objective function already
in the first phase through its parameter λ and introduces the slacks (ϵj)j∈J

for each constraint also in this phase. The update of the slacks also differs as
they are updated independently for each constraint in BOA. In this way, a
distinction is made between the constraints that are often or easily satisfied
and the ones that are often violated. Hence, better solutions are expected by
avoiding the pitfall of handling an important slack due to few constraints that
are often violated and of staying far away from the border of easily satisfied
constraints. Besides, the increase of an ϵj occurs as soon as the corresponding
surrogate constraint is violated.

2.4.4 Blackbox crash handling

In real-world application problems, a blackbox may not give outputs for all
inputs. As an example, the simulation of a finite element model may crash
due to divergence in solving the underlying differential equations. This often
results in a “NaN” output. In order to deal with this kind of hidden constraints,
the non-real outputs are set to infinity. This way, the corresponding points are
added to the set of already evaluated points to avoid duplicate evaluations and
points in their close vicinity, i.e. in the ball of radius dmin, are not considered.
However, these candidates are not used in the construction of the models in
order to not affect the model by making assumptions on their neighbourhoods.

2.4.5 Discrete variables handling

Inside NOMAD, discrete variables are treated as integers. Indeed, although
integer and granular variables have a specific handling in NOMAD, there is
no direct way to treat general discrete variables in the solver. However, the
original variables are considered for each call of a surrogate or a blackbox.
Hence, the true distances are considered to build the models.

3 Considered optimization problems

For the experiments, we consider instances derived from the literature and
two automotive applications from Stellantis. All of them have inequality con-
straints (between 1 and 91) and can be considered medium to high dimensional
in DFO as they have more than 10 variables. Note that with our terminology,

22 Marie-Ange Dahito et al.

we distinguish mixed-integer problems that have continuous and integer vari-
ables from mixed-variable problems that have discrete variables other than
integers.

3.1 Instances from the literature

The first set of instances consists of 19 constrained problems stemming from
the literature, among which some are classical analytical problems and others
are derived from applications. It comprises continuous, integer, mixed-integer
and mixed-variable problems, whose names start with ‘C’, ‘I’, ‘MI’ and ‘MV’,
respectively. Table 1 gives a description of these problems in terms of numbers
and types of variables, and the source papers.

We use three instances from the well-known G-problems benchmark collec-
tion and derivations of two of them. Indeed, among the three integer problems
taken from [55], the problems I1 and I3 are derived from the problem G01.
The problem I2 is the hmittelman problem from the MINLPLib1 library. A
derivation of G07 called MV2 with mixed variables, including discrete ones,
is used and its formulation comes from [15]. Applications about car side im-
pact and stepped cantilever beam, respectively named MV3 and MV4 in our
experiments, are also used.

Four problems that have mixed continuous and integer variables are taken
from [54] and three of them derive from applications.

Among problems arisen from applications, six of them (C4, C5, C6, MI5,
MI6 and MV1) come from a real-world benchmark suite introduced in [40].

3.2 Applications from Stellantis

In addition to the 19 problems from the literature, we use two mixed-variable
problem instances encountered at Stellantis for some of the experiments. Ta-
ble 2 gives descriptions of these problems.

3.2.1 Vehicle pole lateral crash

The first instance, called RSMLateralCrash, is a model of a pole lateral crash
study, built from about 800 sample points. It is considered as representative
of the expensive finite element model and was used at Stellantis in the op-
timization process for faster experiments. Each call to the model takes less
than a minute. The abbreviation RSM stands for response surface model. The
optimization problem considered aims at minimizing the mass of a basket of
parts in the battery area of the vehicle. It is a constrained mixed-variable
problem with 24 inequality constraints that represent performance features
to satisfy, among which deceleration, stress and displacement. There are 34
variables which correspond to the choice of the materials of 10 parts of the

1 https://www.minlplib.org/index.html

https://www.minlplib.org/index.html

BOA: Blackbox Optimization Algorithm 23

Table 1 Problems from the literature described with the dimension n, the number of con-
tinuous |C|, integer |I| and discrete |D| variables, respectively, and the number of inequality
constraints |J |.

problem n |C| |I| |D| |J |
C1 [19] 13 13 0 0 9
C2 [30] 10 10 0 0 8
C3 [29] 15 15 0 0 1

C4 [58,57,40] 14 14 0 0 15
C5 [24,40] 10 10 0 0 3
C6 [79,40] 30 30 0 0 91
I1 [19,55] 13 0 13 0 9
I2 [13,55] 16 0 16 0 7
I3 [19,55] 13 0 13 0 9
MI1 [9,54] 11 7 4 0 7
MI2 [84,54] 11 7 4 0 13
MI3 [41,54] 10 5 5 0 3
MI4 [41,54] 10 5 5 0 3
MI5 [25,40] 10 7 3 0 10
MI6 [27,40] 10 9 1 0 9
MV1 [83,40] 22 0 8 14 86
MV2 [30,15] 10 2 2 6 8
MV3 [26,22] 11 9 0 2 10
MV4 [73,22] 10 4 2 4 11

Table 2 Application problems from Stellantis described with the dimension n, the number
of continuous |C|, integer |I| and discrete |D| variables, respectively, and the number of
inequality constraints |J |.

problem n |C| |I| |D| |J |
RSMLateralCrash 34 0 10 24 24

LateralCrash 48 0 3 45 64

vehicle, treated as integers according to some ranking based on the material
properties, and the thicknesses of 24 parts, that are granular variables. Details
on the variable bounds and granularities are given in Table 3. For instance,
x11 allows values between 1 and 4 with a granularity of 0.05, so its admissible
values belong to {1, 1.05, 1.1, . . . , 4}.

Table 3 Variable bounds and granularities for RSMLateralCrash.

variable lower bound granularity upper bound
1 to 10 1 1 10
11 to 18 1 0.05 4
19 to 34 1 0.05 2.5

3.2.2 Vehicle barrier lateral crash

The second problem, denoted LateralCrash, uses an expensive finite element
simulation of a barrier lateral crash that takes more than 12 hours at each

24 Marie-Ange Dahito et al.

call. The optimization problem is similar to the first one, minimizing the mass
of a bench of parts of the vehicle, and has 64 inequality constraints. There are
48 variables, among which 3 materials and 45 granular thicknesses. Table 4
gives details on the bounds and granularity of each variable. The 48th variable
allows negative values because it intervenes in a formula for the thickness
computation of the corresponding part.

Table 4 Variable bounds and granularities for LateralCrash.

variable lower bound granularity upper bound
1 1 1 2

2 to 3 1 1 3
4 to 5 1.2 0.1 2
6 to 9 2 0.1 6.5
10 0.6 0.05 1.1
11 0.6 0.05 1.1

12 to 16 0.6 0.05 1.15
17 to 18 0.6 0.05 1.2

19 0.6 0.05 1.3
20 to 21 0.6 0.05 1.35

22 0.6 0.05 1.4
23 to 24 0.6 0.05 1.6

25 0.65 0.05 1.65
26 to 27 0.75 0.05 1.75
28 to 37 0.8 0.05 1.8

38 0.85 0.05 1.35
39 0.95 0.05 1.45
40 1.1 0.05 2.1
41 1.3 0.05 1.8
42 1.4 0.05 2.4

43 to 44 1.5 0.05 2.5
45 1.6 0.05 2.6
46 1.9 0.05 2.9
47 2 0.05 3
48 -0.1 0.05 0.1

4 Computational experiments

The surrogate models used in BOA are built on variables and objective values
that are scaled in [0, 1]. The constraint values are scaled in [−1, 0] for violated
constraints and in [0, 1] for satisfied ones. After every blackbox evaluation,
the surrogate models are updated and a rescaling is performed. Similarly as
performed in SO-MI, truncations are applied to the output values in order to
avoid high variations of the surrogate values. Once the number of evaluated
points is greater than twice the initial DOE size, the positive and negative
constraint values are truncated to the median of the positive and the median
of the negative constraint values respectively. Unlike what is done in SO-

BOA: Blackbox Optimization Algorithm 25

MI, only the feasible objective values are truncated to their median once the
number of feasible points evaluated is greater than twice the initial DOE size.

In order to lead numerical experiments, some parameters of BOA had to
be set, in particular ϵmax, σinc, ρ, λ0, kfeas, threshold and dmin. To do this, a
sensitivity analysis based on an experimental design of 27 points was per-
formed. The latter consisted of 16 points from a Plackett-Burman design
[59], added with 10 points from a space-filling algorithm and one point which
corresponds to the middle of the considered bounds of the parameters. The
Plackett-Burman design is used to investigate the main effects of the most
important parameters as it detects linear correlations. It only uses the bound-
ary values defined for the parameters to analyse. In practice, we initialize
the parameters as follows: ϵmax = 10−3, σinc = 1.1, ρ = 0.5, λ0 = 0.5 and
kfeas = max(⌈2 ·

√
n⌉, ⌈2 ·

√
|J |⌉), threshold = 10−1. For the distance param-

eter setting, we choose ∆ = {5 · 10−4, 10−3, 5 · 10−3, 10−2, 5 · 10−2, 10−1} and
dmin is initialized using ν = 3, meaning dν = 5 · 10−3. The lower bound of
the minimum distance, γ, is fixed during the optimization and its value is set
according to the problem, as described in Sect. 2.1.3.

Our implementation of BOA uses MATLAB R2020b and the subproblems
of the algorithm are solved using the MATLAB version of NOMAD v3.9.1 with
the option ORTHO N+1 NEG. The latter showed good performance in [16] com-
pared with the other direction types of ORTHOMADS [2] both on continuous
and mixed-integer optimization problems.

Two sets of experiments are considered with different evaluation budgets.
The first one aims, in the one hand, at comparing different types of surrogate
models and, on the other, at investigating the contribution of the parameter
λ in Phase I. The second set is given a higher budget and compares BOA
with NOMAD on the problems from the literature and on the instances from
Stellantis.

In the presentation of the results, we denote the types of surrogates cubic
RBF, MARS, and the four kinds of kriging (Gaussian, exponential, Matérn
3/2 and Matérn 5/2) as follows: R, M, KG, KE, K3 and K5, respectively.

The construction of the RBF surrogates borrows from the dedicated part
of the code of MISO that we adapted to our algorithm. MARS models are con-
structed using the ARESLab2 MATLAB toolbox [33]. Finally, Gaussian and
exponential kriging models are built thanks to the DACE3 MATLAB toolbox
[47]. We implemented the correlation functions Matérn 3/2 and Matérn 5/2
embedded in the DACE framework. When applicable, the parameterization of
the surrogates stems from preliminary experiments. Besides, we use ordinary
kriging models, that is the deterministic mean is assumed to be an unknown
constant value and is therefore estimated.

2 http://www.cs.rtu.lv/jekabsons/regression.html
3 https://www.omicron.dk/dace.html

http://www.cs.rtu.lv/jekabsons/regression.html
https://www.omicron.dk/dace.html

26 Marie-Ange Dahito et al.

4.1 Medium-budget experiments

In the first experiments, the performances of several implementations of BOA
are evaluated on 30 runs performed, starting from different DOEs that are
although common to all implementations, and with a blackbox evaluation
budget of 200. Each subproblem resolution inside BOA is done by NOMAD
with a maximum of 25 · n surrogate function evaluations. The performance is
evaluated according to different measures starting with the number of runs out
of the 30 launched that ended up with a feasible solution. The other measures
used consider only the feasible runs and are the mean number of evaluations
used to leave Phase I, the mean objective values after Phase I and Phase II,
respectively, and the minimum feasible objective value found over all runs.
Comparisons are done using the 19 problems from the literature.

4.1.1 Comparisons of surrogate models

Firstly, cubic RBF, MARS and the 4 types of kriging (Gaussian, exponential,
Matérn 3/2 and Matérn 5/2) are compared inside BOA. In the names of the
columns, “Pb” stands for the problem name and S for the type of surrogate
model. Tables 5, 6, 7 and 8 summarize the results for each family of prob-
lems, respectively on continuous, integer, mixed-integer and mixed-variable
problems.

We first consider problems MV1 and C6 as there are no feasible results for
all surrogates on these instances. Problem MV1, whose ratio of the feasible
region is less than 10−4, is considered difficult to solve by [40]. Indeed, the
results show that kriging models hardly find feasible solutions on this problem,
only the one using Matérn 3/2 manages to find one. MARS has the best
results on MV1 regarding all the considered performance measures. On C6,
MARS was stopped due to long computational times. Moreover, globally longer
computational times seem to be needed for the construction of MARS models.
While kriging models performed badly on MV1, they have the best mean
objective values on C6 and, especially, the use of Matérn 3/2 gives the best
mean objective values at the end of the optimization. Cubic RBF also exhibit
good results on this problem and reaches the minimum feasible objective value
among the surrogates.

On the other 17 problems, MARS followed by cubic RBF finds the highest
number of feasible runs. These surrogates also globally reach the best qualities
in solutions. It can be noted that MARS finds the global optimum on the 30
runs on I1, and so does cubic RBF on I2. On the contrary, considering each
family of problems, exponential kriging reaches the lowest numbers of feasible
runs. The difference with the other kriging types is especially noticeable on the
integer problems I1 and I3 where it finds only 4 and 3 feasible runs respectively,
whereas most runs are feasible for the others. Moreover, this kind of kriging
globally finds the worst mean feasible objective values on mixed-integer and
mixed-variable problems.

BOA: Blackbox Optimization Algorithm 27

Table 5 Results on continuous problems for each surrogate type: number of feasible runs
#F , mean number of function evaluations to reach a feasible solution N(I), its standard
deviation σN(I) , mean first feasible objective value f (I), mean best feasible objective value

f (II), its standard deviation σf(II) and minimum feasible objective value f
(II)
min on the 30

runs. A star (∗) indicates that the experiment was stopped due to long computational times.

Pb S #F N(I) σN(I) f (I) f (II) σf(II) f
(II)
min

C1

R 24 85.29 66.64 -9.05 -9.94 3.29 -14.81
M 30 78.87 43.85 -10.13 -14.01 0.76 -14.96
KG 30 55.27 34.63 -3.81 -11.93 3.24 -15.00
KE 16 73.56 43.17 -3.99 -13.92 1.97 -15.00
K3 30 47.13 27.13 -2.93 -14.86 0.33 -15.00
K5 30 47.13 29.39 -1.79 -14.49 1.07 -15.00

C2

R 30 38.07 10.88 126.93 26.09 1.01 24.94
M 30 44.37 14.61 211.78 33.44 5.10 28.37
KG 30 32.87 7.18 239.72 26.80 1.22 25.02
KE 30 39.37 23.22 515.70 59.44 32.64 30.27
K3 30 31.47 6.37 344.95 27.31 1.38 25.42
K5 30 29.37 6.07 296.91 27.07 1.29 25.06

C3

R 30 43.87 17.12 1482.38 175.64 107.12 61.32
M 30 49.93 19.23 4936.40 316.14 289.76 65.75
KG 30 68.27 19.60 4783.45 463.37 421.21 101.59
KE 30 71.73 27.78 8983.71 2312.13 2140.65 384.51
K3 30 56.73 13.06 4068.69 690.08 1310.29 144.48
K5 30 60.67 15.41 4507.89 436.88 240.44 66.50

C4

R 20 140.95 34.23 100220.25 99202.03 422055.30 32.71
M 30 111.10 28.55 9722.38 4091.61 3709.92 6.76
KG 21 115.43 33.49 1271738.01 154861.04 258460.79 15.10
KE 10 89.30 14.13 1686509.88 123967.71 206323.43 2275.04
K3 29 119.59 34.41 1003787.88 166552.78 289010.56 92.54
K5 25 126.12 35.38 1312627.27 612411.72 1916379.73 32.10

C5

R 30 29.07 7.28 684.60 552.03 5.78 537.53
M 30 23.80 6.57 883.09 569.58 17.49 548.18
KG 30 20.40 5.04 857.74 547.44 3.58 541.68
KE 30 20.10 4.60 871.21 562.82 11.49 548.02
K3 30 21.67 6.63 831.20 556.14 15.98 542.45
K5 30 20.77 5.79 831.13 554.01 10.56 541.79

C6

R 30 57.63 8.24 -4467.56 -5292.86 220.87 -5674.37

M(∗) - - - - - - -
KG 30 52.23 7.54 -4583.62 -5307.92 231.72 -5598.43
KE 30 52.63 5.68 -4530.97 -5298.64 143.72 -5601.75
K3 30 52.30 4.70 -4510.78 -5371.81 171.01 -5663.18
K5 30 53.07 5.85 -4563.47 -5325.31 171.15 -5657.87

4.1.2 Investigations on λ

The parameter λ is used in the surrogate subproblem (OBJλ,ϵ
PhaseI) to take into

account the objective function in the first phase of BOA. The introduction
of this parameter is a special feature of our algorithm by comparison with
the other existing methods. The effects of λ are investigated by comparing
the performance of the proposed method when the parameter is classically
used and when it equals 0 during all the optimization. To do so, cubic RBF
models are considered in BOA as this type of model outperformed most of the

28 Marie-Ange Dahito et al.

Table 6 Results on integer problems for each surrogate type: number of feasible runs #F ,
mean number of function evaluations to reach a feasible solution N(I), its standard deviation
σN(I) , mean first feasible objective value f (I), mean best feasible objective value f (II), its

standard deviation σf(II) and minimum feasible objective value f
(II)
min on the 30 runs.

Pb S #F N(I) σN(I) f (I) f (II) σf(II) f
(II)
min

I1

R 30 32.20 15.58 -11.27 -14.17 1.29 -15.00
M 30 37.00 14.20 -12.93 -15.00 0.00 -15.00
KG 30 34.97 16.61 -4.73 -11.00 2.44 -15.00
KE 4 114.00 73.87 -8.25 -10.75 1.50 -12.00
K3 26 37.65 28.83 -5.35 -11.35 2.23 -15.00
K5 26 32.50 15.30 -5.15 -11.00 2.40 -15.00

I2

R 30 34.20 4.84 20.67 13.00 0.00 13.00
M 30 54.57 25.39 20.30 15.97 3.67 13.00
KG 30 49.33 18.53 33.57 18.50 10.96 13.00
KE 30 45.47 21.83 29.07 17.07 7.07 13.00
K3 30 47.90 31.25 26.63 16.17 7.05 13.00
K5 30 47.87 25.91 30.67 18.57 10.99 13.00

I3

R 30 39.40 28.96 -43507.57 -49971.70 109.17 -50128.00
M 30 83.23 35.00 -44050.30 -50143.50 67.54 -50200.00
KG 30 39.07 14.63 -36306.83 -50186.27 15.38 -50200.00
KE 3 161.67 7.02 -49958.00 -50064.00 84.11 -50159.00
K3 29 45.48 8.91 -38440.90 -50183.41 20.83 -50200.00
K5 30 38.20 8.67 -37572.90 -50180.93 23.44 -50200.00

others in the previous experiments of Sect. 4.1.1 and it is computationally less
expensive than MARS.

The same performance measures are used and presented in Table 9 for the
19 problems from the literature. In the surrogate column entitled S, “Rλ=0”
indicates the cubic RBF-based BOA that does not use λ.

Considering all problems except MV1, both variants are globally equivalent
regarding the number of feasible runs. The use of λ generally leads to more
evaluations spent in Phase I but the objective values when exiting Phase I
and Phase II are globally better. There can be a considerable difference in the
quality of the solution as shown on problem C4: the mean objective value f (II)

of the traditional BOA is almost 3 times better than the variant that does not
use λ.

Nevertheless, on two of the three integer problems tested, although the
objective values after Phase I are better when λ is used for the three of them,
there are slight advantages at the end of the optimization regarding f (II) when
λ = 0. The problems concerned are alterations of the same problem and only
their bounds differ. This explains why the algorithm behaves similarly on them.
The effect of λ on these instances may be specific to the problems. Besides, the
number of evaluations spent in Phase I for I1 and I3 is higher in the traditional
BOA and, therefore, there are less evaluations left in Phase II for improving
the solutions. In addition, considering the minimum feasible objective values
among all runs, the absence of λ leads to lower objective values on 10 of the
problems.

BOA: Blackbox Optimization Algorithm 29

Table 7 Results on mixed-integer problems for each surrogate type: number of feasible runs
#F , mean number of function evaluations to reach a feasible solution N(I), its standard
deviation σN(I) , mean first feasible objective value f (I), mean best feasible objective value

f (II), its standard deviation σf(II) and minimum feasible objective value f
(II)
min on the 30

runs.

Pb S #F N(I) σN(I) f (I) f (II) σf(II) f
(II)
min

MI1

R 30 20.97 2.66 -0.19 -0.91 0.04 -0.94
M 30 22.83 3.06 -0.31 -0.93 0.03 -0.94
KG 30 29.10 12.29 -0.25 -0.92 0.05 -0.95
KE 30 25.17 7.66 -0.33 -0.91 0.05 -0.94
K3 30 27.27 9.05 -0.37 -0.92 0.03 -0.95
K5 30 27.57 5.78 -0.33 -0.91 0.05 -0.95

MI2

R 30 19.90 4.37 14.81 5.90 0.31 4.73
M 30 23.53 9.50 13.07 5.80 0.23 4.59
KG 30 29.57 9.41 10.42 6.23 0.62 4.58
KE 26 52.73 40.01 10.70 8.04 1.61 5.83
K3 30 27.73 9.74 11.23 6.62 0.74 5.82
K5 30 31.47 9.22 9.14 6.27 0.55 5.15

MI3

R 30 37.20 14.41 -0.95 -0.99968 0.00021 -0.99988
M 30 38.63 14.09 -0.54 -0.99813 0.00188 -0.99975
KG 30 51.03 35.79 -0.88 -0.99928 0.00133 -0.99985
KE 23 49.35 32.23 -0.83 -0.99916 0.00151 -0.99980
K3 27 32.89 20.27 -0.83 -0.99944 0.00051 -0.99988
K5 24 30.08 13.43 -0.87 -0.99931 0.00146 -0.99984

MI4

R 30 41.10 10.16 -0.96 -0.99949 0.00034 -0.99998
M 30 35.57 14.01 -0.72 -0.99928 0.00073 -0.99991
KG 26 48.65 35.01 -0.69 -0.99734 0.01200 -0.99999
KE 18 62.94 49.88 -0.81 -0.99592 0.01091 -0.99999
K3 28 49.00 33.75 -0.75 -0.99812 0.00418 -0.99998
K5 25 37.76 31.27 -0.70 -0.99889 0.00145 -0.99999

MI5

R 30 30.47 9.70 99190.66 61782.15 5174.17 58558.89
M 30 21.93 8.19 149128.59 64093.16 4638.25 56576.26
KG 30 35.07 12.10 112865.34 60907.19 3614.95 58652.64
KE 30 31.47 8.84 108068.20 63041.05 7340.51 58710.03
K3 30 29.80 9.66 100686.43 60248.08 3424.47 58632.38
K5 30 28.17 7.94 112179.49 59898.48 2883.39 58597.03

MI6

R 30 22.83 3.71 23547.31 16989.35 29.34 16959.62
M 30 22.13 7.77 24184.04 17094.23 674.18 16959.18
KG 30 23.73 4.99 21710.40 16966.08 11.31 16958.33
KE 30 25.07 6.48 24557.69 18279.88 2095.08 16958.69
K3 30 23.10 5.09 25701.99 16972.69 19.42 16958.55
K5 30 23.90 6.38 23463.35 16967.75 15.35 16958.31

On MV1, the variant that does not use the tested parameter was stopped
because the experiment was computationally too long. The use of λ seems to
help in the optimization of this hard problem.

The experiments show promising results regarding the utility of λ in the
problem formulation of Phase I. It globally leads to better f (II) values.

30 Marie-Ange Dahito et al.

Table 8 Results on mixed-variable problems for each surrogate type: number of feasible
runs #F , mean number of function evaluations to reach a feasible solution N(I), its standard
deviation σN(I) , mean first feasible objective value f (I), mean best feasible objective value

f (II), its standard deviation σf(II) and minimum feasible objective value f
(II)
min on the 30

runs.

Pb S #F N(I) σN(I) f (I) f (II) σf(II) f
(II)
min

MV1

R 9 157.00 28.34 113.17 106.98 32.57 67.49
M 16 142.63 25.71 73.69 73.23 19.87 52.96
KG 0 - - - - - -
KE 0 - - - - - -
K3 1 186.00 0.00 73.10 67.28 0.00 67.28
K5 0 - - - - - -

MV2

R 30 31.97 7.84 210.93 33.06 4.89 31.43
M 30 28.20 7.45 451.54 35.37 2.51 32.53
KG 30 30.10 11.76 415.25 40.81 22.31 31.53
KE 27 33.67 23.56 638.59 93.34 67.74 32.72
K3 30 29.93 20.31 288.77 43.11 22.07 31.49
K5 30 27.57 12.43 309.46 36.24 8.75 31.44

MV3

R 30 27.43 9.61 27.36 23.78 0.58 23.57
M 30 32.53 10.33 28.43 23.73 0.16 23.59
KG 30 28.57 11.07 29.67 23.79 0.30 23.58
KE 30 25.30 6.44 31.31 24.41 0.71 23.58
K3 30 25.70 5.75 30.33 23.89 0.41 23.58
K5 30 23.73 5.45 30.56 23.90 0.45 23.57

MV4

R 30 19.17 2.68 79543.73 66962.58 1766.70 64430.08
M 30 17.20 1.30 89018.46 65948.35 1407.97 64414.72
KG 30 23.17 6.58 90982.70 67213.17 1819.30 64358.21
KE 30 22.63 5.53 86514.34 68573.29 2655.00 64478.30
K3 30 20.93 4.56 88296.62 67347.29 2218.25 64392.13
K5 30 21.83 4.76 85685.56 67467.49 1753.36 64425.09

4.2 Large-budget experiments

BOA used with cubic RBF surrogates is compared with two surrogate-assisted
variants of NOMAD. To do so, cubic RBF and Gaussian kriging models are
given to NOMAD v3.9.1 as external surrogates and are updated after each
blackbox evaluation. Each run of NOMAD is given as starting point the first
point of the initial DOE used for BOA, that is the first point of the SLHD. The
truncation to the median is applied to NOMAD for the surrogate construction:
it is applied to the constraints after 2 · (n + 1) blackbox evaluations, and to
the feasible objective values when the number of feasible points evaluated is
greater than 2 · (n+ 1).

Note that external surrogates are not employed in NOMAD when it is used
inside BOA since the subproblems tackled are already based on models of the
blackbox functions. In this study, we only perform comparisons with variants
of NOMAD using external surrogates. This choice conforms with the study of
[4] where four ordering strategies for the poll step of NOMAD are compared.
The results show that the strategies using external surrogates to choose the
points to be evaluated in the poll perform better (in terms of the proportion of
problems solved) than the two others that use the default quadratic model only

BOA: Blackbox Optimization Algorithm 31

Table 9 Results on all problems for RBF surrogate with and without λ: number of feasible
runs #F , mean number of function evaluations to reach a feasible solution N(I), its standard
deviation σN(I) , mean first feasible objective value f (I), mean best feasible objective value

f (II), its standard deviation σf(II) and minimum feasible objective value f
(II)
min on the 30

runs. A star (∗) indicates that the experiment was stopped due to long computational times.

Pb S #F N(I) σN(I) f (I) f (II) σf(II) f
(II)
min

C1
R 24 85.29 66.64 -9.05 -9.94 3.29 -14.81

Rλ=0 30 21.50 1.80 -3.71 -8.87 4.08 -14.95

C2
R 30 38.07 10.88 126.93 26.09 1.01 24.94

Rλ=0 30 38.40 9.57 1231.45 26.10 0.81 24.85

C3
R 30 43.87 17.12 1482.38 175.64 107.12 61.32

Rλ=0 30 34.80 7.85 14444.98 198.63 130.02 57.50

C4
R 20 140.95 34.23 100220.25 99202.03 422055.30 32.71

Rλ=0 19 121.95 47.99 949918.50 283360.89 658017.50 200.87

C5
R 30 29.07 7.28 684.60 552.03 5.78 537.53

Rλ=0 30 17.73 1.20 897.62 552.66 5.22 542.38

C6
R 30 57.63 8.24 -4467.56 -5292.86 220.87 -5674.37

Rλ=0 30 57.73 10.25 -4530.51 -5306.63 174.03 -5713.49

I1
R 30 32.20 15.58 -11.27 -14.17 1.29 -15.00

Rλ=0 30 23.03 5.62 -3.63 -14.50 0.86 -15.00

I2
R 30 34.20 4.84 20.67 13.00 0.00 13.00

Rλ=0 30 34.10 6.83 24.57 13.00 0.00 13.00

I3
R 30 39.40 28.96 -43507.57 -49971.70 109.17 -50128.00

Rλ=0 30 35.20 18.25 -23134.57 -50018.80 120.62 -50199.00

MI1
R 30 20.97 2.66 -0.19 -0.91 0.04 -0.94

Rλ=0 30 19.27 1.53 -0.10 -0.91 0.03 -0.95

MI2
R 30 19.90 4.37 14.81 5.90 0.31 4.73

Rλ=0 30 22.90 5.00 14.45 6.03 0.44 4.76

MI3
R 30 37.20 14.41 -0.95 -0.99968 0.00021 -0.99988

Rλ=0 30 22.17 4.78 -0.11 -0.99966 0.00022 -0.99987

MI4
R 30 41.10 10.16 -0.96 -0.99949 0.00034 -0.99998

Rλ=0 30 21.97 4.91 -0.47 -0.99958 0.00046 -0.99996

MI5
R 30 30.47 9.70 99190.66 61782.15 5174.17 58558.89

Rλ=0 30 19.23 2.27 166354.88 61734.22 5538.20 58545.80

MI6
R 30 22.83 3.71 23547.31 16989.35 29.34 16959.62

Rλ=0 30 25.30 7.37 34421.18 16984.71 37.35 16959.44

MV1
R 9 157.00 28.34 113.17 106.98 32.57 67.49

R
(∗)
λ=0 - - - - - - -

MV2
R 30 31.97 7.84 210.93 33.06 4.89 31.43

Rλ=0 30 33.20 9.28 1654.05 33.78 5.51 31.47

MV3
R 30 27.43 9.61 27.36 23.78 0.58 23.57

Rλ=0 30 19.27 1.66 36.19 23.64 0.10 23.54

MV4
R 30 19.17 2.68 79543.73 66962.58 1766.70 64430.08

Rλ=0 30 17.23 1.28 98682.65 66789.78 1800.28 64392.92

and increasing angle with the last direction of success, respectively. In an earlier
study [72], different subproblem formulations are compared on 20 problems
from the literature and 2 simulation-based multidisciplinary problems showing
equivalent or better performance of NOMAD when using surrogates other
than the default quadratic model in the search step. In particular, significant
advantages were observed on non-smooth, noisy, and non-convex problems.

32 Marie-Ange Dahito et al.

In the following experiments, the blackbox evaluation budget is set at 400
and each subproblem resolution of BOA uses a maximum of 100 · n surrogate
evaluations. We denote BR the cubic RBF-based BOA and, respectively, NR

and NK the NOMAD variants assisted with cubic RBF and Gaussian kriging.

4.2.1 Algorithm comparisons on benchmark problems

The first experiments with the larger evaluation budget are performed using
the problems from the literature.

Table 10 presents the results on 18 of the problems as the two NOMAD
variants did not find any feasible run on MV1 and BOA was stopped on this
problem due to a long computational time (subsequent to the increase of the
budget). The notation A stands for the type of algorithm used.

All algorithms find a similar number of feasible solutions on 4 of the 6 con-
tinuous problems and BOA performs better regarding the number of feasible
runs on C4.

Note that on C1 the methods using cubic RBF models perform less than
the kriging-based NOMAD regarding the number of feasible runs, suggesting
that kriging better captures the complexity of this instance. Comparing the
RBF-based methods on this problem, the results show a similar number of
feasible runs and that BOA uses less blackbox evaluations to find the first
feasible solution, moreover whose objective value is better on average , which
is interesting for restricted evaluation budgets. The best solution from all runs
on C1 was found by BOA.

On the integer problems, the number of feasible solutions found by BOA
is greater or equal than those of NOMAD. Besides, BOA uses less evaluations
to find a first feasible candidate solution, and the mean feasible objective val-
ues f (I) after Phase I are better. The standard deviations of the number of
evaluations used in Phase I and that of the function values at the end of the
optimization, σN(I) and σf(II) , respectively, are also smaller for BOA, suggest-
ing more robust solutions for this algorithm. In particular, on the problem I2,
BOA finds the same final solution for each of the 30 runs and it corresponds
to the global minimum of the problem.

Regarding the mixed-integer problems, while the number of feasible runs
is equivalent for all methods, BOA finds, on average, better objective values
f (I) at the end of Phase I on most of the problems.

Finally, BOA behaves better on the 3 mixed-variable problems considered.
Indeed, it always finds a feasible solution and the latter has on average bet-
ter objective values after Phase I and Phase II, respectively, as well as the

minimum objective function value of all runs f
(II)
min is also smaller. There is,

in particular, an important gap on the application problem MV4 on which all
BOA runs are feasible against only 2 for NOMAD.

Thus, except on C1, BOA finds more feasible solutions on the continuous,
integer and mixed-variable problems and is equivalent to both variants of
NOMAD on the mixed-integer problems. Moreover, BOA is globally better on
the mixed-variable problems considered.

BOA: Blackbox Optimization Algorithm 33

Table 10 Results on 18 problems for BOA with RBF, NOMAD with RBF and NOMAD
with KG: number of feasible runs #F , mean number of function evaluations to reach a
feasible solution N(I), its standard deviation σN(I) , mean first feasible objective value f (I),

mean best feasible objective value f (II), its standard deviation σf(II) and minimum feasible

objective value f
(II)
min on the 30 runs.

Pb A #F N(I) σN(I) f (I) f (II) σf(II) f
(II)
min

C1
BR 18 113.61 115.73 -9.89 -10.09 3.59 -14.99
NR 19 177.68 94.39 -4.27 -11.95 2.15 -14.06
NK 27 211.19 88.39 -3.69 -10.72 2.86 -14.53

C2
BR 30 45.80 19.10 52.68 24.82 0.71 24.33
NR 30 177.77 63.63 926.49 101.51 103.95 30.72
NK 30 181.70 61.52 630.81 78.06 54.80 31.91

C3
BR 30 61.70 40.51 1079.54 105.30 105.20 47.57
NR 30 139.03 69.43 6662.72 1748.93 2573.30 76.16
NK 29 146.28 70.25 7874.00 2526.50 3282.22 62.99

C4
BR 25 186.00 71.53 5006.10 3877.70 4147.88 6.62
NR 7 295.43 73.70 1480.99 1031.72 2637.85 0.38
NK 10 245.70 108.96 42649.96 6679.82 16668.94 0.74

C5
BR 30 50.20 29.37 613.29 530.77 3.75 525.62
NR 30 21.10 15.55 1040.14 619.79 50.90 557.09
NK 30 21.43 15.62 1042.35 609.03 38.15 550.50

C6
BR 30 55.77 9.77 -4435.25 -5407.09 148.44 -5642.83
NR 30 56.83 51.49 -4587.86 -5425.54 124.31 -5770.14
NK 30 42.90 33.29 -4634.85 -5457.70 144.14 -5825.52

I1
BR 30 27.97 9.28 -12.17 -14.80 0.61 -15.00
NR 22 220.36 110.92 -6.73 -14.18 1.74 -15.00
NK 23 208.09 108.30 -6.96 -14.04 1.58 -15.00

I2
BR 30 36.93 10.94 19.90 13.00 0.00 13.00
NR 30 84.60 66.00 20.27 13.20 0.76 13.00
NK 30 75.93 57.12 20.80 13.20 0.76 13.00

I3
BR 30 36.03 33.46 -44120.83 -50046.83 102.62 -50199.00
NR 23 198.96 91.48 -41986.39 -50067.00 253.23 -50200.00
NK 25 231.76 80.64 -42354.84 -49622.92 1992.40 -50200.00

MI1
BR 30 22.47 4.75 -0.31 -0.90 0.05 -0.94
NR 30 5.87 6.01 -0.09 -0.83 0.06 -0.92
NK 30 5.63 5.02 -0.10 -0.85 0.06 -0.92

MI2
BR 30 29.47 49.03 14.84 6.10 0.58 5.54
NR 30 54.93 24.36 14.01 6.49 1.02 4.64
NK 30 59.47 28.51 12.71 5.74 0.66 4.63

MI3
BR 29 60.62 32.88 -0.98 -0.99970 0.00017 -0.99988
NR 30 18.57 16.78 -0.06 -0.99917 0.00063 -0.99983
NK 30 23.30 30.99 -0.11 -0.99914 0.00058 -0.99977

MI4
BR 30 56.33 36.63 -0.93 -0.99917 0.00065 -0.99998
NR 30 12.70 0.53 -0.46 -0.99996 0.00004 -0.99999
NK 30 12.70 0.53 -0.46 -0.99996 0.00005 -0.99999

MI5
BR 30 55.53 24.46 73176.52 62192.92 5320.47 58505.73
NR 30 92.50 53.86 133934.17 76819.02 10584.92 54844.21
NK 30 97.77 71.98 143147.70 75466.98 10945.25 56623.22

MI6
BR 30 28.37 23.97 19714.63 16984.42 26.82 16958.23
NR 30 47.43 24.64 27051.55 17042.98 144.22 16959.28
NK 30 52.13 35.88 30589.19 17021.32 106.00 16962.30

MV2
BR 30 29.90 7.90 142.64 32.02 2.29 31.42
NR 30 147.83 58.26 1035.47 85.38 64.41 35.16
NK 30 157.53 55.40 872.32 90.61 107.76 35.58

MV3
BR 30 38.97 18.51 24.86 23.62 0.09 23.53
NR 30 28.30 27.12 32.62 24.56 0.96 23.60
NK 30 26.87 22.60 33.90 24.32 0.62 23.67

MV4
BR 30 22.80 7.13 75047.08 66812.74 2040.08 64335.74
NR 2 62.00 2.83 97030.00 70671.61 1229.81 69802.00
NK 2 126.50 16.26 75033.07 66892.43 836.45 66300.98

34 Marie-Ange Dahito et al.

4.2.2 Algorithm comparisons on RSMLateralCrash in parallel mode

The methods tested in Sect. 4.2.1 are used on the RSM-based lateral crash
study from Stellantis.

In order to reduce the total computational time of the optimization, the
parallel version of BOA is used. For the same reason, block evaluations are
allowed in both variants of NOMAD. The maximum number of parallel black-
box evaluations is set at 25 in BOA and NOMAD, and two runs are performed
for each method.

Note that BOA performs the maximum number of parallel blackbox eval-
uations allowed at each iteration, and possibly less only at the last evaluation
to not exceed the evaluation budget. Differently, NOMAD does not use the
whole parallelization capacity at every iteration and can exceed the evaluation
budget at its last iteration. Possible extra evaluations are not considered in
the analyses.

Figures 1 and 2 present the evolution of the best feasible objective values for
each method during the first and second run, respectively. The results are also
summarized in Table 11 for each run. The number of blackbox evaluations
to reach a feasible solution (N (I)) is computed as the number of expensive
evaluations performed at the end of the batch to which the feasible point
belongs to.

Comparing the parallel methods, during the first run, NOMAD uses less
evaluations to find a feasible solution, as shown in the lines of “run 1” of
Table 11. This is partly due to the fact that BOA does not start with a single
point but with a DOE with points chosen infeasible. Nonetheless, a gap in
the objective values is observed on Fig. 1 when BOA finds its first feasible
solution: 0.051 against 0.054 for both NOMAD with RBF and kriging. During
the last fourth of the evaluations, the RBF-assisted NOMAD performs better
than BOA.

Considering now the second run presented on Fig. 2 and in the lines cor-
responding to “run 2” in Table 11, there are clear gaps in the performance of
the three solvers. The kriging-assisted NOMAD is effective in finding a feasible
solution and performs better than the RBF-assisted NOMAD. The latter is
outperformed by the other methods. BOA outperforms the surrogate-assisted
NOMAD solvers as soon as it finds a feasible solution.

In both runs, although the plots corresponding to BOA start with a clear
advantage on the objective value, the decrease seems globally slower than in
NOMAD.

4.2.3 Algorithm comparisons on RSMLateralCrash in sequential mode

In order to see how parallelization affects the performance of the algorithms,
one run with the classical sequential versions was also performed for each of
them.

The comparison of the three methods is depicted in Figure 3 for the evo-
lution of the best feasible objective values and summarized in Table 12. The

BOA: Blackbox Optimization Algorithm 35

Fig. 1 Evolution of the best feasible objective values of RSMLateralCrash according to the

number of evaluations for “run 1” of parallel BOA with cubic RBF (B
(p)
R), parallel NOMAD

with cubic RBF (N
(p)
R) and parallel NOMAD with Gaussian kriging (N

(p)
K).

Fig. 2 Evolution of the best feasible objective values of RSMLateralCrash according to the

number of evaluations for “run 2” of parallel BOA with cubic RBF (B
(p)
R), parallel NOMAD

with cubic RBF (N
(p)
R) and parallel NOMAD with Gaussian kriging (N

(p)
K).

results of NOMAD are identical to those of the case using the block evaluation
option. Thus, the parallelization does not seem to affect the performance of
NOMAD on this problem. The situation is different for BOA whose internal
strategy is modified to deal with simultaneous blackbox calls. In this setting,
BOA outperforms NOMAD and both the first and best feasible solutions of
BOA have better objective values than those found by the two variants of
NOMAD.

Focusing on BOA, Figure 4 depicts the results for one run of the classical
sequential version of BOA used with cubic RBF compared with its parallel

36 Marie-Ange Dahito et al.

Table 11 Results for each run on RSMLateralCrash for parallel BOA with RBF (B
(p)
R),

parallel NOMAD with cubic RBF (N
(p)
R) and parallel NOMAD with Gaussian kriging (N

(p)
K):

number of function evaluations to reach a feasible solution N(I), first feasible objective value
f (I) and best feasible objective value f (II).

Run A N(I) f (I) f (II)

B
(p)
R 152 0.051 0.050

N
(p)
R 71 0.054 0.0491

N
(p)
K 114 0.054 0.051

B
(p)
R 127 0.050 0.050

N
(p)
R 207 0.057 0.0552

N
(p)
K 54 0.058 0.051

Table 12 Results for one run on RSMLateralCrash for BOA with cubic RBF (BR), NO-
MAD with cubic RBF (NR) and NOMAD with Gaussian kriging (NK): number of function
evaluations to reach a feasible solution N(I), first feasible objective value f (I) and best
feasible objective value f (II).

A N(I) f (I) f (II)

BR 97 0.047 0.047
NR 71 0.054 0.049
NK 114 0.054 0.051

Fig. 3 Evolution of the best feasible objective values of RSMLateralCrash according to the
number of evaluations for one run of BOA with cubic RBF (BR), NOMAD with cubic RBF
(NR) and NOMAD with Gaussian kriging (NK).

version. The sequential version needs less evaluations to leave Phase I and
the feasible objective value of the best candidate is better than in the parallel
version. Thus, the parallel resolution of the subproblems reduces the perfor-
mance of the algorithm. This is partly due to a higher quality of the surrogate
in the sequential strategy where it is updated after each expensive evaluation.
On this optimization problem where the costs of the blackbox calls are signif-
icantly shortened as it uses surrogates instead of the expensive finite element

BOA: Blackbox Optimization Algorithm 37

simulations, the total computational time was however reduced by two days
thanks to the use of parallel evaluations (from approximately 9 to 7 calculation
days).

Fig. 4 Evolution of the best feasible objective values of RSMLateralCrash according to the
number of evaluations for one run of BOA with cubic RBF (BR) and the parallel version

(B
(p)
R).

4.2.4 Algorithm comparisons on LateralCrash

The parallel versions of BOA using cubic RBF and cubic RBF-assisted NO-
MAD are tested on the lateral crash design problem from Stellantis. This
problem is computationally very expensive as it makes use of finite element
simulations of the vehicle and each call takes more than 12 hours. As a solu-
tion is commonly desired in a time window of two weeks, assuming that the
time needed by a solver to generate a new candidate point is negligible, only a
maximum of 28 evaluations are possible in a sequential mode, hence the need
to evaluate candidate solutions in parallel. Furthermore, failures are frequently
observed in vehicle simulations, which constitutes an additional challenge.

One run of parallel BOA is performed starting from an initial DOE that
consists of 72 infeasible points generated with the same strategy used in the
previous experiments. To cope with the long computational times, the maxi-
mum number of surrogate evaluations for each subproblem resolution is set to
50 ·n and block surrogate evaluations of maximum 50 points are allowed. One
run of cubic RBF-assisted NOMAD is also performed where block evaluations
are enabled. For both methods, the capacity of parallel blackbox evaluations
is kept at 25 and the total blackbox evaluation budget is set at 400.

The run performed with the parallel version of NOMAD turned out to be
infeasible: no feasible solution was found within the budget of 400 evaluations.

38 Marie-Ange Dahito et al.

On the contrary, parallel BOA successfully completed its Phase I and found
several feasible solutions.

The evolution of the best feasible objective values for parallel BOA using
cubic RBF is presented in Figure 5 and Table 13 summarizes the results.
The best solution of the initial DOE corresponds to an infeasible mass of
90.017kg and a best sum of squared constraint violations of 1.553 · 105. A
feasible solution is found after 222 blackbox evaluations and the best feasible
mass obtained at the end of the evaluation budget is 75.719kg. Hence, despite
the difficulty of this mixed-variable problem with 48 variables and 64 inequality
constraints, parallel BOA reached a feasible solution after only 6 iterations.
Indeed, the algorithm first evaluates the initial DOE before entering any phase,
so 222−72 = 150 expensive evaluations are actually performed during Phase I,
which corresponds to 6 batches of blackbox evaluations. Moreover, note that
31 failures of the blackbox occurred during the optimization but they did not
stop BOA as its design comprises the handling of such hidden constraints.

S N(I) f (I) f (II)

B
(p)
R 222 75.998 75.719

Table 13 Results for one run on LateralCrash for parallel BOA with RBF (B
(p)
R): number

of function evaluations to reach a feasible solution N(I), first feasible objective value f (I)

and best feasible objective value f (II).

Fig. 5 Evolution of the best feasible objective values of LateralCrash according to the

number of evaluations for one run of parallel BOA with RBF (B
(p)
R).

BOA: Blackbox Optimization Algorithm 39

5 Conclusion

This paper presents a new surrogate-based generic method for solving expen-
sive constrained blackbox optimization problems with mixed variables. The
developed algorithm, entitled BOA, is flexible in terms of the type of models
used or the solver used on its subproblems, and does not need feasible initial
points thanks to its two-phase structure.

An extension of BOA for parallel evaluations is also described for real-world
applications where launching batches of evaluations is essential to expect a
reasonably good solution in a restricted time.

The results for different numerical experiments have been presented, using
constrained optimization problems with more than 10 variables and up to 48.
First comparisons of six kinds of surrogate models used for the subproblems
of BOA are performed on 19 problems from the literature, including applica-
tions. They exhibit globally better performance of MARS and cubic RBF in
terms of mean number of evaluations to reach a feasible solution and quality
of the solution. In practice, the construction of MARS models is however com-
putationally longer. Among the kriging types tested, the use of exponential
correlation functions seems unfavourable in the presence of discrete variables.

Other experiments investigate the parameter λ that takes into account the
objective value in the search of a feasible candidate solution. Comparing cubic
RBF-based BOA with and without λ shows generally lower objective values
at the end of Phase I when the parameter is used but more evaluations are
performed in this phase of the algorithm. In general, however, the solution
obtained at the end of the optimization is still better with λ.

Then, BOA using cubic RBF is compared with two surrogate-assisted NO-
MAD variants and using a higher evaluation budget. The results on the litera-
ture problems show an equivalent ability of the three methods to find feasible
solutions on mixed-integer problems and a higher performance of BOA on the
other types of problems. Regarding the quality of the solution, BOA glob-
ally finds lower objective values than the RBF- and kriging-assisted NOMAD.
These methods are also tested on two automotive problems encountered at
Stellantis.

On the response surface-based pole lateral crash problem, two runs are
performed using parallel versions of each solver. They show that the first fea-
sible solutions found by BOA have better objective values than the current
best solutions of NOMAD variants at the corresponding number of evalua-
tions. However, the number of evaluations used to find a feasible solution is
better for at least one of the two NOMAD variants. On the final solutions
identified, BOA is competitive or better than NOMAD. Comparing sequential
and parallel versions of the three solvers on one run, the performance of NO-
MAD is unchanged whereas BOA outperforms its parallel extension both on
the number of evaluations used in Phase I and on the best solution found.

Furthermore, BOA using parallel evaluations and cubic RBF was success-
fully applied to a real-world high-dimensional optimization problem from the
automotive group Stellantis. Starting from an infeasible DOE, the optimiza-

40 Marie-Ange Dahito et al.

tion reached a feasible solution in 6 iterations only and successfully managed
the failures of the blackbox. On this problem NOMAD, also used with parallel
evaluations and cubic RBF, did not find a feasible solution.

As a summary, this study exhibits an efficiency of the first phase of BOA
in finding good feasible solutions and shows advantages of the method in a
context of restricted evaluation budgets, which is often the case in industry. It
can be considered as a relevant method for solving real-world expensive black-
box optimization problems with mixed variables and inequality constraints. A
better decrease of the objective value should be possible with improvements
of the second phase of the algorithm, for instance by considering alternative
formulations of the corresponding subproblem. Besides, a specific handling for
categorical variables and handling of the presence of noise in the blackbox
functions is a matter for future work.

Acknowledgements The authors wish to thank the reviewers for their time and efforts
towards improving our manuscript and their valuable comments.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Abramson, M.A., Audet, C., Chrissis, J.W., Walston, J.G.: Mesh adaptive direct search
algorithms for mixed variable optimization. Optimization Letters 3(1), 35–47 (2009).
DOI https://doi.org/10.1007/s11590-008-0089-2

2. Abramson, M.A., Audet, C., Dennis, Jr., J.E., Le Digabel, S.: OrthoMADS: A Deter-
ministic MADS Instance with Orthogonal Directions. SIAM Journal on Optimization
20(2), 948–966 (2009). DOI https://doi.org/10.1137/080716980

3. Asher, M.J., Croke, B.F.W., Jakeman, A.J., Peeters, L.J.M.: A review of surrogate
models and their application to groundwater modeling. Water Resources Research
51(8), 5957–5973 (2015)

4. Audet, C., Côté-Massicotte, J.: Dynamic improvements of static surrogates in direct
search optimization. Optimization Letters 13(6), 1433–1447 (2019). DOI 10.1007/
s11590-019-01452-7

5. Audet, C., Dennis, Jr., J.: Mesh Adaptive Direct Search Algorithms for Constrained
Optimization. SIAM Journal on Optimization 17(1), 188–217 (2006). DOI https://doi.
org/10.1137/040603371

6. Audet, C., Dennis, Jr., J.: A Progressive Barrier for Derivative-Free Nonlinear Pro-
gramming. SIAM Journal on Optimization 20(1), 445–472 (2009). DOI https:
//doi.org/10.1137/070692662

7. Audet, C., Le Digabel, S., Rochon Montplaisir, V., Tribes, C.: Algorithm 1027: NOMAD
version 4: Nonlinear Optimization with the MADS algorithm. ACM Transactions on
Mathematical Software 48(3), 35:1–35:22 (2022). DOI https://doi.org/10.1145/3544489

8. Bagheri, S., Konen, W., Emmerich, M., Bäck, T.: Self-adjusting parameter control for
surrogate-assisted constrained optimization under limited budgets. Applied Soft Com-
puting 61, 377–393 (2017). DOI https://doi.org/10.1016/j.asoc.2017.07.060

9. Berman, O., Ashrafi, N.: Optimization models for reliability of modular software sys-
tems. IEEE Transactions on Software Engineering 19(11), 1119–1123 (1993). DOI
https://doi.org/10.1109/32.256858

BOA: Blackbox Optimization Algorithm 41

10. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A
rigorous framework for optimization of expensive functions by surrogates. Structural
optimization 17(1), 1–13 (1999). DOI https://doi.org/10.1007/BF01197708

11. Bouhlel, M.A., Bartoli, N., Regis, R.G., Otsmane, A., Morlier, J.: Efficient global opti-
mization for high-dimensional constrained problems by using the kriging models com-
bined with the partial least squares method. Engineering Optimization 50(12), 2038–
2053 (2018). DOI https://doi.org/10.1080/0305215X.2017.1419344

12. Browne, T., Iooss, B., Gratiet, L.L., Lonchampt, J., Remy, E.: Stochastic simulators
based optimization by gaussian process metamodels–application to maintenance in-
vestments planning issues. Quality and Reliability Engineering International 32(6),
2067–2080 (2016). DOI https://doi.org/10.1002/qre.2028

13. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for
mixed-integer nonlinear programming. INFORMS Journal on Computing 15(1), 114–
119 (2003)

14. Conn, A.R., Deleris, L.A., Hosking, J.R., Thorstensen, T.A.: A simulation model for
improving the maintenance of high cost systems, with application to an offshore oil
installation. Quality and Reliability Engineering International 26(7), 733–748 (2010).
DOI https://doi.org/10.1002/qre.1136

15. Crélot, A.S., Beauthier, C., Orban, D., Sainvitu, C., Sartenaer, A.: Combining surrogate
strategies with MADS for mixed-variable derivative-free optimization. Tech. Rep. G-
2017-70, Les cahiers du GERAD (2017). DOI https://doi.org/10.13140/RG.2.2.25690.
24008

16. Dahito, M.A., Genest, L., Maddaloni, A., Neto, J.: On the performance of the orthomads
algorithm on continuous and mixed-integer optimization problems. In: A.I. Pereira,
F.P. Fernandes, J.P. Coelho, J.P. Teixeira, M.F. Pacheco, P. Alves, R.P. Lopes (eds.)
Optimization, Learning Algorithms and Applications, pp. 31–47. Springer International
Publishing, Cham (2021)

17. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE transactions on evolutionary computation 6(2), 182–197
(2002)

18. Egea, J.A., Vazquez, E., Banga, J.R., Mart́ı, R.: Improved scatter search for the global
optimization of computationally expensive dynamic models. Journal of Global Opti-
mization 43(2-3), 175–190 (2009). DOI https://doi.org/10.1007/s10898-007-9172-y

19. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global
Optimization Algorithms, vol. 455. Springer, Berlin, Heidelberg (1990). DOI https:
//doi.org/10.1007/3-540-53032-0

20. Forrester, A.I., Keane, A.J.: Recent advances in surrogate-based optimization. Progress
in Aerospace Sciences 45(1), 50–79 (2009). DOI https://doi.org/10.1016/j.paerosci.
2008.11.001

21. Friedman, J.H.: Multivariate adaptive regression splines. The annals of statistics pp.
1–67 (1991)

22. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using
firefly algorithm. Computers & Structures 89(23), 2325–2336 (2011). DOI https://doi.
org/10.1016/j.compstruc.2011.08.002

23. Gramacy, R.B., Le Digabel, S.: The mesh adaptive direct search algorithm with treed
Gaussian process surrogates. Pacific Journal of Optimization 11(3), 419–447 (2015).
URL http://www.ybook.co.jp/online2/pjov11-3.html

24. Grandhi, R., Venkayya, V.: Structural optimization with frequency constraints. AIAA
journal 26(7), 858–866 (1988). DOI https://doi.org/10.2514/3.9979

25. Grossmann, I.E., Sargent, R.W.H.: Optimum design of multipurpose chemical plants.
Industrial & Engineering Chemistry Process Design and Development 18(2), 343–348
(1979). DOI https://doi.org/10.1021/i260070a031

26. Gu, L., Yang, R., Tho, C.H., Makowskit, M., Faruquet, O., Y. Li, Y.L.: Optimisation
and robustness for crashworthiness of side impact. International Journal of Vehicle
Design 26(4), 348–360 (2001). DOI https://doi.org/10.1504/IJVD.2001.005210

27. Gupta, S., Tiwari, R., Nair, S.B.: Multi-objective design optimisation of rolling bearings
using genetic algorithms. Mechanism and Machine Theory 42(10), 1418–1443 (2007).
DOI https://doi.org/10.1016/j.mechmachtheory.2006.10.002

http://www.ybook.co.jp/online2/pjov11-3.html

42 Marie-Ange Dahito et al.

28. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. Journal
of geophysical research 76(8), 1905–1915 (1971)

29. Himmelblau, D.M.: Applied nonlinear programming. McGraw-Hill Book Company, New
York (1972)

30. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. Journal
of Optimization Theory and Applications 30(1), 127–129 (1980). DOI https://doi.org/
10.1007/BF00934594

31. Hüsken, M., Jin, Y., Sendhoff, B.: Structure optimization of neural networks for
evolutionary design optimization. Soft Computing 9(1), 21–28 (2005). DOI https:
//doi.org/10.1007/s00500-003-0330-y

32. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: C.A.C. Coello (ed.) Learning and Intelligent Opti-
mization, pp. 507–523. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

33. Jekabsons, G.: ARESLab: Adaptive regression splines toolbox for matlab/octave, ver.
1.13.0 (2011)

34. Jin, L., Alpak, F.O., van den Hoek, P., Pirmez, C., Fehintola, T., Tendo, F., Olaniyan,
E.: A comparison of stochastic data-integration algorithms for the joint history matching
of production and time-lapse-seismic data. SPE Reservoir Evaluation & Engineering
15(04), 498–512 (2012). DOI https://doi.org/10.2118/146418-PA

35. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodelling techniques
under multiple modelling criteria. Structural and multidisciplinary optimization 23(1),
1–13 (2001). DOI https://doi.org/10.1007/s00158-001-0160-4

36. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-
box functions. Journal of Global optimization 13(4), 455–492 (1998). DOI https:
//doi.org/10.1023/A:1008306431147

37. Kianifar, M.R., Campean, F.: Performance evaluation of metamodelling methods for
engineering problems: towards a practitioner guide. Structural and Multidisciplinary
Optimization 61(1), 159–186 (2020). DOI https://doi.org/10.1007/s00158-019-02352-1

38. Koch, P.N., Bagheri, S., Foussette, C., Krause, P., Bäck, T., Konen, W.: Constrained
optimization with a limited number of function evaluations. In: F. Hoffmann, E. Hüller-
meier (eds.) Proc. 24. Workshop Computational Intelligence, pp. 119–134. Univer-
sitätsverlag Karlsruhe (2014)

39. Krige, D.G.: A statistical approach to some basic mine valuation problems on the wit-
watersrand. Journal of the Southern African Institute of Mining and Metallurgy 52(6),
119–139 (1951)

40. Kumar, A., Wu, G., Ali, M.Z., Mallipeddi, R., Suganthan, P.N., Das, S.: A test-suite of
non-convex constrained optimization problems from the real-world and some baseline
results. Swarm and Evolutionary Computation 56, 100693 (2020). DOI https://doi.
org/10.1016/j.swevo.2020.100693

41. Kuo, W., Prasad, V.R., Tillman, F.A., Hwang, C.L.: Optimal Reliability Design: Fun-
damentals and Applications. Cambridge University Press, United Kingdom (2001)

42. Le Digabel, S., Wild, S.: A taxonomy of constraints in simulation-based optimiza-
tion. Tech. Rep. G-2015-57, Les cahiers du GERAD (2015). URL http://www.

optimization-online.org/DB_HTML/2015/05/4931.html

43. Li, R., Emmerich, M.T., Eggermont, J., Bovenkamp, E.G., Back, T., Dijkstra, J., Reiber,
J.H.: Metamodel-assisted mixed-integer evolution strategies and their application to in-
travascular ultrasound image analysis. In: 2008 IEEE Congress on Evolutionary Com-
putation (IEEE World Congress on Computational Intelligence), pp. 2764–2771. IEEE
(2008). DOI https://doi.org/10.1109/CEC.2008.4631169

44. Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing surrogate-assisted evolutionary
computation. IEEE Transactions on Evolutionary Computation 14(3), 329–355 (2010).
DOI https://doi.org/10.1109/TEVC.2009.2027359

45. Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B.: A study on metamodeling techniques, en-
sembles, and multi-surrogates in evolutionary computation. In: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, p.
1288–1295. Association for Computing Machinery, New York, NY, USA (2007). DOI
https://doi.org/10.1145/1276958.1277203

http://www.optimization-online.org/DB_HTML/2015/05/4931.html
http://www.optimization-online.org/DB_HTML/2015/05/4931.html

BOA: Blackbox Optimization Algorithm 43

46. Liu, C., Wan, Z., Liu, Y., Li, X., Liu, D.: Trust-region based adaptive radial basis
function algorithm for global optimization of expensive constrained black-box problems.
Applied Soft Computing 105, 107233 (2021). DOI https://doi.org/10.1016/j.asoc.2021.
107233

47. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: DACE–a matlab kriging toolbox, ver-
sion 2.0 (2002)

48. Marsden, A.L., Feinstein, J.A., Taylor, C.A.: A computational framework for derivative-
free optimization of cardiovascular geometries. Computer Methods in Applied Mechan-
ics and Engineering 197(21), 1890–1905 (2008). DOI https://doi.org/10.1016/j.cma.
2007.12.009

49. Marsden, A.L., Wang, M., Dennis, Jr., J.E., Moin, P.: Optimal aeroacoustic shape design
using the surrogate management framework. Optimization and Engineering 5(2), 235–
262 (2004). DOI https://doi.org/10.1023/B:OPTE.0000033376.89159.65

50. Martinez, N., Anahideh, H., Rosenberger, J.M., Martinez, D., Chen, V.C., Wang, B.P.:
Global optimization of non-convex piecewise linear regression splines. Journal of Global
Optimization 68(3), 563–586 (2017). DOI https://doi.org/10.1007/s10898-016-0494-5

51. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for se-
lecting values of input variables in the analysis of output from a computer code. Tech-
nometrics 42(1), 55–61 (2000). DOI https://doi.org/10.1080/00401706.2000.10485979

52. Müller, J.: MISO: mixed-integer surrogate optimization framework. Optimization and
Engineering 17(1), 177–203 (2016). DOI https://doi.org/10.1007/s11081-015-9281-2

53. Müller, J., Shoemaker, C.A.: Influence of ensemble surrogate models and sampling strat-
egy on the solution quality of algorithms for computationally expensive black-box global
optimization problems. Journal of Global Optimization 60(2), 123–144 (2014). DOI
https://doi.org/10.1007/s10898-014-0184-0

54. Müller, J., Shoemaker, C.A., Piché, R.: SO-MI: A surrogate model algorithm for com-
putationally expensive nonlinear mixed-integer black-box global optimization problems.
Computers & Operations Research 40(5), 1383–1400 (2013). DOI https://doi.org/10.
1016/j.cor.2012.08.022

55. Müller, J., Shoemaker, C.A., Piché, R.: SO-I: a surrogate model algorithm for expensive
nonlinear integer programming problems including global optimization applications.
Journal of Global Optimization 59(4), 865–889 (2014). DOI https://doi.org/10.1007/
s10898-013-0101-y

56. Müller, J., Woodbury, J.D.: GOSAC: global optimization with surrogate approximation
of constraints. Journal of Global Optimization 69(1), 117–136 (2017). DOI https:
//doi.org/10.1007/s10898-017-0496-y

57. Pant, M., Thangaraj, R., Singh, V.P.: Optimization of mechanical design problems
using improved differential evolution algorithm. International Journal of Recent Trends
in Engineering 1(5), 21–25 (2009)

58. Paul H., T.: Optimal design of an industrial refrigeration system. In: Proceedings of
International Conference on Optimization Techniques and Applications, pp. 427–435.
Singapore, National University of Singapore (1987)

59. Plackett, R.L., Burman, J.P.: The design of optimum multifqctorial experiments.
Biometrika 33(4), 305–325 (1946). DOI 10.1093/biomet/33.4.305

60. Regis, R.G.: Stochastic radial basis function algorithms for large-scale optimization
involving expensive black-box objective and constraint functions. Computers & Oper-
ations Research 38(5), 837–853 (2011). DOI https://doi.org/10.1016/j.cor.2010.09.013

61. Regis, R.G.: Constrained optimization by radial basis function interpolation for high-
dimensional expensive black-box problems with infeasible initial points. Engineering Op-
timization 46(2), 218–243 (2014). DOI https://doi.org/10.1080/0305215X.2013.765000

62. Regis, R.G.: Evolutionary programming for high-dimensional constrained expensive
black-box optimization using radial basis functions. IEEE Transactions on Evolutionary
Computation 18(3), 326–347 (2014). DOI https://doi.org/10.1109/TEVC.2013.2262111

63. Regis, R.G.: Surrogate-assisted particle swarm with local search for expensive con-
strained optimization. In: P. Korošec, N. Melab, E.G. Talbi (eds.) Bioinspired Optimiza-
tion Methods and Their Applications, pp. 246–257. Springer International Publishing,
Cham (2018)

44 Marie-Ange Dahito et al.

64. Regis, R.G.: Large-scale discrete constrained black-box optimization using radial basis
functions. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp.
2924–2931. IEEE (2020). DOI https://doi.org/10.1109/SSCI47803.2020.9308581

65. Regis, R.G.: A survey of surrogate approaches for expensive constrained black-box op-
timization. In: H.A. Le Thi, H.M. Le, T. Pham Dinh (eds.) Optimization of Complex
Systems: Theory, Models, Algorithms and Applications, pp. 37–47. Springer, Cham
(2020). DOI https://doi.org/10.1007/978-3-030-21803-4 4

66. Regis, R.G., Wild, S.M.: CONORBIT: constrained optimization by radial basis function
interpolation in trust regions. Optimization Methods and Software 32(3), 552–580
(2017). DOI https://doi.org/10.1080/10556788.2016.1226305

67. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and
comparison of software implementations. Journal of Global Optimization 56(3), 1247–
1293 (2013). DOI https://doi.org/10.1007/s10898-012-9951-y

68. Runarsson, T.P.: Constrained evolutionary optimization by approximate ranking and
surrogate models. In: X. Yao, E.K. Burke, J.A. Lozano, J. Smith, J.J. Merelo-Guervós,
J.A. Bullinaria, J.E. Rowe, P. Tiňo, A. Kabán, H.P. Schwefel (eds.) Parallel Problem
Solving from Nature - PPSN VIII, pp. 401–410. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

69. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Statistical science pp. 409–423 (1989)

70. Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sampling
criteria for constrained global optimization. Engineering Optimization 34(3), 263–278
(2002). DOI https://doi.org/10.1080/03052150211751

71. Simpson, T.W., Mauery, T.M., Korte, J.J., Mistree, F.: Kriging models for global ap-
proximation in simulation-based multidisciplinary design optimization. AIAA Journal
39(12), 2233–2241 (2001). DOI https://doi.org/10.2514/2.1234

72. Talgorn, B., Le Digabel, S., Kokkolaras, M.: Statistical Surrogate Formulations for
Simulation-Based Design Optimization. Journal of Mechanical Design 137(2), 021405–
1–021405–18 (2015). DOI 10.1115/1.4028756

73. Thanedar, P., Vanderplaats, G.: Survey of discrete variable optimization for structural
design. Journal of Structural Engineering 121(2), 301–306 (1995)

74. Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on Opti-
mization 7(1), 1–25 (1997). DOI https://doi.org/10.1137/S1052623493250780

75. Villa-Vialaneix, N., Follador, M., Ratto, M., Leip, A.: A comparison of eight meta-
modeling techniques for the simulation of N2O fluxes and N leaching from corn crops.
Environmental Modelling & Software 34, 51–66 (2012). DOI https://doi.org/10.1016/
j.envsoft.2011.05.003

76. Vu, K.K., d’Ambrosio, C., Hamadi, Y., Liberti, L.: Surrogate-based methods for black-
box optimization. International Transactions in Operational Research 24(3), 393–424
(2017). DOI https://doi.org/10.1111/itor.12292

77. Wang, G.G., Shan, S.: Review of metamodeling techniques in support of engineering
design optimization. Journal of Mechanical Design 129(4), 370–380 (2006). DOI
https://doi.org/10.1115/1.2429697

78. Wang, H., Jin, Y., Doherty, J.: Committee-based active learning for surrogate-assisted
particle swarm optimization of expensive problems. IEEE Transactions on Cybernetics
47(9), 2664–2677 (2017). DOI https://doi.org/10.1109/TCYB.2017.2710978

79. Wang, Y., Liu, H., Long, H., Zhang, Z., Yang, S.: Differential evolution with a new
encoding mechanism for optimizing wind farm layout. IEEE Transactions on Industrial
Informatics 14(3), 1040–1054 (2018). DOI https://doi.org/10.1109/TII.2017.2743761

80. Wild, S.M., Regis, R.G., Shoemaker, C.A.: ORBIT: Optimization by radial basis func-
tion interpolation in trust-regions. SIAM Journal on Scientific Computing 30(6), 3197–
3219 (2008). DOI https://doi.org/10.1137/070691814

81. Yang, H., Kim, J., Choe, J.: Field development optimization in mature oil reservoirs
using a hybrid algorithm. Journal of Petroleum Science and Engineering 156, 41–50
(2017). DOI https://doi.org/10.1016/j.petrol.2017.05.009

82. Ye, K.Q., Li, W., Sudjianto, A.: Algorithmic construction of optimal symmetric latin
hypercube designs. Journal of Statistical Planning and Inference 90(1), 145–159 (2000).
DOI https://doi.org/10.1016/S0378-3758(00)00105-1

BOA: Blackbox Optimization Algorithm 45

83. Yokota, T., Taguchi, T., Gen, M.: A solution method for optimal weight design problem
of the gear using genetic algorithms. Computers & Industrial Engineering 35(3), 523–
526 (1998). DOI https://doi.org/10.1016/S0360-8352(98)00149-1. Selected Papers from
the 22nd ICC and IE Conference

84. Yuan, X., Zhang, S., Pibouleau, L., Domenech, S.: Une méthode d’optimisation non
linéaire en variables mixtes pour la conception de procédés. RAIRO-Operations Re-
search 22(4), 331–346 (1988)

85. Zhuang, L., Tang, K., Jin, Y.: Metamodel assisted mixed-integer evolution strategies
based on kendall rank correlation coefficient. In: H. Yin, K. Tang, Y. Gao, F. Klawonn,
M. Lee, T. Weise, B. Li, X. Yao (eds.) Intelligent Data Engineering and Automated
Learning – IDEAL 2013, pp. 366–375. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

46 Marie-Ange Dahito et al.

A Formulations of the test problems

A.1 Problem C1 [19]

This is the well-known G01 benchmark problem.



min 5
∑4

i=1 xi − 5
∑4

i=1 x
2
i −

∑13
i=5 xi

subject to
2x1 + 2x2 + x10 + x11 − 10 ≤ 0
2x1 + 2x3 + x10 + x12 − 10 ≤ 0
2x2 + 2x3 + x11 + x12 − 10 ≤ 0
−8x1 + x10 ≤ 0
−8x2 + x11 ≤ 0
−8x3 + x12 ≤ 0
−2x4 − x5 + x10 ≤ 0
−2x6 − x7 + x11 ≤ 0
−2x8 − x9 + x12 ≤ 0
xi ∈ [0, 1], i = 1, 2, . . . , 9, 13
xi ∈ [0, 100], i = 10, 11, 12.

A.2 Problem C2 [30]

This is the well-known G07 benchmark problem.



min x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4 (x4 − 5)2 + (x5 − 3)2 + 2 (x6 − 1)2

+5x2
7 + 7 (x8 − 11)2 + 2 (x9 − 10)2 + (x10 − 7)2 + 45

subject to
−105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
10x1 − 8x2 − 17x7 + 2x8 ≤ 0
−8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

3 (x1 − 2)2 + 4 (x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

x2
1 + 2 (x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

0.5 (x1 − 8)2 + 2 (x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

−3x1 + 6x2 + 12 (x9 − 8)2 − 7x10 ≤ 0
xi ∈ [−10, 10], i = 1, 2, . . . , 10.

A.3 Problem C3 [29]

This is the well-known G19 benchmark problem.

a =



16 2 0 1 0
0 −2 0 0.4 2
−3.5 0 2 0 0
0 −2 0 −4 −1
0 −9 −2 1 −2.8
2 0 −4 0 0
−1 −1 −1 −1 −1
−1 −2 −3 −2 −1
1 2 3 4 5
1 1 1 1 1


b =



−40
−2
−0.25
−4
−4
−1
−40
−60
5
1


c =


30 −20 −10 32 −10
−20 39 −6 −31 32
−10 −6 10 −6 −10
32 −31 −6 39 −20
−10 32 −10 −20 30

 d =


4
8
10
6
2

 e =


−15
−27
−36
−18
−12



BOA: Blackbox Optimization Algorithm 47


min

∑5
j=1

∑5
i=1cijx(10+i)x(10+j) + 2

∑5
i=1 dix

3
(10+i)

−
∑10

i=1 bixi

subject to

−2
∑5

i=1 cijx(10+i) − 3djx
2
(10+j)

− ej +
∑10

i=1 aijxi ≤ 0, j = 1, 2, . . . , 5

xi ∈ [0, 10], i = 1, 2, . . . , 15.

A.4 Problem C4 [58,57,40]: optimal design of an industrial refrigeration
system

A design problem expressed as a non-linear inequality constrained optimization problem.

min 63098.88x2x4x12 + 5441.5x2
2x12 + 115055.5x1.664

2 x6+
6172.27x2

2x6 + 63098.88x1x3x11 + 5441.5x2
1x11 + 115055.5x1.664

1 x5

+6172.27x2
1x5 + 140.53x1x11 + 281.29x3x11 + 70.26x2

1 + 281.29x1x3

+281.29x2
3 + 14437x1.8812

8 x0.3424
12 x10x

−1
14 x2

1x7x
−1
9 + 20470.2x2.893

7 x0.316
11 x2

1
subject to

1.524x−1
7 − 1 ≤ 0

1.524x−1
8 − 1 ≤ 0

0.07789x1 − 2x−1
7 x9 − 1 ≤ 0

7.05305x−1
9 x2

1x10x
−1
8 x−1

2 x−1
14 − 1 ≤ 0

0.0833x−1
13 x14 − 1 ≤ 0

47.136x0.333
2 x−1

10 x12 − 1.333x8x2.1195
13 + 62.08x2.1195

13 x−1
12 x0.2

8 x−1
10 − 1 ≤ 0

0.04771x10x1.8812
8 x0.3424

12 − 1 ≤ 0
0.0488x9x1.893

7 x0.316
11 − 1 ≤ 0

0.0099x1x
−1
3 − 1 ≤ 0

0.0193x2x
−1
4 − 1 ≤ 0

0.0298x1x
−1
5 − 1 ≤ 0

0.056x2x
−1
6 − 1 ≤ 0

2x−1
9 − 1 ≤ 0

2x−1
10 − 1 ≤ 0

x12x
−1
11 − 1 ≤ 0

xi ∈ [0.001, 5], i = 1, 2, . . . , 14.

A.5 Problem C5 [24,40]: 10-bar truss design

The aim is to minimize the weight of a truss structure subject to frequency constraints. The
truss is represented as a finite element structure that has 10 two-dimensional bar elements
and 6 nodes. 

min f (x) =
∑10

i=1 LiρAi

subject to
7

ω1(x)
− 1 ≤ 0

15
ω2(x)

− 1 ≤ 0
20

ω3(x)
− 1 ≤ 0

with bounds:
Ai ∈ [6.45 · 10−5 , 5 · 10−3], i = 1, 2, . . . , 10,

where
x = {A1, A2, . . . , A10} , ρ = 2770,

Li =

{
9.144 if i ≤ 6

9.144 ·
√
2 otherwise.

The functions ω1 (x) , ω2 (x) and ω3 (x) are computed from matrices K and M , that
need to be assembled from smaller matrices, and their lowest eigenvalues.

48 Marie-Ange Dahito et al.

Let

M(i) = 1
6
ρLiAi


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

 and K(i) = EAi

L3
i


−limi −m2

i limi m2
i

−l2i −limi l2i limi

limi m2
i −limi −m2

i
l2i limi −l2i −limi


with

E = 6.98 · 1010, li =
{
0 if i ∈ {5, 6}
9.144 otherwise

and mi =

 0 if i ≤ 4
−9.144 if i ∈ {7, 9}
9.144 otherwise.

Let I =



5 6 9 10
1 2 5 6
7 8 11 12
3 4 7 8
5 6 7 8
1 2 3 4
7 8 9 10
5 6 11 12
3 4 5 6
1 2 7 8


, we denote Ii,: =

[
Ii,1 Ii,2 Ii,3 Ii,4

]
, the ith line of I where, for

all j ∈ {1, 2, 3, 4}, Ii,j is the element of the ith line and jth column of I.
Let A ∈ R12×12 be a real square matrix, and v = [a b c d] be a line vector with

{a, b, c, d} ∈ {1, 2, . . . , 12}4, we denote A[v] = A[a b c d] =


Aaa Aab Aac Aad

Aba Abb Abc Abd

Aca Acb Acc Acd

Ada Adb Adc Add

 .

The following procedure describes how ω1 (x) , ω2 (x) and ω3 (x) are computed:

Algorithm 5: Compute ω1, ω2 and ω3

1 Given ∀i ∈ {1, 2, . . . , 10}, M(i), K(i)

2 Given I,

3 Initialize K ←

0 . . . 0
...
. . .

...
0 . . . 0

, M ←
0 . . . 0
...
. . .

...
0 . . . 0


4 for each i ∈ {1, 2, . . . , 10} do
5 K[Ii,:]← K[Ii,:] +K(i)

6 M [Ii,:]←M [Ii,:] +M(i)

7 Get the 3 smallest eigenvalues L1,L2 and L3 of K and M such that L1 ≤ L2 ≤ L3
8 for each j ∈ {1, 2, 3} do
9 ωj (x)←

Lj

2π

10 Return ω1 (x) , ω2 (x) and ω3 (x).

A.6 Problem C6 [79,40]: wind farm layout problem

The objective is to minimize the opposite sum of the expected power output of each wind
turbine i with minimum distance constraints between the wind turbines. The optimization
problem is as follows:

min −
∑N

i=1 E (Pi)
subject to

5R−
√

(xi − xj)
2 + (yi − yj)

2 ≤ 0, j = 1, 2, . . . , N and j ̸= i

BOA: Blackbox Optimization Algorithm 49

where
x+R ≤ xi ≤ x−R and y +R ≤ yi ≤ y −R, ∀i = 1, 2, . . . , N , with N = 15,

x = [0 0 . . . 0]⊤ and y = [0 0 . . . 0]⊤ are lower bounds for all components of x and y,
respectively,
x = [2000 2000 . . . 2000]⊤ and y = [2000 2000 . . . 2000]⊤ are upper bounds for all com-
ponents of x and y respectively.

E (Pi) =
∑h

n=1 ξn

{
Pr

(
e−(νr/c′i((θn−1+θn)/2))

ki((θn−1+θn)/2)
− e−(νco/c′i((θn−1+θn)/2))

ki((θn−1+θn)/2)
)

+
∑s

j=1

(
e−(νj−1/c

′
i((θn−1+θn)/2))

ki((θn−1+θn)/2)
− e−(νj/c′i((θn−1+θn)/2))

ki((θn−1+θn)/2)
)

e(νj−1+νj)/2

α+βe(νj−1+νj)/2

}
ξn is the frequency of the interval [θn−1, θn).

The following parameters are set: h = 24, s = 36, R = 40, Pr = 1500, α = 6.0268,
β = 0.0007, νr = 14, νco = 25 and νci = 3.5.
∀n ∈ {1, 2, . . . , h}, θn = θn−1 + 360

h
with θ0 = 0◦.

∀j ∈ {1, 2, . . . , s}, νj = νj−1 +
(νr−νci)

s
with ν0 = νci.

For all n ∈ {1, 2, . . . , h}, we denote θ(n) =
θn−1+θn

2
.

For all n ∈ {1, 2, . . . , h}, ki(θ(n)) = 2 and the following table gives the values of ci(θ
(n))

and χn for each n.

n ci(θ
(n)) χn n ci(θ

(n)) χn n ci(θ
(n)) χn

1 7 0.0003 9 7 0.0626 17 4.6 0.0041
2 5 0.0072 10 7 0.0802 18 2.6 0.0008
3 5 0.0237 11 8 0.1025 19 8 0.001
4 5 0.0242 12 9.5 0.1445 20 5 0.0005
5 5 0.0222 13 10 0.1909 21 6.4 0.0013
6 4 0.0301 14 8.5 0.1162 22 5.2 0.0031
7 5 0.0397 15 8.5 0.0793 23 4.5 0.0085
8 6 0.0268 16 6.5 0.0082 24 3.9 0.0222

Moreover, c′i(θ
(n)) = ci(θ

(n))(1− V Di),

where V Di = 2a

√
N∑

j=1,j ̸=i

1(
1+

κ
R

|(xj−xi)cos(θ
(n))+(yj−yi)sin(θ(n))|

)4 ,

a = 0.5 · (1−
√
1− CT), CT = 0.8 and κ = 0.01.

A.7 Problem I1 [19,55]

This is the problem G01 with integrality constraints on the variables.

min 5
∑4

i=1 xi − 5
∑4

i=1 x
2
i −

∑13
i=5 xi

subject to
2x1 + 2x2 + x10 + x11 − 10 ≤ 0
2x1 + 2x3 + x10 + x12 − 10 ≤ 0
2x2 + 2x3 + x11 + x12 − 10 ≤ 0
−8x1 + x10 ≤ 0
−8x2 + x11 ≤ 0
−8x3 + x12 ≤ 0
−2x4 − x5 + x10 ≤ 0
−2x6 − x7 + x11 ≤ 0
−2x8 − x9 + x12 ≤ 0
xi ∈ {0, 1}, i = 1, 2, . . . , 9, 13
xi ∈ {0, 1, . . . , 100}, i = 10, 11, 12

50 Marie-Ange Dahito et al.

A.8 Problem I2 [13,55]: hmittelman

The binary nonlinear problem hmittelman.



min 10y1 + 7y2 + y3 + 12y4 + 8y5 + 3y6 + y7 + 5y8 + 3y9
subject to
3y1 − 12y2 − 8y3 + y4 − 7y9 + 2y10 + 2 ≤ 0
y2 − 10y3 − 5y5 + y6 + 7y7 + y8 + 1 ≤ 0
5y1 − 3y2 − y3 − 2y8 + y10 + 1 ≤ 0
3y2 − 5y1 + y3 + 2y8 − y10 − 1 ≤ 0
−4y3 − 2y4 − 5y6 + y7 − 9y8 − 2y9 + 3 ≤ 0
9y2 − 12y4 − 7y5 + 6y6 + 2y8 − 15y9 + 3y10 + 7 ≤ 0
5y2 − 8y1 + 2y3 − 7y4 − y5 − 5y7 − 10y9 + 1 ≤ 0
y1 = x5x7x9x10x14x15x16

y2 = x1x2x3x4x8x11

y3 = x3x4x6x7x8

y4 = x3x4x8x11

y5 = x6x7x8x12

y6 = x6x7x9x14x16

y7 = x9x10x14x16

y8 = x5x10x14x15x16

y9 = x1x2x11x12

y10 = x13x14x15x16

xi ∈ {0, 1}, i = 1, 2, . . . , 16.

A.9 Problem I3 [19,55]

The G01 problem with integrality constraints and modified bounds.



min 5
∑4

i=1 xi − 5
∑4

i=1 x
2
i −

∑13
i=5 xi

subject to
2x1 + 2x2 + x10 + x11 − 10 ≤ 0
2x1 + 2x3 + x10 + x12 − 10 ≤ 0
2x2 + 2x3 + x11 + x12 − 10 ≤ 0
−8x1 + x10 ≤ 0
−8x2 + x11 ≤ 0
−8x3 + x12 ≤ 0
−2x4 − x5 + x10 ≤ 0
−2x6 − x7 + x11 ≤ 0
−2x8 − x9 + x12 ≤ 0
xi ∈ {0, 1, . . . , 100}, i = 1, 2, . . . , 13.

BOA: Blackbox Optimization Algorithm 51

A.10 Problem MI1 [9,54]

This is a modification of a reliability problem.

min −x5x6x7

subject to
−x8 − x9 − x10 + 1 ≤ 0
−x1 − x2 − x11 + 1 ≤ 0
−x3 − x4 + 1 ≤ 0
2x1 + x2 + 3x3 + 2x4 + 3x8 + x9 + 2x10 + 3x11 − 10 ≤ 0
− log(1− x5) + log(0.1)x8 + log(0.2)x9 + log(0.15)x10 ≤ 0
log(0.2)x1 + log(0.15)x2 − log (1− x6) + log(0.05)x11 ≤ 0
log(0.02)x3 + log(0.06)x4 − log (1− x7) ≤ 0
xi ∈ [0, 1], i = 1, 2, 3, 4
x5 ∈ [0, 0.997], x6 ∈ [0, 0.9985], x7 ∈ [0, 0.9988]
xi ∈ {0, 1} , i = 8, 9, 10, 11.

A.11 Problem MI2 [84,54]

This is a purely mathematical problem with linear and nonlinear constraints.

min(x1 − 1)2 + (x2 − 2)2 + (x3 − 1)2 − log(x4 + 1) + (x5 − 1)2 + (x6 − 2)2 + (x7 − 3)2

subject to
x8 + x9 + x10 + x5 + x6 + x7 − 5 ≤ 0
x2
3 + x2

5 + x2
6 + x2

7 − 5.5 ≤ 0
x8 + x5 − 1.2 ≤ 0
x9 + x6 − 1.8 ≤ 0
x10 + x7 − 2.5 ≤ 0
x11 + x5 − 1.2 ≤ 0
x2
2 + x2

6 − 1.64 ≤ 0
x2
3 + x2

7 − 4.25 ≤ 0
x2
2 + x2

7 − 4.64 ≤ 0
x1 − x8 ≤ 0
x2 − x9 ≤ 0
x3 − x10 ≤ 0
x4 − x11 ≤ 0
xi ∈ [0, 1], i = 1, ..., 4
xi ∈ [0, 10], i = 5, ..., 7
xi ∈ {0, 1}, i = 8, ..., 11

A.12 Problem MI3 [41,54]: bridge system

It is a reliability-redundancy allocation problem on a bridge network.

min−R1R2 −R3R4 −R1R4R5 −R2R3R5 +R1R2R3R4 +R1R2R3R5

+R1R2R4R5 +R1R3R4R5 +R2R3R4R5 − 2R1R2R3R4R5

subject to∑5
i=1 piu

2
i − 110 ≤ 0∑5

i=1(αi(
−1000
log(xi)

)1.5)(ui + e
ui
4)− 175 ≤ 0∑5

i=1 ωiuie
ui
4 − 200 ≤ 0,

where Ri = 1 − (1 − xi)
ui , 0 ≤ xi ≤ 1 − 10−6, and ui ∈ {1, 2, . . . , 10}, ∀i = 1, 2, . . . , 5.

Besides, α = (2.330, 1.450, 0.541, 8.050, 1.950) · 10−5, p = (1, 2, 3, 4, 2) and ω = (7, 8, 8, 6, 9).

52 Marie-Ange Dahito et al.

A.13 Problem MI4 [41,54]: series-parallel system

This is a reliability-redundancy allocation problem on a series-parallel system.

min−1 + (1−R1R2)(1− (1−R3)(1−R4)R5))
subject to∑5

i=1 piu
2
i − 180 ≤ 0∑5

i=1(αi(
−1000
log(xi)

)1.5)(ui + e
ui
4)− 175 ≤ 0∑5

i=1 ωiuie
ui
4 − 100 ≤ 0,

where Ri = 1− (1− xi)
ui , 0 ≤ xi ≤ 1− 10−6, and ui ∈ {1, 2, . . . , 10}, ∀i = 1, 2, . . . , 5. Pa-

rameters: α = (2.5, 1.45, 0.541, 0.541, 2.1) ·10−5, p = (2, 4, 5, 8, 4) and ω = (3.5, 4, 4, 3.5, 4.5).

A.14 Problem MI5 [25,40]: multi-product batch plant

This problem aims at designing a multi-product batch plant with 3 serial batch processing
stages manufacturing 2 different products.

min 250
∑3

j=1 NjV
0.6
j

subject to
2B1 + 4B2 − V1 ≤ 0
3B1 + 6B2 − V2 ≤ 0
4B1 + 3B2 − V3 ≤ 0
40000TL1

B1
+ 20000TL2

B2
− 6000 ≤ 0

8−N1TL1 ≤ 0
20−N2TL1 ≤ 0
8−N3TL1 ≤ 0
16−N1TL2 ≤ 0
4−N2TL2 ≤ 0
4−N3TL2 ≤ 0,

where 1 ≤ N1, N2, N3 ≤ 3, 250 ≤ V1, V2, V3 ≤ 2500, 20
3
≤ TL1, TL2 ≤ 20, 20

3
TL1 ≤ B1 ≤

625 and 10
3
TL2 ≤ B2 ≤ 1250

3
.

A.15 Problem MI6 [27,40]: rolling-element bearing

This problem aims at optimizing the internal geometry of a rolling bearing.

min

{
fcz2/3d1.8b if db ≤ 25.4

3.647fcz2/3d1.4b otherwise

subject to

z − Φ0
2 arcsin(db/dm)

− 1 ≤ 0

kDmin(D − d)− 2db ≤ 0
2db − kDmax(D − d) ≤ 0
ζBw − db ≤ 0
0.5(D + d)− dm ≤ 0
dm − (0.5 + e)(D + d) ≤ 0
ϵdb − 0.5(D − dm − db) ≤ 0
0.515− fi ≤ 0
0.515− f0 ≤ 0,

where 0.5(D + d) ≤ dm ≤ 0.6(D + d), 0.15(D − d) ≤ db ≤ 0.45(D − d), 4 ≤ z ≤ 50,
0.515 ≤ fi, f0 ≤ 0.6, 0.4 ≤ kDmin ≤ 0.5, 0.6 ≤ kDmax ≤ 0.7, 0.3 ≤ ϵ ≤ 0.4, 0.02 ≤ e ≤ 0.1
and 0.6 ≤ ζ ≤ 0.85.

BOA: Blackbox Optimization Algorithm 53

Besides, fc = 37.91(1 + (1.04(1−γ
1+γ

)1.72(
fi(2f0−1)
f0(2fi−1)

)0.41)10/3)−0.3, γ = db
dm

, fi = ri
db

,

f0 = r0
db

, Φ0 = 2π−2 arccos(
(D−d

2
− 3T

4
)2 + (D

2
− T

4
− db)

2 − (d
2
+ T

4
)2

2(D−d
2
− 3T

4
)(D

2
− T

4
− db)

), T = D−d−2db,

D = 160, d = 90 and Bw = 30.

A.16 Problem MV2[30,15]

This is the well-known G07 problem where some variables are imposed to be discrete.



minx2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to
−105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0
10x1 − 8x2 − 17x7 + 2x8 ≤ 0
−8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0
3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0
5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0
x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

−3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0,

where xi ∈ {−10,−5, 0, 1.3, 2.2, 5, 8.2, 8.7, 9.5, 10}, ∀i = 1, 2, . . . , 6, −10 ≤ x7, x8 ≤ 10 and
x9, x10 ∈ {−10,−9, . . . , 10}.

A.17 Problem MV3 [26,22]: car side impact design

This problem uses a simplified regression model of the finite element model of a car side
impact. The aim is to minimize the weight of the car subject to nonlinear inequality con-
straints.



min 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7

subject to
1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 − 1 ≤ 0
0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10

+0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11 − 0.32 ≤ 0
0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7 + 0.0208x3x8

+0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10 + 0.00121x8x11 − 0.32 ≤ 0
0.074− 0.061x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2

2 − 0.32 ≤ 0
28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8 + 0.32x9x10 − 32 ≤ 0
33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10 − 9.98x7x8 + 22.2x8x9 − 32 ≤ 0
46.36− 9.9x2 − 12.9x1x8 + 0.1107x3x10 − 32 ≤ 0
4.72− 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x2

11 − 4 ≤ 0
10.58− 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10 − 9.9 ≤ 0
16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x2

11 − 15.7 ≤ 0,

where 0.5 ≤ x1, x3, x4 ≤ 1.5, 0.45 ≤ x2 ≤ 1.35, 0.875 ≤ x5 ≤ 2.625, 0.4 ≤ x6, x7 ≤ 1.2
x8, x9 ∈ {0.192, 0.345}, −30 ≤ x10, x11 ≤ 30.

54 Marie-Ange Dahito et al.

A.18 Problem MV4 [73,22]: stepped cantilever beam design

This problem minimizes the volume of a stepped cantilever beam.



min l(x1x2 + x3x4 + x5x6 + x7x8 + x9x10)
subject to
6Pl− σx9x2

10 ≤ 0
6P2l − σx7x2

8 ≤ 0
6P3l − σx5x2

6 ≤ 0
6P4l − σx3x2

4 ≤ 0
6P5l − σx1x2

2 ≤ 0
Pl3

E
(244x3x3

4x5x3
6x7x3

8x9x3
10+

+148x1x3
2x5x3

6x7x3
8x9x3

10 + 76x1x3
2x3x3

4x7x3
8x9x3

10+
+28x1x3

2x3x3
4x5x3

6x9x3
10 + 4x1x3

2x3x3
4x5x3

6x7x3
8)

−δx1x3
2x3x3

4x5x3
6x7x3

8x9x3
10 ≤ 0

x2 − 20x1 ≤ 0
x4 − 20x3 ≤ 0
x6 − 20x5 ≤ 0
x8 − 20x7 ≤ 0
x10 − 20x9 ≤ 0,

where x1 ∈ {1, 2, . . . , 5}, x2, x4 ∈ {45, 50, 55, 60}, x3, x5 ∈ {2.4, 2.6, 2.8, 3.1}, x6 ∈ {30, 31, . . . , 65},
1 ≤ x7 ≤ 5, 30 ≤ x8, x10 ≤ 65, 1 ≤ x9 ≤ 5.

Besides, P = 50000, l = 100, δ = 2.7, σ = 14000, E = 2 · 107.

A.19 Problem MV1 [83,40]: four-stage gear box problem

The problem minimizes the weight of a gear box where all variables are discrete.

Let ci =
√

(ygi − ypi)2 + (xgi − xpi)2, K0 = 1.5, dmin = 25, JR = 0.2, ϕ = 120,
W = 55.9, Km = 1.6, CRmin = 1.4, Lmax = 127, Cp = 464, σH = 3290, ωmax = 255,
ω1 = 5000, σN = 2090 and ωmin = 245,

BOA: Blackbox Optimization Algorithm 55



min
(

π
1000

)∑4
i=1

bic
2
i (N

2
pi+N2

gi)

(Npi+Ngi)2

subject to(
366000
πω1

+
2c1Np1

Np1+Ng1

)(
(Np1+Ng1)

2

4b1c
2
1Np1

)
− σNJR

0.0167WK0Km
≤ 0(

366000Ng1

πω1Np1
+

2c2Np2

Np2+Ng2

)(
(Np2+Ng2)

2

4b2c
2
2Np2

)
− σNJR

0.0167WK0Km
≤ 0(

366000Ng1Ng2

πω1Np1Np2
+

2c3Np3

Np3+Ng3

)(
(Np3+Ng3)

2

4b3c
2
3Np3

)
− σNJR

0.0167WK0Km
≤ 0(

366000Ng1Ng2Ng3

πω1Np1Np2Np3
+

2c4Np4

Np4+Ng4

)(
(Np4+Ng4)

2

4b4c
2
4Np4

)
− σNJR

0.0167WK0Km
≤ 0(

366000
πω1

+
2c1Np1

Np1+Ng1

)(
(Np1+Ng1)

3

4b1c
2
1Ng1N

2
p1

)
−

(
σH
Cp

)2 (sin(ϕ) cos(ϕ)
0.0334WK0Km

)
≤ 0(

366000Ng1

πω1Np1
+

2c2Np2

Np2+Ng2

)(
(Np2+Ng2)

3

4b2c
2
2Ng2N

2
p2

)
−

(
σH
Cp

)2 (sin(ϕ) cos(ϕ)
0.0334WK0Km

)
≤ 0(

366000Ng1Ng2

πω1Np1Np2
+

2c3Np3

Np3+Ng3

)(
(Np3+Ng3)

3

4b3c
2
3Ng3N

2
p3

)
−

(
σH
Cp

)2 (sin(ϕ) cos(ϕ)
0.0334WK0Km

)
≤ 0(

366000Ng1Ng2Ng3

πω1Np1Np2Np3
+

2c4Np4

Np4+Ng4

)(
(Np4+Ng4)

3

4b4c
2
4Ng4N

2
p4

)
−

(
σH
Cp

)2 (sin(ϕ) cos(ϕ)
0.0334WK0Km

)
≤ 0

−Npi

√
sin2(ϕ)

4
− 1

Npi
+

(
1

Npi

)2
+Ngi

√
sin2(ϕ)

4
+ 1

Ngi
+

(
1

Ngi

)2
+

sin(ϕ)(Npi+Ngi)

2

+CRminπ cos(ϕ) ≤ 0, ∀i ∈ {1, 2, 3, 4}
dmin −

2ciNpi

Npi+Ngi
≤ 0, ∀i ∈ {1, 2, 3, 4}

dmin −
2ciNgi

Npi+Ngi
≤ 0, ∀i ∈ {1, 2, 3, 4}

xp1 +
(Np1+2)c1
Np1+Ng1

− Lmax ≤ 0

−Lmax +
(Npi+2)ci
Npi+Ngi

+ xg(i−1) ≤ 0, ∀i ∈ {2, 3, 4}

−xp1 +
(Np1+2)c1
Np1+Ng1

≤ 0
(Npi+2)ci
Npi+Ngi

− xg(i−1) ≤ 0, ∀i ∈ {2, 3, 4}

yp1 +
(Np1+2)c1
Np1+Ng1

− Lmax ≤ 0

−Lmax +
(Npi+2)ci
Npi+Ngi

+ yg(i−1) ≤ 0, ∀i ∈ {2, 3, 4}
(Np1+2)c1
Np1+Ng1

− yp1 ≤ 0
(Npi+2)ci
Npi+Ngi

− yg(i−1) ≤ 0, ∀i ∈ {2, 3, 4}

−Lmax +
(Ngi+2)ci
Npi+Ngi

+ xgi ≤ 0, ∀i ∈ {1, 2, 3, 4}

−xgi
(Ngi+2)ci
Npi+Ngi

≤ 0, ∀i ∈ {1, 2, 3, 4}

ygi +
(Ngi+2)ci
Npi+Ngi

− Lmax ≤ 0, ∀i ∈ {1, 2, 3, 4}

−ygi +
(Ngi+2)ci
Npi+Ngi

≤ 0, ∀i ∈ {1, 2, 3, 4}
−(bi − 8.255)(bi − 5.715)(bi − 12.70)(−Npi + 0.945ci −Ngi) ≤ 0,∀i ∈ {1, 2, 3, 4}
(bi − 8.255)(bi − 3.175)(bi − 12.70)(−Npi + 0.646ci −Ngi) ≤ 0, ∀i ∈ {1, 2, 3, 4}
(bi − 5.715)(bi − 3.175)(bi − 12.70)(−Npi + 0.504ci −Ngi) ≤ 0, ∀i ∈ {1, 2, 3, 4}
(bi − 5.715)(bi − 3.175)(bi − 8.255)(−Npi −Ngi) ≤ 0, ∀i ∈ {1, 2, 3, 4}
−(bi − 8.255)(bi − 5.715)(bi − 12.70)(Npi − 1.812ci +Ngi) ≤ 0, ∀i ∈ {1, 2, 3, 4}
(bi − 8.255)(bi − 3.175)(bi − 12.70)(Npi − 0.945ci +Ngi) ≤ 0, ∀i ∈ {1, 2, 3, 4}
−(bi − 5.715)(bi − 3.175)(bi − 12.70)(Npi − 0.646ci +Ngi) ≤ 0, ∀i ∈ {1, 2, 3, 4}
(bi − 5.715)(bi − 3.175)(bi − 8.255)(Npi − 0.504ci +Ngi) ≤ 0, ∀i ∈ {1, 2, 3, 4}
ωmin −

ω1(Np1Np2Np3Np4)

(Ng1Ng2Ng3Ng4)
≤ 0

ω1(Np1Np2Np3Np4)

(Ng1Ng2Ng3Ng4)
− ωmax ≤ 0.

	Introduction
	Description of the proposed algorithm
	Considered optimization problems
	Computational experiments
	Conclusion
	Formulations of the test problems

