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Abstract

Due to the ongoing deprecation of third-party cookies on mainstream
browsers, the digital advertising industry is facing novel challenges re-
garding how to operate artificial intelligence (AI) systems. One of these
bottlenecks lies in the tentative use of local differential privacy (LDP) to
obfuscate granular user data, preventing from using standard machine
learning pipelines to tackle the privacy/utility trade-off. This position
paper reviews the main research directions that have been explored to cope
with this issue and states the main positioning and research guidelines
regarding how to operate an AI system under LDP, notably by pointing
out the main limitations of existing work. More specifically, we high-
light the importance of conducting research works focusing on multi-task
learning under LDP schemes and of seeking prior information to help
design privacy-preserving mechanisms. We hope this paper will incentivize
the whole industry and academic research communities to address the
open research questions we are underlying, which could also serve other
industrial applications.

1 Introduction

Advertising Systems on the Open Internet. In the current web ecosystem,
targeted or behavioral advertising is performed by allowing advertisers (e.g.
e-commerce websites) to display personalized advertisement into ad banners
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monetized by publishers’ websites, potentially through a third-party entity such
as an adtech company (Yuan et al., 2014). To build and show such personalized
content on a specific publisher’s webpage, advertisers need to (i) submit a bid to
win an auction allowing them to show their ad, (ii) choose which products to
recommend to the user, and (iii) build the ad creative that will maximize user
intent. Such use-cases are performed by collecting and processing user personal
data, including features and labels, to train machine learning (ML) models that
are part of sophisticated artificial intelligence (AI) systems (McMahan et al.,
2013; Agarwal et al., 2014; He et al., 2014; Chapelle et al., 2015). Indeed, the
latter do not only consist of learning a single ML model but rather thousands
having some dependencies between them and tackling precise goals, such as
estimating the clearing price of an auction, the incremental revenue from an ad
banner, or the time spent by a user on a specific webpage (Chapelle, 2014). In
addition, a single ML model life cycle does not consist of a single learning step
but of multiple sequential ones for the sake of monitoring, testing, and auditing.
As an example, these steps are necessary for adaptive feature discovery and
selection, or to perform model bias correction (Khalid et al., 2014; Hao et al.,
2020).
Privacy-Preserving Browser Vendors. Among the techniques leveraged by
advertisers to collect a sufficient amount of data, the most widespread one relies
on so-called third-party cookies. The latter allows to gather features and labels
associated with the same user by linking her activity on different websites, such
as her last purchase across all visited retailer websites or the number of clicks
performed in the past 24 hours. Yet, in past years, growing concerns regarding
user privacy have led to substantial efforts from browser vendors to limit cross-
website tracking (Erlingsson et al., 2014; Carey et al., 2023). As an example,
Safari and Mozilla Firefox deprecated third-party cookies in 2017 and Google
Chrome has started to deprecate them from early January 2024 for 1% of its
users. To still support the industry that is funding the open web, browser vendors
proposed a set of application programming interfaces (APIs) to mostly allow for
reporting and measurement (i.e. data analytics) use cases. For instance, Apple,
Meta/Mozilla Firefox, Microsoft Edge, and Google Chrome proposed the Private
Ad Measurement system, the Interoperable Private Attribution, MaskedLark,
and the Privacy Sandbox, respectively (Aksu et al., 2023). Unfortunately, the
ML use-case and a fortiori how to operate an AI system, being much more
complicated, are not specifically addressed by such proposals; leaving room for
innovation and for the ML community to work on associated open research
challenges that are described in the following paragraphs.
Differentially Private Learning Environment. In all current browser
vendor proposals, the learning environment could be summarised as follows.
Namely, an AI system (e.g. ran by an adtech company), is interacting with each
user’s data via a so-called trusted entity involving privacy and data governance
restrictions. To provide privacy guarantees when releasing data, the trusted
entity can obfuscate raw user data by (i) restricting the type of data queries
that could be made (e.g. releasing only a pre-determined number of features per
query), and (ii) transforming the outputs of such queries into differential private
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Figure 1: The local differential privacy framework

data, a commonly agreed standard within the advertising industry (Zucker-
Scharff, 2023). A design proposition of such a system exists in the context of
Google Chrome’s Privacy Sandbox. However, it is mostly designed to handle
data analysis use cases, but not learning ones. From a learning perspective, the
main uncertainties and roadblocks are associated with the trade-offs browser
vendors would be keen to make. More precisely, it is currently unclear whether (i)
central and/or local differential privacy (DP) would be allowed, and (ii) on which
type of data (granular or aggregated) model learning would be done. Indeed, one
option is to learn under central DP which consists of perturbing, with DP, the
output of an aggregation procedure performed by the trusted entity, either before
or after model training. As an example, this includes prior-learning aggregation
procedures such as outputting noisy contingency matrices (Zhang et al., 2020;
Gilotte et al., 2022) or post-learning aggregation as offloading the model training
computation to the trusted entity and getting back differentially-private model
weights (Chaudhuri et al., 2011). An alternative option is to implement DP in a
decentralized way : AI systems query raw granular data directly from each user’s
local data set (e.g. stored in browsers) after it has been adequately obfuscated
using a layer of local DP (LDP), as depicted in Figure 1.
Operating an AI System under Decentralised LDP. Operating a full-
fledged AI system in a decentralized environment under LDP is challenging.
Actually, we need to perform the learning of potentially several models (associated
with a respective use-case), but also to compare their performances, tune hyper-
parameters or perform data analyses in order to assist human decision-making.
Addressing each of these tasks individually is challenging under the large level of
noise introduced by the LDP constraint. The latter has been the focus of many
contributions for the past decade leading to a mature field, but unfortunately,
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some important open research questions remain notably regarding how to operate
sophisticated AI systems (Xiong et al., 2020; Ye & Hu, 2020; Yang et al., 2023).
Indeed, all the downstream tasks that need to be addressed through an AI
system might share the same common privacy budget if associated with the same
training samples. This notably leads to challenging questions such as (i) How to
learn multiple tasks? Namely, should we divide the initial raw global data set
to perform each task in isolation and thus decrease the amount of noise added
to each sample? Should we split the privacy budget? Is it possible to partially
or fully learn multiple tasks under the same noisy data? (ii) How to leverage
data structure? More precisely, how to perform optimally feature selection,
dimension reduction, or binning? Is there a frontier between interactive and
non-interactive mechanisms? When does learning the data structure give a gain?
What are the exploration/exploitation trade-offs? Up to the authors’ knowledge,
the aforementioned non-exhaustive challenges have not been formulated and
tackled yet, notably within a comprehensive paper.
Positioning and Contributions. This position paper aims to fill this gap by
providing researchers, practitioners, and the advertising industry with a unified
formulation and perspectives on open research challenges associated with private
advertising AI systems under local differential privacy constraints. For the sake
of clarity, we formulate hereafter our main contributions:

• We provide a unified formulation of the problem of operating an AI system
under LDP requirements, which notably encompasses a learning environ-
ment that is envisioned, by the advertising industry, to perform private
ML model training.

• We perform an extensive literature review leading to a survey of existing
works tackling user data querying under LDP. These related works could
be loosely speaking divided into two main classes: (i) privacy-preserving
mechanisms that can be used for multi-task learning, and (ii) mechanisms
striving to identify relevant information in the data.

• We state our main positioning and research guidelines regarding how to
operate an AI system under LDP, by pointing out the main limitations of
existing works. More specifically, we highlight the importance of conducting
research works focusing on multi-task learning under LDP schemes tailored
to the set of tasks at hand and point out the missing privacy-preserving
mechanisms needed to perform data exploration/exploitation efficiently.

• We finally support our positioning through illustrative examples, showing
the importance of embracing the research challenges that are pointed out
in this paper.

Notation and Conventions. The Euclidean norm on Rd is denoted by ∥ · ∥
and we set N∗ = N \ {0}. For n ∈ N∗, we refer to {1, . . . , n} with the notation
[n]. M1

+(S) denotes the set of probability measures on S.
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2 Problem Statement

We consider an environment where the AI system interacts with each user’s local
data set through a trusted entity implementing an LDP mechanism, see Figure 1.
Since this trusted entity notion is not required to understand the LDP literature
and associated challenges, and might be misleading with respect to the central
DP framework, we will omit this layer in the rest of the paper. Instead, we will
consider that the AI system, willing to get access to some data to train and
maintain several ML models, is directly interacting with each user. We detail
this learning environment hereafter, in a more formal manner.
User Data. Without loss of generality, we consider a global artificial data set of
raw user data (s1, . . . , sn) ∈ Sn where n ∈ N∗. For instance, we could have for
any i ∈ [n], si = (xi, yi) where xi ∈ X stands for a feature vector and yi ∈ Y is
a label. For ease of exposure, each si refers to a local user data set and typically
stands for a realization of the random variable S = (X,Y ) associated with a
probability measure µ defined on S.
AI System. The AI system aims at performing several ML-driven tasks, ideally
based on the raw samples {si}ni=1 from µ. To this purpose, it estimates a param-
eter of this probability distribution θ(µ) ∈ W where θ ∈ Θ ⊆

(
M1

+(S) → W
)
.

For instance, θ(·) can formalize the process of learning a parametric ML model
or computing some quantiles of the accuracy of a model, see Example 1 below.
Example 1. Given some loss function ℓ : Y × Y → R+ and parametric model
fω : X → Y where ω ∈ W , learning a parametric model is defined as the following
risk minimization problem:

θ∗(µ) = argmin
ω∈W

Eµ [ℓ(fω(X), Y )] . (1)

Unfortunately, samples from µ cannot be used to build an estimator for (1), as
these samples stand for private user information and cannot be released without
considering an obfuscation mechanism. Instead, information from user i ∈ N
is obtained from observation Zi ∈ Z via a query Qi. Similarly to Duchi et al.
(2013b), Qi is the conditional distribution of Zi given the history observed by
the agent so far Fi = σ((Zi)0≤l≤i−1) and the true user information Si, that is

Zi ∼ Qi( · | Fi, Si = si) .

Note that the output of this query, Zi ∈ Z, corresponds to an obfuscated version
of Si as (i) it can refer to a partial view of Si and (ii) Qi is a conditional distri-
bution and not a deterministic function since it has to include the randomization
mechanism associated to LDP (Dwork et al., 2014), defined in Definition 1. The
conditional distribution of {Zi}ni=1 given {Si}ni=1 is called a mechanism.

Definition 1. For ε, δ > 0, the mechanism Q is (ε, δ)-locally differentially private
if for any i ∈ N∗, for any z1, . . . , zi−1 ∈ Z such that Z1 = z1, . . . , Zi−1 = zi−1,
s, s′ ∈ S and for any A ⊆ Z measurable, we have

Qi(Zi ∈ A | Fi, Si = s)− δ

Qi(Zi ∈ A | Fi, Si = s′)
≤ eε .
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As an example, in the context of local label-DP with binary labels, we have
Z = {0, 1} and S = Y = {0, 1} (Busa-Fekete et al., 2023). A popular choice of
query is the binary randomized response (RR) mechanism (Warner, 1965) where
for yi ∈ {0, 1}

Qi(Zi = yi | Yi = yi) =
exp(ε)

exp(ε) + 1
,

Qi(Zi ̸= yi | Yi = yi) =
1

exp(ε) + 1
.

Constraints of a Real-Life AI System. Compared to the task of training
one ML model under LDP data, operating and maintaining an AI system is
much more involved and yields novel challenges, as detailed in what follows.
Privacy for multiple tasks: Most works on learning under privacy constraints
consider that the agent only needs to perform one single task θ, which allows
them to tailor querying to the task at hand. Yet, real-life systems often involve
tens, if not hundreds of different learned models, and as many, if not more, tasks
of model evaluation, comparison, or data analytics. It is therefore necessary to
ensure that the queried dataset information can be re-used across multiple tasks,
some of which may be unknown at the time of querying.
Interactivity: The large number of internet users and the pace of interaction
with them makes it impossible to run a system in a fully synchronous manner.
Yet, interactions can often be batched, leaning towards an environment that is
not necessarily fully asynchronous. This is formalized by how much the queries
are allowed to depend on each other. Two different levels of dependency have
been studied in the literature. Interactive mechanisms are allowed to have a
dependency on the history whereas non-interactive mechanisms assume that
Zi ⊥⊥ Z1:i−1 | Si

1.
Section 3 focuses on how to perform multi-task learning under LDP, while

Section 4 aims at leveraging some knowledge about the target downstream task
to build informed queries yielding better estimation performances.

3 Multi-Task Learning under LDP

In industrial applications, it often happens that multiple tasks should be per-
formed on a data set, be it for model selection or data analytics. Due to the
number of tasks the agent may need to perform, splitting the privacy budget
allocated to the agent or the samples across the different tasks would result
in prohibitively high noise, as illustrated in Figure 2. As such, the agent has
to make a compromise between optimizing the querying to reduce the noise
incurred to ensure privacy and the re-usability of the answer across many tasks.

1A user can only be queried when browsing the internet. Fully interactive mechanisms
that can query a user several times are therefore unrealistic. These algorithms can be turned
into interactive mechanisms with a constant factor increase in sample complexity Joseph et al.
(2019), are therefore not studied in this work.
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Figure 2: Advantage of re-using samples when performing m = 10 estimation
tasks with n = 1000 and ϵ = 1. One-shot private querying followed by multiple
estimations (sample reuse) beats naive strategies based on privacy budget splitting
or sample splitting. See Appendix A for details.

Given a set of tasks Θ, a mechanism Q, a loss function ρ : Y × Y → R+ and
an estimator θ̂, a possible objective is to solve2

min
Q,θ̂

max
θ∈Θ

E
[
ρ(θ(µ), θ̂(µZ1:n

))
]
.

where µZ1:n
is the empirical distribution of (Zi)i≤n, and the minimum is taken

over the set of estimators θ̂ and of (ϵ, δ)-LDP mechanisms Q. For instance, the
set of tasks could be to estimate the mean m⋆ and the first decile d⋆ of µ, giving
the following objective depending on the mechanism Q and the estimators m̂, d̂:

min
Q,m̂,d̂

max
(
E
[
∥m̂−m⋆∥22

]
,E
[
∥d̂− d⋆∥22

])
.

In this section, we review first learning with privatized data where data are
noised via a known mechanism independent of the tasks. The challenge is then
to perform all tasks as well as possible despite the noise. Second, we focus
on density estimation of µ (independent of Θ) as all tasks can be performed
from the knowledge of the density. Lastly, we study some special cases where
mechanisms optimized for a set of tasks can be designed.

3.1 Learning with privatised data

The first road towards LDP is to choose Zi as a noisy version of Si. For instance,
assuming S = X × Y ⊆ [0, 1]d, a common way to do this is to set Zi = Si + ηi
with ηi ∼ Lap(d/ε). Then, any algorithm working with this database as input
would be ε-LDP. Coming back to Example 1, a näıve solution is to perform
empirical risk minimization using Z1:n, i.e. to train the model on noisy data
as if they were clean, as done in Yin et al. (2019). It can lead to a consistent
estimator of θ⋆(µ) in some particular cases when the model is linear Fukuchi
et al. (2017); Kang et al. (2020), the noisy label is unbiased and the loss ℓ is a
Bregman divergence Badanidiyuru et al. (2023), however, consistency does not

2Note that the max over Θ could be replaced by other aggregation operators, such as a
weighted sum or an OWA.
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hold in general. Note that, depending on the regime of n and d, the variance
introduced by the noise may dominate the bias. For instance, it is known (Duchi
et al., 2013c, Eq. 30) that the Laplace mechanism is sub-optimal for mean
estimation in large dimension.

Many works Butucea et al. (2020); Farokhi (2020); Ju et al. (2022) have
underlined the analogy between learning with privatized data and solving inverse
problems. In the inverse problem literature Hadamard (1902); Engl et al. (1996);
Benning & Burger (2018), the goal is to recover the unknown signal from
the knowledge of the obfuscation mechanism and a set of realizations of a
given random variable. In particular, if the mechanism is based on additive
noise, inverse problems amount to deconvolution, which can be used to perform
regression from noisy data Farokhi (2020).

In general, solving the inverse problem analytically is hard. For instance,
Natarajan et al. (2013) builds a surrogate loss ℓ̃ to be an unbiased estimator of ℓ
w.r.t. the label noise by solving the following Fredholm integral equation given
a non-interactive mechanism Q identical for all users i:

∀y, ŷ ∈ R, ℓ(y, ŷ) =

∫
R
ℓ̃(u, ŷ)dQ(u|y) . (2)

Similarly, Farokhi (2022) and Reshetova et al. (2023) (respectively for regres-
sion use-cases and generative adversarial networks) modify the loss ℓ into ℓ̃ to
(approximately) solve (2). Overall, solving the inverse problem for noisy labels
is a well-studied topic. Yet, tackling both the label noise and the noise on the
features is challenging, except for some specific parametric models such as linear
models. The following open question formalizes this problem.

Open Question 1. When is it possible to find a surrogate loss function
acting on the noisy data Z so that its value stands for an unbiased
estimator of the loss acting on clean data S = (X,Y )? If so, how to
(approximately) estimate this surrogate loss function in practice?

3.2 Density estimation

Another conceptually simple way to perform multiple tasks under LDP is to
first build an estimate of the density of measure µ of the true data and then
perform all the tasks in Θ on µ̃. Formally, assuming S (resp. Z) have (potentially
discrete) density µ (resp. µ̃) and that Q has a conditional density q, it amounts
to finding an estimate of µ by solving

µ̃(z) =

∫
S
q(z|s)dµ(s). (3)

Density estimation for continuous random variables When S is a con-
tinuous random variable and Z is equal to S plus some zero-mean additive
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noise, then (3) becomes a deconvolution problem. Works in private generative
learning Cao et al. (2021); Reshetova et al. (2023) and kernel density estima-
tion Farokhi (2020) learned on privatized data therefore fit in this framework.
Here, a connection with the literature on generative modeling with diffusion
models can also be highlighted Sohl-Dickstein et al. (2015); Ho et al. (2020);
Weng (2021); Strümke & Langseth (2023). Indeed, in a diffusion process, noise
(typically a Gaussian one) is sequentially added to data. Hence, the original data
distribution (µ) is converted into a new one (here, µ̃) through gradual addition
of noise. The reverse diffusion process consists of recovering the data from its
noisy counterpart, and this is exactly the objective of Equation (3).

A large part of the literature on inverse problems Donoho (1995); Mair &
Ruymgaart (1996); Natterer (2001); Cohen et al. (2004) is about leveraging
sparse decomposition of the signal over fixed or learned basis functions to solve
Equation (3). Building upon these works, Butucea et al. (2020) and Duchi et al.
(2013a) perform density estimation of continuous random variables by computing
a noisy representation of their basis coefficients. Bucketing the features and
then applying techniques from discrete density estimation Sun et al. (2019); Xia
et al. (2020); Berrett & Butucea (2019); Berrett et al. (2021) is another path
towards continuous density estimation. Lastly, in Xu et al. (2019), authors learn
a binary representation of the features (privatized by randomized response) via
an auto-encoder so that the ℓ2 norm of the reconstruction error is preserved.

Density estimation for discrete random variables The case of estimating
the distribution of a categorical feature is particularly interesting as it has inspired
the design of more advanced algorithms. Consider the database (Si)

n
i=1 where for

all i ∈ [n], k ∈ [d], Si = k with probability µk. The goal is to estimate (µk)k∈[d].
A popular idea is to use a generalized Randomized Response mechanism Q
to ensure local privacy. Let (Zi)

n
i=1 be the output of the mechanism, calling

p = Q(Zi = k|Si = k) and q = Q(Zi = k|Zi ̸= k), an unbiased estimate of µk is
given by:

µ̃k =

∑n
i=1 1{Zi = k} − nq

n(p− q)
.

Then the dominant term in the variance of µ̃k scales as d−2+exp(ϵ))
(exp(ϵ)−1)2 Wang et al.

(2017). Erlingsson et al. (2014) introduces the idea of using unary encoding which
first encodes the value k as a binary vector corresponding to the k-th vector of the
d-dimensional canonical basis , and then to each of them applies a randomized
response mechanism parameterized by Q(Z = 1|S = 1) and Q(Z = 1|S = 0).
Choosing Q(Z = 1|S = 1) = Q(Z = 1|S = 0) gives Basic Rapport Erlingsson
et al. (2014), while optimizing for Q(Z = 1|S = 1) and Q(Z = 1|S = 0) gives
optimal unary encoding Wang et al. (2017). In the last case, the variance is

4 exp(ϵ)
(exp(ϵ)−1)2 , hence independent from d, however it suffers a communication cost

of order d, which can be prohibitive. Other variants based on random matrix
projections Bassily & Smith (2015); Acharya et al. (2019) or hashing Wang
et al. (2017) reach the same variance with a smaller communication cost. Wang
et al. (2016) suggests optimizing the mutual information between a uniform
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distribution over possible feature value and its transformation via a randomized
response mechanism.

Be it for discrete or continuous densities, error bounds from plug-in density
estimators are generally looser than those from task-specific mechanisms when
tackling a known parametric estimation task, as the problem of density estimation
is typically harder than that of parameter estimation. For instance, in Duchi
et al. (2013a), locally differentially private estimation of densities in an elliptical
Sobolev space with smoothness 1 has mean squared error scaling as 1

(ϵ2n)
2
3
. In

contrast, in locally differentially private mean estimation Duchi et al. (2013c),
the squared error scales as 1

ϵ2n .

3.3 Towards not being agnostic to the set of tasks

In central DP, the problem of performing multiple tasks is well studied (Dwork
et al., 2014, Ch. 5,6). To handle correlated tasks, the idea is to build and update
a fake database or synopsis on which the outcome of queries is close to the one
obtained on the true data. Such methods are not as well-studied under LDP.
Furthermore, AI systems often need different information than what synopses
provide. First, we show that in some cases, multi-task learning can be achieved
by computing sufficient statistics or by density estimation. Then, we focus on
the case of linear tasks, the only instance of multi-task learning studied in LDP
literature.

Learning sufficient statistics / densities Consider first the task of finding
the right hyper-parameter in a ridge regression. We want to solve

argmin
w∈Rd

E[(⟨X,w⟩ − Y )2] + λ∥w∥2

which only depends on µ through E[XY ] and E[XX⊤]. Therefore local differ-
entially private estimates of E[XY ] and E[XX⊤] allow us to solve the above
optimization problem for many values of λ without additional cost. Fukuchi
et al. (2017) suggests to obtain these estimates by noising xi and yixi with an
additive Gaussian noise large enough to ensure ϵ-local DP. Unfortunately, they
do not obtain utility bounds decreasing with n. The more general task of finding
the best binary classifier is solved if the density of Y |X is known. In Berrett &
Butucea (2019); Berrett et al. (2021) an estimation of the density Y |X is used to
obtain a universally consistent classifier. Overall, however, finding a statistical
quantity that is fast to compute and summarizes all tasks is not easy.

The case of linear tasks In local-DP, the framework of linear tasks has
been studied by Bassily (2019); Edmonds et al. (2019); McKenna et al. (2020).
Consider the database (Si)

n
i=1 introduced for discrete density estimation, where

for any user i ∈ [n] and value k ∈ [d], Si = k with probability µk. A set of
m linear tasks is a set of vectors q1, . . . , qm ∈ Rd and the goal is to estimate
the quantities ⟨q1, µ⟩, . . . , ⟨qm, µ⟩. In the offline setting, all tasks are available
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before the algorithm starts and can be stacked in a matrix A ∈ Rm×d. The
goal is to produce an estimate û ∈ Rm of Aµ. Bassily (2019) shows that when
∀i ∈ [m], ∥qi∥2 ≤ r, querying A[·, Si] via the Gaussian mechanism reaches (up to
constants):

E[∥û−Aµ∥2] ≤ rmin

((
log(m) log(n)

nϵ2

) 1
2

,
d log(n)

nϵ2

) 1
2

.

While, up to some log factors, this achieves optimality in the minimax sense,
better data-dependent bounds can be obtained. For instance, removing tasks
that are identical to others should not change the performance of the algorithm.
The mechanism in Edmonds et al. (2019) therefore factorizes the matrix of
tasks yielding data-dependent bounds depending on the structure of the tasks
matrix. More generally McKenna et al. (2020) remarks that most mechanisms
with discrete output Bassily & Smith (2015); Acharya et al. (2019); Wang
et al. (2016); Warner (1965) can be represented by a matrix Q ∈ Rm×n such
that Q[i, j] = P (Z = i|S = j). Based on this remark, McKenna et al. (2020)
optimized Q to obtain a minimum variance estimator for uniform µ. In the
online setting, Bassily (2019) obtains, via a mechanism based on sample splitting,
the minimax optimal bound

E[∥û−Aµ∥∞] ≤ r

√
(exp(ϵ) + 1)2d log(d)

n(exp(ϵ)− 1)2

under the assumption ∀i ∈ [m], ∥qi∥2 ≤ r. These tools rely on splitting the
privacy budget in the offline setting and splitting samples in the online one.
Whether they can be generalized for other types of tasks and other settings is
unclear.

Open Question 2. Given a set of tasks Θ, can we design a mechanism
that performs well on Θ?

What is the exact quantity to optimize? What makes a set of tasks easy or
difficult to perform jointly? What if tasks arrive online? Is sample splitting or
budget privacy splitting necessary? What are the trade-offs between re-usability,
communication costs, and performance? These are follow-up questions that we
believe are of interest. Another interesting question is how to distribute the
privacy budget among different features and labels, given prior knowledge of their
relevance, as efficient budget allocation could enhance the accuracy of collected
information. More broadly, in the following section, we argue that understanding
the distribution’s structure could enable more efficient information querying,
while also exploring methods for acquiring such knowledge.
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4 Task-Specific LDP Mechanisms for Informed
Query Design

The accuracy of the privacy-preserving methods discussed earlier is notably
compromised in datasets with high dimensions, a large number of discrete
feature values, or broad variable ranges. In this section, we first review works
that showcase how gaining information about the data (exploration) can help
the learning phase (exploitation). Then, we focus on exploration, highlighting
the current advances in prominent exploratory tasks, and tasks for which no
satisfactory LDP mechanism is currently known.

4.1 Leveraging Prior Information

We start by emphasizing the benefits of utilizing public data with prior informa-
tion to design queries. Next, we discuss obtaining this information from private
data under LDP.
Using Public Datasets. One research direction has focused on using available
prior information to query data more effectively in scenarios where knowledge
about the data distribution is accessible to the learner. This information may
come from domain-specific knowledge, aggregated census data, historical records,
or be provided by “opt-in” users willingly contributing or selling their data. For
instance, Ghazi et al. (2021) utilizes prior knowledge of label distribution to refine
the label set, enhancing response accuracy for relevant labels. Experiments in
Jia & Gong (2019) suggest a calibration method to incorporate prior knowledge
to estimate histograms. Bassily et al. (2020a) and Alon et al. (2019) show that
combining public and private data significantly improves the performance in
terms of effective sample size. More precisely, Alon et al. (2019) investigates the

number of private and public samples necessary for choosing a classifier ĥ in a
class H ⊂ {0, 1}X with low error, that is

P(ĥ(X) ̸= Y ) ≤ inf
h∈H

P(h(X) ̸= Y ) + α .

They show that d/α public samples and d/(α2∨αϵ) private samples are sufficient,
where d is the VC-dimension of H (by contrast, d/α2 public samples would be
required if no private samples were available). Other approaches include using
public data to train a representation of the distribution through a decision tree
Ma et al. (2023), to estimate low-dimensional gradients Kairouz et al. (2021);
Zhou et al. (2021), or to pre-train a model before fine-tunning it on private data
Ganesh et al. (2023).

However, in most situations, apart from well-defined specific cases, the
expected performance improvements, the requirements in terms of the necessary
volume of public data, and the algorithms to be implemented are still unknown.
Moreover, with the exception of Ma et al. (2023), all methods presented above
are in the central DP framework.
Using private Data Sets. As public data may not always be accessible, and its
distribution might diverge from that of private data Mangold et al. (2023), one can
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resort to a two-round approach to query the private dataset. Such an approach
has been successfully applied in various problems including classification Ghazi
et al. (2021), regression Ghazi et al. (2021), frequency estimation Qin et al. (2016)
or clustering Stemmer & Kaplan (2018). It is still unclear in theory whether
the best way to implement this two-phase procedure is to use sample splitting
or privacy budget splitting or if other strategies than explore-then-commit are
possible.

Open Question 3. How can we leverage prior information from public
or private data to help learn in the local DP framework? What are the
potential gains, the potential trade-offs?

4.2 Task-Specific Mechanisms for Complexity Reduction

In the described AI system, striving for an accurate dataset representation across
various tasks, the initial focus should be on identifying relevant information and
features, as well as the way to leverage them. Among the exploratory tasks of
interest, the detection of the most frequent labels (sometimes called the heavy
hitters problem) has attracted significant attention in the local DP framework.
Various methods address this issue, with some utilizing hash-tables or unary
encoding techniques (Bun et al., 2019; Bassily & Smith, 2015; Hsu et al., 2012;
Bassily et al., 2020b). An alternative research direction focuses on randomized
response-based algorithms, illustrated by methods like LDPMiner (Qin et al.,
2016).

By contrast, other prominent exploratory tasks, like feature selection, princi-
pal component analysis, and adaptive binning have been mostly studied in the
central DP model. Adapting these tasks to the local DP framework through
non-interactive mechanisms remains largely unexplored.
Feature Selection. For feature selection, Kifer et al. (2012) suggests revealing
through an exponential mechanism a support chosen by a central agent with
access to the clean dataset. Alternatively, McKenna & Sheldon (2020) introduces
permute-and-flip as an alternative to the exponential mechanism. Another
approach from Barrientos et al. (2019) proposes feature selection using a privacy-
preserving significance test, while Chu et al. (2023) suggests using decision
tree-based importance measures for feature selection.

These methods are tailored to the central DP framework. Feature selection
under LDP is harder because of the cost of introducing noise at the individual
data level. In the related problem of sparse mean estimation, worst-case error
in the non-interactive LDP framework scales as sd/(ϵ2n) log(ed/s), where s
represents the number of non-zero components of the mean, and d denotes
the dimension of the feature space Duchi et al. (2018); Acharya et al. (2022)
which becomes large if nϵ2/d ≤ 1. However, recent work Butucea et al. (2023a)
has demonstrated that support recovery remains achievable in specific regimes
under LDP, provided specific conditions on the magnitude of non-zero entries.
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These results pave the way for new valuable research directions in LDP feature
selection.
Adaptive Binning. Adaptive binning minimizes noise in the histogram repre-
sentation of features by seeking a feature space partition where observations are
roughly evenly distributed in each bin. Li et al. (2014) reduces this problem to
minimizing the cost pcost(x,B) associated to an histogram dataset s ∈ SN and
a partition B of size k

pcost(x,P) =
∑
b∈B

∑
j∈b

∣∣∣∣sj −
∑

j′∈b sj′

|b|

∣∣∣∣+ k

ϵ

where |b| is the length of bin b. Subsequent efforts, like Zhang et al. (2016),
propose approximating the optimal partition through recursive feature space
partitioning. While adaptive binning is closely linked to the heavy hitter problem,
research (including the articles above) has predominantly focused on the central
DP framework.
Principal Component Analysis. Principal component analysis (PCA) is
crucial for obtaining a low-dimensional representation of a dataset. Yet, most
research on private PCA has predominantly focused on the central DP framework.
Under central DP, the covariance matrix is computed with the trusted data-holder
adding noise, either directly to the covariance matrix (Blum et al., 2005) or its
rank-k approximation (Cai et al., 2024). The noisy matrix is then transmitted to
the learner, who applies singular value decomposition. An alternative approach
estimates the subspace with the leading k eigenvectors and transmits it to
the learner using an exponential mechanism Chaudhuri et al. (2012). Other
strategies, like those in Ge et al. (2018) and Liu et al. (2022), address PCA
in a distributed optimization framework, where each data holder applies an
independent privacy-preserving mechanism to their batch of data. In the LDP
framework, Wang & Xu (2019a) introduces a novel approach adding (Gaussian)
noise to individual covariance matrices before transmission, estimating PCA
based on the average matrix received by the learner. The authors also tackle
sparse PCA, presenting a local interactive algorithm that outperforms their local,
non-interactive mechanism, prompting consideration of the trade-off associated
with non-interactivity.

Open Question 4. What are the regimes where feature selection,
adaptive binning, and PCA are possible in the LDP framework? What
are the optimal algorithms for these tasks?

Trade-Offs Arising from Non-Interactivity. Given the added complexity
and cost associated with interactive mechanisms, we need to determine when
non-interactive mechanisms are suitable and assess whether the benefits of in-
teractive mechanisms outweigh their costs. The question of whether interactive
mechanisms can surpass non-interactive ones in an LDP framework is com-
plex. Recent studies have identified scenarios where non-interactive mechanisms
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achieve minimax-optimal performance, such as in classification with Hölder-
continuous score functions (Berrett & Butucea, 2019), density estimation over
Besov ellipsoids (Butucea et al., 2020), or one-dimensional mean estimation
(Duchi et al., 2018). Yet, other research indicates that non-interactive mech-
anisms may be sub-optimal compared to interactive ones in certain settings.
For example, Butucea et al. (2023b) and Butucea & Issartel (2021) establish
this for the estimation of (linear functionals of) discrete distributions. Similarly,
Berrett & Butucea (2020) demonstrates that interaction is necessary for minimax

optimal estimation of the quadratic functional D(f) =
∫ 1

0
f2(x)dx of a density

f . In the context of high-dimensional sparse mean estimation, interaction helps
improve the rate for estimating s-sparse mean in dimension d from sd

nϵ2 log(
ed
s ) to

sd
nϵ2 , as shown by Acharya et al. (2022). Interestingly, in these examples, optimal
rates can be obtained with just two rounds of queries.

Apart from these few examples, the potential gain from interactive mech-
anisms is not well understood. For instance, many algorithms for convex loss
minimization in the LDP framework are variants of gradient descent algorithms,
and each iteration requires interacting with the users (Duchi et al., 2018; Wang
& Xu, 2019b). In multi-dimensional settings, it has been argued that the sample
size of non-interactive algorithms should grow exponentially with the dimen-
sion, while interactive mechanisms achieve polynomial dependence Smith et al.
(2017). However, this result only holds for the class of algorithms relying on
neighborhood-based oracle, such as gradient descent. It is unclear whether
different algorithms could achieve better convergence rates.

Open Question 5. Can exploratory tasks be performed using solely
non-interactive mechanisms, and if yes, does this result in a loss of
accuracy?

5 Conclusion

In this position paper, we shed light on the technical challenges of local differential
privacy (LDP), a proposed solution for maintaining AI systems while safeguarding
user privacy. For the computational advertising industry, in an era marked by
growing privacy concerns and the ongoing deprecation of third-party cookies,
addressing the challenges associated with operating a full-fledged AI system
under LDP becomes crucial. Specifically, we advocate for developing mechanisms
that allow data reusability across multiple tasks and facilitate the estimation and
leverage of data structure. These research directions are rarely explored in LDP
and raise numerous questions. How can we design LDP mechanisms optimized
for a set of tasks? How can we train algorithms on noisy features and labels?
How can we perform data exploration optimally, and can we restrict ourselves
to non-interactive mechanisms? How can we incorporate prior information into
LDP mechanisms? Answering these questions is essential for the development of
AI systems that respect the privacy of their users.
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Impact Statement

Nowadays, major internet services, which support the open internet economy,
are based on learning from users behavioral data: recommender systems, online
marketing... In the last years, browser vendors have been working on improving
the users privacy, especially by deprecating the use of third-party cookies. The
question of how to replace the function of third-party cookies, which are/were the
backbone of data collection to learn AI models, while preserving the users privacy
is a key challenge. In particular, the major browser vendor, Google Chrome, is
currently in the process of testing possible implementations of APIs aimed at
enabling computing statistics and learning AI models in a privacy-preserving
way, with a final implementation planned for 2026.

This paper aims at highlighting, to the AI community, directions of research
that would enable better practical compromises between the performance of
AI systems (that support the internet economy) and the users privacy online.
Providing answers to such questions could have a strong impact as the practical
design of privacy mechanisms in browsers is under (very) active development.
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Hadamard, J. Sur les problèmes aux dérivées partielles et leur signification
physique. Princeton university bulletin, pp. 49–52, 1902.

Hao, B., Lattimore, T., and Szepesvari, C. Adaptive exploration in linear
contextual bandit. In Chiappa, S. and Calandra, R. (eds.), Proceedings of
the Twenty Third International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 3536–
3545. PMLR, 26–28 Aug 2020. URL https://proceedings.mlr.press/

v108/hao20b.html.

He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich,
R., Bowers, S., and Candela, J. Q. n. Practical lessons from predicting clicks on
ads at facebook. In Proceedings of the Eighth International Workshop on Data
Mining for Online Advertising, ADKDD’14, pp. 1–9, New York, NY, USA,
2014. Association for Computing Machinery. ISBN 9781450329996. doi: 10.
1145/2648584.2648589. URL https://doi.org/10.1145/2648584.2648589.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851, 2020.

20

http://arxiv.org/abs/1710.07425
http://arxiv.org/abs/1710.07425
https://proceedings.mlr.press/v84/ge18a.html
https://proceedings.mlr.press/v84/ge18a.html
https://openreview.net/forum?id=RYcgfqmAOHh
https://proceedings.mlr.press/v108/hao20b.html
https://proceedings.mlr.press/v108/hao20b.html
https://doi.org/10.1145/2648584.2648589


Hsu, J., Khanna, S., and Roth, A. Distributed private heavy hitters. In Automata,
Languages, and Programming: 39th International Colloquium, ICALP 2012,
Warwick, UK, July 9-13, 2012, Proceedings, Part I 39, pp. 461–472. Springer,
2012.

Jia, J. and Gong, N. Z. Calibrate: Frequency estimation and heavy hitter
identification with local differential privacy via incorporating prior knowledge.
In IEEE INFOCOM 2019-IEEE Conference on Computer Communications,
pp. 2008–2016. IEEE, 2019.

Joseph, M., Mao, J., Neel, S., and Roth, A. The role of interactivity in local
differential privacy. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 94–105. IEEE, 2019.

Ju, N., Awan, J., Gong, R., and Rao, V. Data augmentation mcmc for bayesian
inference from privatized data. Advances in neural information processing
systems, 35:12732–12743, 2022.

Kairouz, P., Diaz, M. R., Rush, K., and Thakurta, A. (Nearly) Dimension
Independent Private ERM with AdaGrad Rates\{via Publicly Estimated
Subspaces. In Proceedings of Thirty Fourth Conference on Learning Theory,
pp. 2717–2746. PMLR, July 2021. URL https://proceedings.mlr.press/

v134/kairouz21a.html. ISSN: 2640-3498.

Kang, Y., Liu, Y., Niu, B., Tong, X., Zhang, L., and Wang, W. Input Per-
turbation: A New Paradigm between Central and Local Differential Privacy,
February 2020. URL http://arxiv.org/abs/2002.08570. arXiv:2002.08570
[cs, stat].

Khalid, S., Khalil, T., and Nasreen, S. A survey of feature selection and feature
extraction techniques in machine learning. In 2014 Science and Information
Conference, pp. 372–378, 2014. doi: 10.1109/SAI.2014.6918213.

Kifer, D., Smith, A., and Thakurta, A. Private Convex Empirical Risk Mini-
mization and High-dimensional Regression. In Proceedings of the 25th Annual
Conference on Learning Theory, pp. 25.1–25.40. JMLR Workshop and Confer-
ence Proceedings, June 2012. URL https://proceedings.mlr.press/v23/

kifer12.html. ISSN: 1938-7228.

Li, C., Hay, M., Miklau, G., and Wang, Y. A data- and workload-aware
algorithm for range queries under differential privacy. Proc. VLDB Endow., 7
(5):341–352, jan 2014. ISSN 2150-8097. doi: 10.14778/2732269.2732271. URL
https://doi.org/10.14778/2732269.2732271.

Liu, X., Kong, W., Jain, P., and Oh, S. Dp-pca: Statistically optimal and
differentially private pca. Advances in Neural Information Processing Systems,
35:29929–29943, 2022.

21

https://proceedings.mlr.press/v134/kairouz21a.html
https://proceedings.mlr.press/v134/kairouz21a.html
http://arxiv.org/abs/2002.08570
https://proceedings.mlr.press/v23/kifer12.html
https://proceedings.mlr.press/v23/kifer12.html
https://doi.org/10.14778/2732269.2732271


Ma, Y., Zhang, H., Cai, Y., and Yang, H. Decision tree for locally private
estimation with public data. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023. URL https://openreview.net/forum?id=

F5FVsfCxt8.

Mair, B. A. and Ruymgaart, F. H. Statistical inverse estimation in hilbert scales.
SIAM Journal on Applied Mathematics, 56(5):1424–1444, 1996.

Mangold, P., Bellet, A., Salmon, J., and Tommasi, M. High-dimensional private
empirical risk minimization by greedy coordinate descent. In Ruiz, F., Dy,
J., and van de Meent, J.-W. (eds.), Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings
of Machine Learning Research, pp. 4894–4916. PMLR, 25–27 Apr 2023. URL
https://proceedings.mlr.press/v206/mangold23a.html.

McKenna, R. and Sheldon, D. R. Permute-and-flip: A new mechanism for
differentially private selection. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 193–203. Curran Associates, Inc., 2020.
URL https://proceedings.neurips.cc/paper_files/paper/2020/file/

01e00f2f4bfcbb7505cb641066f2859b-Paper.pdf.

McKenna, R., Maity, R. K., Mazumdar, A., and Miklau, G. A workload-adaptive
mechanism for linear queries under local differential privacy. Proc. VLDB
Endow., 13(12):1905–1918, jul 2020. ISSN 2150-8097. doi: 10.14778/3407790.
3407798. URL https://doi.org/10.14778/3407790.3407798.

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L.,
Phillips, T., Davydov, E., Golovin, D., Chikkerur, S., Liu, D., Wattenberg, M.,
Hrafnkelsson, A. M., Boulos, T., and Kubica, J. Ad click prediction: a view
from the trenches. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’13, pp. 1222–1230,
New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450321747. doi: 10.1145/2487575.2488200. URL https://doi.org/10.

1145/2487575.2488200.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari, A. Learning with
noisy labels. Advances in neural information processing systems, 26, 2013.

Natterer, F. The mathematics of computerized tomography. SIAM, 2001.

Qin, Z., Yang, Y., Yu, T., Khalil, I. M., Xiao, X., and Ren, K. Heavy hitter
estimation over set-valued data with local differential privacy. Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
2016. URL https://api.semanticscholar.org/CorpusID:3890155.
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A Experiments Details

We provide hereafter details on the illustrative experiments setup and additional
numerical results.

A.1 Advantage of reusing samples when performing multi-
ple estimation tasks on LDP data (Synthetic)

Data To illustrate the case of multiple correlated tasks under LDP we consider
the following setting. Data is generated as X ∈ Mn,d ∼ Ber(µ) s.t. n =
1000, d = 100, µ ∈ Rd ∼ β(1, 1)d. Estimation tasks are defined as {θi =
EX [XTwi]}i=1...m with m = 10, wi ∼ Ber(1/2)d. Privacy level is controlled by
LDP budget ϵ.

Methods sample reuse performs one-shot private querying followed by multiple
estimations on the obtained private sample. budget split performs m parallel,
private queries using ϵ/m budget each and estimates each θi separately. sample
split performs m parallel, private queries asking ni = n/m samples with ϵ budget
each and estimates each θi separately.

Metrics Estimation quality is computed using mean square error (MSE) of
the private mean estimation versus the public (non noisy) estimation. Mean
MSE and confidence intervals are obtained with 100 bootstrap resamples and
shown on figure at the α = .1 level.

Figure 3: ϵ = .1

Figure 4: ϵ = 1
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Figure 5: ϵ = 10
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