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Reconciling RaiSim with
the Maximum Dissipation Principle

Quentin Le Lidec1,† and Justin Carpentier1

Abstract—Recent progress in reinforcement learning (RL) in robotics
has been obtained by training control policy directly in simulation.
Particularly in the context of quadrupedal locomotion, astonishing
locomotion policies depicting high robustness against environmental
perturbations have been trained by leveraging RaiSim simulator. While
being more realistic than its counterparts, it has been shown recently that
RaiSim does not obey the maximum dissipation principle, a fundamental
principle when simulating rigid contact interactions. In this note, we
detail these relaxations and propose an algorithmic correction of the
RaiSim contact algorithm to handle the maximum dissipation principle
adequately. Our experiments empirically demonstrate our approach leads
to more physically-consistent simulation.

I. INTRODUCTION

Over the past few years, RaiSim simulator [1] gave rise to successful
applications of policy learning to solve real-hardware robotic locomo-
tion tasks in uncontrolled environments with a remarkable agility [2],
[3], [4]. For all these applications, the control policies achieve good
performances in practice, even if learned purely in simulation. A
central ingredient that might explain this success is the level of physical
realism of RaiSim, particularly its capacity to accurately simulate
complex contact interactions between a robot and its environment.
However, in a recent study [5], we have shown RaiSim is still making
some approximations, particularly in the way it fulfills the so-called
maximum dissipation principle (MDP) introduced by Jean-Jacques
Moreau [6]. In this note, we propose a correction to the vanilla contact
formulation of RaiSim to mitigate these approximations via a simple
and computationally free correction. This note is organized as follows.
In Section II, we quickly revisit the hypotheses of contact modeling
and, in particular, of RaiSim’s contact model. Section III depicts the
main limitation of the RaiSim contact model and extends it to account
for the MDP adequately. Finally, this correction is evaluated through
various illustrative examples in Section IV. This note is based on a
more general study of the most common contact models employed in
robotics simulators [5].

II. BACKGROUND

Contact modelling. Using generalized coordinates q ∈ Q ∼= Rnq and
the joint velocity v ∈ TqQ = Rnv to describe the state of the system,
the discrete Lagrangian equations of motion write:

Mvt+1 = Mvt +
(
τ − b(qt, vt)

)
∆t. (1)

where M is the joint space inertia matrix, τ the joint torque vector
while b(q, v) accounts for the centrifugal and Coriolis effects, and for
the generalized gravity, and ∆t is simulation time-step. We denote
vf

def
= vt+M−1

(
τ − Cvt − g

)
∆t as the free velocity corresponding

to the solution of (1) w.r.t. vt+1. When contacts occur i.e. the normal
component of the separation vector Φ(q) (Fig. 1) between the objects
in contact is non positive, (1) is modified according to Gauss’ least
constraint principle:

Mvt+1 = Mvf + J>λ (2)

where J = ∂Φ/∂q is the contact Jacobian which can be computed
efficiently via the rigid body dynamics algorithms [7].
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To avoid interpenetration, the normal contact point velocities, and
contact forces are both required to be positive in order to avoid
interpenetration and to allow only repulsive contact forces. Moreover,
contact forces can act on rigid bodies only when in contact. These
hypotheses lead to the so-called Signorini condition which can be
written at the velocity level:

∀i, 0 ≤ λ(i)
N ⊥ c

(i)
N − c

(i)
N

∗
≥ 0. (3)

where the super-script i refers to the ith contact point, the sub-script
N accounts for the normal component, c = Jvt+1 is the contact
points velocity and c∗ is the reference velocity of the contact points.

To model friction, the phenomenological Coulomb’s law of friction
is classically adopted. It states that contact forces should lie inside a
second-order cone:

λ ∈ Kµ =

nc∏
i=1

Kµ(i) (4)

where Kµ(i) =
{
λ(i) ∈ R3|λ(i)

N ≥ 0, ‖λ(i)
T ‖2 ≤ µ

(i)λ
(i)
N

}
and the

sub-script T accounts for the tangential components.
In addition, according to the Maximum Dissipation Principle (MDP),

frictions should maximize the dissipated energy, and, combined with
Coulomb’s set of admissible friction forces, this writes:

∀i, λ(i)
T = −µ(i) λ

(i)
N

c
(i)
T

‖cT ‖2
, if ‖c(i)T ‖2 > 0. (5)

Reworking the equations (2) (3) (4) (5) leads to the following
nonlinear complementarity problem (NCP):

∀i,Kµ(i) 3 λ(i) ⊥ c(i) + Γ
(
c(i), µ(i)

)
∈ K∗µ(i) . (6)

where c = Gλ + g is the contact point velocity, G = JM−1J>

is the so-called Delassus matrix, g = Jvf is the free ve-
locity of contact points and Γ is the de Saxcé function de-
fined by Γ : (c, µ) ∈ R3 × R 7→ [0, 0, µ‖cT ‖2]. The de-
viation from the physical principles can be measured via the
primal and dual errors, respectively ε

(i)
p = distK

µ(i)

(
λ(i)

∆t

)
and

ε
(i)
d = distK∗

µ(i)

(
c(i) + Γ

(
c(i), µ(i)

))
, and the complementarity

ε
(i)
c =

∣∣∣〈λ(i)

∆t
, c(i) + Γ

(
c(i), µ(i)

)
〉
∣∣∣. In our experiments, we use εabs,

defined as the maximum of εp, εd and εc, to quantify the physical
accuracy.

A more exhaustive introduction to contact models in robotics can
be found in [5].

RaiSim uses a contact model inspired by MuJoCo’s Cone Comple-
mentarity Problem (CCP). CCP relaxes the NCP (6) by ignoring
de Saxcé corrective term, thus, transforming the contact problem
into a Quadratically Constrained Quadratic Program (QCQP). This
results in the violation of the Signorini condition whenever a contact

Figure 1. The separation vector Φ represents the displacement of minimal
norm which puts objects in contact.
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point is sliding. RaiSim intents to fix this by enforcing λ to lie on the
hyperplane of null normal velocity V (i)

N = {λ(i)|G(ii)
N λ(i)+g̃

(i)
N = 0}

where g̃(i) = g(i) +
∑
j 6=iG

(ij)λ(j) is the ith contact point velocity
as if it were free, and where we generalized the superscript (resp.,
subscript) notation to block operations on matrices with the first
superscript (resp., subscripts) denoting the indexes of the rows while
the second one refers to columns. This choice induces solutions
conforming to the Signorini condition. When a contact point is sliding,
the bisection algorithm is used to solve the following QCQP:

min
λ∈∂K

µ(i)
∩V (i)

N

1

2
λ>G(ii)λ+ g̃(i)>λ (7)

The set ∂Kµ(i)∩V (i)
N being an ellipse, RaiSim leverages its analytical

expression and the associated polar coordinates to write (7) as a
1D optimization problem on the angle θ before solving it via a
dichotomous algorithm. We refer to [1] and [5] for a more detailed
description of the Gauss-Seidel bisection algorithm.

III. LIMITS AND EXTENSIONS OF RAISIM’S CONTACT MODEL

RaiSim’s limitations. Writing the Karush-Kuhn-Tucker (KKT) opti-
mality conditions of the problem (7) yields:

G(ii)λ+ g̃(i) + γ1G
(ii)
N + γ2

 λ
(i)
T

‖λ(i)
T
‖2

−µ(i)

 = 0 (8a)

‖λ(i)
T ‖2 = µ(i)λ

(i)
N (8b)

G
(ii)
N λ(i) + g̃

(i)
N = 0 (8c)

where γ1,2 are the dual variables associated to (7). Recalling that
c(i) = G(i)λ+ g(i) and injecting (8b),(8c) into (8a) gives:

γ1G
(ii)
NN − γ2µ

(i) = 0 (9a)

c
(i)
T + γ1G

(ii)
NT + γ2

λ
(i)
T

‖λ(i)
T ‖2

= 0 (9b)

Finally, using (9a) to express γ1 in (9b) leads to the following:

c
(i)
T ∝ −λ

(i)
T −

µ(i)2
λ

(i)
N

G
(ii)
NN

G
(ii)
NT (10)

which indicates that the contact model (7) proposed in [1] violates
the MDP (5) whenever the Delassus matrix is not decoupled i.e.
G

(ii)
NT is not null.

De Saxcé correction. To retrieve the MDP, we propose to re-
introduce de Saxcé’s correction [8], which was neglected in the
CCP formulation (Fig. 2). Because this correction is nonlinear in
λ, directly incorporating it would make the algorithmic complex. In
a Gauss-Seidel spirit, the corrective term can be approximated by
a constant value using the latest estimate of the contact forces λ−,
leading to:

Kµ(i) 3 λ ⊥ G(ii)λ+ g̃(i) + Γ(c−, µ(i)) ∈ K∗µ (11)

which constitutes the KKT conditions of the following problem:

min
λ∈K

µ(i)

1

2
λ>G(ii)λ+

(
g̃(i) + Γ(c−, µ(i))

)>
λ (12)

and where c− = G(ii)λ− + g̃(i). At convergence c− → c(i) and (11)
becomes exactly (6).

Figure 2. Bisection algorithm. When the contact point is sliding, RaiSim
solves (7) while adding de Saxcé’s correction (12) allows to retrieve the
original NCP. The corrected problem (12) is equivalent to finding the element
of ∂Kµ(i) ∩V (i)

N which is the closest to λcorv0 (Alg. 1, line 11). In both cases,
the constraint set is an ellipse, which boils down to a 1D problem on θ using
polar coordinates. This figure is inspired by Fig. 2 of [1].

Algorithm 1: De Saxcé correction of the Gauss-Seidel
bisection algorithm

Input: Delassus matrix: G, free velocity: g, friction cones Kµ

Output: Contact forces: λ
1 for k = 1 to M do
2 for i = 1 to nc do
3 g̃(i) ← g(i) +

∑
j 6=iG

(ij)λ(j);

4 λ
(i)
v0 ← −G(ii)−1

g̃(i);
5 if g̃(i)

N > 0 then
// takeoff

6 λ∗ ← 0;
7 else if λ(i)

v0 ∈ Kµ(i) then
// stiction

8 λ∗ ← λ
(i)
v0 ;

9 else
// sliding

10 g̃cor ← g̃(i) + Γ(G(ii)λ(i) + g̃(i), µ(i));
11 λcorv0 ← −G

(ii)−1
g̃cor;

12 λ∗ ← bisection(G(ii), g̃cor,Kµ(i) , λcorv0 );
13 end
14 λ(i) ← (1− α)λ(i) + αλ∗;
15 α← γα+ (1− γ)αmin ;
16 end
17 end

For a sliding contact, (11) involves that λ ∈ ∂Kµ(i) ∩ V (i)
N , and

thus, when solving (12) one can restrain the search over this sub-set,
leading to the following corrected variant of (7):

min
λ∈∂K

µ(i)
∩V (i)

N

1

2
λ>G(ii)λ+

(
g̃(i) + Γ(c−, µ(i))

)>
λ (13)

Practically, the original per-contact bisection algorithm can be adapted
to (13) by iteratively updating the latter correction (Alg. 1, lines
10, 11), in a similar way to [9]. The resulting algorithm is called
RaiSim+DS as it consists in a variant of RaiSim which includes a de
Saxcé correction.

It is worth noting that the proposed correction offers no convergence
guarantees just like the original algorithm. In practice, over-relaxation
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Figure 3. A cube sliding on a plane, with an initial tangential velocity of
1 m/s (Left) and 3 m/s (Right). Because RaiSim’s contact model violates
the MDP, the dissipated energy decreases more slowly than expected by the
analytical solution governed by the maximum dissipation principle. On the
contrary, with de Saxcé’s corrective term, the contact model recovers the
expected evolution.
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Figure 4. Top left: A cube is dragged on a plane by an increasing external
tangential force along the x-axis. When the cube starts to slide along the
x-axis, according to the MDP, the tangential contact forces should be coliinear
to the same direction. Top right: The curves represent the internal force along
the y-axis at each of the four contact points. RaiSim exhibits some remaining
internal forces while our de Saxcé correction results in zero internal forces.
Bottom left: because the dissipation is not maximal, the velocity simulated by
RaiSim grows faster than what is obtained by our approach or a more classical
PGS algorithm. Bottom right: the violation of the MDP is confirmed by a
jump of the NCP criterion εabs when the cube is sliding, while the proposed
correction keeps this criterion at a relatively low level.

with a decreasing α (Alg. 1, lines 14,15) is required to stabilize the
algorithm and, thus, even at convergence correctness is not guaranteed.

IV. EXPERIMENTS

The RaiSim algorithm and our proposed correction are implemented
in ContactBench [5], a generic framework implementing contact
solvers commonly used in robotics and leveraging the Pinocchio [10]
and HPP-FCL [11] C++ libraries. ContactBench will be publicly
available upon publication acceptance. Here, we run experiments
inspired by the same previous work [5] in order to observe RaiSim’s
approximation pointed out in Section III and how our corrected contact
model improves simulation.

A. Experiment 1: sliding cube

An experiment as simple as a cube sliding on a horizontal plane
allows us to visualize how RaiSim’s contact model violates the MDP,
as evidenced by (10). Indeed, in this case, Fig. 3 exhibits a gap between
the analytical evolution of the mechanical energy and its simulation
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Figure 5. MPC controller for Solo-12 is run in simulation with various
contact models and solvers. The robot is operating on a bumpy and slippery
terrain. The De Saxcé correction leads to a reduced contact complementarity
error εabs w.r.t. the original RaiSim solver (Left). The correction also leads to
very different controlled trajectories (Right).

via RaiSim’s contact model. Moreover, the same experiment reveals
that our approach using de Saxcé’s correction allows us to bridge this
gap.

B. Experiment 2: dragging a cube

For underdetermined cases, e.g. hyper-staticity, the contact problem
can have an infinite set of solutions and so we denote by "internal
forces", the contact force components deviating from the minimum
norm solution. The second experiment, on a cube that is progressively
dragged (Fig. 4), demonstrates that if both our approach and RaiSim
lead to internal forces stretching the cube at stiction, the latter still
induces to non-null internal components when the cube slides. The
studied contact problem is under-determined at stiction, and internal
forces do not affect the resulting trajectory. When the contact points
are sliding, the friction forces are uniquely defined by the MDP (5)
and should not exhibit any internal components. The correction results
in a trajectory close to the one obtained via a Projected Gauss-Seidel
(PGS) algorithm (see [5] for more details) which is an approach
avoiding any physical approximation. This indicates that if RaiSim
originally violates the MDP, adding a simple de Saxcé corrective term
reconciles the simulator with this energetic principle.

C. Experiment 3: MPC for quadrupedal locomotion

Our last experiment aims at evaluating the impact of the de Saxcé
correction on a more concrete application: Model Predictive Control
(MPC) for quadrupedal locomotion with the Solo-12 robot. Running
an MPC controller in a simulator using RaiSim’s contact model
and solvers with and without de Saxcé correction leads to different
behaviors (Fig. 5). In this experiment, the number of iterations is
fixed which is why the PGS algorithm cannot always control the
contact complementarity error. RaiSim also leads to large errors but
increasing the number of iterations would not help in this case because
the MDP is inherently approximated. Eventually, RaiSim’s algorithm
when equipped with de Saxcé’s correction is able to keep this error
at a lower level.

V. CONCLUSION

In this note, following [5], we have shown that the RaiSim simulator
can exhibit non-physical behaviors. Our study slightly modified the
original algorithm to account for the maximum dissipation principle
properly. Throughout our experiments, we empirically demonstrate
our computationally-free modification can improve the physical
consistency of simulation without additional computational burden.
We hope this note will motivate new developments and progress in
contact simulation in robotics.



4

ACKNOWLEDGMENTS

We thank Jemin Hwangbo for providing useful details on the
algorithm of the RaiSim simulator. This work was supported in
part by L’Agence d’Innovation Défense, the French government
under the management of Agence Nationale de la Recherche through
the project INEXACT (ANR-22-CE33-0007-01) and as part of the
"Investissements d’avenir" program, reference ANR-19-P3IA-0001
(PRAIRIE 3IA Institute), by the European Union through the AGIMUS
project (GA no.101070165) and the Louis Vuitton ENS Chair on
Artificial Intelligence. Views and opinions expressed are those of the
author(s) only and do not necessarily reflect those of the European
Union or the European Commission. Neither the European Union nor
the European Commission can be held responsible for them.

REFERENCES

[1] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 895–902, 2018.

[2] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[3] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics, vol. 5,
no. 47, p. eabc5986, 2020.

[4] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[5] Q. Le Lidec, W. Jallet, L. Montaut, I. Laptev, C. Schmid, and J. Carpentier,
“Contact models in robotics: a comparative analysis,” Under Review, 2023.

[6] J. J. Moreau, “Unilateral contact and dry friction in finite freedom
dynamics,” Nonsmooth mechanics and Applications, pp. 1–82, 1988.

[7] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[8] G. de Saxcé and Z.-Q. Feng, “The bipotential method: A constructive

approach to design the complete contact law with friction and improved
numerical algorithms,” Mathematical and Computer Modelling, vol. 28,
pp. 225–245, Aug. 1998.

[9] F. Cadoux, “An optimization-based algorithm for coulomb frictional
contact,” in CANUM 2008-39e Congrès National d’Analyse Numérique,
vol. 27, pp. 54–69, EDP Science, 2008.

[10] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse,
and N. Mansard, “The pinocchio c++ library: A fast and flexible
implementation of rigid body dynamics algorithms and their analytical
derivatives,” in 2019 IEEE/SICE International Symposium on System
Integration (SII), pp. 614–619, IEEE, 2019.

[11] J. Pan, S. Chitta, D. Manocha, F. Lamiraux, J. Mirabel, J. Carpentier,
et al., “HPP-FCL: an extension of the Flexible Collision Library.”
https://github.com/humanoid-path-planner/hpp-fcl, 2015–2023.

https://github.com/humanoid-path-planner/hpp-fcl

	Introduction
	Background
	Limits and extensions of RaiSim's contact model
	Experiments
	Experiment 1: sliding cube
	Experiment 2: dragging a cube
	Experiment 3: MPC for quadrupedal locomotion

	Conclusion
	References

