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Abstract
The increasing complexity of advanced machine learning models re-

quires innovative approaches to manage computational resources effectively.
One such method is the Early Exit strategy, which allows for adaptive
computation by providing a mechanism to shorten the processing path for
simpler data instances. In this paper, we propose EERO, a new methodol-
ogy to translate the problem of early exiting to a problem of using multiple
classifiers with reject option in order to better select the exiting head for
each instance. We calibrate the probabilities of exiting at the different
heads using aggregation with exponential weights to guarantee a fixed
budget .We consider factors such as Bayesian risk, budget constraints, and
head-specific budget consumption. Experimental results, conducted using
a ResNet-18 model and a ConvNext architecture on Cifar and ImageNet
datasets, demonstrate that our method not only effectively manages budget
allocation but also enhances accuracy in overthinking scenarios.

1 Introduction
Nowadays, vision models are increasing in size rising the issue of their complexity
and computation costs. There exist different strategies to train lighter deep
learning networks, such as quantization and pruning [19], distillation [25], and
dynamic inference where the network adapts its topology on the fly to the input
data [11]. Among them, Early Exit [17] is an orthogonal approach which aims at
adapting the amount of computation to each input data point, exploiting that
most neural networks can be approximated as a stack of layers which process
the data sequentially. The idea is to add auxiliary heads at regular intervals
along the network (see Figure 1) which are able to produce a prediction with the
current state of the features. The intuition is that easy cases can be processed
with only the first few layers. Thus, Early Exit provides an interesting flexibility.
Moreover, the predictions from the different heads can be used to construct
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Figure 1: Illustration of the Early Exit principle in a convolutional architecture
used in our experiments in Section 4.1.

confidence scores and analyze the importance of the different model blocks [3, 15].
Lastly, it has been observed that training with early exit provides additional
and more immediate gradient signal in back propagation, resulting in more
discriminant features in lower layers, thus improving accuracy [24].

Despite its advantages, one of the main challenges in applying Early Exit
during inference is determining the appropriate moment to exit for a given input.
This challenge is intricately connected to assessing confidence in the predictions
of neural networks. Specifically, we focus on Budgeted batch classification [14], a
strategy where a fixed computational budget is allocated for processing a batch
of data. The strategy involves calculating thresholds to allocate these resources
efficiently across different data points enhancing overall accuracy. This approach
theoretically offers improved performance because it allows for the conservation
of computational resources on simpler cases, which can then be reallocated to
improve accuracy on more complex cases. However, practical investigations
into this framework have been limited, with most studies concentrating on
architectural design or the reliability of confidence scores. Those few that have
addressed Budgeted Batch Classification often make additional assumptions for
practicality [14] or utilize less-than-ideal algorithms without fully exploring the
associated mathematical challenges [30].

Contributions In this work, we introduce a new methodology termed EERO,
which stands for Early Exit with Reject Option, designed to optimize the use of
Early Exit in the context of Budgeted Batch Classification for inference tasks.
We formalize the problem as classification with a reject option and establish
the optimal rule for a two-head scenario, deriving a data-driven procedure to
define the rejection threshold. We then extend this approach to multiple heads,
framing it as a minimization of the joint empirical risk under a global budget
constraint, solvable through aggregation with exponential weights. Our work
delivers key contributions: (i) we determine the optimal data proportion for
a single auxiliary head under a given resources budget expressed in GFlops,
and construct an optimal classification rule that balances classification error
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and budget adherence and as opposed to previous work, strictly enforces the
budget constraint; (ii) we offer a data-driven counterpart of the optimal rule
that empirically exhibits a balanced accuracy-budget compromise; (iii) we apply
our methodology to ResNet, ConvNext[21] and MSDNet [14] architectures,
generalizing it for multiple auxiliary heads; (iv) we validate our approach through
real data benchmark experiments on CIFAR 100 and ImageNet, demonstrating
its efficacy in adhering to resources constraints while reducing computation and
enhancing model accuracy.

The remainder of this paper is structured to provide a comprehensive exami-
nation of our research and findings. Following this introduction, Section 2 reviews
the existing literature and situates our work within the broader context of related
research. Section 3 delves into our proposed methods, starting with a statistical
framework and definition in Section 3.1, followed by a detailed exposition of
the EERO method in Section 3.2. Section 4 presents our experimental results,
showcasing the application of EERO in single-head and multi-head scenarios
in Sections 4.1 and 4.2, respectively. Finally, we encapsulate our study with
a conclusion in Section 5, where we summarize our key findings, discuss the
implications of our work, and offer directions for future research.

2 Related work
One of the first works on Early Exit [24] proposed to use auxiliary heads and a
weighted sum of losses. The focus was essentially on the design and the positions
of the auxiliary heads. MSDNet [14] is an architecture where the heads are
carefully designed so that early features which are assumed to be unsuitable
for classification are refined. Although this leads to better performances, the
complex resulting heads reduce their number, and therefore the flexibility of the
model, and makes it more difficult to adapt to new architectures. Overall, the
position and the number of the auxiliary heads remains an open discussion for
convolutional networks [20] and transformers [1].

Determining the precise timing for an early exit in neural network inference
have been addressed by different strategies. A prevalent approach applies a
specific threshold to the output probabilities of each auxiliary head, ceasing
the inference process when the output for a class surpasses this benchmark.
This threshold can be based on a maximum confidence value or on the entropy
of the probability distribution, which reflects the certainty of the prediction
[14, 2]. Patience-based strategies introduce another layer of decision-making by
requiring that multiple consecutive heads agree on the same class prediction
before allowing an exit, which utilizes the redundancy in sequential predictions
to ensure reliability [33].

More sophisticated supervised methods involve training a cost function that
enforces a desired utilization rate of the network’s layers [26]. Modules may also
be trained to calculate ’halting scores’ from each layer’s output, accumulating
those scores along the network until a specific exit threshold is reached, thus
integrating the model’s confidence into the inference process [9]. In more complex
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dynamic inference settings, reinforcement learning techniques have been adopted
to finely balance the trade-off between computational efficiency and prediction
accuracy [29, 31].

In the context of Budgeted batch classification, thresholds are not determined
for individual images but for a batch as a whole, facilitating a more strategic
deployment of computational resources. To date, the literature presents two
notable algorithms addressing this problem in the realm of Early Exit strategies.
The authors in [30] employ a genetic algorithm to optimize these thresholds,
offering a biological-evolution-inspired approach to the allocation challenge.
Conversely, the work [14] operates under the assumption that each exit point in
the network has an equal and predetermined likelihood of accurately classifying
an image. While this simplifies the optimization problem, it introduces an
additional hyper-parameter that is not inherently related to computational
complexity. Our work differs by presenting a comprehensive formulation that is
grounded on the principles of reject option learning theory.

Learning with reject option is a related line of work where the main focus is
to abstain from predicting when there is a doubt in the predicted value. Reject
option has first been exploited in [4] and has been considered by the statistical
learning community in the early 2000 with the development of conformal pre-
diction in [27, 28]. The papers [13, 23, 10, 32, 18, 5, 6] (and references therein)
contributed to a good comprehension of the reject option rule. In particular,
there are three main approaches for learning with reject option (without any
clear advantage of one approach on the others). Either, we focus on ensuring a
predefined level of coverage, or on a predefined rejection rate, or on a tradeoff
of the two. In our context, rejection will be considered at the level of heads
to determine whether an instance x should be classified by a given head or
considered by the following heads. While this approach is completely original in
its application to deep learning and energy saving, it is worth noticing that reject
option have already been successfully used to handle other types of learning
issues [28, 8, 7].

3 Method
In this section, we introduce the Early Exit with Reject Option (EERO) frame-
work, applying reject option learning theory to enable efficient early exits in
neural networks while adhering to computational budgets. We detail the sta-
tistical underpinnings and describe how EERO strategically manages resources
to balance accuracy with computational expenditure. This approach not only
optimizes performance but also ensures strict compliance with predefined com-
putational constraints.

3.1 Statistical framework
This section describes the mathematical framework for Early Exit. Let (X, Y ) be
a tuple on X × [K], where [K] := {1, . . . ,K}, having a joint distribution P. Here,
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X ⊂ Rd is the feature space, and Y is the label corresponding to the feature X.
We focus on the problem of K-class classification with K ≥ 2 and one of our
goals is to build a prediction rule g : X → [K] that reduces the misclassification
risk P (g(X) ̸= Y ). This risk is minimized by the Bayes rule g∗ that is given, in
the multi-class setting, for all x ∈ X by

g∗(x) = argmax
k=1,...,K

pk(x) , (1)

where pk(x) = P (Y = k|X = x) are the conditional probabilities. Because the
distribution P is unknown, the Bayes rule itself is unknown, and we need to ap-
proximate it. In general, this approximation seeks to maximize the classification
accuracy. In our case, the goal is also to reduce the energy consumption of the
model, and thus, we assume a constraint on the computation budget available.
Notably, we will show that the latter is strongly connected to classification with
reject option (classification with abstention) that we describe in Section 3.2.

The framework of classification with reject option assumes that classifiers
are allowed to abstain from classifying (on the empirical side, this means that
the classifier abstains on a given proportion of the data). Let ε ∈ (0, 1) be a
parameter that denotes the probability of classifying an image. We define the
optimal rule that abstains with probability 1− ε as follows:

Definition 1 Let ε ∈ (0, 1). The optimal classifier with 1− ε rejection rate is
defined as

h∗
ε ∈ argmin

h
{P ({h(X) ̸= Y } ∩ {h(X) ̸= R}) s.t. P(h(X) = R) = 1− ε} ,

where h is a classifier that is allowed to reject, that is, h : X → [K] ∪ {R} and
R is the output when the classifier rejects all elements from [K].

Remark 1 It might be suitable to replace the equality constraint in Definition 1
by an inequality, that is, P(h(X) = R) ≤ 1− ε. However, it is easy to observe
that, thanks to the continuity assumption, such modification does not change the
optimal rule since the risk of h∗ is a non-increasing function of 1−ε. Indeed, when
ε decreases, the risk of h∗ is evaluated on smaller region (w.r.t P), corresponding
to {x : h∗(x) ̸= R}.
The opportunity of using the reject option is important in applications where
ambiguity occurs between classes, which is often the case when the total amount
of classes K is large. There are several ways to handle this reject option. In this
paper, we constrain the rejection rate as it is in accordance with the resource
limitation.

Now, we aim at providing the explicit expression of the optimal rule given
by Definition 1. Let us denote by s the score function defined for each x ∈ X by

s(x) = max
k∈[K]

{p1(x), . . . , pK(x)} , (2)

From the definition of the Bayes rule (1), we can establish the following charac-
terization of the optimal rule.

5



Proposition 1 Assume the cumulative distribution function (CDF) Fs of s(X)
is continuous, Then for all x ∈ X

h∗
ε(x) =

{
g∗(x) if Fs(s(x)) ≥ 1− ε
R otherwise.

In particular, we have P(h∗
ε(X) = R) = 1− ε.

Proposition 1 extends the result established in [6] (c.f. Proposition 1) to multi-
class setting. Its proofs can be found in the Section B of the Appendix. The main
assumption used to build this result is the continuity assumption on the CDF of
s(X) and requires that the random variable has no atoms. It is fundamental to
ensure that the classifier h∗

ε has a rejection rate exactly 1−ε. In the next section,
we will see that from an empirical point of view, this condition can always be
satisfied by randomizing the estimation of the conditional probabilities.

3.2 Data-driven procedure
Before considering the reject option arguments and since we deal with an Early
Exit strategy, we train a neural network with M possible exits that correspond
to M − 1 auxiliary heads and the classical output of the last layer, as illustrated
in Figure 1. To this end, we collect a labeled dataset Dn, that consists of n ∈ N
i.i.d. copies of (X, Y ), and train for each head ℓ an estimator (p̂ℓ1, . . . , p̂

ℓ
K) of

the conditional probability vector (p1, . . . , pK). Since larger ℓ means that we
go deeper in the network, it is reasonable to assume that for all layers indices
ℓ, ℓ′ ∈ [M − 1] with ℓ < ℓ′, the auxiliary head ℓ′ consumes more resources than
the auxiliary head ℓ and in general, this increase in consumption might come
with a better accuracy.

3.2.1 Classification rule based on reject option

Our methodology highlights that early exiting can be efficiently performed,
borrowing tools from learning with reject option. Let us then define, for each
auxiliary head ℓ, a rejection rate 1 − εℓ ∈ (0, 1) – or a non abstention rate εℓ.
In order to specify the prediction rule for each head, we will mimic the optimal
rule provided by Proposition (1) using the plug-in principle. This step requires
collecting a sample of unlabeled instances DN , that consists in N i.i.d. copies
of X. Since the process is the same at each auxiliary head, let us develop our
methodology for a specific head ℓ.

The goal is to understand whether the head ℓ is a good early exit for a given
instance x ∈ X . If we translate this into the classification with reject option
vocabulary, the question becomes whether the classifier ĝℓ(·) = argmax

k∈[K]

{p̂ℓk(·) +

uk}, should classify the instance x or reject it. The uk variable is introduced to
randomize the p̂ℓk estimations for a technical reason that we now explain.

Let us denote by (uk)k∈[K] i.i.d. variables which follow a uniform distribution
on [0, u] with u being a non-negative real number which is usually chosen very
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small. (In practice, we set u = 10−5.) It ensures that the random variables
pℓk(X) + uk has no atoms and is actually the key argument (see proof in ap-
pendix B) to have a good control on the rejection rate of the produced classifier
with reject option. Formally, this classifier is the empirical counterpart of the
classifier with reject option given by Proposition 1 and is based on the empirical
score function given for all x ∈ X by

ŝℓ(x) = max
k∈[K]

{
p̂ℓ1(x) + u1, . . . , p̂

ℓ
K(x) + uK

}
. (3)

we can derive the plug-in estimator of the classifier with reject option h∗
ε at the

level of the ℓ-th auxiliary head.

Definition 2 For all x ∈ X

ĥℓ
εℓ(x) =

{
ĝℓ(x) if F̂ŝℓ(ŝ

ℓ(x)) ≥ 1− εℓ

R otherwise,

where conditional on the dataset Dn, we denote by F̂ŝℓ(t) =
1
N

∑
X∈DN

1{ŝℓ(X)≤t}
the empirical CDF of ŝℓ(X) on the sample DN .

Remark 2 Notably, the score function ŝℓ in the above definition can be replaced
by any suitable metrics providing an estimation of the prediction confidence.
We tried entropy-based confidence and breaking ties [22] (which is the difference
between the two highest scores) in our experiments and select the latter which
performed slightly better empirically.

According to the above definition, the classifier ĥℓ
εℓ abstains when it is not

confident about the classification. In our case, having ĥℓ
εℓ assigns the output R

to a given instance x means that the observation should not be treated by ĥℓ
εℓ ,

but rather should be delayed to next auxiliary head treatment. In contrast, when
ĥℓ
εℓ(x) = ĝℓ(x), then we use the early exit at the head ℓ and the observation x

does not go through the rest of the network, thus reducing the computation. We
can establish the following result whose proof can be found in the Section B of
the Appendix.

Proposition 2 For all ℓ ∈ [M ] and all εℓ ∈ (0, 1), there exists a constant C > 0
such that, whatever the distribution P of the data and whatever the estimators
p̂ℓk of the conditional probabilities we consider, we have∣∣∣P(ĥℓ

εℓ(X) = R
)
− (1− εℓ)

∣∣∣ ≤ C√
N

.

The above result confirms that the rejection rate of the classifier ĥℓ
εℓ is indeed of

the right order. However, this result suggests that the head ℓ might reject more
data than it should (by a proportion of order C/

√
N which is not suitable from

the budget perspective. In order to solve this issue, it is sufficient to impose a
smaller rate of rejection. More precisely, if we replace εℓ by ε̃ℓ = εℓ + C/

√
N

when we run our algorithm, we force the rejection rate to be less than 1 − εℓ.
From our numerical study, we observed that C = εℓ leads to good results in
order to ensure the budget limitation.
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Remark 3 Our methodology, applicable for semi-supervised learning, capitalizes
on both labeled and unlabeled data, making it ideal when acquiring labels is costly.
If only labeled data is available, we advise splitting the dataset, facilitating budget
control theoretically.

Remark 4 The result in Proposition 2 is valid when M > 2 with the assumption
that previous heads did not reject data. In a dynamic inference process, we need
to adjust the rejection rate at the level of the head ℓ based on the rejection rates
of the earlier heads. We will elaborate on this in Section 3.2.3.

3.2.2 Calibration of the rejection rates

To fully exploit the layered complexity of deep learning networks, our EERO
methodology must handle multiple exit. We incorporate an aggregation with
exponential weights to optimize the decision-making process at various network
depths. This adaptation is crucial for leveraging the diverse representational ca-
pabilities of neural networks, ensuring computational efficiency, and maintaining
high accuracy across multiple exit points. We recall that our main constraint
here is the maximum allowed budget B, in GFlops.

Let us then develop the process to build the vector ε̂ = (ε̂1, . . . , ε̂M ) of
discrete probabilities that provides us the rates of classifying at each head (in
other words, the 1− ε̂ℓ are the rejection rates). As inputs, we assume

• we have already trained all heads classifiers that are called ĝ1 . . . ĝM ;

• we have already computed for each of the classifiers ĝℓ an evaluation of
its risk R̂ℓ = R̂n(ĝ

ℓ) = 1
n

∑n
i=1 1{ĝℓ(Xi) ̸=Yi} based on the training set Dn –

notice that these error rates are already computed during any classic deep
learning training;

• we have a prior distribution π = (π1, . . . , πM ) on the simplex ΛM−1 defined

as πℓ =
(B̂ℓ)

−1∑M
j=1(B̂ℓ)

−1 , where B̂ℓ is the budget required by the head classifier

ĝℓ to provide an inference for one instance,

• we have fixed the overall budget B we are allowed to use and the size T of
the batch of new data points we need to predict.

Our proposal is based on aggregation with exponential weights. The vector
ε̂ = (ε̂1, . . . , ε̂M ) ∈ ΛM−1 is solution in ε = (ε1, . . . , εM ) of the following
minimization problem:

min
ε∈RM

M∑
ℓ=1

εℓR̂ℓ + β

M∑
ℓ=1

εℓ log

(
εℓ

πℓ

)
, (4)

such that

εℓ ≥ 0,

M∑
ℓ=1

εℓ = 1,

M∑
ℓ=1

εℓB̂ℓ ≤ B̄, (5)
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where β ≥ 0 is a tuning parameter that controls the strength of the Kullback-
Leibler divergence between ε and π and B̄ = B/T is the average budget we can
spend to infer one instance. Notice that the constraint

∑M
ℓ=1 ε

ℓB̂ℓ ≤ B̄ reads as∑M
ℓ=1(Tε

ℓ)B̂ℓ ≤ B. In particular, Tεℓ interprets as the number of data points
that should be classified by the head ℓ so that the total budget remains less (or
equal) than the allocated budget B. Considering the Lagrangian of this problem,
we can exhibit the following form of the probability vector ε̂.

Proposition 3 For all ℓ ∈ [M ], the ℓ-th coordinates of the rejection rates vector
ε̂ is given by

ε̂ℓ =
πℓ exp

{
− R̂ℓ+µ̂B̂ℓ

β

}
∑M

j=1 π
j exp

{
− R̂j+µ̂B̂j

β

} ,
where µ̂ = max{0, µ̄}, with µ̄ being solution of the equation

M∑
ℓ=1

(B̄ − B̂ℓ)πℓ exp

{
− R̂ℓ + µ̄B̂ℓ

β

}
= 0 .

The only tuning parameter in the above procedure is the temperature β.
Higher values force the probability vector ε̂ to get closer to the prior distribution
π = (π1, . . . , πM ) that is created to take into account the budget required by
each head to produce a prediction.

3.2.3 Heads with reject option

In the case of multiple heads, it is difficult to ensure the validity of Proposition 2
for all heads (c.f. Remark 4). However, we can guarantee a weaker result that
is sufficient to ensure the good control on the allocated budget. Based on the
previous section, we built M head classifiers on one hand and a probability vector
ε̂ whose ℓ-th components gives the rates of classification at the ℓ-th auxiliary head
on the other hand. The probability vector ε̂ takes into account both the accuracy
and the resources of each head and allows achieving the suitable control on the
budget. However, in the case of multiple auxiliary heads, a careful analysis of our
methodology imposes some modifications according to the sequential calibration
of the probabilities of classification.

The calibration of the classification rates of all heads is based on the estimation
of the CDF Fs of the score function. Since there are M − 1 auxiliary heads, we
estimate M − 1 times the function Fs. Importantly, all these estimates are built
on the same dataset DN . While the calibration at the level of the first head is
perfectly valid, the calibration of the classification rate starting from the second
head needs to be adjusted to get the ε̂ℓ classification rate. In particular, for all
ℓ ∈ {2, . . . ,M − 1}, we enforce a higher classification rate as

ε̂ℓseq =

ℓ∑
j=1

ε̂j . (6)
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Algorithm 1: EERO method : calibration phase and classification of a
batch of data points
Input: Batch of data points: X1, . . . ,XT ∈ X ; Calibration sets DN ;

Model p with M heads, Risk of heads: R, Allowed budget: B
Output :Prediction: P ∈ [K]T

Fs ← ComputeCDF(DN ) ; // Compute empirical CDF of score
s {(3)}
ε̃seq ← AggregateEpsilons(M,R,B) ; // {Prop: 3, (6), (7) }
P ← empty list
for i = 1 to T do

for ℓ = 1 to M do
sℓ, gℓ ← ComputeOutput(Xi, pℓ) ; // Get score and class at
ℓ {(3), (1)}

if Fsℓ(s
ℓ(x)) ≥ 1− ε̃ℓseq then

P ←
[
P, gℓ

]
; // save the classification from head ℓ

break
end

end
end
return P

This choice is motivated by the fact that we need, for each head ℓ, to calibrate
the threshold for the rejection rule so that at most a proportion 1−∑ℓ

j=1 ε̂
j of

the data in DN is rejected.
If we consider this adjustment together with the correction we have detailed

right after Proposition 2, we can show that for all ℓ ∈ [M ], if we replace the
probability of classification ε̂ℓ in Definition 2 by

ε̃ℓseq = ε̂ℓseq + C/
√
N , (7)

we show that

P
(
ĥℓ
ε̃ℓseq

(X) = R
)
≤ 1−

ℓ∑
j=1

ε̂j =

M∑
j=ℓ+1

ε̂j ,

meaning that after using the head ℓ, there is at most a proportion
∑M

j=ℓ+1 ε̂
j

of the data that remains to classify. This result will be illustrated in the next
section through numerical experiments.

4 Experiments
Building upon the methodological foundations established for EERO, this section
seeks to empirically substantiate the approach. We initiate with an exploration
of a single-head EERO within the ResNet-18 architecture, employing the CIFAR
dataset. The scope then broadens to encapsulate the multi-head EERO variant,
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tested against the more recent ConvNext and MSDNet architectures on the expan-
sive ImageNet dataset. Those experiments validate our theory and demonstrate
the scalability of EERO across diverse neural network configurations.

4.1 EERO with only 1 auxiliary head
In the case of one auxiliary head, computations of the rate of classifying ε̂1 (of
this single head) can be simplified. In particular, we do not require aggregation
with exponential weights to find it and even more, we can express it analytically.
Let B > 0 be the amount of GFlops we were allocated for the task of labeling
T inputs vectors X1, . . . ,XT ∈ X . Assume that the classifiers ĥ1

ε̂1 and ĝ2 burn
off respectively B̂1 and B̂2 GFlops at each call with B̂1 < B̂2. (We assume
that both B̂1 and B̂2 are small as compared to the total budget B and that
B ≥ TB̂1 so that we are guaranteed to label all T points). Let ε̂1 be such that
ε̂1TB̂1 + (1− ε̂1)TB̂2 = B. We can state the following result.

Proposition 4 Let ε̂1 =
B
T −B̂2

B̂1−B̂2
. Then the total amount of GFlops used to

label T instances is not larger than B.

This result highlights that our strategy succeeds to comply with the constraint
of budget we imposed. The proof of the result lies in the fact that we use the
early exit on a proportion ε̂1 of the data. Then we consume T ε̂1B̂1 GFlops (up
to a 1/

√
N additive term – see the comment after Proposition 2 for a correction).

The rest of the data is treated by the classifier ĝ2 and then uses T (1 − ε̂1)B̂2

GFlops. In total, we then get

T (ε̂1B̂1+(1−ε̂1)B̂2) = T (B̂2+ε̂1(B̂1−B̂2)) = T

(
B̂2 +

B
T − B̂2

B̂1 − B̂2
(B̂1 − B̂2)

)
= B .

(8)

Remark 5 It is important to observe that in this case where we have only one
head, we enforce the rejection rate to exactly burn off the whole budget B. This
is highlighted in Equation (8). We make this choice to explain some interesting
broader effects that illustrate the importance of using auxiliary heads – see below
and Figure 2. On the other hand, we notify that it is extremely simple to modify
the algorithm so that it consumes less than or equal to the total budget, that is,
(ε̂1T )B̂1 + ((1− ε̂1)T )B̂2 ≤ B. In this case, the accuracy curve would always be
increasing w.r.t. the budget.

We then implement 1 our procedure with one Early Exit on a ResNet [12]
model with Cifar-100 dataset [16] (see Figure 1). We test 7 different positions for
the early exit by adding auxiliary heads at regular intervals along the network.

1All computations are run on a server with an Intel(R) Xeon(R) Gold 5120 CPU
and a Tesla V100 GPU with 32GB of Vram and 64GB of RAM. Code associated
with paper can be found in repository here : https://anonymous.4open.science/r/
Early-Exit-With-Reject-Option-9896
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Figure 2: Accuracy versus computation budget for our multi-headed ResNet-18
(given in Figure 1). In this illustration, we consider only a two heads procedure
by selecting a specific auxiliary head – 2, 3, or 4 – among the initial 7. Each
curve shows how the accuracy evolves according to the probability of use of the
auxiliary head. For each color, we display our algorithm as well as the oracle.

In more details, we adopt a simple approach and flatten the outputs of the
convolution layers and append a Multilayer Perceptron with one hidden layer
which has the same size as the output dimension. We then train the model over
the sum of the cross entropy losses from the different exits. We use a simple
gradient descent algorithm with a learning rate of 0.003 and a batch size of 128.
In the CIFAR100 dataset, we partition the original 50,000 training examples
into a training set Dn with 49,000 examples and a calibration set DN of 1,000
examples used to compute the ε̃1seq variables – see Equation (7) – leaving DT ,
the test set, with 5,000 examples. We also implement an oracle which will select
the best head to maximize the accuracy for a given computation budget. To
build this oracle, we solve this problem with Integer Linear Programming, where
the auxiliary head selection is modeled as binary variables.

We plot the accuracy for the different exits in Figure 2 for different budgets.
First, we can see a general trend where our procedure gradually improves the

accuracy as the budget increases since images wrongly classified by the auxiliary
head and correctly classified by the final layer are forwarded from the Early Exit
to the latter. Then there is an accuracy decrease since augmenting the budget
only affects images which are wrongly classified by both Early Exit and final
model exit. Secondly, we notice that the oracle quickly outperforms the accuracy
of the main model for only a fraction of the total budget required to process all
images with the full model.

This fact shows that Early Exits can have valid predictions, whereas the
last model output is wrong. This phenomenon is known as over-thinking and
motivates the potential of Early Exit methods, as a way of better understanding
the flaws of deep learning models. Here, this over-thinking situation seems
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important, as some of the Early Exits have a better accuracy than the last model
output, c.f., Remark 5. A second reason explaining the oracle improvements is
its capacity to save computation budget by choosing an Early Exit when both
early and last exit predictions are wrong.

This advantage, only achievable in our specific context of Budgeted Batch
Classification, aligns well with our primary objective of reducing computational
power for our algorithms. Furthermore, it indirectly enhances the overall accuracy
of our model. The next sections validate our finding with the more realistic case
of multiple exits with the ImageNet dataset.

4.2 EERO with multiple heads
We now consider the case of multiple heads. We recall that the procedure
consists of two steps. The first one focuses on determining the rejection rates
at each head. The second one consists in specifying the rejection rule at the
level of each given head, c.f., Definition 2. While in Section 4.1, we consider
two heads (M = 2) and then there is only one rejection rate to compute (c.f.
Proposition 4), in this case of multiple heads, the computation is more involved.
We therefore exploit the methodology based on aggregation with exponential
weights developed in Section 3.2.2.

We follow a similar protocol as in Section 4.1 with the more recent ConvNext
Architecture and the ImageNet dataset where we extract 5,000 images from
the 50,000 images in the validation set as our calibration set. More precisely,
we flattened the outputs of the convolution layers and append a Multilayer
Perceptron with one hidden layer which has the same size as the input dimension.
To avoid an increase of the computational cost, we apply Adaptive Average
pooling so that the input dimension remains below 3,000. To train this model,
we used pretrained weights on ImageNet and fine tune only different heads for
300 epochs with a 0.9 momentum and a weight decay 10−4. This corresponds
to a classical use-case where an Early Exit application needs to be applied to
a carefully trained model which would be difficult to modify. We use the same
oracle as in Section 4.1 – with the exception that we do not enforce the allowed
budget to be totally consumed – and follow the algorithm described in 1 to do
the inference on the test set.

As in Section 4.1, we plot the results for the different heads and for different
computation budgets in Figure 3a. We can notice several similar trends already
observed on the Cifar-100 dataset. We can observe that our proposed multiple
heads approach (blue curve) improves on the trade-off of the different exits
used independently (black dots). Regarding the accuracy of the auxiliary heads
alone, placing an exit further in the model does not necessarily result in a better
accuracy. Lastly, the oracle shows a great potential in combining these different
exits, reaching a final accuracy of 89% which is comparable to the state-of-the-art
on ImageNet and with only 60% of the budget used by the original ConvNext.

We further check the budget used by our model in Figure 3b and show that
our methodology respects the allowed budget by always being inferior or equal
to it, validating our theoretical result from Proposition 2. On some budget, The
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Figure 3: Evaluation of EERO on Convnext and MSDNet architectures: Sub-
figures (a) and (b) show EERO’s accuracy and budget on Convnext, while
subfigures (c) and (d) compare EERO with MSDNet’s original method, focusing
on accuracy and budget metrics.

gap between the allowed budget and the actual consumption suggests that a
better accuracy could be obtained.

To illustrate how ε is evolving we provide Table 1 in Appendix with different
budget which range from a tight budget, where we have to focus more on the
first heads to a more permissive one which allow using the latest heads. Lastly,
by inspecting the ε̂ values, we noted that our procedure effectively exploits the
information from the Risks R̂ℓ to better calibrate the probabilities of classifying
i.e., heads which do offer the best accuracy will be used more often as Early
Exits.
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4.3 MSDNet Comparison
Building on these insights, we extended our investigation to include a comparative
analysis with the Multi-Scale Dense Network (MSDNet) [14]. This comparison
not only benchmarks the accuracy of our EERO method against MSDNet, but
also evaluates how effectively each approach adheres to the computational budget.
The results, as depicted in Figures 3c and 3d, reinforce the findings observed with
other architectures. It’s noteworthy that in MSDNet, the input parameter is the
distribution of a control variable ε, rather than the computational budget directly.
To achieve a specific budget target using MSDNet, one needs to iteratively run
the method with various ε values until finding the one that aligns with the
desired budget. In contrast, EERO directly takes the computational budget
as its input parameter, thereby offering a more efficient and straightforward
approach to budget-constrained optimization.

Our experiments demonstrate that, while MSDNet presents a robust frame-
work, our EERO approach offers distinct advantages. Firstly, it exhibits a
commendable level of accuracy, closely paralleling the performance of MSDNet.
This is particularly notable in Figure 3c, where the accuracy of EERO consistently
aligns with or exceeds that of MSDNet across various budget thresholds.

EERO demonstrates a significant capability in adhering to the computational
budget. Figure 3d illustrates that EERO not only meets but often remains below
the allocated budget. This efficiency, reinforced by our theoretical results from
Proposition 2, highlights its effectiveness. It is important to note that both
EERO and MSDNet exhibit comparable levels of efficiency and adherence to
budget constraints. However, a key distinction lies in the theoretical grounding
of EERO’s budget compliance. Our framework provides a formal proof of budget
respect, which adds a layer of reliability and predictability to its performance.
This theoretical assurance of budget adherence sets EERO apart from MSDNet,
enhancing its practical applicability in scenarios where strict budget compliance
is critical.

An additional key advantage of our EERO methodology is its generalizability.
Unlike MSDNet, which is tailored to specific architectural constructs, EERO can
be applied broadly across a variety of models equipped with multiple output heads.
This versatility enhances EERO’s applicability in diverse real-world scenarios,
where the ability to adapt to different architectures without compromising on
budget adherence or accuracy is crucial.

In summary, our comparative analysis with MSDNet validates the efficacy
of the EERO approach. Not only does it maintain competitive accuracy, but
it also demonstrates adherence to computational budgets and boasts a level of
generalizability that positions it as a versatile tool in the realm of efficient neural
network inference.
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5 Conclusion
In this paper, we presented EERO, a novel mathematical framework devised
to construct classification rules for Early Exit in deep learning networks. This
framework targets the pivotal challenge of optimizing computational efficiency
while enhancing model performance. EERO approaches the problem by modeling
it as a classification with a reject option, providing a feasible solution for scenarios
involving a single Early Exit. For multi-exit scenarios, our innovative approach
hinges on an aggregation procedure employing exponential weights. A key
strength of EERO lies in its flexibility and generalizability, enabling it to be
applied across various model architectures. This adaptability makes EERO a
versatile tool, well-suited for diverse applications in the realm of efficient deep
learning.

Our extensive experiments on ImageNet and Cifar-100 using the Resnet-18,
MSDNet and the ConvNext architectures respectively demonstrated the efficacy
of our proposed framework. These results not only shed light on the intricate
workings of multi-head deep neural networks but also offer practical strategies
to enhance model accuracy while reducing computational budget. This has
important implications for edge computing and making the field of deep learning
more sustainable.

Despite our promising results, the study presents opportunities for further
refinement. For instance, the disparity between our model’s performance and
the oracles’ suggests potential areas of improvement in our methodology. Future
work could, therefore, focus on developing more sophisticated strategies for
optimizing Early Exits and further closing this performance gap.

In conclusion, our study charts a new course for exploiting multi-head deep
learning models, delivering promising results and setting clear targets for fu-
ture work. We anticipate that our findings will stimulate further research in
this direction, paving the way for more efficient and sustainable deep learning
practices.
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Supplementary material
The supplementary material is organized as follows. In Appendix A we

provide an additional numerical description of our algorithm. The proof of our
main results are provided in Section B.

A Figures

6.55 ∗ 1012 Flops 3.21 ∗ 1013 Flops 5.64 ∗ 1013 Flops

ℓ R̂ℓ πℓ ε̂ℓ ε̂ℓout ε̂ℓ ε̂ℓout ε̂ℓ ε̂ℓout

1 0.93 0.46 0.69 0.68 0.18 0.17 0.00 0.00
2 0.81 0.13 0.17 0.28 0.07 0.19 0.00 0.01
3 0.75 0.04 0.03 0.04 0.03 0.16 0.00 0.01
4 0.72 0.04 0.03 0.00 0.03 0.12 0.00 0.01
5 0.72 0.02 0.01 0.00 0.03 0.08 0.00 0.02
6 0.66 0.02 0.01 0.00 0.03 0.07 0.00 0.01
7 0.64 0.02 0.01 0.00 0.03 0.05 0.01 0.02
8 0.57 0.02 0.01 0.00 0.03 0.04 0.01 0.02
9 0.51 0.02 0.01 0.00 0.04 0.03 0.01 0.02
10 0.46 0.02 0.01 0.00 0.04 0.02 0.01 0.01
11 0.40 0.02 0.01 0.00 0.04 0.02 0.01 0.02
12 0.46 0.02 0.01 0.00 0.04 0.03 0.01 0.04
13 0.55 0.02 0.00 0.00 0.03 0.02 0.01 0.03
14 0.41 0.02 0.01 0.00 0.04 0.01 0.02 0.03
15 0.67 0.02 0.00 0.00 0.03 0.01 0.02 0.08
16 0.55 0.02 0.00 0.00 0.04 0.00 0.02 0.15
17 0.42 0.02 0.00 0.00 0.04 0.00 0.03 0.09
18 0.62 0.02 0.00 0.00 0.03 0.00 0.03 0.13
19 0.17 0.01 0.00 0.00 0.06 0.00 0.20 0.05
20 0.17 0.01 0.00 0.00 0.06 0.00 0.27 0.06
21 0.16 0.01 0.00 0.00 0.06 0.00 0.33 0.20

Table 1: Illustration of the evolution of the probability vector of classification for
the different heads on ImageNET dataset with Convnext architecture and for
three different budgets: π is the prior distribution, ε̂ are the weights produced
by the aggregation, and ε̂out are the proportion of the data that was actually
classified by each head.

The above Table 1 highlights that: i) when higher budget are allocated, the
weights produced by the aggregation put higher weights on heads with lower
risks; ii) heads with high risks are assigned smaller weights by the aggregation,
see for instance the weights corresponding to the heads 13 and 18 that have a
higher risk and so a lower εℓ.
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B Proofs
In this section, we provide the proofs of our main results.

Proof 1 (Proposition 1) Let us write

R(h) = P (h(X) ̸= Y , h(X) ̸= R) ,

for short. We then need to solve the problem

h∗
ε = argmin

h
{R(h) : P(h(X) = R) = 1− ε} ,

where the minimum is taken over all measurable functions. Considering the
Lagrangian of the above problem, we solve

min
h

max
λ∈R+

{R(h) + λ (P(h(X) = R)− (1− ε))}︸ ︷︷ ︸
:=L(h,λ)

,

where λ ∈ R is the dual variable. Observe that by weak duality we have

min
h

max
λ∈R+

L(h, λ) ≥ max
λ∈R+

min
h
L(h, λ) ,

we then consider first the minimization problem over h of R. We have

R(h) = P (h(X) ̸= Y , h(X) ̸= R)

= E

 ∑
k∈[K]

1{Y=k}1{h(X)̸=k}1{h(X) ̸=R}

 = E

 ∑
k∈[K]

pk(X)1{h(X)̸=k}1{h(X) ̸=R}

 .

= P (h(X) ̸= R)− E

 ∑
k∈[K]

pk(X)1{h(X)=k}1{h(X) ̸=R}

 .

Moreover,

P(h(X) ̸= R) = E

 ∑
k∈[K]

1{h(X)=k}1{h(X) ̸=R}

 .

Therefore, we can write

L(h, λ) = λ−λ(1−ε)+(1−λ)P(h(X) ̸= R)−E

 ∑
k∈[K]

pk(X)1{h(X)=k}1{h(X)̸=R}


= λε− E

 ∑
k∈[K]

(pk(X)− (1− λ))1{h(X)=k}1{h(X)̸=R}

 . (9)
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We need to maximize the expectation w.r.t. h that first leads to the optimum h∗
λ

is such that

h∗
λ(x) ̸= R ⇐⇒

∑
k∈[K]

(pk(x)− (1− λ))1{h∗
λ(x)=k} > 0 ,

for all x ∈ X . Moreover we have that on the event {h∗
λ(x) ̸= R}, the mapping

h that maximizes h 7→ ∑
k∈[K] (pk(x)− (1− λ))1{h(x)=k} is simply h∗

λ(x) =

argmax
k∈[K]

pk(x). At this level of the proof, we have shown that the problem

minh L(h, λ) leads to the rule

h∗
λ(x) =

{
argmax
k∈[K]

pk(x) if maxk∈[K] pk(x) ≥ 1− λ

R otherwise .
(10)

Now, we deal with the maximization of L(h∗
λ, λ) w.r.t. λ. Substituting the above

value of h = h∗
λ in (9), we can show that

L(h∗
λ, λ) = λε− E

[(
max
k∈[K]

{pk(X)− (1− λ)}
)

+

]
,

where for all a ∈ R, we write (a)+ = max{a, 0}. The above function is then
concave in λ, therefore we can write the first order optimality condition as
0 ∈ ∂L(h∗

λ∗ , λ∗). Observe that because we assumed that the r.v. pk(X) has no
atom for all ∈ [K], we have that P (∃ j ∈ [K] : pk(X) = pj(X)) = 0 and then the
subgradient reduces to the gradient. As a consequence, we obtain the following
condition on λ∗

P
(
∃k ∈ [K] : pk(X) > max

{
max
j∈[K]

{pj(X)} ; 1− λ∗
})

= ε .

Notice that this last condition can rewrite as

ε = P (s(X) > 1− λ∗) = P (h∗
λ∗(X) ̸= R) ,

where s(X) = maxk∈[K] pk(X), which guarantee that the optimal rule has indeed
the correct rejection rate. Moreover, from the above relation, we can exhibit the
value of λ. Indeed, using the continuity condition on the CDF Fs of s(X), we
have

P (s(X) > 1− λ∗) = ε ⇐⇒ 1−Fs (1− λ∗) = ε ⇐⇒ λ∗ = 1−F−1
s (1− ε) ,

where F−1
s is the generalized inverse of Fs. We conclude the proof substituting

this value into the expression of the optimal rule given by (10).

Remark 6 If we replace the equality by an inequality, everything is the same
expect the part of λ∗. We need to consider the case where λ∗ = 0 separately, and
in this case, we would get P (h∗

λ∗(X) ̸= R) ≥ ε.
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Proof 2 (Proposition 2) First, observe that conditionally to the training dataset
Dn and due to the continuity of the CDF of ŝℓ(X), the random variable Fŝℓ(ŝ

ℓ(X))
is uniformly distributed. Therefore, for any u ∈ [0, 1], we have P

(
Fŝℓ(ŝ

ℓ(X)) ≤ u
)
=

u. We then can write∣∣∣P(ĥℓ
εℓ(X) = R

)
− (1− εℓ)

∣∣∣ =
∣∣∣E [1{F̂ŝℓ

(ŝℓ(X))≤1−εℓ} − 1{Fŝℓ
(ŝℓ(X))≤1−εℓ}

]∣∣∣
≤

∣∣∣E [1{|Fŝℓ
(ŝℓ(X))−(1−εℓ)|≤|F̂ŝℓ

(ŝℓ(X))−F
ŝℓ

(ŝℓ(X))|}
]∣∣∣

≤
∣∣∣E [1{|Fŝℓ

(ŝℓ(X))−(1−εℓ)|≤∥F̂ŝℓ
−F

ŝℓ∥∞}
]∣∣∣

≤ 2E
∥∥∥F̂ŝℓ − Fŝℓ

∥∥∥
∞

,

where we used again in the last line the fact that Fŝℓ(ŝ
ℓ(X)) is uniformly dis-

tributed. Moreover, we wrote ∥F̂ŝℓ − Fŝℓ∥∞ = supt∈R |F̂ŝℓ(t) − Fŝℓ(t)|. We
conclude the proof using the Dvoretzky–Kiefer–Wolfowitz inequality, that states
that

E
∥∥∥F̂ŝℓ − Fŝℓ

∥∥∥
∞
≤
√

π

2n
.

Proof 3 (Proposition 3) The Lagrangian of the minimization problem (4)-(5)
is given by

L(ε, λ, µ) =
M∑
j=1

εjR̂j+β

M∑
j=1

εj log

(
εj

πj

)
+λ

 M∑
j=1

εj − 1

+µ

 M∑
j=1

εjB̂j − B̄

 ,

with (λ, µ) ∈ R× R+. Considering the KKT condition of the problem we get for
all j ∈ [M ]

R̂j + β

(
log

(
ε̂j

πj

)
+ 1

)
+ λ̂+ µ̂B̂j = 0,

that leads in turns to

ε̂j
λ̂,µ̂

= πj exp

(
− R̂j + λ̂+ µ̂B̂j

β
− 1

)
. (11)

Plug-in these values into the equality constraint leads to

M∑
j=1

ε̂j
λ̂,µ̂

= 1 ⇐⇒
M∑
j=1

πj exp

(
− R̂j + µB̂j

β
− 1

)
= exp

(
λ̂

β

)

⇐⇒ λ̂ = β log

 M∑
j=1

πj exp

(
− R̂j + µB̂j

β
− 1

) .

Substituting back this value into (11), we get

ε̂jµ̂ =
πj exp

(
− R̂j+µ̂B̂j

β

)
∑M

k=1 π
k exp

(
− R̂k+µ̂B̂k

β

) .

22



According to the parameter µ̂, we need to consider the constraints µ̂ ≥ 0 and∑M
j=1 ε̂

j
µ̂B̂

j ≤ B̄ together with the complementary condition µ̂
(∑M

j=1 ε̂
j
µ̂(B̂

j − B̄)
)
=

0. Therefore, when µ̂ ̸= 0, this parameter should be taken such that

M∑
j=1

ε̂jµ̂(B̂
j − B̄) = 0 ⇐⇒

M∑
j=1

πj(B̂j − B̄) exp

(
− R̂j + µ̂B̂j

β

)
= 0 .

Otherwise µ̂ = 0 and in this case, ε̂jµ̂ becomes

ε̂jµ̂ =
πj exp

(
−R̂j/β

)
∑M

k=1 π
k exp

(
−R̂k/β

) .
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