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Abstract— This paper presents a probabilistic impedance-

based fault location method (FLM) designed for medium voltage 

(MV) distribution feeders using zero-sequence (ZS) components 

with few additional voltage measurements on secondary 

substations. It is based on a previous work in which a novel FLM 

has been developed and showed promising locating performance 

on the most challenging ramified rural feeders. However, this 

method has been found to be too sensitive to measurement errors 

to be deployable with the current generation of sensors. Thus, 

this paper presents a probabilistic formulation of the fault 

location problem with Monte-Carlo simulations which fits two 

four-dimensional Gaussian probability density functions (PDFs) 

of the ZS voltage and current on the considered paths (between 

the busbar and each measurement node) on a MV feeder. This 

way, our fault location algorithm is robust to both measurement 

and line impedance errors. A criterion for the optimal number of 

Monte-Carlo simulations as well as an efficient way to compute 

the similarity between two different PDFs in several dimensions 

are proposed. Finally, it is shown that the performances of this 

algorithm are highly correlated to the value of the threshold 

probability.  

 

Index Terms— Probability, Fault location, Power distribution 

feeders, Model and measurement errors, Monte-Carlo methods, 

Similarity measurement 

I. INTRODUCTION 

ISTRIBUTION system operators (DSOs) are looking 

for faster and more accurate fault location methods 

deployable on real MV grids. Indeed, the growing 

part of electricity in the energy demand paired with 

its increase in price lead to an increase in the value of lost 

load. To compensate for this fact, an increase in reliability of 

the distribution grids is needed, especially on the MV feeders 

to which the distributed producers (like the renewable energy 

sources) are connected. That motivates the researches carried 

out on FLMs at the distribution level [1], [2]. [3] quantified 

the gains in reliability from having accurate FLMs for 

distribution grid, measured by the SAIDI index. An 

improvement of around 5% is shown when having accurate 

FLMs with respect to visual inspection of the feeder by 

maintenance teams. With the economic impact of power 

outage, this level of improvement is far from negligible. 

Indeed, in France, the SAIDI index in MV grids is around 40 

min with an incentive given by the regulator of 6M€ per 

minutes below this value (or with a malus when above). This 

mean that a reduction of SAIDI of 5% would lead to an 

economic gain of at least 12M€ by the regulator incentive 

only. The distribution feeders are traditionally operated with a 

radial configuration. Besides, the only usually instrumented 

node is the busbar of the primary HV/MV substation where 

the currents in the neutral grounding as well as at the head of 

all feeders are measured, and voltages at busbar are also 

measured. Fault location in radial feeder is more challenging 

than in transmission lines where the full observability of the 

network is often reached. That explains the difficult 

transposition of FLMs tailored for transmission grids at the 

distribution level. 

Three main categories of FLMs can be found in the literature. 

First, the algorithms which are using the phasors at the 

fundamental frequency are called impedance-based FLMs [4]. 

They represent a well-known category of location methods 

and have proven to be cost effective at the transmission level 

since they need only low sampling frequency measurement 

devices. However, when deployed at the distribution level 

with only the busbar instrumented, they faced the multiple 

estimation problem. Indeed, there is no way to differentiate 

between two nodes which are located at the same apparent 

impedance from the busbar while being potentially located 

onto different branches which can be far from each other. This 

is one of the main limitations of these methods at the 

distribution level. This issue can be solved with increase in 

instrumentation of the distribution grids, as considered by 

some DSOs with the rise of smart grids. For instance, [5] 

presents a French demonstrator of smarter MV feeders where 

130 secondary substations have been instrumented across six 

feeders of a primary substation. The choice of the number of 

additional measurements and their placement is then of utmost 

importance since DSOs are facing stricter economical 

constraints than TSOs. Coming from control theory, one of the 

most common methods to place measurement on transmission 

grids is called the 1-bus spaced placement method [6]. While 

enabling the exact state estimation of the feeders, this method 

is not economically viable for MV feeders since it would need 

around 30% of the nodes to be instrumented [7]. That is why 

there is a need for impedance-based FLMs leveraging a 

limited number of additional measurements.  [8] proposed a 

FLM leveraging both synchronized and unsynchronized 

measurements placed at each extremity of a feeder. This 

method is based on the fact that two voltage estimate sets from 

both ends of a line are equal on the node on which the fault is 

the closest, meaning that the fault is occurring on a lateral 

branch of the exhibited node. The method proposed in this 

paper, and from our previous work [9], is based on this 

property. However, when deployed on long and highly 

ramified feeders, [8] chooses not to instrument every 

extremity node without quantifying its impact on the locating 

performance of the method. Moreover, since this method is 

based on variational phasors (the difference between pre-fault 

and during-fault phasors), it supposes that there is no load 

variation when the fault is occurring, which seems to be a 

strong hypothesis. Besides, [10] and [11] proposed a FLM 

needing only one additional instrumented node. These 

methods also use variational phasors and by such imply that 

the load is of constant impedance in order to be able to take 

into account its variation when the fault occurs. In [12] and 
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[13], the variation of the load current is taken into account in 

the case of static loads only. This requires the voltage at each 

substation to be estimated, which would need more 

measurements in the case of complex feeders. Another way to 

solve the load estimation problem is to use the ZS 

components. Indeed, in case that the MV windings of all 

MV/LV transformers are mainly delta-coupled (or at least 

with an isolated neutral grounding), there is no ZS current that 

can go from a voltage level to another. This is the case in 

France and the approach was used in our previous work [9]. 

With ZS component, the main difficulties are the low voltage 

drop across the feeder (especially with compensated neutral 

grounding) which can be inferior to measurement errors 

coupled with the difficult estimation of the ZS line 

impedances which depend on the earth resistivity. There are 

very few methods proposed in the literature that deals with the 

combination of these two sources of error. [14] proposes a 

method to correct the wrong line impedance values from the 

DSO database and proposes to filter out the bad data coming 

from misfunctioning phasor measurement units (PMUs). In 

[15], a probabilistic FLM is formulated which enables the 

estimation of a PDF of the fault location which takes into 

account the potential errors coming from voltage transformers 

(VTs).  

Secondly, transient-based methods try to estimate the 

propagation time of the electromagnetic waves induced by the 

fault [16], [17]. These methods are said to be able to achieve 

more accurate location of faults than the impedance-based 

ones. However, since the propagation time is very small, they 

need the deployment of high sampling frequency measurement 

devices (around or more than 1MHz), which are not found yet 

at the distribution level. 

Finally, we chose to gather in a third group 1) the hybrid 

methods, which try to merge data coming from different 

sources (such as fault indicators, calls from clients etc.) [18], 

sometimes even with uncertainties taken into account [19], 

[20] and 2) the machine-learning based methods [21], [22] 

which are learning their statistical properties from large 

dataset of faults. Given that fault location on MV feeders 

might become of strategical importance, and given that 

building a unbiased database from simulations is difficult to 

achieve, the lack of interpretability of such methods is their 

main weakness [23].  

Seeing the advantages and drawbacks of each method family, 

this paper proposes a ZS impedance-based method which 

leverages sparse additional voltage measurement on some 

extremity secondary substations. A deterministic formulation 

with optimal measurement placement has been proposed in [9] 

and further studied in [24]. While being robust to fault 

impedance value and to position of the faults even on complex 

feeders, this method proves to be sensitive to line impedance 

and measurement uncertainties. That is why this paper 

proposes a reformulation of the fault location method in terms 

of probability density functions of both ZS voltage and ZS 

current along the feeder to perform a probabilistic fault 

location which is robust to both impedance and measurement 

uncertainties by design. 

This paper is structured as follows. Section II presents the 

probabilistic formulation of the FLM dealing with both 

measurement and line impedance value errors. Then, Section 

III demonstrates the convergence of the Monte-Carlo 

estimation and proposes a criterion to choose the optimal 

number of simulations 𝑁𝑀𝐶  and presents different ways to 

compute intersection of the two PDFs. The following Section 

IV shows some simulation results obtained on a reconstructed 

realistic feeder and compares the sensitivity analysis of the 

new probabilistic method to what was obtained with the 

previous one. Finally, Section V concludes the paper and 

presents some perspectives. 

II. PROBABILISTIC FAULT LOCATION FORMULATION 

The presented probabilistic FLM is an extension of a previous 

work [9], [24] which is based on the comparison of two sets of 

ZS voltage estimates. This method is able to locate any type of 

earth faults (single phase to ground or multiple phases to 

ground, except for balanced three phase faults which present 

no ZS current component). 

A. Overview of the deterministic fault location formulation 

Under the hypothesis that all loads and producers are 

connected to the MV grid with a transformer having either a 

delta-coupled winding or with an isolated neutral grounding 

(which is true in all cases in France), it is possible to compute 

the ZS voltage on all nodes knowing only the ZS voltage and 

current at the busbar (at the secondary winding of the HV/MV 

transformer in the primary substation) and all the line 

impedance values when the grid is sound, meaning that fault 

location method is not impacted by presence of distributed 

generators.  

With 𝑀 optimally placed additional voltage measurements (on 

some secondary MV/LV substations where there is no ZS 

current), it is possible to perform two ZS voltage and current 

estimates when a fault occurs using Fortescue decomposition 

of the fundamental phasors extracted from the measurements 

with discrete Fourier transform. From the busbar to each 

additional measurement node (noted 𝑚𝑖, 𝑖 ∈ ⟦1,𝑀⟧), a Top-

Down estimation is performed, while a Bottom-Up estimation 

is performed on the reverse paths. For every path, the node on 

which the distance (error) between the two estimate sets is the 

lowest is called the projection node and is the projection of the 

faulty node onto the considered path (busbar ↔
measurement node 𝑚𝑖). It is then possible to define a fault 

location area Ω𝑚𝑖
𝑠𝑜𝑙  as the set of nodes being lateral to the 

projection node with respect to the considered path. In the case 

of 𝑀 additional voltage measurements optimally placed on the 

feeder [24], each node 𝑛 is associated with a number 

(𝑁Ω(𝑛) ∈ ⟦0,𝑀⟧) which counts the number of times it is 

located in a solution area. The algorithm returns areas of 

increasing likelihood for location of the fault, defined in (1): 

Ω𝑠𝑜𝑙
𝑘 = {𝑛 ∈ 𝑛𝑜𝑑𝑒𝑠 ∶ 𝑁Ω(𝑛) ∈ ⟦𝑘,𝑀⟧} (1) 

This method presents a degree of freedom being the number 𝑘 

that can be chosen less or equal to the number of additional 

measurements 𝑀, which enables the algorithm to deal with 

wrong or missing data from some measurement nodes. A 

sensitivity analysis [24] has been carried out and has shown 

that this method is not sensible to the fault resistance value 

(faults with resistances up to 500 Ω have been tested) and to 

the complexity of the feeder. It means that this method is able 

to perform as efficiently on a simple feeder (typically a 
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straight feeder with very few ramification) as on a long and 

highly ramified rural feeders. This fact shows that this 

algorithm is particularly well tailored for the distribution level. 

B. Limitations and motivations for a probabilistic method 

However, it appears that the method is sensitive to line 

impedance uncertainties (mainly series line impedance), as 

most impedance-based methods. Even though the use of 

synchronized measurements helps to reduce this sensitivity, 

the reliable estimation of ZS line impedance values for 

distribution grids is known to be difficult [25]. So, the real 

values of line impedances might be quite different from the 

ones stored in the DSO database so that the FLM is not able to 

perform as expected. 

 
Fig. 1: Impact of VT accuracy class on the mean success rate of the 

non-probabilistic method 

Besides, it appears that the deterministic FLM is also very 

sensitive to measurement errors, to a level that compromises 

its deployability with the current generation of sensors. A 

sensitivity analysis of our method has been carried out 

considering 20 reconstructed realistic feeders [26] on which 

one single-phase-to-the-ground fault has been randomly 

placed with different measurement errors following the 

standard for voltage transformers (VT) and current 

transformers (CT). A total of 87 measurement locations have 

been tested across the twenty faults considering exact 

knowledge of the ZS line impedances. The standard [27] 

defines accuracy classes which bound the magnitude and 

phase angle errors. Some classes have been built by 

interpolation (the 0.05% class) in order to study the behavior 

of the algorithm when dealing with non-ideal measurements. 

We defined a success indicator being set to 1 if a measurement 

is able to accurately find the projection node of the fault and 

set to 0 otherwise. On Fig. 1, the success rate (mean of success 

indicator) is displayed with respect to measurement errors 

considering uniformly distributed and independent magnitude 

and phase angle errors. It appears that while the method is able 

to always locate the projection node with ideal measurements 

(the success rate is 1), it is only able to behave as expected in 

20% of the cases considering the 0.1% accuracy class 

measurement, which is the best available today. We can even 

see that it is almost always wrong when using 0.5% accuracy 

class measurements. The exponential sensitivity of the success 

rate to measurement errors calls for a change in formalism and 

shows a need to take into account the potential measurement 

errors in the fault location algorithm if we want to design an 

algorithm deployable in real field. While being wrong, it 

appears from the results that in most cases the estimated 

projection node is a neighbor of the real one. Thus, a method 

that could be able to select more than one projection node 

when the two voltage estimates are close enough to each other 

on more than one node might be robust to measurement errors. 

Given the usual topology of MV feeders, where there are 

rarely two long lateral branches on two consecutive nodes of 

the main feeder (being the set of nodes on the path between 

the primary substation and the farthest away node), this 

method could highly enhance the robustness while increasing 

the fault location area size by a small factor. That is why this 

paper proposes to replace the deterministic estimations of 

phasors by estimations of probability density functions along 

the paths. 

C. Dealing with measurement errors: Estimation of a 4-

dimension Gaussian PDF  

To take into account potential measurement errors, a Monte-

Carlo process is used. The measurement values are treated as a 

random variable vector 𝑅, with 𝑅 ∈ ℝ12×1 at the busbar (three 

complex voltage measurements – with real and imaginary 

parts - and three complex current measurements) and 𝑅 ∈
ℝ6×1 for any additional voltage at a remote node. 𝑅 is 

described by its joint PDF 𝑓𝑅 which is supposed known, and a 

Monte-Carlo process is used to estimate the PDF of a 4-

dimension random variable being the ZS components 𝑋 =
[ℜ(𝑉0) ℑ(𝑉0) ℜ(𝐼0) ℑ(𝐼0)]

𝑇 , where ℜ(𝑉0) is the real 

part of the ZS voltage. As verified later on Fig. 4, it seems 

reasonable to suppose that the PDF of X - being an average of 

random variables - can be well described by a normal law with 

mean  𝜇 ∈ ℝ4 and covariance matrix Σ ∈ ℝ4×4, noted 

𝑋~𝒩(𝜇, Σ), in concordance with the central limit theorem. 

The Monte-Carlo process involves 𝑁𝑀𝐶  random samplings of 

the variable 𝑅 according to its PDF 𝑓𝑅 and 𝑋(𝑖) is the sample 

of the random variable 𝑋 drawn during the ith simulation. 

Then, the two parameters of the Gaussian PDF - the mean 

vector and the covariance matrix - are estimated with unbiased 

estimators defined in (2) and (3): 

𝜇̂ =
1

𝑁𝑀𝐶
∑𝑋(𝑖)

𝑁𝑀𝐶

𝑖=1

(2) 

Σ̂ =
1

𝑁𝑀𝐶 − 1
∑(𝑋(𝑖) − 𝜇)(𝑋(𝑖) − 𝜇)𝑇

𝑁𝑀𝐶

𝑖=1

(3) 

The chosen value for 𝑁𝑀𝐶  has a high impact on the accuracy 

of the proposed process to estimate the PDF of 𝑋. Indeed, if 

we consider each 𝑋(𝑖), 𝑖 ∈ ⟦1, 𝑁𝑀𝐶⟧ to be a realization of the 

same random variable with mean 𝜇 and variance Σ, then we 

can say that the estimator  𝜇̂ is not biased since 𝔼[𝜇̂] = 𝜇 and 

its variance is 𝕍(𝜇̂) =
1

𝑁𝑀𝐶
Σ. So, the choice of 𝑁𝑀𝐶  is directly 

linked to the variance of  𝜇̂, which means to the probability of 

having an estimator  𝜇̂ distant from 𝜇 - this is discussed in 

section III.B. 

D. Dealing with line parameters uncertainties: Progression of 

the estimation along a path and definition of fault location 
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area 

Once the probability of the ZS voltage and current is known at 

both extremities of a path, the proposed FLM needs a Top-

Down and a Bottom-up estimation of the ZS voltage along the 

considered path of nodes between the measurements. We note 

𝑉0𝑘 the ZS voltage at node 𝑘, 𝑋𝑘 =
[ℜ(𝑉0𝑘) ℑ(𝑉0𝑘) ℜ(𝐼0𝑘) ℑ(𝐼0𝑘)]

𝑇  is the random vector at 

node 𝑘 and the next node on the path is named 𝑚. As 

presented in [9] - using a PI lumped parameter model of the 

distribution lines - we can compute the ZS voltage and current 

and node 𝑚, as shown in (4): 

(

 

ℜ(𝑉0𝑚)

ℑ(𝑉0𝑚)

ℜ(𝐼0𝑚)

ℑ(𝐼0𝑚))

 = 𝑇.

(

 

ℜ(𝑉0𝑘)

ℑ(𝑉0𝑘)

−ℜ(𝐼0𝑘)

−ℑ(𝐼0𝑘))

 (4) 

As presented in the previous paragraph, we supposed that 

𝑋𝑘~𝒩(𝜇𝑘 , Σ𝑘). Besides, 𝑇 ∈ ℝ4×4 is a matrix composed of 

the ZS line impedance parameters of the line between node 𝑘 

and 𝑚 and of the lateral lines of node 𝑘 (merged by their 

equivalent at node 𝑘). We suppose the joint PDF of all line 

impedances in 𝑇 to be known. Given that, a Monte-Carlo 

process similar to what has been presented in II.C is used with 

𝑁𝑀𝐶  random samplings of the matrix 𝑇 and vector 𝑋𝑘 

according to their respective PDFs. The computed 𝑁𝑀𝐶  

samples of the ZS voltage and current at node 𝑚, noted 𝑋𝑚, 

enable the estimation of the mean vector and covariance 

matrix at node 𝑚 following (2) and (3). 𝑋𝑚 is then supposed 

to follow a normal law of parameter (𝜇𝑚, Σ𝑚) for the next 

estimation along the path. An example of implementation is 

presented in III.C and the impact of the choice of 𝑁𝑀𝐶  value is 

shown in Fig. 5. 

After all the ZS voltages and currents estimations for both the 

Top-Down and Bottom-up processes, the projection node 

needs to be exhibited to define the fault location area for the 

considered path. In the non-probabilistic formulation, the 

projection node is the node 𝑝 on the path on which the 

difference between the Top-Down estimation and the Bottom-

up estimation is minimal. With the probabilistic formulation, 

we can say that for each node 𝑝 along the path, the intersection 

of the two PDFs is equal to the probability of the fault being 

lateral of 𝑝, which is the same as the probability of 𝑝 being the 

projection node. There are two cases to consider (cf. Fig. 2): 

First, when dealing with unsynchronized measurements, the 

phase angle difference between the two sets of estimates 

cannot be computed. Then, a Monte-Carlo process is used to 

infer a 1-dimension Gaussian PDF for the ZS voltage 

magnitude from the marginal 2-dimension PDF of the 

complex ZS voltage.  For each node, we get two normal PDFs 

(the Top-Down and Bottom-up ones) that we chose to note 

with indices 1 and 2 (𝑓1
1𝐷 is the PDF of |𝑉0,1|~𝒩(𝜇1, σ1

2) and 

𝑓2
1𝐷 describes |𝑉0,2|~𝒩(𝜇2, σ2

2)). The indices 1 and 2 are 

chosen so that 𝜇1 ≤ 𝜇2. To compute the intersection of these 

two PDFs, we need to compute the area located below both 

curves. We search for the intersection point by solving the 

quadratic equation 𝑓1
1𝐷(𝑐) = 𝑓2

1𝐷(𝑐) that leads to 𝑐 =
𝜇1+𝜇2

2
 if 

𝜎1 = 𝜎2 (which is very unlikely when using floating number 

operations) or leads to (5) when 𝜎1 ≠ 𝜎2 : 

𝑐 =

𝜇2𝜎1
2 − 𝜎2 {𝜇1𝜎2 + 𝜎1 [(Δ𝜇)

2 + 2Δ𝜎2. log (
𝜎1
𝜎2
)]

1
2
}

Δ𝜎2
 (5)

 

With Δ𝜇 = 𝜇1 − 𝜇2 and Δ𝜎2 = 𝜎1
2 − 𝜎2

2. Then, the wanted 

intersection area 𝒜(𝑓1, 𝑓2) can be written as function of the 

cumulative distribution functions (CDFs) 𝐹1 and 𝐹2: 

𝒜(𝑓1
1𝐷 , 𝑓2

1𝐷) = ℙ(|𝑉0,1| > 𝑐) + ℙ(|𝑉0,2| < 𝑐) = 1 − 𝐹1(𝑐) +

𝐹2(𝑐). We use the error function erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
 to 

compute 𝒜 (6): 

𝒜(𝑓1
1𝐷 , 𝑓2

1𝐷) = 1 −
1

2
erf (

𝑐 − 𝜇1

√2𝜎2
) +

1

2
erf (

𝑐 − 𝜇2

√2𝜎2
) (6) 

In the second case, synchronized measurements are used. The 

complex values of the ZS voltages can be directly compared in 

the two set of estimates. The marginal voltage PDFs are 2-

dimensional Gaussians (real and imaginary part), and the 

intersection is the volume 𝒱 under both surfaces (cf. Fig. 7). 

There is no more closed-form expression to compute said 

volume. A widely used method to compute such volume is to 

use the rectangle integration method (RIM), which divides the 

space into 𝑁𝑟𝑒𝑐 rectangles of surface 𝒜𝑁𝑟𝑒𝑐 and of barycenter 

coordinates noted (𝑥𝑘 , 𝑦𝑘) to approximate the volume by (7): 

𝒱(𝑓1
2𝐷 , 𝑓2

2𝐷 , 𝑁𝑟𝑒𝑐𝑡) = ∑ ∑ [min (𝑓1
2𝐷(𝑥𝑖 , 𝑦𝑗), 𝑓2

2𝐷(𝑥𝑖 , 𝑦𝑗)) .𝒜𝑁𝑟𝑒𝑐𝑡]

𝑁𝑟𝑒𝑐𝑡

𝑗=1

𝑁𝑟𝑒𝑐𝑡

𝑖=1

(7) 

Start

Measurment data

Measurement accuracy class

Line impedance accuracy

Monte Carlo Process – estimation of PDF of the next node in 

Top-Down and Bottom-Up process

Stop

Monte Carlo Process – estimation of the first 4-D Gaussian PDFs

Computation of the volume 

of intersection of the 2 

estimates

Threshold value 
Construction of the 

solution area  mi

Synchronized 

measurements ?

Computation of the surface 

of intersection of the 2 

estimates

No Yes

 
Fig. 2: Flowchart of the construction of one the 𝑀 fault location areas 

Ω𝑚𝑖  

While being easy to implement, this method presents a 

quadratic complexity and can lead to high computation time 

when dealing with long feeders having paths with a high 

number of nodes. That is why another criterion is proposed: 

the Bhattacharyya coefficient. It is a well-known measure for 

similarity between two different probability density functions 

[28]. It differs from the intersection measure since it is defined 
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as 𝐵𝐶( 𝑓1
2𝐷 , 𝑓2

2𝐷) = ∬ √𝑓1
2𝐷. √𝑓2

2𝐷
ℝ2

 but can be seen as the 

projection of one PDF onto the other in a hypersphere (of 

infinite dimensions) whose cosine directors are the square root 

of the probabilities. This measure of similarity presents the 

advantage of having a closed-form expression when 

considering two multivariate gaussian PDFs 𝑓1
2𝐷 and 𝑓2

2𝐷 (8): 

𝐵𝐶(𝑓1
2𝐷, 𝑓2

2𝐷) = (
√|Σ1|. |Σ2|

|Σ12|
)

1
2

. exp (−
Δ𝜇𝑇 . Σ12

−1. Δ𝜇

8
 ) (8) 

With Σ12 =
Σ1+Σ2

2
 and |Σ| being the determinant of Σ. 

Using this similarity measure instead of computing the 

intersection volume using the rectangle method for instance 

leads to major computation time savings. Only two matrix 

exponentials are needed to compute this coefficient instead of 

two by point computed for the rectangle method. A detailed 

comparison of the two metrics is discussed in III.D. 

Once the intersection probability ℙ∩ is computed for each 

node on the path, the algorithm needs a threshold value 𝜏 to 

select as the set of projection nodes all the nodes having a 

higher-than-𝜏 intersection probability. For example, 5 nodes 

(from 952 to 974) would be selected in Fig. 8 with 𝜏 = 50 % 

and using the rectangle method (red curve). Then, the fault 

location area Ω𝑚𝑖  for this path is the set of nodes being lateral 

to one of the selected projection nodes with respect to the 

considered path. The probabilistic algorithm that builds the 𝑀 

solution areas is summarized in Fig. 2. The impact of the 

threshold value is discussed in IV.B. 

III. ACCURACY OF THE PROBABILISTIC ESTIMATION 

A. Use case 

In this paper, we chose to assess the performance of the 

presented method with the worst-case scenario, being 

uniformly distributed and independent random errors on 

magnitude and phase displacement of measured quantities 

within the boundaries given by the accuracy class of the 

devices for measurement errors. Given that we need three 

measurements to compute the ZS component coming from 

three different VTs or CTs, we made the hypothesis that the 

errors on the different phases are also independent from each 

other. In this section, the figures are obtained using 

measurement errors up to 0.1%, as being the best yet deployed 

accuracy class. Concerning impedance value uncertainties, 

uniformly distributed errors are also implemented within an 

extent given by a confidence interval. In this section, an 

uncertainty of ±20% has been chosen since we believe it is a 

plausible margin of error on the ZS impedances. 

Given that this method is specially designed for long and 

ramified feeders, the FLM has been tested in simulation on 

reconstructed realistic feeders from the open data of the 

French DSO Enedis [26]. The longest and most ramified out 

of the 20 reconstructed feeders has been chosen to be 

exhibited in this paper as it is the worst-case scenario. It is a 

211-node feeder with a total length 𝐿𝑡𝑜𝑡  =  75.05 𝑘𝑚. Its 

topology is further described in [24] and shown on Fig. 3 

where overhead lines (OHLs) are represented in dark red, 

underground cables (UC) in bright blue and large section lines 

(𝑟𝑑 ≤ 0.4 Ω. 𝑘𝑚
−1) are thick while small section lines are thin. 

The ten most priority measurement locations have been 

instrumented. Ten fault locations have been chosen (shown in 

red stars in Fig. 3). They are the barycenter of a clustering of 

the grid in ten connected areas of equivalent fault probability 

(considering ten times more fault probability on OHLs than 

UCs) with a K-means algorithm. This ensures that all parts of 

this complex grid are considered. The simulated faults in this 

paper are single-line-to-ground faults, which represent more 

than 75% of the detected faults [29], with a fault resistance of 

500 Ω, which is higher than 90% of the cases [29]. The FLM 

has been simulated using MATLAB/Simulink running on a 

PC equipped with an Intel(R) Core(TM) i7-10700 CPU and 32 

GB of RAM with compensated neutral grounding, which leads 

to low values of fault current and can then be seen as the most 

challenging case for an impedance-based FLM. The DFT is 

used to estimate the phasors at each measurement node in 

steady-state and Fortescue transform is applied to get the ZS 

component so that the presence of harmonics does not impact 

the method. 

 
Fig. 3: Topology of the simulated grid with additional measurements 

(black diamond nodes labeled by placement priority) and fault 

positions (red pentagrams) 

B. Convergence of Monte-Carlo process and uncertainties: 

optimal 𝑁𝑀𝐶  value 

The complexity – and by such the computation time – of the 

Monte-Carlo estimation process grows linearly with the value 

of 𝑁𝑀𝐶 . That is why this number should be kept as low as 

possible. However, a dependency of the variance of the 

estimated average value with 𝑁𝑀𝐶
−1 has been theoretically stated 

in II.C and observed with our simulations. That is why there is 

a need to find an optimal value for 𝑁𝑀𝐶  which ensures a 

tradeoff between potential errors and computation time. We 

want to ensure that the first estimation process (the estimation 

of the ZS component 𝑋 from the phase measurements 𝑅 as in 

II.C.) does not induce a biased error that would lead to a non-

working algorithm. As we can see on Fig. 1, if the error in the 

estimated mean of the ZS voltage (and current at the busbar) is 

superior to 0.1%, then the deterministic algorithm would be 

accurately exhibiting the projection node in less than 20% of 

the cases. 
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(a) 

 
(b) 

Fig. 4: Random sampling (RS) from Monte-Carlo simulations 

(white histogram), inferred PDF (line) and RS from inferred pdf 

(colored histogram) for real (a) and imaginary (b) parts of the ZS 

voltage 

To find an optimal value for 𝑁𝑀𝐶 , we propose to compute the 

total vector error (TVE) between the estimated ZS voltage 

𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  (the mean of the samples obtained from the Monte-

Carlo process) and the real ZS voltage 𝑉𝑟𝑒𝑎𝑙  as defined in (9) 

while considering voltage measurement PDFs centered around 

the real measurement for each phase. In this case, the TVE 

quantifies the bias introduced by the estimation process only, 

since the measurements are not biased. 

𝑇𝑉𝐸 =
|𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑉𝑟𝑒𝑎𝑙|

|𝑉𝑟𝑒𝑎𝑙|
 (9) 

Fig. 4 presents one of the 250 obtained histograms with a 

chosen value of 𝑁𝑀𝐶 = 100. We can see that the mean 

computation has a low pass filtering effect which enables us to 

get the accurate estimates of both real and imaginary parts of 

the ZS voltage even though the histogram is not close to 

following a Gaussian curve. This means that using mean and 

covariance as a description of the PDF (black line in the 

figure) is better than reusing the previous histogram, which 

could lead to error accumulations (especially when the value 

of 𝑁𝑀𝐶  is low) when propagating along a path of nodes. 

To compute this function, the estimation processes have been 

performed 250 times for different values of 𝑁𝑀𝐶  with a 

considered theoretical ZS voltage measured of 𝑉0
𝑚𝑒𝑠 =

−8,967 +  821j V. The CDF is built by finding how many 

times over the 250 different estimation processes the TVE is 

inferior to a given value. The results are presented in Fig. 5 

when considering 0.1% accuracy class measurement devices. 

We can observe that with such an accuracy class, drawing as 

less as 5 samples is enough to ensure that in all cases, the TVE 

remains inferior to 0.1%. However, Fig. 1 shows that this 

level of accuracy is not enough to ensure a good behavior of 

the FLM. An accuracy level of 0.01% has been chosen as 

target for the choice of 𝑁𝑀𝐶 . That is why the results shown in 

this paper are obtained considering 𝑁𝑀𝐶 = 100, which ensures 

that the TVE remains inferior to 0.02% in all cases and even 

inferior to 0.01% in 90% of the cases. This led us to believe 

that this value presents the best tradeoff between computing 

time and estimation variance for the targeted application. 

 
Fig. 5: CDF of the TVE depending on the value of 𝑁𝑀𝐶 considering 

0.1% accuracy class measurement devices 

C. Propagation along paths 

 
Fig. 6: Comparison of probabilistic (with ±𝜎 intervals in shaded 

areas) and ideal estimation of the ZS voltage on a path (from busbar 1 

to measurement node 981, only one node out of two is labeled on the 

figure) 

The estimation process has been implemented on the 

presented feeder for all presented faults. The results of the ZS 

voltage estimation along one of the paths is shown in Fig. 6.  

We observe no divergence between the Monte-Carlo-based 

estimation and the ideal one – being the ZS voltage estimation 

with exact knowledge of all impedances and ideal 
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measurements. This means that there is no accumulation of 

errors with the 32 iterative processes (corresponding to the 32 

nodes on the path between the busbar 1 and the considered 

measurement node 981). Node 981 is the second most priority 

node from the optimal placement algorithm and is labelled 2 

in Fig. 3. In other words, even with 𝑁𝑀𝐶  being as low as 100, 

the number of random samplings is sufficient to ensure that 

the estimated mean is the theoretical one. As expected, the 

node on which the two estimate sets are the closest to each 

other is the projection of the considered fault on this path of 

nodes: node 969 (the real projection node). However, it is 

clear that node 966 is also a node on which the difference 

between the two sets is close to zero. Thus, without a 

probabilistic formulation, a FLM could easily exhibit node 

966 as the projection node. Besides, it appears that the 

standard deviation (shown by the shaded area in Fig. 6) does 

not increase substantially in this example. A visible increase 

of the standard deviation during the progression along the path 

is only observed on the Top-Down estimation in this case. 

 
(a) 

 
(b) 

Fig. 7: The two marginal PDFs (Top-Down is colored and 

Bottom-Up in black) on two different nodes: the projection node 

(a) and another node far away (b) 

Once the mean and covariance matrix of the marginal 2-

dimensional ZS voltage have been estimated (the covariance is 

not shown in Fig. 6), the two PDFs can be built on each node. 

Fig. 7 shows the two gaussian laws on two different nodes, 

with node 969 (Fig. 7 a) being the real projection node. As 

expected, the two marginal PDF functions have the same 

mean on the projection node, meaning that they are centered 

around the same location. However, their covariance matrices 

are not identical, meaning that the intersection probability - 

i.e. the volume under both surfaces – is not equal to 1. On 

node 926 that is far away from the projection node (Fig. 7 b), 

the two PDFs are centered around locations that are far 

enough from each other with respect to their variances so that 

their intersection volume is low. The results presented in this 

subsection lead us to have confidence in the values of 𝜇, Σ 

obtained with the probabilistic estimation process. 

D. Computation of the intersection area or volume 

The critical next step in the algorithm (Fig. 2) is the 

computation of the intersection of the two ZS voltage 

estimates on all nodes on each path - being the probability of 

the fault being lateral to a node. When using traditional 

unsynchronized measurements, the intersection area 𝒜 

between the two 1-dimension ZS voltage magnitude PDFs is 

computable with a closed-form equation (6). This is a low-

complexity computation which is compliant with the targeted 

computation time of the whole algorithm of a few minutes at 

maximum. Besides, when dealing with synchronized 

measurements, there is no closed-form expression of the 

volume 𝒱 under the intersection of the two PDFs. A possible 

way to compute this volume is to use the rectangle integration 

method (7), which depends on the choice of the value 𝑁𝑟𝑒𝑐𝑡  
for its accuracy, and the computing complexity is 

quadratically linked to this value since there is a need to 

compute 2. 𝑁𝑟𝑒𝑐𝑡
2  PDF values. To ensure that the computed 

volume is a good approximation of the real one, the time 

needed might be too important with respect to the time 

constraints of fault location methods, even at the distribution 

level. For instance, with 𝑁𝑟𝑒𝑐𝑡 = 1000 as chosen value, with 

our up-to-date PC configuration, it took 260s to compute the 

intersection probabilities on a path of 32 nodes on the 

presented feeder. This time does not account for the time 

needed to do the 32 × 2 Monte-Carlo estimations of the ZS 

voltage. That is why there is a need to either find a reduced 

value for 𝑁𝑟𝑒𝑐𝑡  whilst keeping a good estimation of 𝒱 or find 

another expression for the intersection which is lighter in 

computation time.  

On one hand, we searched for an optimal value for 𝑁𝑟𝑒𝑐𝑡 . On 

the considered feeder instrumented with the four most needed 

measurement nodes (Fig. 3), the probabilistic estimation 

process has been simulated, leading to the estimation of two 

sets (𝜇, Σ) on a total of 4 paths composed of 102 × 2 Monte-

Carlo estimations. From all these estimations, the intersection 

volume has been computed with the rectangle method for 7 

different values of 𝑁𝑟𝑒𝑐𝑡  ranging from 10 to 1,000. We 

computed the relative difference of intersection volume for 

each case with the value obtained for 𝑁𝑟𝑒𝑐𝑡 = 1000 being 

chosen as reference. The histograms of these relative errors 

show that around 99% of the relative errors between the 

intersections computed with 𝑁𝑟𝑒𝑐𝑡 = 500 and the ones 

computed with 𝑁𝑟𝑒𝑐𝑡 = 1000 are inferior to 0.05%. This 

proves that with 𝑁𝑟𝑒𝑐𝑡 = 1000, the intersection computed with 

rectangle method converges almost to the exact intersection 

value. Choosing 𝑁𝑟𝑒𝑐𝑡 = 50 leads to 99% of the errors being 

in the ±10% interval. This range is too important when 

knowing that for some nodes along a path, the estimated mean 

will be close to each other, resulting in close values for the 

intersection. So, choosing this value might change the ranking 

order of the node in function of intersection probability. In this 
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paper, the results presented when using the rectangle method 

are shown with 𝑁𝑟𝑒𝑐𝑡 = 100, which ensures that the errors 

remain in a ±2% interval while being 100 times faster to 

compute than with 𝑁𝑟𝑒𝑐𝑡 = 1000. 

On the other hand, a second way to compute the wanted 

intersection is the Bhattacharyya coefficient (BC), which has a 

closed-form expression (8) and depends only on the values of 

the couples (𝜇, Σ). This coefficient is not equal to the 

intersection of the two probabilities but measures their 

similarity with a single computation. In Fig. 8, the intersection 

volume computed by rectangle method (red) is compared to 

the BC (blue). It has been observed that the BC always 

overestimates the value of the intersection volume - meaning 

that using the similarity measure would be more conservative 

than the intersection volume. This could be a computationally 

efficient way to compute the intersection probability ℙ∩ but 

comes at the cost of a lower locating potential of the algorithm 

since the number of projection nodes will be higher, enlarging 

the size of the fault location area. 

 
Fig. 8: Intersection probability indices on a path between node 1 and 

node 981 (one node out of two is labeled) 

Moreover, we observed that the BC follows the same 

variations as the intersection volume. This means that a 

bijection should exist between the BC values and the 

intersection volume. Indeed, Fig. 9 shows the compiled values 

of BC for all tested nodes on all tested paths on the considered 

reconstructed feeder with respect to the value of the 

intersection volume obtained with 𝑁𝑟𝑒𝑐𝑡 = 1000 as reference. 

Different possible models have been tested. In this paper, we 

chose to present a model with trigonometric functions, as the 

BC is a projection of one PDF to another in an infinite 

dimension space. The fitted model describes the values of 𝐵𝐶 

in function of intersection volume 𝒱, as 𝐵𝐶 = 0.81 ×
tan−1(3𝒱). The model for BC values is presented in red in 

Fig. 9. The total root mean square error (RMSE) between the 

two curves is 𝑅𝑀𝑆𝐸 = 0.131. This value is small enough to 

be confident in the fact that this model is a good representation 

of the link between BC values and intersection volume values. 

Indeed, we can observe in Fig. 8 the adjusted BC from the 

inversion of the empirical model, which projects the values of 

BC obtained from the model to the intersection values 

obtained from rectangle integration, in black on the figure.  

These values are very close to the volume computed with the 

rectangle method while needing only two computations for 

each node on the path. 

 
Fig. 9: BC values (blue) and model (red) as functions of intersection 

volume with rectangle method 

IV. LOCATING POTENTIAL AND SENSIBILITY ANALYSIS 

A. Use case 

In order to assess the sensitivity of the method with respect to 

the measurement errors, impedance uncertainties, and the 

probability threshold value, we clustered the feeder into 10 

connected areas with equivalent fault probability and selected 

their barycenter as fault locations (taking into account the fact 

that underground cables are ten times less likely to be faulty 

than overhead lines). This way, the 10 considered fault 

location covers all parts of the feeder (near and far away from 

the busbar) with equal fault probability. On each fault 

position, a single phase to the ground fault with resistance of 

500 Ω has been simulated. Moreover, for these 10 fault 

positions, a design of experiment has been built with 12 sets of 

possible impedance and measurement errors such that Δ𝑍0 ∈
±20%, Δ𝐶0 ∈ ±15% and considering measurement errors up 

to the 1% accuracy class. In order to have a margin between 

the real variance of the random variable and the variance 

considered in the estimation process, the impedance and 

measurement errors are supposed normally distributed with a 

standard deviation being the third of the limit given by the 

norm. In the estimation process, the variable is still supposed 

uniformly distributed, this way the probability for the real 

value of the voltage to be in the lower probability parts of the 

estimated PDF is kept low. For each experiment, the FLM is 

performed 100 times with 𝑁𝑀𝐶 = 100 as in the previous part. 

Counting the fact that the 10 most priority nodes are simulated 

with measurements (cf. Fig. 3), a total of 327,600 different 

probability estimations are performed. For each case, 4 ways 

of computing ℙ∩ are tested: the intersection area with 

magnitudes (no synchronization), the volume intersection with 

rectangle method (𝑁𝑟𝑒𝑐𝑡 = 100) with phasors (with 

synchronization), the Bhattacharyya coefficient and its model 

of the rectangle integration approximation (projected BC). 

For each of the ten measurement nodes considered (the top ten 

measurement placements according to the optimal placement 

algorithm), the success rate is stored. The definition of the 

success rate is extended to the probabilistic method by 

counting the relative number of times (rate) in which the 

932 

952 
974 

976 
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accurate projection node is located inside the set of projection 

nodes exhibited.  

Regarding the computation time, the first estimation of the ZS 

Gaussian parameters on a measurement node needs 135 𝑚𝑠 
when run on our computer equipped with an intel i7-10700 

and 32GB of RAM. Then, the computation of the two estimate 

sets on the longest path (37 nodes) needs around 6.5 𝑠 to 

finish. Finally, the intersection volume computation needs 

around 6.9 𝑠 with the RIM while only needing 8 𝑚𝑠 using the 

projected BC. 

B. Success rate considering measurement errors 

As expected, the probability threshold value has a paramount 

influence on the success rate of the method, as we can see on 

Fig. 10. Theoretically, the success rate (SR) should tend to 1 

when the threshold is tending to 0. This is what can be seen on 

the figure. However, we observe that with the intersection 

volume (or with the projected BC) when using phasor, 

choosing a threshold of 50% does not lead to an acceptable 

value for the success rate when using measurements of 0.1% 

accuracy class (SR is around 43%). This can be explained by 

the fact that sometimes the erroneous measurement or line 

impedance value is drawn with high error, so that the real 

value is not in the central part of the distribution anymore, 

leading to a low intersection probability between the two 

estimates at the projection node. Besides, we observe that, at 

constant value for the threshold and the method to compute 

ℙ∩, there is no variation of the success rate in function of 

measurement errors with all intersection metrics except for the 

intersection volume using phasors and with higher (greater 

than 50%) values for the threshold.  

 
Fig. 10: Success rate with the 4 different intersection measures in 

function of the measurement accuracy classes. In each subfigure, 3 

values of threshold are shown: 𝜏 = 5% (green triangle), 𝜏 = 25% 

(blue circle), 𝜏 = 50% (red cross) compared with the non-robust 

method (black cross) 

This is one of the biggest improvement of this formulation 

with respect to [24]. Indeed, the non-robust deterministic 

method would need measurement accuracy of 0.01% (which 

does not exist today) in order to reach 80% SR. With a 

threshold of 50%, the probabilistic formulation is able to 

maintain a SR higher than 80% on all tested measurement 

accuracy classes up to 1% (knowing that 0.5% is the most 

commonly found and 0.1% is commercially available). 

Considering 0.5% measurement accuracy, the SR have been 

increased by a factor of 8 from previous formulation. There is 

no more exponentially decreasing success rate and the method 

is behaving the same way considering 0.1%-accuracy class or 

1%-accuracy class measurement devices. This means that this 

formulation is compatible with the use of real field 

measurement devices used by DSOs. 

Moreover, we observe that the SR is higher when considering 

the BC or the intersection area without synchronization. This 

is the result of the fact that both BC and intersection area are 

higher or equal than the real volume under both surfaces, as 

seen on Fig. 8. Indeed, the intersection area is computed from 

projections of 2-D phasors onto the 1-D magnitude axis. This 

projection results in the loss of some information so that two 

PDFs that were disjointed could be seen as close to each other 

if they were to have close mean magnitudes. By comparison to 

the same threshold, using the BC (or intersection area) would 

lead to more nodes being exhibited as the projection ones (8 

nodes instead of 5 on Fig. 8), which naturally increases the 

chance of the actual projection node not being inside the set of 

exhibited ones. However, one should keep in mind that this 

comes at the expense of an increase in the size of the solution 

area, meaning that while being more robust, the fault location 

will be less precise. This aspect will be studied in future work. 

C. Success rate considering impedance values uncertainties 

In this study, the performance is shown with respect to the 

presence and magnitude of uncertainties in impedance values. 

4 cases are considered in which the uncertainty is quantified 

by a range Δ(𝑅0, 𝑋0, 𝐶0) so that the random variables 

(𝑅0, 𝑋0, 𝐶0) are drawn following a normal law of standard 

deviation the third of the Δ value while we consider this 

variable uniformly distributed in the estimation part (from the 

point of view of the algorithm): 

• Case 1: low uncertainty Δ(𝑅0, 𝑋0) ∈ [−5%,+5%]
2, 

Δ𝐶0 ∈ [−5%,+5%] 
• Case 2: medium uncertainty Δ(𝑅0, 𝑋0) ∈

[−10%,+10%]2, Δ𝐶0 ∈ [−5%,+5%] 
• Case 3: high uncertainty Δ(𝑅0, 𝑋0) ∈

[−20%,+20%]2, Δ𝐶0 ∈ [−10%,+10%] 
• Case 4: very high uncertainty Δ(𝑅0, 𝑋0) ∈

[−20%,+20%]2, Δ𝐶0 ∈ [−15%,+15%] 
Fig. 11 shows that the impedance uncertainties does not affect 

the ability of the algorithm to select a projection node 

anymore with the proposed method. Indeed, we observe that, 

at fixed value for the threshold value and the intersection 

estimation method, there is no visible difference in SR when 

knowing all the impedances parameters with a ±5% 

uncertainty or with ±20% for series impedances (𝑅0, 𝑋0) and 

±15% for 𝐶0. This verifies the fact that the probabilistic FLM 

is robust to impedance uncertainties by design and can be 

applied to feeders with imperfect knowledge of the 

impedances. This is an important increase for the deployability 

of the method when we know that ZS impedances, especially 

those of distribution grids, are not well known.  

Besides, we observe that the SR is decreasing with the value 

of the threshold. From this, a DSO could fit a model in order 
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to choose the optimal value for the threshold. Indeed, there is a 

tradeoff between SR and size of the solution area since 

lowering the value of the threshold leads to exhibiting more 

projection nodes, which increases the probability of the right 

projection node being in the selected ones while increasing the 

size of the solution area. A DSO could perform an 

interpolation of the SR value with the data corresponding to 

the accuracy class of the deployed measurement devices and 

then could choose the threshold value according to the 

targeted success rate value and given a tradeoff between 

probability of the fault to be outside of the solution area Ω𝑠𝑜𝑙
𝑚  

(for 𝑚 additional ZS voltage measurements) and the size of 

the solution area. The deterministic algorithm presents a 

linearly decreasing SR when considering uncertainties on ZS 

series line impedance (without measurement errors). We 

observe that the decrease coefficient is twice as low as when 

using synchronized data than with unsynchronized ones. For 

instance, the SR of the deterministic method is below 80% 

when considering 20% uncertainties on (𝑅0, 𝑋0). This is 

explained by the fact that ZS voltage magnitudes are very 

close to each other along the feeder in this case with 

compensated neutral grounding, meaning that a large set of 

nodes are selected as projection nodes with this data. This 

means that the greater the uncertainties, the larger the added 

value of the probabilistic formulation. 

 
Fig. 11: Success rate with the 4 intersection measures in function of 

the threshold value. In each subfigure, 4 cases of line impedance 

uncertainties are shown: case 1 (green triangle), case 2 (blue circle), 

case 3 (red cross) and case 4 (black cross) 

V. CONCLUSION 

This paper has presented a probabilistic formulation which 

achieves more robust fault location on MV feeders with 

respect to both measurement and impedance uncertainties 

while leveraging few optimally placed additional 

measurement nodes. First, the ability of the Monte-Carlo 

process to accurately infer the PDFs parameters of a 

measurement has been demonstrated when considering its 

accuracy class. Besides, no accumulation of errors along the 

paths have been seen when considering possible errors on the 

ZS impedance values, even with very low number of random 

samplings. This explains why this method has been shown to 

be robust to those two potential error sources, which is a great 

improvement with respect to the deterministic formulation. 

However, the performances of this probabilistic algorithm are 

very sensitive to the choice of the value of the probability 

threshold 𝜏. Indeed, a small threshold increases the probability 

of the fault being located laterally to one of the projection 

nodes, whilst having a large value of this threshold limits the 

number of projection nodes to the ones which are the most 

likely, meaning that the solution area would be of a size 

comparable to the best theoretical one (without any 

uncertainties). A detailed study of the locating performances, 

especially considering the size of the solution areas, still need 

to be carried out, as well as a more detailed study for the 

optimal choice of 𝜏. A method without any probability 

threshold will be investigated in future works. Moreover, a 

more detailed study of the impact of the number of samplings 

𝑁𝑀𝐶  would enable us to design a FLM with variable 𝑁𝑀𝐶  

across the path, so that when the PDF variance is very low, a 

low number of samplings is used to estimate its parameters 

(ensuring a faster estimation process) while a higher number 

could be used when large variance variables are encountered 

(ensuring the accuracy of the estimation process along all 

nodes of all paths). Furthermore, in the case where the ratio 

𝜇/𝜎 is large enough, a linearization and Taylor expansion 

could be used to obtain the PDFs parameters along the paths 

without need for Monte-Carlo processes. If the hypothesis 

were to be met, this would enable the design of a faster FLM. 

Finally, we could say that this zero-sequence fault location 

method is not impacted by presence of distributed generators 

if they are connected to the MV grid in a way that ensures no 

zero-sequence current injection (when the neutral is not 

distributed). However, if this hypothesis were not met, the 

DSO should place a zero-sequence current and voltage 

measurement in order to apply the method. This case should 

be investigated in future works.  
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