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This paper is devoted to the analysis of small central composite designs obtained

with a regular fraction of resolution III ∗. We show that it is then possible to find

explicitely mean square estimators, predicted response, variance dispersion graphs

and D-efficiency. Such designs, well chosen, can be an alternative to classical

CCD when the priority is to reduce the number of runs.
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1 Introduction

This paper deals with the analysis of experimental designs for response surfaces when the main

goal is to reduce the number of runs. Apart from its theoretical interest this problem is of

prime importance in every situation in which experiments are expensive, difficult to achieve,

time-consuming, etc.

One extremely useful type of designs are central composite designs (CCD) suggested by Box

and Wilson (1951) and Box and Hunter (1957). Such CCD are well known and widely used in

practice. But a main structural problem of these designs is the size of the factorial part which

is constituted by 2m runs in the case of a complete CCD for m factors or 2m−k runs by using

a regular fraction of resolution V built with k generators (see Box and Hunter, 1961). In some

cases the size of this part is too important, for example with 4 factors the factorial part has 16

runs (and the CCD at least 24 runs adding the axial part) for a surface response model with

only 15 unknown parameters. However it is sometimes possible to still reduce the factorial part,

following Hartley (1959), using a regular fraction of resolution III∗. These designs are often

smaller than classical CCD (they are even satured in some cases), but their analyse is somewhat

more complicated.
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In order to implement a central composite design it is useful to explicitly obtain the form

of the least square estimators and the predicted response. In a global point of view concerning

the quality of the predicted responses it is also interesting to use variance dispersion graphs

(see Giovannitti-Jensen and Myers, 1989). Such VDG are in general obtained with computer

programs that optimize quadratics forms on every centered sphere (see, for example, Vining,

1993). Finally it is important to evaluate the efficiency of the design, for example in order to

choose an appropriate value for the distance α between the center and the axial points. Our

goal is then to extend these results and methods, well known for classical CCD, to the case of

small CCD built with fractions of resolution III∗.

The paper is organized as follows. The beginning (section 2) is devoted to recalls, notations

and general results for classical CCD. The section 3 is dedicaced to the analyse of small CCD.

A final section concludes with the problem of the practical implementation of these designs.

2 Classical CCD

2.1 Response surface designs

We make some recalls in this part concerning experimental designs for response surfaces. See

also, for more details, books of Box and Draper (1987) or Khuri and Cornell (1996). Consider

in the following a random phenomenon depending on m quantitative factors. An experiment is

then associated to the vector x =t (x1, ..., xm) and we assume that the observed response in x,

called Y (x), can be approximated by the classical second order model:

Y (x) = β0 +

m∑
i=1

βixi +

m∑
i=1

βiix
2
i +

∑∑
i<j

βijxixj + ε (x) (1)

The matricial formulation for such model is then:

Y = Xβ + ε

with Y the vector of the n observations , ε the vector of the n random errors, β the vector of

the p unknown parameters (p = (m+ 1) (m+ 2) /2 here) and X the n × p model matrix. We

call design matrix the n × m matrix D with the row u made up of the m coordinates of the

u-th design point. Let Lj (1 ≤ j ≤ m) be the j-th column of D and � the Hadamard product

operator (i.e. if u, v ∈ Rn then u � v ∈ Rn is such that (u� v)i = uivi for i = 1, ..., n). The

model matrix has then the following form:

X = [ In | DQ | D | DI ]
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withD = DL = [ L1 | ... | Lm ] associated to the linear effects, DQ = [ L1 � L1 | ... | Lm � Lm ]

associated to the quadratic effects and DI =
[
L1 � L2 | ... | L(m−1) � Lm

]
associated to the

interaction effects. The arbitrary order for the columns of X is chosen in order to simplify the

expression of some following results. Similarly, the vector β of the unknown parameters of the

model is partitionned in tβ = (β0,
tβQ,

tβL,
tβI) .

2.2 Construction and properties of classical CCD

In the following a CCD for m factors is called classical when it is made from:

a) a factorial part constituted by a full factorial design or by a regular fraction of

resolution V (or more),

b) an axial part constituted by the points on the axes at a same distance α from the

origin of the experimental domain,

c) a central part constituted by n0 ∈ N repeated runs at the origin of the experimental

domain.

Note that such design has a total of n = 2m−k + 2m+n0 runs when the regular fraction is built

with k generators (k = 0 in the case of a full factorial design). Some properties of classical CCD

are listed below, see Borkowski (1995) or Tinsson (2010) for the proofs.

1) The moment matrix of each classical CCD is a block-diagonal matrix under the following

canonical form (with Im the vector of m ones, Im the identity matrix and Jm = ImtIm):

M =
1

n
tXX =

1

n
diag (A,B) with

A =

 n s2
tIm

s2Im (s4 − s22) Im + s22Jm

 and B =

 s2Im 0

0 s22I(m−1)m/2

 . (2)

So all the odd moments up to order 4 are zero and the even moments satisfy the following

relations (∀ i, j = 1, ...,m with i 6= j):

n
[
i2
]

= s2 = 2m−k + 2α2 , n
[
i2j2

]
= s22 = 2m−k , n

[
i4
]

= s4 = 2m−k + 2α4.

2) For each design having a regular moment matrix under canonical form the inverse of this

matrix can be explicitely found. This implies that the least square estimators β̂ = (tXX)
−1 tXY

of the model parameters are given by explicit formulas (see proposition 5.3 of Tinsson, 2010).

Moreover the diagonal elements of V ar
(
β̂
)

= σ2 (tXX)
−1

are given by (∀ i, j = 1, ...,m with

i 6= j and denoting φ = ns4 + n (m− 1) s22 −ms22):
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V ar
(
β̂0

)
=
σ2

n

(
1 +

ms22
φ

)
, V ar

(
β̂i

)
=
σ2

s2
, V ar

(
β̂ij

)
=

σ2

s22
,

V ar
(
β̂ii

)
=

σ2

s4 − s22

(
1 +

s22 − ns22
φ

) (3)

3) For each design having a regular moment matrix under canonical form the dispersion of the

predicted response Ŷ (x) is explicitely given by (denoting r2 = txx):

V arŶ (x) = σ2

[
f (r) +

(
1

s4 − s22
− 1

2s22

) m∑
i=1

x4i

]

with f (r) =

(
1

n
+
ms22
nφ

)
+

(
1

s2
− 2

s2
φ

)
r2 +

(
1

2s22
+

s22 − ns22
φ (s4 − s22)

)
r4.

It follows from this relation that a classical CCD is rotatable if and only if:

s4 = 3s22 ⇐⇒ 2m−k + 2α4 = 3
(
2m−k

)
⇐⇒ α =

(
2m−k

)1/4
.

4) Following Giovannitti-Jensen and Myers (1989), a graphical tool for the predictions ca-

pabilities of a design can be its variance dispersion graph (VDG). For each design having a

regular moment matrix under canonical form its spherical variance V and its extremal pre-

dictions variances V min and V max are explicitely given by the following expressions (with

Ur =
{
x ∈ Rm / txx = r2

}
and Ψ =

∫
Ur
dx):

V min (r) = min
x∈Ur

[
V arŶ (x)

]
= σ2

[
f (r) +

1

m

(
1

s4 − s22
− 1

2s22

)
r4
]
,

V (r) = Ψ−1
∫
Ur
V arŶ (x) dx = σ2

[
f (r) +

3

m+ 2

(
1

s4 − s22
− 1

2s22

)
r4
]
,

V max (r) = max
x∈Ur

[
V arŶ (x)

]
= σ2

[
f (r) +

3

m+ 2

(
1

s4 − s22
− 1

2s22

)
r4
]
.

(4)

Note that these formulas are true when s4 > 3s22. If s4 < 3s22 then V min and V max have to be

permuted. The three curves are identical when s4 = 3s22, that is when the design is rotatable.

5) For each design having a moment matrix under canonical form its D-efficiency Φ0 = |tXX|1/p

is explicitely given by:

Φ0 (s2, s4, s22) =
[
(s4 − s22)

m−1
sm2 s

m(m−1)/2
22 φ

]1/p
. (5)

3 Small CCD

3.1 Recalls, definitions and notations

According to Box and Hunter (1957) notations we denote by the letter j the column Lj

(1 ≤ j ≤ m) of the factorial part of the design matrix. Conventionally the Hadamard prod-

uct of the columns i and j is now simply denoted by ”ij” instead of ”i� j” and it is called a
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word of lenght 2 (the lenght of a word is its number of letters). A regular fraction (of the full

factorial design) is then defined by a set of k words called generators. These words generate a

group, denoted G in the following, and called defining relation. For k independant generators the

defining relation is constituted by 2k elements and defines a design in 2m−k runs. The resolution

of such regular fraction is the length of the shortest word in the defining relation. Following

Hartley (1959) we call regular fraction of resolution III∗ every regular fraction of resolution III

such that its defining relation has no element of length 4.

Example. For m = 6 factors and k = 2 generators the regular fraction defined by I16 =

123 = 346 has a resolution III but not III∗ because G = {I16, 123, 346, 1246} . On the other

side the regular fraction defined by I16 = 123 = 456 has a resolution III∗ because G =

{I16, 123, 456, 123456} .

A central composite design is then called small CCD (see Draper, 1985) if and only if it is

made from the sets given by a’, b and c with (see section 2.2 for b and c):

a’) a factorial part constituted by a regular fraction of resolution III∗.

Note that it may be surprising, a priori, to use such a design in order to fit a response surface

model with a resolution not equal to V. But the important point is that with a small CCD two-

factors interactions are not aliased with each other. Two factor interactions could be aliased

with linear effects (in our example 1 = 23, 2 = 13, etc.) but this is not a problem because

the axial part provides additional information on the linear effects and then these aliases vanish

(and the model matrix can be of full rank).

We compare now, in table 1, the sizes of classical CCD (with full factorial part or regular

fraction of resolution V) and small CCD (up to m = 8, response surface models are rarely

used with more factors). This table is constructed using the smallest possible regular fractions

of resolution III∗ or V (so with the largest possible number of generators) and with no center

point. General methods in order to obtain these smallest regular fractions are presented in

Draper and Lin (1990). The columns represent respectively: the number of factors, the number

of model’s parameters, the size of full CCD, the size of CCD obtain with a regular fraction of

resolution V and the size of small CCD. We also note in brackets the relative size of each design,

that is its size scaled by the number of unknown parameters of the model:

Φ =
n

p
=

2n

(m+ 1) (m+ 2)
.
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Factors Parameters Full CCD CCD res. V CCD res. III*

2 6 8 (1.33) no no

3 10 14 (1.40) no 10 (1.00)

4 15 24 (1.60) no 16 (1.07)

5 21 42 (2.00) 26 (124) 26 (1.24)

6 28 76 (2.71) 44 (1.57) 28 (1.00)

7 36 142 (3.94) 78 (2.17) 46 (1.28)

8 45 272 (6.04) 80 (1.78) 80 (1.78)

Table 1

Sizes of complete and fractionnal CCD.

This table shows that, in order to reduce the number of runs, small CCD can be very interesting

for 3, 4, 6 and 7 factors. Moreover the cases 3 and 6 factors lead to saturated designs. See

appendix A for more informations concerning these designs.

3.2 Structure of the moment matrix

We define in a first time some sets associated to every regular fraction of resolution III∗ obtained

with k independant generators of lenght 3. The set E3 contains all the triplets (i, j, k), with

i < j < k, such that the word ijk is an element of G. The set E2 contains all the pairs (i, j),

with i < j, such that the interaction ij is aliased in G with one linear effect. The set E1 contains

all the simple values i such that the linear effect i is aliased in G with one interaction. Note

that the k generators of the regular fraction are always disjoint (because if two elements of E3

are not disjoint then the regular fraction cannot be of resolution III∗). So:

card (E3) = k , card (E2) = k

(
3

2

)
= 3k , card (E1) = k

(
3

1

)
= 3k.

Example. Using the previous example with m = 6 factors and the regular fraction generated

by the relation I16 = 123 = 456 we have k = 2, G = {I16, 123, 456, 123456} and then:

E3 = {(1, 2, 3) , (4, 5, 6)} , E2 = {(1, 2) , (1, 3) , (2, 3) , (4, 5) , (4, 6) , (5, 6)} , E1 = {1, 2, 3, 4, 5, 6} .

Now for every small CCD the elements of the moment matrix are the same than these of the

classical case, excepted for some non-zero moments [ijk] . In fact these moments are the k ones

given by (denoting zu the u-th row of D):

∀ (i, j, k) ∈ E3 , [ijk] =
1

n

n∑
u=1

zuizujzuk =
2m−k

n
=
s22
n
.
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Then the moment matrix of each small CCD has the following form (the block A was already

given in (2)):

M =
1

n
tXX =

1

n
diag (A,B∗) with B∗ =

 s2Im P ∗

tP ∗ s22I(m−1)m/2


with P ∗ an m×m (m− 1) /2 matrix containing only the two values 0 or s22. More precisely

if the i-th row of P ∗ is such that i /∈ E1 then it is a row of 0. If the i-th row of P ∗ is such

that i ∈ E1 then this row has only one non-zero value located in the column associated to the

interaction aliased with i. So the matrix P ∗ is constituted by 3k non-zero elements (and also k

non-zero rows). Since two generators of the regular fraction are disjoint note that if we remove

every row and column of 0 in the matrix P ∗ we obtain the submatrix s22P with P a 3k × 3k

permutation matrix. More precisely P is then the alias matrix between linear and interaction

effects. So it is always possible to rearrange the elements of β (and in parallel the columns of

the matrix X) in the following order:

tβ =
(
β0,

tβQ,
tβna
L ,

t βna
I ,

tβa
L,
t βa

I

)
with βna

L ∈ Rm−3k vector of the linear effects not aliased with an interaction effect, βna
I ∈

Rm(m−1)/2−3k vector of the interaction effects not aliased with a linear effect, βa
L ∈ R3k vector

of the linear effects aliased with an interaction effect and βa
I ∈ R3k vector of the interaction

effects aliased with a linear effect. Using such order the moment matrix of each small CCD is

then given by:

M =
1

n
tXX =

1

n
diag (A,B1, B2) with (6)

B1 =

 s2Im−3k 0

0 s22I(m−1)m/2−3k

 and B2 =

 s2I3k s22P

s22
tP s22I3k

 .
Example. For the small CCD for m = 4 factors generated by the relation I8 = 124 we have

E3 = {(1, 2, 4)}, E2 = {(1, 2) , (1, 4) , (2, 4)}, E1 = {1, 2, 4} and then:

tβna
L = β3,

tβna
I = (β13, β23, β34) , tβa

L = (β1, β2, β4) , tβa
I = (β12, β14, β24) .

Note also that the alias matrix P is given by (with its rows associated to, respectively, the linear

effets 1, 2 and 4 and its columns to the interaction effects 12, 14 and 24):

P =


0 0 1

0 1 0

1 0 0

 .
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3.3 Estimation of the model parameters

We consider in this section the resolution of the normal equations in order to find the least

square estimators of the model (1). So we have to find β̂ such that (tXX) β̂ = tXY and

from relation (6), denoting X = [ In | DQ | Dna
L | Dna

I | Da
L | Da

I ], we obtain the three following

results associated to the three blocks of M :

1) The estimators of general mean effect and quadratic effects satisfy: n s2
tIm

s2Im (s4 − s22) Im + s22Jm

 β̂0

β̂Q

 =

 tInY
tDQY

 .

So these estimators are exactly the same as in the case of a classical CCD (see 2.2 point 2) and

their dispersions are also given in (3).

2) The estimators of linear and interaction effects βna
L and βna

I satisfy: s2Im−3k 0

0 s22I(m−1)m/2−3k

 β̂na
L

β̂na
I

 =

 tDna
L Y

tDna
I Y

 .

Again the situation for these estimators is similar to the case of a classical CCD and they

are obtained by the very simple relations β̂na
L = (1/s2) tDna

L Y and β̂na
I = (1/s22) tDna

I Y. Their

dispersions are also the same than the dispersions of parameters β̂i and β̂ij in (3).

3) The estimators of linear and interaction effects βa
L and βa

I satisfy: s2I3k s22P

s22
tP s22I3k

 β̂a
L

β̂a
I

 =

 tDa
LY

tDa
IY

 .

This situation is the only one that differs from the case of a classical CCD. But P is a permutation

matrix, so P−1 = tP and we easily find that (if s2 6= s22):

B−12 =

 s2I3k s22P

s22
tP s22I3k

−1 =
1

s2 − s22

 I3k −P

−tP (s2/s22) I3k

 . (7)

So these estimators are explicitely obtained by the following relations:

β̂a
L =

(
1

s2 − s22

)(
tDa

LY − P tDa
IY
)

and β̂a
I =

(
1

s2 − s22

)(
−P tDa

LY +
s2
s22

tDa
IY

)
.

Finally note that the dispersion of each β̂i in β̂a
L and each β̂ii in β̂a

I is given by:

V ar
(
β̂i

)
=

σ2

s2 − s22
and V ar

(
β̂ij

)
=

s2
s22 (s2 − s22)

σ2.
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3.4 Predicted response

The predicted response in x is given by Ŷ (x) = tg (x) β̂ with g (x) regression vector such that

tg (x) = t
(
1, x21, ..., x

2
m, x1, ..., xm, x1x2, ..., xm−1xm

)
. The value of Ŷ (x) can be easily found in

practice using the results of the previous section. Our purpose now is to find its dispersion, that

is:

V arŶ (x) = σ2 tg (x)
(
tXX

)−1
g (x) .

Using the order proposed in section 3.2 for β (and the columns of X) we obtain from (6):

V arŶ (x) = σ2 (Q1 (x) +Q2 (x) +Q3 (x)) with:

1) Q1 quadratic form associated to the block A of the moment matrix, so it is similar to the

case of a classical CCD and (see, for example, Tinsson, 2010):

Q1 (x) =

(
1

n
+
ms22
nφ

)
+

1

s4 − s22

(
1 +

s22 − ns22
φ

) m∑
i=1

x4i

+2
s22 − ns22

(s4 − s22)φ

∑∑
i<j

x2ix
2
j − 2

s2
φ

m∑
i=1

x2i

denoting again φ = ns4 + n (m− 1) s22 −ms22.

2) Q2 quadratic form associated to the block B1 of the moment matrix, so (note that βna
L

contains all the βi such that i /∈ E1 and βna
I all the βij such that (i, j) /∈ E2):

Q2 (x) =
1

s2

∑
i∈E1

x2i +
1

s22

∑∑
(i,j)∈E2

x2ix
2
j .

3) Q3 quadratic form associated to the block B2 of the moment matrix, so we obtain from (7):

Q3 (x) =
1

s2 − s22

∑
i∈E1

x2i +
s2
s22

∑∑
(i,j)∈E2

x2ix
2
j − 6

∑∑∑
(i,j,k)∈E3

xixjxk

 .

Note that (s2 − s22)
−1

= s−12 + s22/ (s2 (s2 − s22)) so using this relation in Q3 it is possible to

regroup the terms in
∑m
i=1 x

2
i = r2 and

∑∑
i<j x

2
ix

2
j in the following way:

V arŶ (x) =

(
1

n
+
ms22
nφ

)
+

(
1

s2
− 2

s2
φ

)
r2

+

(
1

s22
+ 2

s22 − ns22
(s4 − s22)φ

)∑∑
i<j

x2ix
2
j +

1

s4 − s22

(
1 +

s22 − ns22
φ

) m∑
i=1

x4i

+
s22

s2 (s2 − s22)

∑
i∈E1

x2i +
1

s2 − s22

∑∑
(i,j)∈E2

x2ix
2
j −

6

s2 − s22

∑∑∑
(i,j,k)∈E3

xixjxk
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Note also that:

r4 =

(
m∑
i=1

x2i

)2

=

m∑
i=1

x4i + 2
∑∑
i<j

x2ix
2
j and then:

Proposition 1. For every small CCD the variance of the predicted response is given by:

V arŶ (x) = σ2

[
f (r) +

(
1

s4 − s22
− 1

2s22

) m∑
i=1

x4i

+
s22

s2 (s2 − s22)

∑
i∈E1

x2i +
1

s2 − s22

∑∑
(i,j)∈E2

x2ix
2
j −

6

s2 − s22

∑∑∑
(i,j,k)∈E3

xixjxk


with f (r) =

(
1

n
+
ms22
nφ

)
+

(
1

s2
− 2

s2
φ

)
r2 +

(
1

2s22
+

s22 − ns22
(s4 − s22)φ

)
r4

and φ = ns4 + n (m− 1) s22 −ms22.

This result implies immediately that a small CCD cannot be a rotatable design (the three

last sums cannot vanish).

3.5 Variance dispersion graphs

We extend in this section the explicit results (4) to the case of small CCD. First, from proposition

1 the spherical variance is given by:

V (r) = f (r) +

(
1

s4 − s22
− 1

2s22

) m∑
i=1

Ψ−1
∫
Ur

x4i dx+
s22

s2 (s2 − s22)

∑
i∈E1

Ψ−1
∫
Ur

x2i dx

+
1

s2 − s22

∑∑
(i,j)∈E2

Ψ−1
∫
Ur
x2ix

2
jdx−

6

s2 − s22

∑∑∑
(i,j,k)∈E3

Ψ−1
∫
Ur
xixjxkdx

But the geometry of the sphere Ur implies that:

∀ (i, j, k) ∈ E3 ,

∫
Ur

xixjxkdx = 0.

The other terms of V (r) are classical non-zero spherical moments given by (see, for example,

Giovannitti-Jensen and Myers, 1989):

Ψ−1
∫
Ur

x2i dx =
r2

m
, Ψ−1

∫
Ur

x2ix
2
jd =

r4

m (m+ 2)
, Ψ−1

∫
Ur

x4i dx =
3r4

m (m+ 2)
.

But card (E2) = card (E1) = 3k and then:

Proposition 2. For every small CCD the spherical variance is given by:

V (r) = f (r) +
3ks22

ms2 (s2 − s22)
r2 +

3

m+ 2

(
1

s4 − s22
− 1

2s22
+

k

m (s2 − s22)

)
r4.
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Now extremal variances are also needed in order to obtain VDG. So we have to minimize and

maximize V arŶ (x) on the sphere of radius r2. This problem has solutions because V arŶ is a

continuous function (see proposition 1) to be optimized on a compact set. In order to find these

solutions the Lagrange multipliers theorem can be used considering:

L (x,Λ) = L (x1, ..., xm,Λ) = V arŶ (x) + Λ

(
m∑
i=1

x2i − r2
)
.

So every critical point is such that ∂L (x,Λ) /∂xi = 0 (∀ i ∈ {1, ...,m}) and ∂L (x,Λ) /∂Λ = 0.

Using this result with V arŶ (x) given at proposition 1 implies that a necessary (but no sufficient)

condition to reach the minimum or the maximum prediction variance is to satisfy (note also that

{1, ...,m} = E1 ∪ E1):

C1) ∀ i ∈ E1 ,

( 2

s4 − s22
− 1

s22

)
x2i + Λ +

s22
s2 (s2 − s22)

+

 1

s2 − s22

∑
j/(i,j)∈E2

x2j

xi
− 3

s2 − s22

∑∑
(j,k)/(i,j,k)∈E3

xjxk = 0

C2) ∀ i ∈ E1 ,

[(
2

s4 − s22
− 1

s22

)
x2i + Λ

]
xi = 0

C3)

m∑
i=1

x2i − r2 = 0

Spherical variances of small CCD and explicit expressions of critical points for m = 3, 4, 6, 7 are

given in appendix A.

A main practical problem is the choice of α (distance of the axial part from the origin). For

a classical CCD α is often chosen in order to obtain the property of rotatability. For small CCD

we have seen that it is impossible to have this property but we can try to minimise a measure

of rotatability. A lot of such measures have been proposed in the literature (see, for example,

the note of Ekman, 1994), we focus here on the area between the upper and lower curves of the

VDG. In other words for a spherical domain of radius ρ and a small CCD obtain with the value

α we consider the following measure of the rotatability:

Rot (α) =
1

ρ

∫ ρ

0

(V max (r)− V min (r)) dr

Our goal is then to chose α in order to minimize the function Rot. Figure 1 shows the computed

forms of these functions for m = 3, 4, 6, 7 factors.

11



Figure 1

It is clear that the best choice, in order to reach a near-rotatability situation, is to take large

values for α (like α =
√
m for putting the axial points at the boundaries of the spherical

experimental domain).

3.6 Efficiency

We consider in this part the efficiency of small CCD using the classical criteria of D-efficiency.

The main problem is to compare, for a fixed number of factors, the efficiency of a small CCD

versus a classical CCD. First consider a classical CCD for m factors, in nc runs, built with

a regular fraction of resolution V with kc independant generators, associated to the values

s2c = 2m−kc + 2α2, s4c = 2m−kc + 2α4 and s22c = 2m−kc . From (5) its D-efficiency is given by:

Φ0c (α) =
[(

2α4
)m−1 (

2m−kc + 2α2
)m (

2m−kc
)m(m−1)/2

φc (α)
]−1/p

.

with φc (α) = nc
(
2m−kc + 2α4

)
+ nc (m− 1) 2m−kc −m

(
2m−kc + 2α2

)2
.

Then consider a small CCD for m factors, resulting from a regular fraction of resolution III∗

with k independant generators, having n runs and associated to the values s2 = 2m−k + 2α2,

s4 = 2m−k + 2α4 and s22 = 2m−k. Its D-efficiency is Φ0 (α) = |tXX|−1/p and its information

matrix was given by relation (6), so:

tXX = diag (A,B1, B2)⇒ Φ0 (α) = (|A| . |B1| . |B2|)1/p

The value of |A| is the same than for a classical CCD (so |A| =
(
2α4

)m−1
φ (α)), we have only

12



to évaluate the determinant of the two specific blocks of a small CCD, that is:

|B1| =

∣∣∣∣∣∣ s2Im−3k 0

0 s22I(m−1)m/2−3k

∣∣∣∣∣∣ = sm−3k2 s
(m−1)m/2−3k
22

and (using the notion of Schur complement):

|B2| =

∣∣∣∣∣∣ s2I3k s22P

s22
tP s22I3k

∣∣∣∣∣∣ = |s2I3k| .
∣∣∣∣s22I3k − s222

s2
tPI3kP

∣∣∣∣ = |s2I3k| .
∣∣∣∣s22I3k − s222

s2
I3k

∣∣∣∣
because P is a permutation matrix (and then tPP = I3k). So:

|B2| = |s2I3k| .
∣∣∣∣(s22 − s222

s2

)
I3k

∣∣∣∣ = s3k2 s
3k
22

(
1− s22

s2

)3k

In conclusion the D-efficiency of a small CCD is given by:

Φ0 (α) =

[(
2α4

)m−1 (
2m−k + 2α2

)m (
2m−k

)m(m−1)/2
(

1− 2m−k

2m−k + 2α2

)3k

φ (α)

]1/p

with φ (α) = n
(
2m−k + 2α4

)
+n (m− 1) 2m−k−m

(
2m−k + 2α2

)2
. Note that the two efficiencies

Φ0c (α) and Φ0 (α) cannot be compared directly because the two designs do not have the same

number of runs. It is then classical in this case to use the following efficiencies:

ψ0c (α) =
Φ0c (α)

nc
and ψ0 (α) =

Φ0 (α)

n
.

As explained by Lucas (1976) such value gives ”an indication of the information per point for

the design”. Then it is possible to compute the relative D-efficiency of the small CCD (with

respect to the classical CCD) with:

Eff (α) =
ψ0 (α)

ψ0c (α)
=
(nc
n

) Φ0 (α)

Φ0c (α)
.

Finally we obtain the following explicit result:

Proposition 3. The relative efficiency of each small CCD, with respect to the classical CCD,

is given by:

Eff (α) =
(nc
n

)[
2m(m−1)(kc−k)/2

(
2m−k + 2α2

2m−kc + 2α2

)m(
1− 2m−k

2m−k + 2α2

)3k (
φ (α)

φc (α)

)]1/p
with n number of runs for the small CCD, k number of generators for the small CCD and

φ (α) = n
(
2m−k + 2α4

)
+ n (m− 1) 2m−k −m

(
2m−k + 2α2

)2
(respectively nc, kc and φc (α) =

nc
(
2m−kc + 2α4

)
+ nc (m− 1) 2m−kc −m

(
2m−kc + 2α2

)2
for the classical CCD).

Figure 2 shows these functions for m = 3, 4, 6, 7 factors.
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Figure 2

It is clear, another time, that the best choice, in order to improve the relative efficiency with

respect to a classical CCD, is to take large values for α.

4 Conclusion

We have seen in this paper that a lot of explicit results can be extended to the class of small

central composite designs. In particular no algorithmic methods are needed in order to obtain

the D-efficiency of such design or a variance dispersion graph. Our main recommendation is

to use large values for the parameter α (distance between the center and the axial points) in

order to both maximize the D-efficiency of the design and minimize the value of the rotatability

criterion derived from the variance dispersion graph (see section 3.5).

Note that in this paper small CCD have been only compared to classical CCD. No comparison

have been made with other classical designs for surface response because small CCD are not

in general the most efficient designs (classical CCD can be also more efficient like in section

3.6). But, in addition, small CCD may have some interesting properties. For example, if m = 6

factors are needed, the popular hybrid design 628A of Roquemore (1976) is at the same time

saturated and rotatable. The small CCD is also saturated in this case, not rotatable, but it can

be useful when a little number of levels are requested for the factors (the small CCD require

a total of at most 5 distinct levels against 8 distinct levels for the hybrid design). For m = 7

factors the Box and Behnken (1960) design is rotatable. The small CCD does not satifsy this

property but can be useful if expriments are very expensive because it needs only 46 runs against

57 for the Box and Behnken design.
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Finally note also that small CCD are a very good option when a regular fraction of resolution

III has been used in order to implement a first order model. If this model is not well fitted and a

response surface model is needed then the choice of a small CCD is very pertinent if the budget

in order to add new experiences is limited.

Appendix A. Constructions of small CCD and VDG.

1) For m = 3 factors, a small CCD can be obtained with the regular fraction given by I4 = 123.

Such design has then n = 10 + n0 runs (against n = 14 + n0 for a classical CCD) and:

s2 = 4 + 2α2, s22 = 4, s4 = 4 + 2α4 so φ = (8 + 2n0)α4 − 48α2 + (72 + 12n0)

Furthermore, k = 1 and E1 = {1, 2, 3}, E2 = {(1, 2) , (1, 3) , (2, 3)}, E3 = {(1, 2, 3)} . The

spherical variance is then (see proposition 2):

V (r) = f (r) +
s22

s2 (s2 − s22)
r2 +

3

5

(
1

s4 − s22
− 1

2s22
+

1

3 (s2 − s22)

)
r4

The extremal variances can be computed using the following critical points (roots of the equa-

tions C1 and C3) such that:

(±a, 0, 0) with a = r,

(±a,±a,±a) with a = r/
√

3.

2) For m = 4 factors, a small CCD can be obtained with the regular fraction given by I8 = 123.

Such design has then n = 16 + n0 runs (against n = 24 + n0 for a classical CCD) and:

s2 = 8 + 2α2, s22 = 8, s4 = 8 + 2α4 so φ = (16 + 2n0)α4 − 128α2 + (256 + 32n0)

Furthermore, k = 1 and E1 = {1, 2, 3}, E2 = {(1, 2) , (1, 3) , (2, 3)}, E3 = {(1, 2, 3)} . The

spherical variance is then (see proposition 2):

V (r) = f (r) +
3s22

4s2 (s2 − s22)
r2 +

1

2

(
1

s4 − s22
− 1

2s22
+

1

4 (s2 − s22)

)
r4

The extremal variances can be computed using the following critical points (roots of the equa-

tions C1, C2 and C3) such that (denoting δ1 = 2/(s4 − s22) − 1/s22, δ2 = s22/(s2(s2 − s22)),

δ3 = 1/(s2 − s22) and a∗ = (3δ3 ±
√

9δ23 − 8 (2δ1 + δ3) (δ2 − r2δ1))/4 (2δ1 + δ3)):

(±a, 0, 0, 0) with a = r,

(±a,±a,±a, 0) with a = r/
√

3,

(0, 0, 0,±b) with b = r,

(±a, 0, 0,±b) with a =
√
r2/2− δ2/2δ1 and b =

√
r2 − a2,

(±a,±a,±a,±b) with a = a∗ and b =
√
r2 − 3a2
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Note that the two last solutions do not necessarily exist, expressions in the square roots must

be positive.

3) For m = 6 factors, a small CCD can be obtained with the regular fraction given by I16 =

123 = 456. Such design has then n = 28 + n0 runs (against n = 44 + n0 for a classical CCD)

and:

s2 = 16 + 2α2, s22 = 16, s4 = 16 + 2α4 so φ = (32 + 2n0)α4 − 384α2 + (1152 + 96n0)

Furthermore, k = 2 and E1 = {1, 2, 3, 4, 5, 6}, E2 = {(1, 2) , (1, 3) , (2, 3) , (4, 5) , (4, 6) , (5, 6)},

E3 = {(1, 2, 3) , (4, 5, 6)} . The spherical variance is then (see proposition 2):

V (r) = f (r) +
s22

s2 (s2 − s22)
r2 +

3

8

(
1

s4 − s22
− 1

2s22
+

1

3 (s2 − s22)

)
r4

The extremal variances can be computed using the following critical points (roots of the equa-

tions C1 and C3) such that:

(±a, 0, 0, 0, 0, 0) with a = r,

(±a,±a,±a, 0, 0, 0) with a = r/
√

3,

(±a, 0, 0,±a, 0, 0) with a = r/
√

2,

(±a,±a,±a,±a,±a,±a) with a = r/
√

6.

4) For m = 7 factors, a small CCD can be obtained with the regular fraction given by I16 =

123 = 456. Such design has then n = 46 + n0 runs (against n = 78 + n0 for a classical CCD)

and:

s2 = 32 + 2α2, s22 = 32, s4 = 32 + 2α4 so φ = (64 + 2n0)α4 − 896α2 + (3136 + 224n0)

Furthermore, k = 2 and E1 = {1, 2, 3, 4, 5, 6}, E2 = {(1, 2) , (1, 3) , (2, 3) , (4, 5) , (4, 6) , (5, 6)},

E3 = {(1, 2, 3) , (4, 5, 6)} . The spherical variance is then (see proposition 2):

V (r) = f (r) +
6s22

7s2 (s2 − s22)
r2 +

1

3

(
1

s4 − s22
− 1

2s22
+

2

7 (s2 − s22)

)
r4

The extremal variances can be computed using the following critical points (roots of the equa-

tions C1, C2 and C3) such that (denoting δ1 = 2/(s4 − s22) − 1/s22, δ2 = s22/(s2(s2 − s22)),

δ3 = 1/(s2 − s22) and a∗ = (3δ3 ±
√

9δ23 − 8 (2δ1 + δ3) (δ2 − r2δ1))/4 (2δ1 + δ3)):

(±a, 0, 0, 0, 0, 0, 0) with a = r,

(±a,±a,±a, 0, 0, 0, 0) with a = r/
√

3,

(±a, 0, 0,±a, 0, 0, 0) with a = r/
√

2,

(±a,±a,±a,±a,±a,±a, 0) with a = r/
√

6,

(0, 0, 0, 0, 0, 0,±b) with b = r,

(±a,±a,±a, 0, 0, 0,±b) with a = a∗ and b =
√
r2 − 3a2,

(±a,±a,±a,±a,±a,±a,±b) with a = a∗ and b =
√
r2 − 6a2
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Note that the two last solutions do not necessarily exist, expressions in the square roots must

be positive.
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