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Training morphological neural networks with
gradient descent: some theoretical insights

Samy Blusseau1[0000−0003−0294−8172]

Mines Paris, PSL University, Centre for mathematical morphology (CMM),
Fontainebleau, France

Abstract. Morphological neural networks, or layers, can be a powerful
tool to boost the progress in mathematical morphology, either on theo-
retical aspects such as the representation of complete lattice operators,
or in the development of image processing pipelines. However, these ar-
chitectures turn out to be difficult to train when they count more than
a few morphological layers, at least within popular machine learning
frameworks which use gradient descent based optimization algorithms.
In this paper we investigate the potential and limitations of differenti-
ation based approaches and back-propagation applied to morphological
networks, in light of the non-smooth optimization concept of Bouligand
derivative. We provide insights and first theoretical guidelines, in partic-
ular regarding initialization and learning rates.

Keywords: Morphological neural networks · Nonsmooth optimization
· Lattice operators

1 Introduction

Morphological neural networks were introduced in the late 1980s [17, 5], and
have been revisited in recent years [4, 18, 12, 6, 8]. With the growing maturity of
deep learning science, new exciting perspectives seem to open and give hope for
significant breakthroughs.

In image processing, with the development of libraries specialized in morpho-
logical architectures [15], where basic as well as advanced operators are imple-
mented, such as geodesical reconstruction layers [16], it is now within reach to
train end to end pipelines which include morphological preprocessing and post-
processing, and to use the know how of the morphological community to impose
topological and geometrical constraints inside deep networks.

Furthermore, morphological networks can help investigate in practice the
representation theory of lattice operators initiated by Georges Matheron [11,
9, 2]. Just as the universal approximation theorem for the multi-layer percep-
tron, the representation theorem of lattice operators with families of erosions
and anti-dilations, is an existence one and is asymptotic, but does not provide
any algorithm to actually exhibit such representations. Since these decomposi-
tions can be implemented as morphological layers, we may hope to learn these
representations from data.
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Yet, the optimization of morphological architectures is still slow and difficult.
Despite the several contributions in this area, [12, 6, 1], architectures including
morphological layers are often quite shallow and do not compete with the state
of the art networks for image analysis. On the one hand, it may be due to
the Fréchet non differentiability of the morphological layers, reason for several
attempts to replace them by smooth approximations [7, 8]. On the other hand,
non smooth operations such as the Rectifier Linear Unit (ReLU) or the max-
pooling, are commonly used in successfully trained architectures, while smooth
morphological ones do not seem to solve all the optimization issues.

In this paper we investigate the potential and limitations of training mor-
phological neural networks with differentiation-based algorithms relying on back-
propagation and the chain rule. In Section 2 we introduce morphological net-
works, and recall in Section 3 the principles of gradient descent, back-propagation
and chain rule. Section 4 presents the concept of Bouligand derivative, which is
suited to morphological layers. In Section 5 we expose the possibilities and issues
of this framework within the chain-rule paradigm, before concluding in Section 6.

2 Morphological networks

There is no universal definition of morphological neural networks, but most archi-
tectures that are called so, are neural networks including at least a morphological
layer. In turn, a morphological layer is one computing a morphological operation
such as a dilation or an erosion, or sometimes a (weighted) rank filter. In this
paper we will focus on dilation and erosion layers, composed with each other or
with other classical (dense or convolutional) layers.

Dilation layers. We will call dilation layer a function δW : Rn → Rm,
n,m ∈ N∗, defined by

δW : x = (x1, . . . , xn) 7→
(

max
1≤k≤n

xk + wi,k

)
1≤i≤m

(1)

where the wi,k are the real valued coefficients of a matrix W ∈ Rm×n, and
the parameters (or weights) of the layer. Extended to the complete lattices R̄n
and R̄m, where R̄ := R ∪ {−∞,+∞}, δW is a shift invariant morphological
dilation [10, 3]. In practical neural architectures the input and output of a layer
are usually represented as sets of vectors, called feature maps. In such a setting,
each output feature map would be the supremum of dilations like δW , of the
input feature maps. By reshaping the set of input feature maps into one input
vector, and the set of output ones into one output vector, we get the equivalent
formulation (1), simpler to analyze.

Erosion layers. Similarly, we will call erosion layer a function εW : Rm →
Rn, n,m ∈ N∗, defined by

εW : x = (x1, . . . , xm) 7→
(

min
1≤k≤m

xk − wk,j
)

1≤j≤n
. (2)
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Note that the sign “−” and the transposition (wk,i instead of wi,k) in the defi-
nition are meant to make (εW , δW ) a morphological adjunction.

Morphological networks. As said earlier, in this paper any neural network
including at least a morphological layer is considered a morphological network.
This includes sequential compositions of dilations and erosions layers, supremum
of erosion layers, infimum of dilation layers, and composition with classical layers
(linear operators followed by a non-linear activation function). This also includes
anti-dilations and anti-erosions, which are of the kind x 7→ δW (−x) and x 7→
εW (−x). Note however that the composition δA ◦ δB of two dilation layers can
be considered as one dilation layer δC where C ∈ Rm×n is the max-plus matrix
product of A ∈ Rm×p by B ∈ Rp×n,

Cij = max
1≤k≤p

Aik +Bkj , 1 ≤ i ≤ m, 1 ≤ j ≤ n. (3)

Furthermore, the pointwise maximum of l dilation layers δW1
, . . . , δWl

(where all
Wis are the same size), is also equivalent to one dilation layer δW∗ where W ∗ is
the pointwise maximum the matrices Wis.

Similarly, in theory it is pointless to compose or take the minimum of erosion
layers, since such operators can be represented (and learned) as one erosion layer.

3 Optimization with gradient descent

Let us consider a classic neural network setting where a function fθ : Rn → R+

depending on a parameter θ = [θ1, . . . , θL] is a composition of L functions

fθ := fL,θL ◦ fL−1,θL−1
◦ · · · ◦ f1,θ1 , (4)

each fk,θk depending on its own parameter θk ∈ Rpk and mapping Rnk to Rnk+1 ,
with n1 = n and nL = 1 (we include the loss function as part of the last layer).
Typically, we would like to find a parameter θ which minimizes the expectation
E(fθ(X)) where X is a random variable that models the distribution of the data
we want to process1. In practice this can be done by applying fθ to samples
x1, . . . , xN of X and iteratively update θ ← θ +∆θ in a way that decreases the
function at the current sample, fθ+∆θ(xi) ≤ fθ(xi). Hence the change ∆θ that
is looked for is a descent direction.

3.1 Gradient descent

Where it exists, the gradient of a function g : Rn → R precisely provides a
descent direction. Indeed if g is Fréchet-differentiable2 at x ∈ Rn, then

∀h ∈ Rn, ∀η ≥ 0, g
(
x+ ηh

)
= g(x) + η

(
〈∇g(x), h〉+ ε(η)

)
(5)

1 Recall that fθ is real valued since we include the loss in the last layer fL,θL .
2 The Fréchet derivative is just the usual derivative, which is a linear function, like
h 7→ 〈∇g(x), h〉 in (5).
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where 〈·, ·〉 is the inner product in Rn and ε is a function that goes to zero
when η goes to zero. Hence, if ∇g(x) 6= 0, for η sufficiently small |ε(η)| <
‖∇g(x)‖2 and therefore g

(
x − η∇g(x)

)
< g(x), for which −∇g(x) is called a

descent direction of g at x. Equation (5) also implies that any h ∈ Rn such
that 〈∇g(x), h〉 ≤ 0 is a descent direction. Furthermore, it shows −∇g(x) is
the steepest descent direction: given η > 0 sufficiently small, any unit vector v

verifies g
(
x− η ∇g(x)‖∇g(x)‖

)
≤ g
(
x+ ηv

)
.

These results can be applied to the function g : θ 7→ fθ(x) for a fixed sample
x, provided g is a Fréchet-differentiable (also called F-differentiable) function of
θ. In that case we will note ∇θfθ(x) := ∇g.

3.2 Back propagation and the chain rule

To compute ∇θfθ(x), it is sufficient to compute each ∇θifθ(x), which can also

be noted ∂fθ(x)
∂θi

, and is the gradient of the function gi : θi 7→ fθ(x), x and
the other parameters θj , j 6= i, being fixed. Indeed, the gradient with respect
to θ is the concatenation of the gradients with respect to the θis, ∇θfθ(x) =
[∇θ1fθ(x), . . . ,∇θLfθ(x)].

To obtain these, the so called “chain rule” is applied, involving the (Fréchet)
derivative of each layer with respect to its input variable and its derivative with
respect to its parameter. The derivatives with respect to the input variables
tell earlier layers (i.e. the layers that are closer to the input) how they should
change their output values to eventually decrease the whole function fθ(x). They
play a role of message passing to earlier layers. The derivative with respect to
a layer’s parameter tells how to update this parameter in order to comply with
the instruction received from later layers (that is, layers closer to the output).

More formally, we can see this in the case of fθ as defined in (4). We note
x1 := x the input variable of f1,θ1 (and therefore fθ), and xk+1 := fk,θk(xk),
1 ≤ k ≤ L − 1. For fixed θk,xk, we denote by f ′k,θk(xk; · ) and f ′k,xk(θk; · )
the Fréchet derivatives of the k-th layer with respect to its input variable and
parameter respectively. Then the chain rule algorithm can be summarized as
follows (see Figure 1).

… …

…

Fig. 1. illustration of the chain rule algorithm.
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Initialize the message uL+1: Since we want to decrease fθ, the first target
direction to be passed on to layer L is uL+1 = −1.

Update θk, given uk+1: Move θk in the direction

∆θk := arg max
‖h‖=1

〈f ′k,xk(θk;h),uk+1〉. (6)

Pass on message uk , given uk+1: If k ≥ 2 pass to layer k − 1 the target
direction

uk := arg max
‖h‖=1

〈f ′k,θk(xk;h),uk+1〉. (7)

Both problems (6) and (7) are easily solved using f∗k,xk(θk; · ) and f∗k,θk(xk; · ),
the adjoint operators to the derivatives f ′k,xk(θk; · ) and f ′k,θk(xk; · ) respectively:

∆θk =
f∗
k,xk

(θk; uk+1)

‖f∗
k,xk

(θk; uk+1)‖ and uk =
f∗
k,θk

(xk; uk+1)

‖f∗
k,θk

(xk; uk+1)‖ . (8)

These solutions do not ensure a change of the output value of layer k in the
direction uk+1, but they do guarantee

〈f ′k,xk(θk;∆θk),uk+1〉 ≥ 0 and 〈f ′k,θk(xk;uk),uk+1〉 ≥ 0. (9)

Answer vk to message uk: Then, when layer k − 1 (k ≥ 2) updates
its parameter in the direction ∆θk−1, its output does not move in the target
direction uk, but in the direction vk := f ′k−1,xk−1

(θk−1;∆θk−1), which “only”

verifies 〈vk,uk〉 ≥ 0, according to (9). Therefore, the output of layer k moves
in the direction vk+1 := f ′k,θk(xk;vk) instead of f ′k,θk(xk;uk), and so on. The
linearity of f ′k,θk(xk; · ) ensures the crucial following property{
〈f ′k,θk(xk;uk),uk+1〉 ≥ 0

〈vk,uk〉 ≥ 0
⇒ 〈vk+1,uk+1〉 := 〈f ′k,θk(xk;vk),uk+1〉 ≥ 0. (10)

Hence, as soon as (9) and (10) hold for layer k− 1 and later layers, the property
〈vk,uk〉 ≥ 0, triggered by the update ∆θk−1, propagates and eventually yields
〈vL+1,uL+1〉 ≥ 0, i.e. vL+1 ≤ 0, meaning the output of fθ is decreased.

This quick reminder of the chain rule mechanism highlights that the layer
derivatives have two goals: optimal message passing and optimal parameter up-
date based on the message passed by later layers. Therefore, in the case of non
Fréchet-differentiable layers, like dilation and erosion layers, we may investigate
if these two targets, namely properties (9) and (10), can still be met somehow.
In the next sections we will see that morphological layers are differentiable in the
more general sense of the Bouligand differentiability, which makes this notion
worth analyzing in the perspective of optimization with gradient-descent-like
algorithms.

4 The Bouligand derivative

The Bouligand derivative has been introduced in the nonsmooth analysis liter-
ature [13, 14]. It is a directional derivative that provides a first order approxi-
mation of its function in all directions. Formally, given a function g : Rn → Rm
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and x ∈ Rn, if for every y ∈ Rn the limit

g′(x; y) := lim
α→0,α>0

g(x+ αy)− g(x)

α
(11)

exists, then g is directionally differentiable at x and g′(x; . ) is called its direc-
tional derivative at x. If additionally for any h ∈ Rn

g(x+ h) = g(x) + g′(x;h) + o0(h) (12)

then g is said to be Bouligand differentiable (or B-differentiable) at x, and g′(x; . )
is its Bouligand derivative, also called B-derivative3. If g is B-differentiable at
every x ∈ Rn, then it simply said B-differentiable.

Fréchet differentiablilty implies B-differentiability, but what makes the latter
more general than the former is that the B-derivative does not need to be a
linear function. If g′(x; . ) is a linear function, then g is Fréchet differentiable at
x, and g′(x; . ) is its Fréchet derivative at that point.

The B-derivative has nice properties similar to the Fréchet derivative, in
particular [14]:

– Positive homogeneity: g′(x;λy) = λg′(x; y) for any λ ≥ 0.
– Chain rule: if f : Rn → Rm and g : Rp → Rn are continuous and B-

differentiable at x ∈ Rp and g(x) respectively, then f ◦ g is B-differentiable
at x and

(f ◦ g)
′
(x; y) = f ′ (g(x); g′(x; y)) (13)

– Linearity of f 7→ f ′(x; .): if f : Rn → Rm and g : Rn → Rm are continuous
and B-differentiable at x ∈ Rn, then so is αf + βg for any α, β ∈ R and

(αf + βg)′(x; y) = αf ′(x; y) + βg′(x; y). (14)

– Derivative of components: g : Rn → Rm is B-differentiable at x if and
only if each of its components gi : Rn → R is, and in this case

g′(x; y) =
(
g′1(x; y), . . . , g′m(x; y)

)
. (15)

As we will see, the dilation and erosion layers are continuous and B-differentiable
functions of both their input variables and parameters, as well as all the usual
neural layers. Therefore, a neural network fθ(x) is a continuous and B-differentiable
function of its parameter θ ∈ Rp for a fixed x. Noting g : θ 7→ fθ(x) we have for
h ∈ Rp and any η > 0,

g(θ + ηh) = g(θ) + η
(
g′(θ;h) + ε(η)

)
(16)

where ε is a function that goes to zero when η goes to zero. Hence, we are left
with finding in which direction h we need to move the parameter θ in order to
ensure g(θ+ηh) < g(θ) for η sufficiently small. Whereas this was straightforward
when g′(θ;h) = 〈∇g(θ), h〉 in Equation (5), the problem is open when g′(θ; ·)
is not linear. The purpose of the next section is to focus on this problem in the
case of morphological neural networks.

3 Recall that o0(h) denotes h · ε(h) where ε is any function that goes to zero when h
goes to zero.
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5 Optimization with the Bouligand derivative

5.1 Derivatives of the morphological layers

The Bouligand derivatives of the dilation and erosion layers with respect to their
input values and parameters, are well known in the nonsmooth optimization
literature [14], since they are easy examples of piecewise affine functions for
which formulas exist. Here we provide some details of their computation, that
will matter in addressing the problem stated in the previous section. We focus
on the dilation layers, the case of erosions being analogous.

With the same notations as in Section 2, we denote by x ∈ Rn andW ∈ Rm×n
the input vector and parameter matrix of a dilation layer. We will note δW (x)
to clarify that we are considering a function of x with fixed parameter W , and
δx(W ) for a function of W with fixed x.

Derivative with respect to W An interesting property of δx is that, if we
move away from W in the direction H ∈ Rm×n, with a sufficiently small step
η ≥ 0, δx(W+ηH) shows an exact affine behaviour. Proposition 1 below provides
a sufficient and necessary condition on the step η for this to hold. It will also
provide the Bouligand derivative of δx.

Given a fixed x ∈ Rn and a variableW ∈ Rm×n we note δx(W ) =
(
ϕx,i(W )

)
1≤i≤m

with
ϕx,i(W ) := max

1≤j≤n
wij + xj . (17)

Additionally, for each index 1 ≤ i ≤ m, let us note

JWi,x := {j ∈ {1, . . . , n}, ϕx,i(W ) = wij + xj} (18)

the set of indices where the maximum is achieved in ϕx,i(W ). When W and x
will be clear from the context, we shall just denote it by Ji.
Let H ∈ Rm×n. Then for each 1 ≤ i ≤ m, we also introduce the set

Ki :=

{
k ∈ {1, . . . , n}, hik > max

j∈Ji
hij

}
. (19)

Then we have the following result:

Proposition 1 For fixed W,H ∈ Rm×n and x ∈ Rn, let ϕx,i, Ji and Ki as
defined by (17), (18) and (19) respectively for 1 ≤ i ≤ m. Let

εi = min
k∈Ki

ϕx,i(W )− (wik + xk)

hik −maxj∈Ji hij
, 1 ≤ i ≤ m, (20)

and ε = min1≤i≤m εi. Then, for any η ∈ R+ we have

η ∈ [0, ε] ⇐⇒ δx(W + ηH) = δx(W ) + η

(
max
j∈Ji

hij

)
1≤i≤m

. (21)
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Proof (Proposition 1). Let η ∈ R+, and let us note b := (maxj∈Ji hij)1≤i≤m.

Then δx(W + ηH) = δx(W ) + ηb if and only if ϕx,i(W + ηH) = ϕx,i(W ) + ηbi
for all 1 ≤ i ≤ m. Now, the left-hand term writes

ϕx,i(W + ηH) = max

(
max
j∈Ji

wij + xj + ηhij ,max
k/∈Ji

wik + xk + ηhik

)
. (22)

Since by definition ϕx,i(W ) = wij + xj for any j ∈ Ji, we get

ϕx,i(W + ηH) = max

(
ϕx,i(W ) + ηbi, max

k/∈Ji
wik + xk + ηhik

)
. (23)

Therefore ϕx,i(W +ηH) = ϕx,i(W )+ηbi if and only if for any k /∈ Ji, ϕx,i(W )+
ηbi ≥ wik + xk + ηhik which is equivalent to η ≤ εi, and the result follows. ut

Given the definitions of Section 4, Proposition 1 readily gives that δx is
Bouligand differentiable everywhere and its B-derivative is

δ′x(W ;H) =

(
max
j∈Ji

hij

)
1≤i≤m

. (24)

Furthermore, with the notations of Proposition 1,

η ∈ [0, ε] ⇐⇒ δx(W + ηH) = δx(W ) + ηδ′x(W ;H). (25)

It appears that for anyW such that Ji = {ji} is a singleton for each 1 ≤ i ≤ m
(the maximum is achieved only once for each ϕx,i), δ

′
x(W ;H) is a linear function

since maxj∈Ji hij = hiji = 〈Hi,:, eji〉, where eji is the vector with a one at index
ji and zeros elsewhere. Hence in that case δx is Fréchet differentiable. One can
check4 that this happens for almost every W .

Derivative with respect to x With the same approach as previously, one can
show that δW is B-differentiable with respect to x, and its B-derivative is, for
all h ∈ Rn,

δ′W (x;h) =

(
max
j∈Ji

hj

)
1≤i≤m

, (26)

Furthermore, for a fixed h ∈ Rn, changing only hij and hik for hj and hk in (19)
and (20), it comes that for any η ∈ R+

η ∈ [0, ε] ⇐⇒ δW (x + ηh) = δW (x) + ηδ′W (x;h). (27)

Again, δ′W (x;h) is a linear function of h as soon as the maximum is achieved
only once in {wij + xj , 1 ≤ j ≤ n}, i.e. Ji = {ji}, for each 1 ≤ i ≤ m. In that
case maxj∈Ji hj = hji = 〈h, eji〉, hence δ′W (x;h) = Eh, where E is the matrix
whose rows are the ejis. Again, this case holds for almost every x.

4 Indeed the set of matrices for which the maximum in ϕx,i(W ) is achieved more than
once, for a given i, is of zero Lebesgue measure.
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5.2 Updating the parameters

Problem setting. Let us focus on the update of the parameter W of the
dilation layer δW : Rn → Rm. In the context of the chain rule, we assume that
later layers (those closer to the output) have transmitted an instruction direction
u ∈ Rm, and δW is supposed to modify its parameter W ← W + ∆W so that
δx(W +∆W )− δx(W ) maximizes the inner product with u. More formally, just
as in Eq. (6), we want to solve

∆W = arg max
‖H‖=1

〈δ′x(W ;H),u〉 , (28)

where ‖·‖ denotes the Frobenius norm and, this time, we consider the Bouligand
derivative (24) computed earlier. The reason for which we are faced with the same
problem as with Fréchet derivative, is that the Bouligand one also provides the
first order approximation (12). Without loss of generality, we assume ‖u‖ = 1.

Solving (28) does not seem straightforward but an attempt could start by
noticing that

‖δ′x(W ;H)‖2 =

m∑
i=1

(
max
j∈Ji

hij

)2

≤
m∑
i=1

n∑
j=1

h2ij = ‖H‖2 (29)

hence ‖δ′x(W ;H)‖ ≤ 1 for ‖H‖ = 1, therefore 〈δ′x(W ;H),u〉 ≤ ‖u‖ = 1.
This upper-bound is obviously achieved when δ′x(W ; · ) is linear (i.e. δx is
F-differentiable at W ), and for H such that hiji = ui, 1 ≤ i ≤ m, and zero
elsewhere, where we recall that in the F-differentiable case, ji is the only index
achieving the maximum in ϕx,i(W ), i.e. Ji = {ji}. Indeed in that case, ‖H‖ = 1
and δ′x(W ;H) = u.

Proposition of candidates ∆W . In the non-F-differentiable case (i.e. when
at least one Ji has more than one element), without analytically solving (28),
we can at least propose decent candidates, inspired by the F-differentiable case.
Let I+ := {1 ≤ i ≤ m,ui ≥ 0}, I− := {1 ≤ i ≤ m,ui < 0} and for 1 ≤ i ≤ m let
us note pi := |Ji| the number of indices achieving the maximum in ϕx,i(W ). To
make δ′x(W ;H) similar to u while keeping ‖H‖ = 1, we propose:

– For i ∈ I+, set hij0 = ui for any one j0 ∈ Ji, and zero for j 6= j0
– For i ∈ I−, set hij = ui√

pi
for all j ∈ Ji, and zero for j /∈ Ji.

Any such H verifies ‖H‖ = 1 and

〈δ′x(W ;H),u〉 =
∑
i∈I+

u2i +
∑
i∈I−

u2i√
pi

= 1−
∑
i∈I−

(
1− 1
√
pi

)
u2i . (30)

We see that this quantity gets closer to one as the pi get closer to one, and
we recover the optimal bound in the F-differentiable case, which corresponds to
pi = 1 for all 1 ≤ i ≤ m, or when all ui ≥ 0. Furthermore, we have the lower
bound 〈δ′x(W ;H),u〉 ≥ 1√

n
> 0, which is the left hand part of property (9).

Note that numerical experiments show that better H can be found (for example
in the neighbourhood of the proposed ones).
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Choosing the learning rate. Recall that solving problem (28) is relevant as
long as a good first order approximation δx(W + ηH) ≈ δx(W ) + ηδ′x(W ;H)
holds, since only in this case does the parameter update ensure a change in the
output value towards a descent direction. Proposition 1 provides the exact range
of learning rates for which this approximation is an equality. For our proposed
H, it holds if and only if η ∈ [0, ε] ∩ R+, with

ε = min
i∈I−

ηi
√
pi

|ui|
. (31)

5.3 Message passing

Problem setting For the message passing, we are first faced with the same
problem as (7) for F-differentiable functions, but with the B-derivative. Namely,
given the received target direction u, we want to find the best update direction
∆x for x,

∆x = arg max
‖h‖=1

〈δ′W (x;h),u〉 . (32)

Assuming we can find a good enough h, which would ensure 〈δ′W (x;h),u〉 ≥ 0,
i.e. the right hand part of property (9), then we have another problem, which is
to guarantee property (10): that if 〈v,h〉 ≥ 0 for some v, then 〈δ′W (x;v),u〉 ≥ 0.
To make sure the chain rule works, we could therefore focus on the problem

Find h ∈ Rn such that

 ‖h‖ = 1
〈δ′W (x;h),u〉 ≥ 0

∀v ∈ Rn, 〈v,h〉 ≥ 0⇒ 〈δ′W (x;v),u〉 ≥ 0.
(33)

Proposition of candidates ∆x Recall that δ′W (x;h) = (maxj∈Ji hj)1≤i≤m,

hence contrary to the case of parameter update (Section 5.2), the same hj can
contribute to different Ji, which makes a heuristic construction of h much more
complicated. One exception is the case where the sets JWi,x are pairwise dis-
joint, as with the max-pooling layer with strides, for which the same kind of
construction as in Section 5.2 can be done. However, this guarantees only the
first two conditions of (33), but we cannot say much about the last one.

At this stage we have no provable solution for (33) except, obviously, in the
F-differentiable case, where each Ji is a singleton {ji}. In that case, as presented
in Section 5.1, δ′W (x;h) = Eh, where E is the m×n matrix whose rows are the
ejis, each eji being the vector with a one at index ji and zeros elsewhere. Hence

the solution of (32), and a solution of (33), is h = ETu
‖ETu‖ if ETu 6= 0, and any

unit vector h otherwise.
Therefore we propose as update candidate, one that generalizes the F-differentiable

case, namely h = ETu
‖ETu‖ but with E the matrix whose i-th row is Ei,: =

∑
j∈Ji ej .

Numerical experiments show that this proposition can sometimes violate the last
two conditions of (33), but often behaves well.
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Choosing the learning rate Hoping that the chosen h fulfills (33), we make
the best of it by choosing a learning rate ensuring the first order equality (27).
Hence once again we follow the construction inspired by Proposition 1. The

choice of h = ETu
‖ETu‖ yields no simplification of the expression of ε.

5.4 The convolutional case

The definitions (1) and (2) cover translation invariant dilations and erosions, as
soon as W ∈ Rn×n is a Toeplitz matrix. However, in Section 5.2, we assumed
no “shared weights”, i.e. each row of W was considered independent from the
others, which allowed an easy choice for the parameter update.

To model the constraint on W due to translation invariance, we assume δW
is represented by a vector w ∈ Rp, p ≤ n, and the input variable x ∈ Rn is now
seen as a matrix X ∈ Rn×p containing n blocks of length p. The dilation now
writes

δw(X) = δX(w) :=

(
max
1≤j≤p

xij + wj

)
1≤i≤n

. (34)

Unfortunately, we see that even for the parameter update, which was rather
favorable in the “dense” layer case of Section 5.2, we are in the same situation as
in the message passing of Section 5.3, in the sense that finding good candidate for
∆w is as difficult as solving (32). We would therefore apply the same heuristics,

i.e. h = ETu
‖ETu‖ , where Eij = 1 if j achieves the maximum in max1≤j≤p xij + wj

and zero elsewhere. Concerning the learning rate, (27) holds.

5.5 Practical consequences

Position in the network, dense or convolutional layer. We saw that the
chain rule mechanism is not guaranteed with morphological layers because of
uncertainties in the message passing in general, and even in the parameter up-
date for convolutional operators. Therefore, we expect better performance as a
morphological layer is closer to the input of the network, and even more so if it is
a dense layer. Typically, starting a neural pipeline with a dense dilation or ero-
sion is the most favorable case with the update and learning rate propositions of
Section 5.2. Furthermore, if each morphological layer is seen as a noisy message
transmitter, then it is expected that many such layers in the same network may
be hard to train with the chain rule paradigm.
Initialization In both the dense and convolutional cases, according to our
propositions or even in the F-differentiable case, a parameter coefficient is not
updated if it does not contribute to a maximum. In the dense case, wij is not
modified if j /∈ Ji, and in the convolutional one, wj remains unchanged if j /∈ Ji
for all i. In particular, if such coefficient is moved to −∞, it will never be updated
anymore. Now, consider for example that if the input variable x has values in
[0, 1] and at least one weight wij1 ≥ 0, then the closer another weight wij2 , on
the same line, will be to −1 the less likely it will be to achieve the maximum,
and wij2 ≤ −1 is equivalent to wij2 = −∞. Therefore it seems preferable to
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initialize the parameters with non-negative values (typically, zero if input values
in [0, 1]). Then, the proposed adaptive learning rates should avoid a divergence
of weights to values from where they cannot come back.

6 Conclusion

In this paper we investigated the optimization of morphological layers based
on the Bouligand derivative and the chain rule. We showed that despite the
first order approximation of the B-derivative, its non-linearity makes morpho-
logical layers noisy message transmitter in the chain rule, where they are not
F-differentiable. We clearly stated the problems to overcome in order to make
this framework compatible with the chain rule. We also provided insights regard-
ing the choice of the learning-rate for these layers, which seems much clearer than
with classic layers. Future work will deal with addressing the stated problems and
show the experimental consequences of the theoretical results presented here.
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