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ABSTRACT

The grouping of non-coding RNAs into functional classes started in the 1950s with housekeeping
RNAs. Since, multiple additional classes were described. The involvement of non-coding RNAs in
biological processes and diseases has made their characterization crucial, creating a need for com-
putational methods that can classify large sets of non-coding RNAs. In recent years, the success of
deep learning in various domains led to its application to non-coding RNA classification. Multiple
novel architectures have been developed, but these advancements are not covered by current litera-
ture reviews. We propose a comparison of the different approaches and of non-coding RNA datasets
proposed in the state-of-the-art. Then, we perform experiments to fairly evaluate the performance
of various tools for non-coding RNA classification on two popular datasets. With regard to these
results, we assess the relevance of the different architectural choices and provide recommendations
to consider in future methods.

Keywords non-coding RNA, non-coding rna classification, deep learning

Introduction

The classification of non-coding RNAs (ncRNAs) in groups with similar functions started in the 1950s, with the
discovery of tRNAs (transfer RNAs) and rRNAs (ribosomal RNAs) [1]. The description of other ncRNA classes
involved in cell maintenance followed, but research still mainly focused on protein-coding genes. In the 2000s, efforts
like the Human Genome Project [2] highlighted that 98% of the genome is non-coding. Consequently, attention
started to turn to ncRNA. Novel classes of ncRNA with regulatory functions, like miRNA (microRNA) or lncRNA
(long ncRNA), were described. Studies have shown that ncRNAs are implicated in various biological processes and
diseases [3, 4, 5], underscoring their potential as biomarkers and therapeutic targets and thus, the need to characterize
them. Relative to the fact that most of the genome is non-coding, the number of well characterized ncRNAs is low.
This context creates a need for computational methods that can rapidly handle a large amount of ncRNAs. To this aim,
different computational ncRNA classifiers have been developed over the years.

The term ‘ncRNA classification’ can have different meanings in the literature. It can refer to the identification of
ncRNAs, i.e., separating coding from non-coding RNAs [6, 7, 8, 9]. It can also refer to the identification of one
specific class of ncRNA in a dataset, or class-specific prediction [10, 11, 12, 13, 14, 15]. A third use of the term is
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for multi-class classification, taking as input a set of ncRNAs and associating each one to a ncRNA class, which this
review focuses on.

There are many classes of ncRNAs, and multiple levels of description. Generally, ncRNAs are sorted into relatively
large groups that share characteristics and should perform a common function. For example, tRNAs have a distinctive
three-leafed clover structure, and their function is to carry amino acids to the ribosome for protein synthesis. MiRNAs
are around 22nt long, their precursors have a hairpin structure, and they serve as mRNA silencers. It is difficult to
quantify these classes, but among the most recognized we can cite the following twelve: IRES, lncRNA, miRNA,
piRNA, rRNA, riboswitch, ribozyme, scaRNA, siRNA, snRNA, snoRNA, tRNA. To this day, there is no exhaustive
ncRNA classification: new classes can be discovered, and existing classes can be further subdivided. One ncRNA
class suffers particularly from this lack of definition: lncRNAs, simply defined as sequences longer than 200nt. In
current annotations of the human genome, they represent around 60% of non-coding genes, or a total only 20% lower
than that of protein-coding genes [16]. Furthermore, many have not yet been annotated. RNAs belonging to this class
are disparate and can have multiple functions. Due to this lack of precision around lncRNAs, ncRNA classifiers tend
to focus on classes of small ncRNAs (sncRNAs) such as the ones cited earlier: rRNAs, tRNAs, miRNAs.

Multiple reviews have described the different ncRNA classification approaches over the years [17, 18]. In 2017, deep
learning (DL) started being employed for ncRNA classification, and has since become prevalent. To date, there exists
no review of DL-based ncRNA classifiers. Performance comparisons are presented in tool publications, but they
present several flaws: most papers use the results introduced in older articles instead of re-executing tools, even when
experimental protocols are not comparable (some results are obtained on a held-out test set, others are averaged over
ten-fold cross-validation). These issues render the performances presented incomparable.

This paper intends to fill a gap in the literature, providing a review of the different deep learning approaches, as well
as a fair comparison of performance. The first section describes the different DL methods developed for ncRNA
classification, and the following introduces the different existing datasets. We then provide a performance comparison
of state-of-the-art methods on selected datasets among those presented. We discuss the relevance of the different
approaches in the next section, before some concluding remarks.

1 State-of-the-art of DL ncRNA classifiers

In a 2017 review by Zhang et al. [18], three categories of methods are described:

• Homology-based methods, which classify ncRNAs based on evolutionary conservation [19, 20, 21]. These
are based on sequence or structure alignment algorithms. These methods are limited, as they can only be used
for well-known and well-conserved classes.

• De novo methods, based on feature information from the sequence or secondary structure. Until a few years
ago, methods were based on standard Machine Learning (ML) algorithms, like Support Vector Machines [22]
and Random Forest [23]. These rely on feature extraction, with the choice of features being critical.

• Transcriptional sequencing-based methods were developed to take advantage of the data created by Next-
Generation Sequencing technologies. These methods could also be based on alignment or standard ML
algorithms, but taking as input raw sequencing data [24, 25, 26, 27].

With the development of DL, de novo methods rose in popularity, taking inspiration from fields like computer vision
and natural language processing. One important deviation from earlier methods is that feature extraction, a step that
used to have a great impact on performance, is no longer required for DL methods: the network itself can extract
relevant information from a simple representation of the data. Existing approaches are summarized in Figure 1, and
details are given below.

The success of CNNs (Convolutional Neural Networks) motivated the development of multiple CNN-based methods
for ncRNA classification: nRC [28], ncRDeep [29], ncrna-deep [30], RPC-snRC [31], ncRDense [32] and imCnC [33].
nRC, published in 2017, was the first method to use DL in the context of ncRNA classification. As input, ncRNAs
are represented by vectors, containing information on the presence in the secondary structure of discriminative sub-
structures (identified by the MoSS algorithm [34]). The method is based on the succession of two convolutional
layers to extract relevant information, and FCLs (Fully-Connected Layers) for classification. Proposed three years
later, ncRDeep is another method based on two convolutions followed by FCLs. However, the input is a simple
representation of the sequence, a matrix created from one-hot encodings of nucleotides. In the method ncrna-deep1,
the number of convolutional layers rises to five. Authors tested multiple sequence encodings (space-filling curves

1This method is unnamed, we refer to it using the name of its GitHub repository.
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Figure 1: Overview of existing approaches for ncRNA classification. Methods are represented depending on the
type of data they use (secondary structure, sequence, or other), and the type of DL architecture they are based on
(CNN, RNN, both, or other).

or one-hot encoding of k-mers2 of length 1, 2 or 3 present in the sequence). A one-hot encoding of 1-mers, which
corresponds to the same representation as ncRDeep, was selected for its superior results. This representation is also
used by RPC-snRC, and fed to three consecutive Dense blocks (based on DenseNets, multiple convolutional layers
with dense connections), with a final FCL for classification. ncRDense is an evolution of ncRDeep. In addition to
sequence information, the method includes a second input: a matrix with multiple representations of nucleotides and
one-hot encoding of the secondary structure. Both inputs are processed with independent DenseNets and merged. A
final convolutional layer is followed by FCLs for classification. imCnC stands out as a multi-source CNN. Based on
the idea that ncRNAs are related to chromatin states and epigenetic modifications, the approach builds a CNN for each
input source (such as the sequence and different epigenetic information), before merging representations to classify
samples with FCLs.

RNNs (Recurrent Neural Networks) are popular models for text representation. RNA sequences can be viewed as
sentences, making the use of RNNs relevant to extract meaningful information from ncRNAs, as done by the methods
ncRFP [35] and NCYPred [36]. ncRFP uses a bi-LSTM (bidirectional Long Short-Term Memory), a subtype of RNNs.
When learning a representation for a nucleotide, it is able to take into account close and distant elements, parsing the
sequence both forward and backward. An attention mechanism allocates more weight to important information, and
FCLs are used for classification. NCYPred also uses a bi-LSTM and FCLs for classification. The main difference
between the two is that in ncRFP, each nucleotide is encoded separately, while in NCYPred, the sequence is first
transformed into overlapping 3-mers, and it is these 3-mers that are then encoded.

Several methods combine both approaches, using RNNs for sequence representation, from which CNNs extract rel-
evant information. This is the case for ncDLRES [37], ncDENSE [38] and MFPred [39]. ncDLRES is an updated
version of ncRFP’s architecture. The bi-LSTM is replaced by a dynamic LSTM, which only parses the sequence in the
forward sense, but has the advantage of allowing inputs of varying length. For classification, the FCLs are replaced
by a ResNet (Residual Neural Network), which is composed of multiple convolutional layers with skip connections.
ncDENSE further evolves that architecture, replacing the dynamic LSTM by a dynamic bi-GRU, and the ResNet by
a DenseNet. Dynamic bi-GRUs (Gated Recurrent Units) are RNNs that are faster than LSTMs. MFPred proposes
a rich input representation: sequences are encoded into four sets of features, each processed by a dynamic bi-GRU,
reshaped into matrices, and fused. Compared to ncDENSE, the DenseNet part is replaced by a variant of ResNets,
called SE ResNet (Squeeze and Excitation ResNet), which models interdependencies between the four matrices of
learned sequence encodings.

Two existing methods do not fall into the above categorization: RNAGCN [40] and RAG+DL [41], both based on
graphs. Taking the secondary structure as input, RNAGCN uses a GNN (Graph Neural Network) with FCL for
classification. GNNs are able to learn meaningful representations of non-Euclidean data. RNAGCN is, to date, the
only method directly using ncRNA secondary structure without manual feature extraction, removing a source of error.
The approach RAG+DL3 is based on features extracted from the secondary structure. Authors propose a protocol to

2A k-mer is a subsequence of k nucleotides.
3This method is unnamed, we refer to it by naming its two components.
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obtain a rich graph-theory-based representation of structures, which they name RNA-As-Graphs (RAG). Other than
the extensive feature preparation step, the method is based on a simple DL network of five FCLs.

As summarized in Figure 1, non-coding RNAs are often represented by their sequences. Their structures can also
be used. Only one method uses another source of data, namely epigenetic marks. Two strategies emerge for input
representation: the first is to encode data as a simple one-hot encoded matrix, while the other is to employ an RNN
to learn a more complex representation. Classification is then usually performed with a CNN. Two state-of-the-art
methods do not rely on CNNs or RNNs, and employ either a GNN or a simple succession of FCLs.

2 State-of-the-art datasets

ncRNAs can be viewed through different lenses. Their sequences, secondary and tertiary structures, as well as their
expressions, or epigenetic modifications, all carry information. However, these different data types can be more or
less accessible. Most recent datasets for ncRNA classification focus on the sequence. It has the advantage of being
available in online databases in high quantity (e.g., almost 35 million sequences in the RNAcentral [42] database). An
RNA’s sequence can also be used to infer its secondary structure. Indeed, due to a lack of experimentally validated
structures for ncRNAs, it is common to predict secondary structure from the sequence. This can be done using external
algorithms [43, 44, 45].

The state-of-the-art comprises several datasets presented along with methods from the previous section.

The first dataset was proposed in 2017 by Fiannaca et al. [28], along with the nRC tool. Sequences were downloaded
from the 12th release of the Rfam database [46] and the CD-HIT tool [47] was used to remove redundant sequences. A
random selection was carried out to obtain (almost-) balanced classes, with a final size of 8,920 sncRNAs spanning 13
classes. Since its proposal, nRC’s dataset has been used by other tools to assess performance: in fact, all state-of-the-
art methods from the previous section use nRC’s dataset, except for RAG+DL. The appeal of this dataset is that there is
a reasonable number of widely accepted classes to represent a variety of sncRNAs while returning intelligible results.
However, this dataset presents a major flaw: 347 ncRNA are present in both the training and the test set (representing
respectively 5.5% and 13.3% of the sets). This kind of data leakage casts doubt upon the performances reported by
the various tools.

Boukelia et al. [33] constructed a second dataset in 2020, as their method imCnC does not solely rely on ncRNA
sequences, but also includes other data sources for the additional data types used in the algorithm. This dataset
contains 42,000 sequences of human ncRNAs downloaded from Rfam 13 [48]. It also includes four types of epigenetic
modifications: DNA methylation, histone methylation, histone acetylation, and binding factors and regulators related
to histones (from DeepBlue [49] and HHMD [50] databases). In total, 16 sncRNA classes are represented. This dataset
only includes human ncRNAs, while multiple species are represented in the other datasets presented in this section.
The inclusion of epigenetic data is novel, and a benefit: the authors’ experiments show a gain in performance when
including epigenetic information in addition to the sequence. This means that epigenetic data is relevant for ncRNA
classification, and could be used to further characterize the different classes.

The same year, along with the ncrna-deep method, Noviello et al. [30] proposed a dataset in which ncRNAs are
classified into 88 Rfam families. These families are defined as groups with RNAs that are evolutionarily conserved,
have evidence for a secondary structure, and have some known function. They can sometimes be extremely specific.
These families can be distributed among what authors call ‘macro-classes’, which correspond to the sncRNA classes
used in other datasets. A total of 306,016 sequences are present in the dataset, making it the largest state-of-the-art
dataset.

In 2021, Sutanto et al. [41] curated a new dataset with sequences from Rfam 14.1 [51]. Duplicates were removed,
as well as sequences that could not be processed with the tool they use to predict secondary structure, as authors are
interested in secondary structure motifs. Then, CD-HIT [47] was used to remove redundancy in the dataset. In total,
the dataset comprises 59,723 RNAs representing 12 classes.

The most recent dataset, from 2023, was proposed by Lima et al. [36] along with the tool NCYPred. It was built
following the same protocol as nRC’s dataset but with updated data. Using Rfam 14.3 [51], authors were able to
multiply by 5 the number of ncRNAs in the dataset, obtaining 45,447 ncRNAs split into a training set and a test set.
Note that in this dataset, classes are not balanced (some are represented by more than 5,000 examples, while others
have less than 500). Another difference with nRC’s dataset is that authors excluded two classes (scaRNA and IRES),
citing the poor results of their method on these classes. Instead, two new classes were added (Y RNA and Y RNA-like).
This dataset was used by one other recent method, MFPred [39].
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Method Usage

nRC [28] Web server: X – Source code: ✓– Training: ✓
Docker container: https://hub.docker.com/r/tblab/nrc/, GitHub repository: https:
//github.com/IcarPA-TBlab/nrc. The tool is easy to use: no pre-formatting of data is
required, the commands are documented and an example is given.

RNAGCN [40] Web server: X – Source code: ✓– Training: ✓
GitHub repository: https://github.com/emalgorithm/ncRNA-family-prediction.
The method is easy to use, as the process is documented. However, to use the tool on a new
dataset, an outside tool has to be used to obtain secondary structures, which then need to be
formatted correctly before using RNAGCN.

ncRFP [35] Web server: X – Source code: ✓– Training: ✓
Though not mentioned in the article, a GitHub repository exists: https://github.com/
linyuwangPHD/ncRFP. Regarding ease of use, the documentation provided is short and does
not clearly show which commands to run. Variables and hyperparameters are fixed inside the
code and cannot be easily modified.

imCnC [33] Web server: X – Source code: ✓– Training: ✓
GitHub repository: https://github.com/BoukeliaAbdelbasset/imCnC. No instructions
or examples of how to use the tool are given.

ncRDeep [29] Web server: ✓– Source code: X – Training: X
Web server: https://nsclbio.jbnu.ac.kr/tools/ncRDeep/. Although not mentioned
on the site, there is a limit of 1,000 ncRNA per prediction task. Moreover, it is not possible to
export results.

ncrna-deep [30] Web server: X – Source code: ✓– Training: ✓
GitHub repository: https://github.com/bioinformatics-sannio/ncrna-deep.
Dataset preparation has to be done separately, but the process is explained and illustrated in the
documentation and in the code.

RAG+DL [41] Web server: X – Source code: X – Training: X
The repository containing the dataset and source code no longer exists.

ncRDense [32] Web server: ✓– Source code: X – Training: X
Web server: https://nsclbio.jbnu.ac.kr/tools/ncRDense/. Although not mentioned
on the site, there is a limit of 1,000 ncRNA per prediction task. Moreover, it is not possible to
export results.

ncDLRES [37] Web server: X – Source code: ✓– Training: ✓
GitHub repository: https://github.com/linyuwangPHD/ncDLRES. No examples of how
to use the tool, but very basic instructions are given.

RPC-snRC [31] Web server: X – Source code: X – Training: X
The GitHub repository linked in the paper no longer exists.

NCYPred [36] Web server: ✓– Source code: ✓– Training: ✓
Web server: https://www.gpea.uem.br/ncypred, GitHub repository: https://github.
com/diegodslima/NCYPred. The web server is easy to use and results can be exported. Many
elements are given in the source code, but due to missing files, the code cannot be used.

ncDENSE [38] Web server: X – Source code: ✓– Training: ✓
GitHub repository: https://github.com/ck-fighting/ncDENSE. No examples of how to
use the tool are given.

MFPred [39] Web server: X – Source code: ✓– Training: ✓
GitHub repository: https://github.com/ck-fighting/MFPred. Dataset preparation has
to be done separately with scripts provided. Many files are in the repository, but the documen-
tation is lacking, making it difficult to know how to use the tool.

Table 1: Description of the availability and ease-of-use of ncRNA classification tools. Each cell indicates if the
tool is accessible through a web server, if source code can be downloaded, and if the tool can be re-trained. All links
have been checked at the time of writing (November 2023).

The comparison between state-of-the-art datasets can be summed up to three key points: origin of data, redundancy
and diversity of sequences, and class definition. As one of the largest databases on ncRNAs, all datasets use Rfam
as their starting point, with more recent releases containing more sequences. imCnC’s dataset [33] also integrates
other databases for epigenetic data. Three of the five datasets ([28, 41, 36]) use the CD-HIT tool [47] to remove
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redundant sequences. CD-HIT uses a predefined threshold to create groups of similar sequences, and removes all but
one sequence per group from the dataset. In all cases, the threshold was set to 80%. This step restricts the size of the
dataset, but only removes examples that would not have been informative, while maintaining diversity. Models trained
on these datasets could therefore be more efficient without sacrificing performance. Some datasets remove sequences
containing degenerate nucleotides ([30, 36]), while the others do not. Degenerate nucleotides are interesting to include
in state-of-the-art datasets, as they can be present in sequences from databases. As for the classification task, most
datasets represent around 13 commonly-used sncRNA classes, that group ncRNAs that share a function while not
being too specific. Only ncrna-deep’s dataset [30] differs, including many more classes. While providing a more
precise functional annotation, these classes have the disadvantage of not all being on the same level of detail, with
some classes being more broad and others very specific.

3 Benchmark

This section presents a comparison of different DL tools for ncRNA classification in terms of accessibility and perfor-
mance.

3.1 Tools

Most tools propose an online version of their tool, as presented in Table 1. Either source code is shared and has to
be installed, or there is a web server that can be used directly. Sharing source code has the advantage of allowing
to re-train the model on different datasets. However, executing the code is sometimes complicated and can require a
certain expertise. With web servers, users can upload their ncRNAs of interest, and a class prediction will be returned,
without re-training the method. Web servers are easier to use as they require no installation, but they might be less
effective on new data.

In the following, we assess the quality of prediction of six methods: nRC [28], RNAGCN [40], ncrna-deep [30],
ncRDense [32], NCYPred [36] and MFPred [39]. RAG+DL [41] and RPC-snRC [31] are not available and thus
cannot be tested. For a fair comparison, we need to be able to compare tools on the same datasets – this cannot be
done for imCnC [33], the only tool to require epigenetic data, thus it is not included in this comparison. Finally, for
tools that were developed by the same group, ample comparisons between old and new versions are already available.
This concerns on one hand ncRDeep [29] and ncRDense [32], and on the other hand ncRFP [35], ncDLRES [37],
ncDENSE [38] and MFPred [39]. In both cases, we chose to use the latest version: ncRDense and MFPred.

Out of the methods included, nRC, RNAGCN, ncrna-deep and MFPred were re-trained before predicting each dataset.
Moreover, we tested different hyperparameters for nRC, RNAGCN and ncrna-deep, as listed in Table 2, and reported
the best results. The same could not be done for MFPred as parameter values are fixed directly in the code, and no
directions are given on how to change them or what to change. ncRDense and NCYPred were only accessible to us as
web servers, so they could not be re-trained, and were only used for prediction.

Method Hyperparameters
nRC Range of size of substructures {(2-4), (3-5)(1,2)}, number of kernels in the first {10(2), 20(1)} and

the second {10, 20(1,2)} convolutional layers.
RNAGCN Size {64(2), 80(1), 128} and type {MPNN, GIN(2), GCN, GAT(1)} of graph convolutions.

ncrna-deep Sequence encoding: {1-mer(1,2), 2-mer, snake, hilbert, morton}.
Table 2: Overview of tested hyperparameters. Parameters that gave the best results on Dataset1 are denoted by (1),
and same with (2) for Dataset2. Default values were used for parameters not listed.

3.2 Datasets

We select state-of-the-art datasets to perform this comparison. Out of the five datasets described in the previous section,
three have been made available publicly: nRC’s dataset, NCYPred’s dataset, and ncrna-deep’s dataset. A summary of
these datasets is given in Table 3.

We present a comparison of performance on two of these datasets: nRC’s dataset (designated Dataset1) and NCYPred’s
dataset (Dataset2). These datasets contain similar, widely accepted classes of sncRNAs. A breakdown of the compo-
sition of these datasets is presented in the appendix. As stated, Dataset1 presents an issue of data leakage, which we
fix by removing from the test set the 347 sequences that were also present in the training set. We confirmed that the
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Source Size Nb Cl Nb Uses Lengths
nRC [28] 8,920 13 12 38-1182

ncrna-deep [30] 306,016 88 1 1-80
NCYPred [36] 45,447 13 2 42-500

Table 3: Summary of available datasets for ncRNA classification. Datasets are sorted by date, with the name of the
tool they were published with. The number of instances and classes in each dataset is given. We indicate how many
times the dataset has been used by state-of-the-art ncRNA classifiers. Finally, we give the range of sequence lengths.

same issue was not present in Dataset2. When possible, methods were trained on the full training set, before obtaining
predictions on the held-out test set. An exception was made for MFPred and NCYPred, as these methods cannot han-
dle degenerate nucleotides, which are present in Dataset1. In that case, sequences with degenerate nucleotides (159 in
the training set and 64 in the test set) had to be removed to use these two tools, and prediction performance was set to
0.

3.3 Metrics

Performance is measured with Accuracy, MCC (Matthews Correlation Coefficient), F1-score, Precision, Recall (or
Sensitivity) and Specificity. For the last four metrics, we use the macro averaging generalization for multi-class
problems, where scores are computed on each class separately, then averaged. The six scores are defined as follows:

Accuracy =
1
C

∑C
c=1 TPc

S

MCC =
(
∑C

c=1 TPc) ∗ S −
∑C

c=1(pc ∗ tc)√
(S2 −

∑C
c=1 p

2
c)(S

2 −
∑C

c=1 t
2
c)

F1-score =
1

C

C∑
c=1

TPc

TPc + 0.5(FPc + FNc)

Precision =
1

C

C∑
c=1

TPc

TPc + FPc

Recall =
1

C

C∑
c=1

TPc

TPc + FNc

Specificity =
1

C

C∑
c=1

TNc

TNc + FPc

where C is the number of classes and S the number of samples. Respective of class c, TPc are True Positives, FPc are
False Positives, TNc are True Negatives and FNc are False Negatives. pc is the number of times class c was predicted,
and tc is the true number of members of class c.

3.4 Overall performance

Figure 2 presents the results obtained on both datasets, according to the six metrics defined previously.

As a general trend looking at both datasets, a divide can be observed between tools that were re-trained (nRC,
RNAGCN, ncrna-deep and MFPred) and those only accessible as web servers (ncRDense and NCYPred). The for-
mer all have consistent performances across datasets, with more recent methods performing the best. For the latter,
performance is dependent on the dataset they were trained on. ncRDense was trained on Dataset1, on which it is the
third-best performing. However, it is outperformed by all other methods on Dataset2. NCYPred obtains an average
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Figure 2: Comparison of overall performance of the state-of-the-art methods on both test sets. Tools marked with
a dagger cannot predict sequences containing degenerate nucleotides, and those marked with an asterisk and separated
with a dashed line could not be re-trained before prediction.

performance on Dataset2, on which it was trained, but it underperforms on Dataset1. Overall, ncrna-deep and MFPred
consistently reach the highest scores, across the different metrics and for the two datasets.

Both datasets represent similar sncRNA classes, yet results are, in general, much better on Dataset2. This can be due
to multiple factors. The first is that Dataset2 is much larger than Dataset1. Models are trained on a larger variety of
ncRNAs, making the prediction of new examples easier. Another reason is that sequences in Dataset2 do not contain
degenerate nucleotides, which can be more difficult to handle for certain models. Finally, as the description of ncRNA
classes is an open problem, the set of classes that should be included in datasets is not fixed. While Dataset1 and
Dataset2 are mostly comparable, each includes two classes not present in the other dataset. This can impact reported
performance: for example, the two classes included solely in Dataset1 seem more difficult to predict, thus lowering
overall scores. Therefore, while results on Dataset2 are quite satisfying, it is important to keep in mind that they relate
to one set of ncRNA classes, which does not include all existing ncRNA classes.

Each tool in this benchmark was presented in a publication that showed experimental results. We compare reported
performance to the one we measured, and illustrate the difference in Figure 3. All publications use the same formula
for MCC, therefore, we base our comparison on this metric. nRC, RNAGCN, ncrna-deep, MFPred, ncRDense and
NCYPred all use Dataset1 (albeit the biased version with data leakage). Since it is more recent, only MFPred and
NCYPred show results on Dataset2.

Results on Dataset1 were significantly worse in our experiments than what was originally reported by the various
tools. These drops in performance are partially explained by the correction of the data leakage problem. Interestingly,
after our hyperparameter search, the results we obtain for RNAGCN are slightly better than the ones reported by the
method. The performance of NCYPred is significantly worse in our experiment. This could be due in part to model
training: in their benchmark, authors re-trained their tool on Dataset1, which we could not do, only having access to
the web server version. This means that two classes from Dataset1 are unknown by the model and cannot be predicted.
Moreover, sequences containing degenerate nucleotides cannot be predicted by NCYPred, further lowering the scores.

On Dataset2, reported results seem more reliable as we only observe negligible differences in MCC.
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Figure 3: Difference between MCC reported by each state-of-the-art method and MCC measured in our bench-
mark. A negative value of −x% signifies that reported MCC was x% higher than the value we measured. Tools
marked with a dagger cannot predict sequences containing degenerate nucleotides, and those marked with an asterisk
could not be re-trained.

3.5 Performance on individual classes

A great challenge in ncRNA classification is achieving high predictions across classes. When evaluating multi-class
ncRNA classification tools, it is important to analyze class-specific predictions and see how the method fares on
different classes. Figure 4 presents the F1-scores obtained for each class on both datasets using the formula:

F1-score =
TP

TP + 0.5(FP + FN)

Figure 4 emphasizes that more recent methods make more accurate predictions: ncrna-deep and MFPred make very
accurate predictions for almost all classes. RNAGCN is also able to reach high performances on Dataset2, however,
it struggles for some classes on Dataset1, perhaps needing a larger amount of examples to characterize them. The
difference in F1-score between classes is striking for nRC, which is able to predict some classes quite well, such as
Intron-gpI and 5S-rRNA, but performs poorly on other classes like miRNA (especially on Dataset1) or HACA-box.
Aside from the classes it was not trained on (IRES and scaRNA), NCYPred obtains similar performances to other
tools on Dataset1. The same cannot be said for ncRDense, which does not only fail to predict the classes it was not
trained on (Y RNA and Y RNA-like), but also obtains relatively poor performances for most other classes in Dataset2,
underscoring the fact that not allowing to re-train a tool can be detrimental.

It is interesting that, although recent tools make generally very accurate predictions, the more problematic classes are
the same as those for earlier methods: miRNA, IRES or HACA-box to name a few.

3.6 Computation time

In the following, we compare the computation time of benchmark methods, which we measure when executing the
codes, as shown in Table 4. nRC, RNAGCN, ncrna-deep and MFPred were executed on the same machine (NVIDIA
GeForce RTX 3090), with GPU acceleration for all methods but nRC which only supports CPU computation.

State-of-the-art methods require preprocessing - i.e., transforming input sequences to a format that can be handled by
the model. This additional step has to be performed before using the tool, except for nRC which includes preprocessing
in its pipeline.

nRC and MFPred have considerably longer runtimes than RNAGCN and ncrna-deep. For nRC, this can be explained
by the method’s lack of GPU support, as computation on CPU takes much longer. For MFPred, the lack of speed is
largely due to the complexity of the model: as presented previously, the data is processed by four different bi-GRUs,
before passing through the large architecture that is the SE ResNet. This represents considerably more layers than
what is used by the other methods, which naturally leads to a longer training time.
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Figure 4: Comparison of F1-score for each ncRNA class on both datasets. Tools marked with a dagger cannot
predict sequences containing degenerate nucleotides, and those marked with an asterisk could not be re-trained.

Method Prep Train Pred
nRC - 20mn 27s (±23s) 6mn 37s (±34s)

RNAGCN 6s 2mn 59s (±1.5mn) 2.8s (±1.7s)
ncrna-deep 0.29s 27s (±8s) 0.3s (±0.2s)

MFPred 4s 35mn 37s (±39s) 5s (±1s)
Table 4: Comparison of preprocessing (Prep), training (Train) and prediction (Pred) times. Times are computed
for the hyperparameter sets selected in Table 2. Times are given for 1,000 ncRNAs, averaged over both datasets. Note
that preprocessing cannot be separated from training/prediction in nRC and cannot be computed separately.

For the web servers ncRDense and NCYPred, it is difficult to measure prediction time precisely, as it depends on
multiple factors: network connection, user speed, etc. Moreover, ncRDense cannot predict more than 1,000 ncRNAs at
once, further complicating the measure of prediction time. As an order of magnitude, for 1,000 ncRNAs, we obtained
predictions in around 20 seconds with NCYPred and 30 seconds with ncRDense. No preprocessing is required.

Overall, ncrna-deep stands out, having a much lower execution time than other methods.

4 Discussion

From the different results presented in the previous section, the current recommendation for users looking to classify
ncRNAs would be to use the ncrna-deep tool, as it obtains the best results on both benchmark datasets while being the
fastest among tested methods. MFPred also performs well, although the method cannot be used on sequences contain-
ing degenerate nucleotides and its execution time is longer. nRC pioneered the use of DL for ncRNA classification
and was the tool of reference for years, but is now outperformed by more recent tools. RNAGCN, also obtaining lower
performances, brought to the field a different point of view as its GNN-based architecture stands out from the rest of
the state-of-the-art. If the goal is to classify new ncRNA datasets, we would advise against using web servers, as not
being able to re-train tools impacts performance negatively.

Several more recommendations can be formulated with regard to the development of future ncRNA classifiers.

The first choice to make in the architecture is how to represent data. All methods included in the benchmark take RNA
sequences as input, but apply different transformations. For nRC and RNAGCN, the sequence is only used to predict
the secondary structure, which is then used to classify ncRNAs. This approach is based on the widely accepted idea
that the function of ncRNAs is linked to their structure [52], and was adopted by many earlier ncRNA classifiers [22,
23]. It is interesting that this experimental observation does not translate particularly well to DL approaches, as
methods that use the structure do not give the best results in our benchmark. A potential explanation could be that
the used representation of secondary structure is not informative. Structure prediction tools propose multiple potential
secondary structures, and the structure minimizing free energy is selected. However, it is not necessarily the structure
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that the ncRNA will take in organisms. Perhaps representing RNAs with an ensemble of possible structures instead of
just one could improve classification scores.

Among methods that directly use the sequence, two representation approaches emerge in state-of-the-art methods:
using a simple matricial representation of the sequence, or learning a meaningful representation of the sequence
with RNN-based networks. These two approaches are represented in our benchmark, with ncrna-deep using a one-
hot encoding of the sequence, and MFPred using four RNNs to extract different information from the sequence.
Representation complexity is low for ncrna-deep, high for MFPred, but surprisingly their performances are almost
identical. Table 4 suggests that the simple representation should in fact be preferred, as the time gain is considerable
without any effect on performance.

While results have shown that the sequence is enough to obtain good classification results, this should not be a limit in
the development of new ncRNA methods. For example, earlier ncRNA classifiers ([24, 25, 26, 27]) used sequencing
data. The inclusion of epigenetic data by imCnC [33] also seemed promising. Indeed, while performance is an
important aspect of ncRNA classification, an additional benefit in research could be to obtain a better characterization
of classes – which includes describing them by patterns found at multiple levels, not just in the sequence. As stated in
the introduction, the description of ncRNA classes and their functions is an ongoing process, in which computational
ncRNA classifiers could be extremely useful.

Finally, there is an additional consideration regarding the evolution of ncRNA classes. The definition of the different
classes is not fixed and is still being refined. As we discover new types of ncRNAs or redefine the characteristics of
existing classes, ncRNA classification datasets are bound to evolve. In this context, it is important to propose tools
that can be applied to and evaluated on new datasets. This means developing tools that are accessible, easy-to-use, and
well-documented, and that have the option to be re-trained. Furthermore, the ability to discover new classes, or detect
similarities between existing classes, could even be integrated into new ncRNA classification approaches.

Conclusion

In this work, we review contributions to the field of computational ncRNA classification from the past six years,
discussing deep learning approaches as well as existing datasets. We also compare performance in an unbiased bench-
mark, including overall and class-specific prediction, as well as runtime. Finally, comparing the different architectures
and their results allows us to identify potential recommendations for the future of computational ncRNA classification
regarding input representation, types of data to include, and the evolution of knowledge on ncRNA classes.
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