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RNAs are essential molecules involved in numerous bio-
logical functions. Understanding RNA functions requires the
knowledge of their 3D structures. Computational methods have
been developed for over two decades to predict the 3D confor-
mations from RNA sequences. These computational methods
have been widely used and are usually categorised as either ab
initio or template-based. The performances remain to be im-
proved. Recently, the rise of deep learning has changed the
sight of novel approaches. Deep learning methods are promis-
ing, but their adaptation to RNA 3D structure prediction re-
mains difficult. In this paper, we give a brief review of the ab
initio, template-based and novel deep learning approaches. We
highlight the different available tools and provide a benchmark
on nine methods using the RNA-Puzzles dataset. We provide an
online dashboard that shows the predictions made by bench-
marked methods, freely available on the EvryRNA platform:
https://evryrna.ibisc.univ-evry.fr/evryrna/state_of_the_rnart/

RNA 3D structure | Ab initio | Template-based | Deep
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Introduction
Ribonucleic acids (RNAs) are macromolecules that play di-
verse biological roles in living organisms. RNAs are involved
in numerous physiological processes, such as protein synthe-
sis, RNA splicing, or transcription regulation, as well as in
various human diseases. RNAs also have the potential to be
used as therapeutic agents for different purposes, like cancer
(1). Understanding RNA functions is a challenging task that
has been studied for decades.

The biological function of RNA is, like protein, deter-
mined by the 3D conformation of the molecule. This folding
can be determined by experimental methods like X-ray crys-
tallography, NMR or, more recently, cryo-EM (2). Nonethe-
less, these methods are costly both in time and resources.
On the other hand, sequencing methods (like next-generation
sequencing (3)) have progressed, and a large number of se-
quences has become available, without any structural data.
As a result, there is a huge gap between the known RNA se-
quences compared to the solved 3D structures. Up to Decem-
ber 2023, there are 7,296 solved RNA structures in the PDB
(4) compared to 2,924,924 RNA sequences in Rfam (5). Only
136 out of 4,170 RNA families have at least one known struc-
ture. Therefore, computational methods have been developed
for the past decades to compute RNA 3D structure from the
sequence. Two main approaches have emerged: the ab ini-

tio and the template-based. While the first uses molecular
dynamics and force fields, the latter relies on a database of
known structures. None of these approaches predicts RNA
structure perfectly and methods still emerge.

Since its first appearance in CASP13 (6), Alphafold
(7, 8) from DeepMind has successfully predicted an enor-
mous number of protein 3D structures. The team used deep
learning techniques to predict the atomic positions of each
amino acid of the sequence with high precision. Nonetheless,
it can not be applied directly to RNAs due to the protein and
RNA intrinsic physical differences. Indeed, the sequences
are different between RNA and proteins in terms of individ-
ual elements (amino-acid compared to nucleotides), diversity
of sequence range (RNA sequences range in length from a
few tens to several tens of thousands of nucleotides, while
proteins are a few hundred amino acids long), the number
of available structure data and the stability of the folding (a
given sequence of protein can fold into one stable confor-
mation compared to multiple conformations for RNA). As
a direct utilisation of AlphaFold for RNAs is not possible,
works have emerged to adapt AlphaFold’s success to RNAs.
The breakthrough success of AlphaFold is not yet found for
RNAs (9), but some inspired works have promising perfor-
mances.

Works have been done to review the state-of-the-art exist-
ing methods. A recent study (10) describes up-to-date mod-
els while highlighting the need to use probing data. Another
review (11) also describes past methods and points out the
detailed types of inputs that can be integrated into developed
models. On the other hand, a review (12) describes only the
ab initio methods with the force fields used for each method.
A final recent review (13) discusses recent advances in terms
of RNA but is not specific to the 3D structures. It sheds light
on the machine learning advancements in the RNA field.

In this paper, we aim to give the reader a comprehen-
sive overview of the RNA 3D structure prediction. Through
a detailed description of ab initio, template-based and deep
learning approaches, we detail the available tools and bench-
mark them on a dataset to compare their performances.
The results are easily reproducible and an interface with
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the predicted 3D structures is provided and freely avail-
able on the EvryRNA platform: https://evryrna.ibisc.univ-
evry.fr/evryrna/state_of_the_rnart/. The user can interact
with the dashboard to select the RNA to visualize and look
at the different predictions computed for the benchmark.

The paper is organised as follows: we first provide an
overview of the main predictive methods developed through
decades for predicting RNA 3D structure. We give a broad
overview of the field and include state-of-the-art deep learn-
ing approaches, with published or preprint works. Finally,
we benchmark the models available on a common dataset to
assess their global performances.

Methods
Computational methods aim to predict the atomistic positions
and interactions in the RNA molecule. These methods try to
reproduce the complexity of RNA, which can be single or
multi-stranded (association of different strands of RNA), or
even circular (where 3’ and 5’ ends are covalently linked).
Computational methods tend to follow the same steps: sam-
pling the conformational space (creation of a set of candi-
date structures) and discrimination of the candidates. The
final structure is usually chosen with either the lowest en-
ergy or the center of a cluster of lowest energy structures.
Methods can be classified as ab initio, template-based or
deep learning-based. Ab initio methods integrate the physics
of the system, while template-based methods are based on
constructing a mapping between sequences to known motifs.
Deep learning approaches use data to feed a neural network
architecture that predicts RNA 3D structures from sequence
or MSA (Multiple Sequence Alignment).

We present in the following a description of the state-of-
the-art methods for RNA 3D structure prediction. The meth-
ods are organised by approach type (ab initio, template-based
and deep learning) and chronologically. A timeline of all the
methods, including the required inputs, is shown in Figure 1.

Ab initio methods
Ab initio (or prediction-based) methods tend to simulate
the physics of the system. They also capture the folding
dynamics, such as energy landscapes. RNA molecules
are represented at the atom level, and forces are applied
to simulate real environment conditions. To explore the
conformation space, sampling algorithms are used, like
Monte Carlo (MC) (14) or molecular dynamics sampling
(15). As the simulation can be time-consuming, a key
parameter of ab initio methods is the granularity of the
nucleotide representation. It is characterized by the number
of beads per nucleotide, wherein atoms are omitted and
substituted with new representative atoms. A bead refers
to the number of atoms per nucleotide, which defines the
granularity of the method. NAST (16), for instance, uses one
atom per nucleotide, while other methods like iFoldRNA
(17), OxRNA (18), HIRE-RNA (19), SimRNA (20), IsRNA1
(21), IsRNA2 (22) and RNAJP (23) tend to have more atoms
per nucleotide. Other methods use different granularity like
Ernwin (24) with helix as a base or BARNACLE (25) with a

bayesian model.

iFoldRNA (17) is a three-bead per nucleotide method
with discrete molecular dynamics to simulate the RNA fold-
ing process. Another version of iFoldRNA, called iFol-
dRNA v2 (26), adds clustering on root mean square deviation
(RMSD) after simulation to reconstruct the center of founded
clusters. Each bead represents a phosphate, sugar or nucle-
obase. The force field incorporates angle interactions, base
pairing, base stacking, or hydrophobic interactions.

A web server is provided, but not the source code. The
web server requires having an account. When connected, a
user can make predictions from a sequence and, optionally,
a 2D structure. The computation time is high: a sequence
with less than 100 nucleotides takes more than one day to be
processed.

NAST (16) models at the one-point-per-residue resolu-
tion but considers the geometrical constraints from ribosome
structures before discriminating the obtained structures with
root-mean-square deviation. It utilizes knowledge-based sta-
tistical potential to guide the simulation and cluster-generated
structures. The bead is located at the C3′ atom.

No web server is provided; the source code is available
and written in Python 2.

BARNACLE (25) is based on a Bayesian parametrized
model using the seven angles characterizing a nucleotide with
a hidden Markov chain process. It models marginal distribu-
tions for the dihedral angles using a mixture of probability
distributions. It links the dependencies between angles with
a Markov chain of hidden states. It helps reduce input rep-
resentation while capturing the length distribution of helical
regions.

No web server is provided, but the source code is
available. We tried to run the code, but we got errors. We
also tried to convert the Python 2 code to Python 3 without
success.

OxRNA (18) is a 5-bead coarse-grained approach that
uses both virtual move Monte Carlo (VCMC) and umbrella
sampling (27) to sample the conformational space. It man-
ages to characterize the thermodynamics of RNA molecules.
The potential energy of the model splits terms that are non-
nearest-neighbour pairs of nucleotide and neighbours. It also
incorporates temperature dependence, as the coarse-grained
interaction is assumed to be free energy rather than potential
energy.

A web server and source code are available. Nonetheless,
the source code details the web server. The required inputs
for the local or web servers are of a specific format, with
configuration and topology files. Therefore, it is not straight-
forward to properly convert a sequence to server inputs.

Ernwin (24) uses Markov chain Monte Carlo (MCMC)
with a helix-based model that maps the helices to cylinders
and loops to close edges connected to a helix. The force field
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Figure 1. Overview of the state-of-the-art methods for predicting RNA 3D structures. The different inputs are either raw sequence, secondary structure, tertiary structure or
multiple sequence alignment (MSA). Dashed methods are preprint works.
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uses five energy terms like steric clash energy or knowledge-
based potential of mean force.

A web server and a source code are available. The web
server only returns coarse-grained molecules. There is still,
up-to-date, no full-atom reconstruction included.

HiRE-RNA (19) shows that noncanonical and multiple
base interactions are necessary to capture the full physi-
cal behaviour of complex RNAs, with a six-bead nucleotide
method. It uses a model with geometric parameters deter-
mined from 200 structures. The potential integrates stack-
ing and base-pairing terms that consider base orientations.
The Replica-Exchange Molecular Dynamics (REMD) simu-
lations are used for sample strategies.

There is no web server nor source code available.

SimRNA (20) uses Monte Carlo steps with a five-bead
nucleotide approach guided by an energy that considers lo-
cal and non-local terms. The local term includes bond length
or angle interactions, while non-local terms consider base-to-
backbone interactions. The sampling procedure is the asym-
metric Metropolis algorithm (28). The predicted structures
are based on clustering methods of lower energies.

Web server and standalone server are available. The
code is well-documented and can be used easily. The web
server is user-friendly, and numerous customisations can
be added to the simulation. The code can be used locally
but requires a lot of resources (and CPU) to be run efficiently.

IsRNA (29), IsRNA1 (21) and IsRNA2 (22) are based
on a coarse-grained method with five-bead per nucleotide to
predict noncanonical base pairs. The energy used includes
bond length, bond angle bending and torsion angle energies.
The energy also combines covalent energy functions for base-
pairing interactions. Non-local terms like base-base, base-
backbone and backbone-backbone interactions are also in-
cluded. In the IsRNA1 model, the canonical base-pairing
adds interaction distances to consider bond strength com-
pared to IsRNA. IsRNA2 better integrates noncanonical base
pairing interactions in large RNAs compared to IsRNA1.

A web server is available for IsRNA1, while the source
code can only be downloaded with an account. The instal-
lation requires multiple libraries that also require having an
account on other websites. The web server takes multiple
hours to predict hundreds of nucleotides. No web server is
available for IsRNA2, and the web server for IsRNA1 starts
its simulation process with structures predicted from IsRNA.

RNAJP (23) uses a coarse-grained approach at both atom
and helix levels. It represents a nucleotide with five beads
to describe the Watson-Crick, Hoogsten and sugar edges in
bases. The force field used is a sum of 12 energy terms con-
sidering bonded interactions in length, bond and torsion an-
gles, as well as base pairing and base stacking interactions.
The energy integrated uses terms for the manipulation of he-
lices and loops.

No web server is available and the source code can

only be downloaded with an account. We had errors with
the bp_stk_paras folder, where capitalization variations
were missing. We managed to get the program running by
modifying this folder.

Using physics-based modelling, coarse-grained ap-
proaches can predict RNA tertiary structures from raw se-
quences. The energy-based scoring function helps discrimi-
nate or guide predicted structures. Final predictions are usu-
ally either the lowest energy molecules or centroid of clus-
ters. Current coarse-grained approaches fail to consider the
formation of non-canonical pairs and, even more, the base
side of interactions. The size of the considered RNA lim-
its those methods: the longer the sequence, the more time-
consuming the simulation is. The simulation time is not lin-
ear with the sequence length: an increase in the sequence
length would highly increase the number of conformational
states. Having an efficient sampling method is a challenging
task and the key to efficient ab initio methods. The final lim-
itation of those methods is the discriminator function, which
is usually energy-based. An inaccurate energy function could
result in a non-native predicted structure and bias the sam-
pling method, which often guides the sampling procedure.

Template-based methods

Template-based (or fragment-assembly) approaches rely
on the fact that molecules that have evolution similitude
adopt similar structures. A template molecule can be used
as a structural basis, where other mutated sequences tend
to retain similar and global conformations. A database
of known RNA structures is used as a reference. Those
structures have a mapping between their sequence and mo-
tif/structure/fragment. The size of the fragments considered
is a key parameter for the efficiency and accuracy of the
method. It can be at the nucleotide level or at the secondary
structure elements (SSEs) level, for instance. Methods like
RNABuilder (30) and ModeRNA (31) use one nucleotide
per fragment, while FARNA/FARFAR (32) and FARFAR
2 (33) use three nucleotides per fragment. MC-Sym (34),
RNAComposer (35), Vfold (36), VfoldLA (37), 3dRNA
(38–41), Vfold Pipeline (42) and FebRNA (43) consider as
base representation SSEs. The predicted structure can be
refined to prevent clashes with energy minimization.

FARNA/FARFAR (32) is one of the first template-based
methods to predict RNA 3D structures. It is inspired by
Rosetta low-resolution protein structure prediction method
(44). It uses an energy function of six terms relying on
physics-based constraints, a metropolis criterion for fragment
assembly using torsion angles replaced at each Monte Carlo
step. While energy is computed atomistically with FARFAR,
FARNA uses a simplified coarse-grained potential. Both en-
ergies can form non-canonical pairs but are limited by size
and cannot predict large molecules. FARNA/FARFAR uses
short segments as blocks (three-nucleotide segments) and
thus needs numerous MC samplings to find a stable struc-
ture. FARFAR 2 (33) was proposed to increase the accuracy
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and speed. It also adds a clustering method to discriminate
the most common structures.

There is a web server for FARFAR and FARFAR 2, but
no source code is available. The prediction time is quite
high, with multiple days for a single prediction.

MC-Sym (34) uses the SSEs, with nucleotide cycle mod-
ulus as blocks. It takes as inputs both raw sequence and
2D structures from MC-Fold (34) method to minimize the
physics-based force field. It relies on a representation of nu-
cleotide relationships named nucleotide cyclic motif (NCM),
incorporating more context-dependent information. This rep-
resentation is used to infer a scoring function for both sec-
ondary and tertiary structure prediction. A database with
lone-pair loops and double-stranded NCMs is used in the
pipeline and in the scoring function.

The source code is unavailable, but a well-documented
web server is provided. The web server is user-friendly, and
there is almost no waiting time for a job to run. However, it
requires secondary structures from MC-Fold to predict 3D
structures.

RNABuilder (30) uses multi-resolution modelling
(MRM) and multibody dynamics simulation. It is based on
a target-template alignment that assigns correspondences be-
tween residues and spatial constraints. It is described to pre-
dict Azoarcus group I intron and can be extended to other
structured RNAs. It combines secondary and tertiary base
pairing contacts in the force field. It can also solve structures
with small connecting regions without a template.

No web server is available but a source code is available,
well-documented and usable.

ModeRNA (31) searches for fragments in a database to
replace the mutated structure before using energy minimiza-
tion to refine the final structure. It uses atomic coordinates
of the template and prevents backbone discontinuities by
adding short fragments of other structures. It provides dif-
ferent strategies to build RNA structures that can be modified
easily.

A web server and a code are provided. Both of them
require a 3D structure as input.

Vfold3D (45) constructs 3D structures from fragment
databases. It uses the lowest free energy secondary struc-
tures converted to known fragments. The reconstruction of
fragments is coarse-grained before being converted to all-
atom. The final refinement of the structures uses AMBER
energy minimization (46, 47). VfoldLA (37) uses a tem-
plate database with single-stranded loops or junctions. In-
stead of searching for whole motifs, its granularity is finer
and allows smaller blocks to be integrated. It helps prevent
the limit of Vfold3D, which uses whole motifs (instead of
smaller blocks) limited by the number of available RNA data.
Integration of two previous methods has been done in Vfold-
Pipeline (42). Given a sequence in input, the pipeline uses
Vfold2D (48) to predict the secondary structure and then uses

either Vfold3D or VfoldLA for the final 3D structure predic-
tion.

A web server is available for either Vfold3D, VfoldLA
and Vfold-Pipeline. The source code is also available and
usable.

RNAComposer (35) creates a database (named RNA
FRABASE (49)) with fragment mapping 2D elements to 3D
motifs before using refinement. The SSEs are used as mini-
mum blocks to assemble the different fragments. The method
uses the Kabsch algorithm (50) to assemble the 3D structure
elements. The refinement of the structure concatenates two
energy minimization methods: torsion angles energy (using
CYANA (51)) and atom coordinate with CHARMM (52).

There is a web server accessible, but no source code is
provided.

3dRNA (38) uses a fragment assembly approach guided
by a scoring function, 3dRNAScore (53), where the SSEs
considered are improved by more base pairs from connected
stems. It uses SSEs as blocks and predicted structures with a
clustering approach using 3dRNAScore as criteria. Improve-
ments have been made over the years (39–41) with, for in-
stance, an increase of about ten times the number of templates
in the 3D template library (41). It also adds the possibility to
predict circular RNAs.

A web server is provided, and the source code is available
only after login. It is required to have other software installed
to run the standalone code.

FebRNA (43) creates a 3D fragment ensemble and iden-
tifies the 3D coarse-grained structure using cgRNASP (54)
score, with three-bead per nucleotide. It performs all-atom
reconstruction followed by refinement. The building of frag-
ments is executed with secondary structure tree (SST) (55),
where each stem is considered as a node of a tree structure.
A 3D structure is build through sequential superposition be-
tween coarse-grained atoms of a loop and stem according to
the SST order.

No web server is accessible, but the source code is
available and well-documented. Nevertheless, we did not
manage to run the code because we had errors.

Template-based methods allow the prediction of RNA 3D
structures with the help of available data. They create a
database mapping sequence to fragments (or motifs) before
assembling it to refine final structures. However, the num-
ber of experimental RNA structures is a bottleneck for the
good accuracy of the models. Templates like SSEs tend to be
inaccurate or missing in the constituted database, preventing
good predictions of structures. They also fail to generalize to
unseen structures. As many RNA families have not yet been
discovered, such approaches would probably fail to predict
new families.
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Deep learning approaches

In the CASP competition, an end-to-end approach has
been introduced and overperformed all previous works for
predicting protein 3D structure: AlphaFold (7, 8). It has
changed the structural biology field and raised the interest
of researchers. Recent works have been done to predict
RNA 2D structures (56–58), as the available data is much
higher than solved 3D structures. Other deep learning works
try to predict energy function (59, 60), while others infer
torsion angles from the sequence (61). Such angles can
nevertheless be used to help the prediction of 3D structures.
Preprint works have been released like DeepFoldRNA (62),
RhoFold (63), and NuFold (64) to predict 3D structures
with attention-based (65) methods. Four deep learning
approaches, epRNA (66), DRfold (67), RoseTTAFoldNA
(68) and trRosettaRNA (69), have recently been published.
As advancements in the field are moving fast, we describe
both preprint and published works in the following.

DeepFoldRNA (62) is a preprint work that predicts
RNA structures from sequence alone by coupling deep self-
attention neural networks with gradient-based folding simu-
lations. It predicts distance and orientation maps, as well as
torsion angles, with transformer-like blocks. It uses MSA and
2D structure as inputs. A BERT-like (70) loss was also im-
plemented to make the model more robust. A self-distillation
approach is used to get around the lack of data. It incorpo-
rates bp-RNA-1m (71) sequences to predict their structures
and integrate them into the training set. To convert the neu-
ral network outputs to 3D structures, they use L-BFGS (72)
folding simulations with energy defined by the weighted sum
of the negative log-likelihood of the binned probability pre-
dictions.

A web server and a source code are provided. We tried to
predict sequences from the web server but never received the
results.

RhoFold (63) is a preprint work with an end-to-end
differentiable approach for predicting RNA 3D structures.
The model’s input is the MSA, and features are extracted
with a pre-trained model RNA-FM (73) (trained over more
than 23 million sequences). RNA-FM gives an MSA co-
evolution matrix and pairwise residue features. A module
called E2EFormer with gated attention layers is applied to
predict the main frame (C′

4, C′
1, N1/N9) in the backbone

and four torsion angles (α,β,γ,ω). An IPA (invariant point
attention) is used in modelling 3D positions. It predicts each
frame’s rotation and translation matrices based on the se-
quence and pair representation from the E2Eformer module.
Given the predicted frames and angles, the structure mod-
ule can generate the full-atom coordinates of an RNA with-
out simulation. It also uses self-distillation with bp-RNA-1m
(71) and combines the training process with a loss that takes
into account 1D (sequence masking), 2D and 3D (Frame
Aligned Point Error (FAPE)) elements.

A web server and a source code are provided. The web
server is easily usable, while the standalone code requires

more than 500 GB of space to download the database, even
for inference.

RoseTTAFoldNA (68) is a published work with an end-
to-end deep learning approach that predicts 3D structure for
RNA molecules and protein-DNA and protein-RNA com-
plexes. It incorporates three representations of molecules: se-
quence (1D) with MSA representation, residue-pair distances
(2D) and cartesian coordinates (3D). The 3D representation
uses the position and orientation of phosphate, as well as
torsion angles. The model can take as input protein, DNA
and RNA. It was trained on five types of structures: protein
structures, AlphaFold2 predictions, protein complexes, pro-
tein/NA complexes and RNA structures. The network was
first trained before being fine-tuned, where energy terms were
added to the loss of the network.

A source code is provided, but no web server exists.
The source code requires more than 500Gb of free space to
download sequence and structure databases.

trRosettaRNA (69) is a published work inspired by two
methods for 3D protein structure prediction, AlphaFold2 (8)
and trRosetta (74–76). It uses MSA and secondary structure
(predicted by SPOT-RNA (77)) as inputs. The network ar-
chitecture is inspired by AlphaFold2 Evoformer block and
thus uses transformer networks. The full atom reconstruc-
tion uses energy minimization with restraints from predicted
geometries weighted by parameters optimized from random
RNA from the training set. The model is trained on PDB
data with sequences that have homologs. It uses bpRNA (71)
from Rfam (5) for self-distillation to increase the available
data. Distillation is regulated with a Kullback-Leibler diver-
gence.

A web server is available, but no standalone code.

epRNA (66) is a published work with an Euclidean
parametrization-based neural network that predicts RNA ter-
tiary structure from sequence only. It is trained to predict
a distance matrix that is then added to the loss. The net-
work uses convolutional networks and uses one hot encoding
as input. epRNA uses RNAs from the PDB and splits them
into training and test sets (60% for training and 40% for test-
ing). The method achieves invariance in terms of rotation
and translation, but not for the reflection of the molecule. It
means that the mirror image of a chiral molecule is chemi-
cally distinct, but this distinction is not made in the network.

A source code is available, but no web server. The code
is easy to use, and the installation process is straightforward.
There is no need to install huge datasets to perform predic-
tions.

NuFold (64) is a preprint work with an adaptation of Al-
phaFold2 work for RNAs. It considers the base frame with
four atoms: O4′, C1′, C4′ and either N1 (for C and U) or
N9 (for G and A). It also adds heads to predict the distance
between C4′ and P atoms, and the torsional angles to help
the full-atom reconstruction. It uses as inputs MSA and sec-
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ondary structure predicted by IPknot (78). The NuFold net-
work comprises two key components: the EvoFormer block
and the structure model. The EvoFormer part is a transformer
model that embeds information into single and pair represen-
tations. The structure model converts the embedding into 3D
structures. It is recycled three times to increase the accu-
racy of predictions. The network outputs are the translation
and rotation of the four base frames and torsion angles. The
torsion angles guide the reconstruction of full-atom represen-
tation from the base frames.

No web server is available, and no code yet. It is said that
the code will be available after a clean-up by the authors.

DRfold (67) is a published work with an end-to-end
transformer-based approach that takes as input RNA se-
quence and secondary structure. It uses a three-bead rep-
resentation for a nucleotide. It converts the inputs into se-
quence and pair representations before feeding them to trans-
former blocks. A structure module outputs frames converted
to FAPE (frame aligned point error) potential, while a geom-
etry module predicts rotation and translation property con-
verted to geometry potentials. These predicted frame vec-
tors and geometry restraints are aggregated to a potential for
structure reconstruction. The final step includes all-atom re-
construction and refinement using Arena (79) and OpenMM
(80).

No web server is provided, but a source code is available.
It requires the download of numerous libraries.

Deep learning methods are promising and have good per-
formances on testing datasets. Nonetheless, deep learning
models need a huge amount of data, which is unavailable for
RNA 3D structures. To avoid this bottleneck, methods use
self-distillation. They also mainly input MSA representation
like AlphaFold. MSA remains a limitation as the number of
known RNA families is restricted. The overall quality of the
predicted structures remains to be validated with new data
from unseen families.

A summary of the state-of-the-art tools, including infor-
mation on their implementation, is given in Table 2. We have
added a column mentioning whether the methods explicitly
predict multi-stranded RNAs. Only one method explicitly
points out the fact that they predict circular RNAs: 3dRNA.

Results
In this section, we detail the results of available methods for
RNA 3D structure prediction. To have a fair comparison be-
tween existing methods, we benchmark them on three differ-
ent test sets. We evaluated and compared the predicted struc-
tures using standard metrics described in a previous work
(81).

Benchmarked tools
As summarized in Table 2, some of the state-of-the-art meth-
ods do not have a web server or a standalone code avail-
able. It is the case of Hire-RNA (19) and NuFold (64).
Among the remaining tools, unfortunately, many are hard to

use or not working. Among the available standalone codes,
we only manage to run RNAJP (23). DeepFoldRNA (62),
FebRNA (43) or RoseTTFoldNA (68) require the download
of databases. Those databases could have more than 500Gb
and thus be hardly usable for users. Ernwin (24) and epRNA
(66) only return coarse-grained structures and thus increase
the use complexity. Among the web servers available, Mod-
eRNA (31) needs as input an initial 3D structure, which we
did not have for the benchmark (and would also bias the com-
parison with the other methods). OxRNA (18) requires a spe-
cific input format, which makes it hard for the user to use.
FARFAR 2 (33) has a web server with a computation time
too long to be included (multiple days of predictions), where
our predictions did not lead to results. DeepFoldRNA (62)
and Drfold (67) have web servers where we did not get the
structures after making the request. The server of iFoldRNA
(17) is very hard to connect to and failed to perform all the
predictions: we were only able to have a few predictions As
a benchmark, we thus considered the remaining ten methods
described in Table 2. We used RNA-tools (82) to clean the
predicted structures and to normalize them. This software en-
ables the operation of RNA structures and allows their stan-
dardisation to help better evaluate them. All methods were
used with their web servers except for RNAJP, which was
used locally. We set a computation limit for RNAJP compu-
tation (50 × 106 steps in the simulation). For SimRNA, we
stop the simulation at 20000 frames. We used the web server
for Rhofold, which does not use MSA and might get lower
performances than the MSA version.

Not all tools could predict directly from the sequences, a
secondary structure is required. We decided, when needed,
to use the secondary structure predicted by MXFold2 (83),
a recent deep learning-based tool giving good prediction re-
sults. The choice of MXFold2 was arbitrary but should be
consistent between the models to have a fair comparison. For
MC-Sym, it is required a secondary structure from MC-Fold
(34).

Test Sets

To compare the models’ performances, we used three dif-
ferent test sets. We considered single-stranded RNAs to en-
able the comparison between all the models. The aim of
the benchmark is to enable the comparison of user-available
models, where no specific parameters optimization is per-
formed for the predictions. We kept RNA with sequence be-
low 200 nucleotides, except for two RNAs from the first test
set (sequence length of 210 and 298 nucleotides), to have a
complex enough dataset for the comparison.

The first test set, which we call Test Set I, is a non-
redundant dataset of RNA structures from RNAsolo (84). We
downloaded the representative RNA molecules from RNA-
solo with a resolution below 4Å and removed the structures
with a sequence identity higher than 80%. Then, we con-
sidered only the structures with a unique Rfam family ID
(5), leading to 29 non-redundant RNA molecules, with a se-
quence between 40 and 298 nucleotides. The details of each
PDB ID and Rfam family from Test Set I are described in
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Table 1. Summary of the state-of-the-art softwares for the prediction of RNA 3D structures. For each method is provided its type, granularity level, availability and implemen-
tation. We also mention if the method deals with multi-stranded RNAs.

Name Type Granularity Multi-stranded Web Server Standalone code Language
FARNA/FARFAR (32) Template-based 3-nt/fragment Yes - Link C++

MC-Sym (34) Template-based SSEs Yes Link Link Rosetta
iFoldRNA (17)/iFoldRNA v2 (26) Ab initio 3-bead No Link - -

NAST (16) Ab initio 1-bead No - Link Python 2
BARNACLE (25) Ab initio - No - Link Python 2
RNABuilder (30) Template-based 1-nt/fragment Yes - Link C++
ModeRNA (31) Template-based 1-nt/fragment Yes Link Link Python 2

Vfold (36)/VfoldLA (37)/Vfold3D (45) Template-based SSEs Yes Link Link C++
RNAComposer (35) Template-based SSEs Yes Link - -

3dRNA (38) Templated-based SSEs No Link - Python 3/C++
OxRNA (18) Ab initio 5-bead Yes Link Link C++
Ernwin (24) Ab initio Helix grained Yes Link Link Python 2/3

HiRE-RNA (19) Ab initio 6/7-bead Yes - - -
SimRNA (20) Ab initio 5-bead Yes Link Link C++

FARFAR 2 Template-based 3-nt/fragment Yes Link - -
IsRNA1 (21)/IsRNA2 (22) Ab initio 4/5-bead Yes Link Link C++

FebRNA (43) Template-based 3-bead/SSEs No - Link Python 3/C
RhoFold (63) Deep Learning 3-bead Yes Link Link Python 3

DeepFoldRNA (62) Deep-learning 3-bead No Link Link Python 3/C++
trRosettaRNA (69) Deep Learning 5-bead No Link Link Python 3

RoseTTAFoldNA (68) Deep Learning - Yes - Link Python 3
Vfold Pipeline (42) Template-based SSEs Yes Link Link C++

RNAJP (23) Ab initio 5-bead/helix Yes - Link Python 3
epRNA (66) Deep Learning - No - Link Python 3
NuFold (64) Deep Learning 4-bead No - - -
DRfold (67) Deep Learning 3-bead No Link Link Python 3

Table 2. Benchmarked tools. The state-of-the-art tools are listed from the less to
the most recent. Each tool is given its inputs and its method type. Seq refers to the
raw sequence, and 2D for the secondary structure.

Model Inputs Method Type
MC-Sym (34) Seq+2D Template-based
Vfold3D (45) Seq+2D Template-based

RNAComposer (35) Seq+2D Template-based
SimRNA (20) Seq+2D Ab initio
3dRNA (41) Seq+2D Template-based
IsRNA1 (21) Seq+2D Ab initio
RhoFold (63) Seq Deep Learning

trRosettaRNA (69) Seq Deep Learning
Vfold-Pipeline (42) Seq+2D Template-based

RNAJP (23) Seq+2D Ab initio

Table S1. Nonetheless, this dataset does not ensure that there
has been no data leakage in the training of the different mod-
els.

We also included predictions from a collaborative test
set from the community: RNA-Puzzles (85–88), which we
refer as Test Set II. The RNA molecules proposed through
the years as a challenge are solved structures that have chal-
lenging properties: multi-stranded structures, ribozymes, ri-
boswitches and more. We considered single-stranded RNAs,
which represent 22 RNAs with a sequence between 27 and
188 nucleotides. As some predictions are available in the
published results of RNA-Puzzles, they are results of the op-
timization of parameters from each group, which is nearly

available for users. As this benchmark aims to report results
on user-available solutions, we included predictions we made
from the tools, easily reproducible for this benchmark. More
details about the considered RNAs, as well as their families,
are given in Table S2.

A collaboration between RNA-Puzzles and CASP teams
led to the CASP 15 competition (89). 12 RNA targets were
proposed. As four targets exceed 200 nucleotides, most of the
models fail to predict these structures. Therefore, we con-
sidered the eight target RNAs with sequence lengths below
200 nucleotides, which we named Test Set III. This dataset
aims to evaluate the robustness of the methods. Details on
the structures for Test Set III are available in Table S3.

Evaluation metrics
To evaluate and compare the quality of predictions, we used
different metrics. Each metric has its specificity, which is
why we computed most of the available metrics using RNAd-
visor (81).

The first metric is the well-known RMSD (Root-Mean-
Square-Deviation), which is very sensitive to local differ-
ences. The INF (Interaction Network Fidelity) (90) met-
ric incorporates RNA key interactions to evaluate RNA 3D
structures better. Details on the INF score are included
to depict the type of interactions that are conserved in
the prediction: canonical Watson-Crick interactions (INF-
WC), non-canonical interactions with non-Watson-Crick
base pairs (INF-NWC) and stacking in helices interactions
(INF-STACK). The INF-ALL metric summarises all these in-
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teractions into one value. The ϵRMSD (91) is another tenta-
tive to incorporate RNA specificities. The TM-score (92, 93)
and lDDT (94) are, respectively, the normalisation of atom
deviation metric and interatomic differences, both inspired by
protein evaluation metrics. Other common metrics inspired
by proteins are the GDT-TS (95) (accounts for superimpo-
sition with different distance cutoffs with aligned structures)
and the CAD-score (96) (measures the structural similarity in
a contact-area function). To compare the torsional angle de-
viation that characterizes RNA molecules, the MCQ (mean
of circular quantities) (97) can be computed. Finally, the P-
VALUE (98) assesses if a prediction is better than a random
one.

RMSD, ϵRMSD, MCQ, DI, and P-VALUE metrics have
good results when the values are low, whereas high values are
better for INF, lDDT, GDT-TS and TM-score.

Benchmark results
We present here the prediction results obtained by each of the
tools summarized in Table 1. The predictions are reported
according to the different metrics presented above. We had
struggled to get secondary structures for long sequences us-
ing MC-Fold (99), and we decided to exclude MC-Sym in
the comparison for Test Set III (as we managed to predict
only two structures).

The normalized mean of the metrics is reported for the
three test sets in Figure 2, as well as for the pooled test set (all
test sets gathered). We applied the min-max normalisation
over the whole datasets, and reversed the decreasing metrics.
Thus, each shown metric has values between 0 and 1, where
1 means best predictions and 0 is worst predictions.

trRosettaRNA outperforms the other methods in terms of
cumulative metrics for Test Set I and Test Set II. It is followed
by Rhofold and Vfold-Pipeline, which are almost similar for
Test Set I and Test Set II. Results remain low for Test Set
I compared to the two other test sets. While having good
RMSD values, the deep learning approaches do not have the
best INF and MCQ scores (in all test sets). It means the deep
learning approaches can have a general idea of the skeleton
structures, but hardly reproduce the specific key RNA inter-
actions. It is confirmed in Table 3, where the non-Watson-
Crick (non-WC) (non-canonical interactions) and stacking
interactions (non-covalent interactions between adjacent nu-
cleotide bases) are always better reproduced for ab initio
or template-based methods (RNAComposer and IsRNA1 for
non-WC, SimRNA, Vfold-Pipeline and RNAJP for stacking
interactions).

For Test Set III, the deep learning models do not achieve
good results, and the best method seems to be IsRNA1, fol-
lowed by RNAJP, Vfold-Pipeline and 3dRNA. The worst
method is RhoFold, showing difficulties in having robust pre-
dictions.

For the pooled test set, this is trRosettaRNA, which per-
forms better overall. It is followed by Rhofold and Vfold-
Pipeline. Both deep learning methods have lower values of
MCQ and INF compared to Vfold-Pipeline. MC-Sym and
SimRNA seem to perform worse than the other methods,

which could be explained by the lack of simulation time.
They still produce results with better INF and MCQ values
than the deep learning approaches.
Table 3. Metric values for INF-WC, INF-stack and INF-NWC for the different bench-
marked models. Each value is given for the three test sets, separated by a "/". We
excluded MC-Sym for Test Set III, as we did not get enough predictions.

INF-WC INF-STACK INF-NWC

MC-Sym 0.26/0.67/- 0.54/0.64/- 0.14/0.06/-
Vfold3D 0.60/0.67/0.55 0.58/0.58/0.56 0.00/0.00/0.00
RNAComposer 0.62/0.75/0.73 0.62/0.67/0.65 0.21/0.33/0.10
SimRNA 0.57/0.78/0.59 0.65/0.70/0.65 0.08/0.07/0.10
3dRNA 0.59/0.74/0.62 0.57/0.66/0.61 0.07/0.25/0.12
IsRNA1 0.61/0.80/0.65 0.64/0.68/0.65 0.01/0.00/0.00
RhoFold 0.50/0.70/0.31 0.60/0.66/0.54 0.10/0.20/0.03
trRosettaRNA 0.69/0.78/0.55 0.57/0.63/0.55 0.13/0.20/0.06
Vfold-Pipeline 0.62/0.78/0.63 0.61/0.70/0.56 0.15/0.29/0.00
RNAJP 0.59/0.55/0.69 0.67/0.65/0.72 0.19/0.15/0.12

Details on the different benchmarks and results obtained
are provided in the Supplementary file. Mean values for each
method are described in Table S4 (Test Set I), Table S5 (Test
Set II), Table S6 (Test Set III) and Table S7 (All). The as-
sociated distribution for each metric is illustrated in Figure
S1 (Test Set I), Figure S2 (Test Set II) and Figure S3 (Test
Set III). Detailed results of each method for each RNA are
available in Figure S4 (Test Set I), Figure S5 (Test Set II) and
Figure S6 (Test Set II).

To illustrate and compare visually the predictions ob-
tained by each of the considered methods, we arbitrarily se-
lected a structure from the RNA-Puzzles challenge: puzzle
rp03, a Riboswitch (PDB ID: 3OWZ). The predicted struc-
tures, as well as the native structure, are shown in Figure 3.
The detailed metrics for each prediction are available in Ta-
ble S8. We did an alignment to show them on the same scale
using the matching tool of Chimera (100). The model that
seems to superimpose the reference structure well is trRoset-
taRNA, with an RMSD of 2.38. We observe good visual fold-
ing for the deep learning models and Vfold-pipeline. On the
other hand, RNAJP and RNAComposer predictions do not
seem to fit well with the native shape. The metric values for
each model for this RNA are given in Table S8.

Computation time
As stated above, except RNAJP, all benchmarked tools are
available only as web servers. Therefore, a precise compar-
ison of computation time performances is not possible. We
thus report here for each tool the rough computation time we
measure for processing a given RNA.

Figure 4 summarizes the rough inference computation
time to predict RNA 3D structures for each model. We re-
port the computation time for the RNAs with the shortest
and the most extended sequences (RNA that are successfully
predicted for all the methods). Vfold3D and Vfold-Pipeline
have similar computation times: Vfold3D and Vfold-Pipeline
are almost the same models; the only difference is the use
of VfoldLA when Vfold3D does not provide predictions in
Vfold-Pipeline. We observe that the ab initio methods have
a computation time higher than the template-based and deep
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Figure 2. The normalised mean of metrics for each of the benchmarked methods on the different datasets. The pooled test set is named "All". For each metric, we normalised
by the min-max to ensure values are between 0 and 1, and we reverse the order for descending metrics (RMSD, ϵRMSD, P-VALUE and MCQ). For a given metric, a model
with a score near 1 means it has the best score compared to the other models.

Figure 3. Predicted structures (in blue) for RNAPuzzle 03 (rp03) (id: 3OWZ, length: 84 nucleotides) compared to native structure (in green) using state-of-the-art methods.
A: MC-Sym. B. Vfold3D. C: RNAComposer. D: SimRNA. E: 3dRNA. F: IsRNA1. G: RhoFold. H: trRosettaRNA. I: Vfold-Pipeline. J: RNAJP. Alignment was done using
CHIMERA (100) and Needleman-Wunsh algorithm (101).

learning methods. This is due to the simulation processes that
require a high number of computation steps. The template-
based methods almost always return a structure with less
than 2 hours of computation (including the queue in the web
servers). On the other hand, deep learning methods tend to be
very fast for inference. RhoFold predicts with high through-
put, and what is the most time-consuming is the relaxation
of the prediction. The ab initio methods are the slowest
ones, with a minimum time of two hours. They often pro-

pose advanced parameters for the computation, like chemical
probing restraints, distance restraints, or even freezing some
residues (like those proposed in SimRNA).

State-of-the-RNArt Dashboard
We provide a dashboard (illustrated in Figure 5) with
different visualisations of the predicted structures for the
nine benchmarked models. The dashboard, called State-of-
the-RNArt, is freely available on the EvryRNA platform:

10 | bioRχiv Bernard and al. et al. | State-of-the-RNArt

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2024. ; https://doi.org/10.1101/2023.12.22.573067doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.22.573067
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Approximate time for computation of RNA-Puzzles structures. The mini-
mum time is for an RNA of 27 nucleotides, while the maximum time is computed for
an RNA of 188 nucleotides. The computation time is an approximation, as it was
run on web servers and might be slowed down by other pending jobs. The time
reported for RhoFold is with the relaxation (which is slower than the raw prediction).
RNAJP computation time is computed locally with a simulation time set to 50×106

steps. IsRNA1 maximum time is around 15 hours, and SimRNA maximum compu-
tation time is around two days.

https://evryrna.ibisc.univ-evry.fr/evryrna/state_of_the_rnart/.
The user can choose which RNA to compare the predictions
from among the different challenges of RNA-Puzzles
(85–88). We also included some of the predictions we
made on the CASP-RNA (89). We make available all the
obtained predictions and their evaluation with the different
metrics. The State-of-the-RNArt Dashboard allows thus the
reproducibily of our benchmarks and a quick visualization
of the obtained 3D structures.

Discussion
Ab initio methods are physic-based approaches that incorpo-
rate different levels of granularity in nucleotide representa-
tion. The coarse-grained approach is a trade-off between ef-
ficiency in the representation and accuracy in the prediction.
We found these methods harder to use in practice as the sim-
ulation process can be very time-consuming. The standalone
codes are usually unavailable or difficult to run, and good
results would require high computation time and resources.
They have the advantage of allowing customisation in the
simulation, with the easy integration of constraints. They also
predict RNA structures with more native features with better
conservation of torsional angles than deep learning methods.
It might be explained by the lack of data to create good guid-
ing functions. Further development of ab initio models could
incorporate a coarse-grained approach with efficient sample
procedure and well-chosen force-field. It must be associated
with full-atom reconstruction methods, adapted and efficient.

Template-based methods try to map sequences to struc-
tural motifs before merging them into a whole structure,
which is then refined. These methods are more efficient than
the ab initio while still being limited. Their usage is eas-
ier than ab initio methods, but standalone codes remain hard

to reproduce locally. Improvement of template-based meth-
ods could be based on the addition of existing physics-based
methods that can predict structures not already seen. It could
alleviate the prediction of unseen structures. Refining the
structure after assembling could also be improved to best in-
clude fragments.

The performances of deep learning approaches seem
promising. By using available data and self-distillation pro-
cedures, they perform well on the RNA-Puzzles and RNA-
solo datasets. They fail, like the other two approaches, on
the CASP-RNA dataset. Their performances remain incom-
parable to AlphaFold for proteins, and the next AlphaFold
for RNA has not yet been found (9). Their usage in terms
of web servers is very user-friendly: only a sequence is re-
quired, and the prediction is made very quickly. We re-
gret the standalone codes that often require the download
of a huge dataset, which is almost non-feasible for standard
users. These methods are limited by a common neural net-
work drawback: interpretability. Knowing the folding pro-
cess would highly increase RNA understanding and is a step
the community would appreciate. The integration of physics
into deep learning methods could help reduce the black box
trap as well as prevent models from overfitting.

Hybrid methods are a direction that is taken by the com-
munity with recent solutions (103) proposed in CASP-RNA
(89). For instance, the second best solution from CASP-RNA
(? ) uses structures predicted by template-methods VfoldLA
(37) and Vfold3D (45) before using coarse-grained simula-
tions from IsRNA (21, 22, 29) and RNAJP (23). Hybrid so-
lutions are usually a mix of previous methods to take the best
of each of them. These recent methods are not yet available
to users, so we did not include them in our benchmark.

All the previously discussed models still need to be im-
proved with the possibility of outputting multiple structures
corresponding to environment-dependent RNA molecules.
Works remain to allow the prediction of long non-coding
RNAs, as well as the non-canonical interactions that are still a
challenge. Limitations for the classification of non-canonical
base pairings can be explained by the lack of 3D data, where
the systems hardly incorporate these specificities. The se-
quence length is still a bottleneck, where integration of all
possible interactions increases the complexity and limits ex-
isting models. The predictions of multi-stranded and circular
RNAs remain limited: more than half of the methods can
predict multi-stranded RNAs, but only one for the circular
RNAs.
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