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RNAs are essential molecules involved in numerous bio-
logical functions. Understanding RNA functions requires the
knowledge of their 3D structures. Computational methods have
been developed for over two decades to predict the 3D confor-
mations from RNA sequences. These computational methods
have been widely used and are usually categorised as either ab
initio or template-based. The performances remain to be im-
proved. Recently, the rise of deep learning has changed the
sight of novel approaches. Deep learning methods are promis-
ing, but the adaptation to RNA 3D structure prediction remains
at stake. In this work, we give a brief review of the ab ini-
tio, template-based and novel deep learning approaches. We
highlight the different available tools and provide a benchmark
on nine approaches using the RNA-Puzzles dataset. We pro-
vide an online dashboard that shows the predictions made by
benchmarked models, freely available on the EvryRNA plat-
form: https://evryrna.ibisc.univ-evry.fr.
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Introduction
Ribonucleic acids (RNAs) are macromolecules that play di-
verse biological roles in living organisms. RNAs are involved
in numerous physiological processes, such as protein synthe-
sis, RNA splicing, or transcription regulation, as well as in
various human diseases. RNAs also have the potential to be
used as therapeutic agents for different purposes, like cancer
(1). Understanding RNA functions is a challenging task that
has been studied for decades.

The biological function of RNA is, like protein, deter-
mined by the 3D conformation of the molecule. This folding
can be determined by experimental methods like X-ray crys-
tallography, NMR or, more recently, cryo-EM (2). Nonethe-
less, these methods are costly both in time and resources.
On the other hand, sequencing methods (like next-generation
sequencing (3)) have progressed, and a large number of se-
quences has become available, without any structural data.
As a result, there is a huge gap between the known RNA se-
quences compared to the solved 3D structures. Up to Decem-
ber 2023, there are 7,296 solved RNA structures in the PDB
(4) compared to 2,924,924 RNA sequences in Rfam (5). Only
136 out of 4,170 RNA families have at least one known struc-
ture. Therefore, computational methods have been developed
for the past decades to compute RNA 3D structure from the
sequence. Two main approaches have emerged: the ab ini-

tio and the template-based. While the first uses molecular
dynamics and force fields, the latter relies on a database of
known structures. None of these approaches predicts RNA
structure perfectly and methods still emerge.

During the CASP (6) competition, AlphaFold (7, 8) from
DeepMind recently successfully predicted protein 3D struc-
tures. The team used deep learning techniques to predict the
atomic positions of each amino acid of the sequence with
high precision. Nonetheless, it can not be applied directly to
RNAs due to the protein and RNA intrinsic biological differ-
ences. Indeed, the sequences are different between RNA and
proteins in terms of individual elements (amino-acid com-
pared to nucleotides), diversity of sequence range (RNA se-
quences range in length from a few tens to several tens of
thousands of nucleotides, while proteins are a few hundred
amino acids long), the number of available structure data and
the stability of the folding (a given sequence of protein can
fold into one stable conformation compared to multiple con-
formations for RNA). As a direct utilisation of AlphaFold
for RNAs is not possible, works have emerged to adapt Al-
phaFold’s success to RNAs. The breakthrough success of
AlphaFold is not yet found for RNAs (9), but some inspired
works have promising performances.

Works have been done to review the state-of-the-art exist-
ing methods. A recent study (10) describes up-to-date mod-
els while highlighting the need to use probing data. Another
review (11) also describes past methods and points out the
detailed types of inputs that can be integrated into developed
models. On the other hand, a review (12) describes only the
ab initio methods with the force fields used for each method.
A final recent review (13) discusses recent advances in terms
of RNA but is not specific to the 3D structures. It sheds light
on the machine learning advancements in the RNA field.

In this paper, we aim to give the reader a comprehensive
overview of the RNA 3D structure prediction. Through a de-
tailed description of ab initio, template-based and deep learn-
ing approaches, we detail the available tools and benchmark
them on a dataset to compare their performances. The results
are easily reproducible and an interface with the predicted 3D
structures is provided and freely available on the EvryRNA
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platform: https://evryrna.ibisc.univ-evry.fr. The user can in-
teract with the dashboard to select the RNA to visualize and
look at the different predictions computed for the benchmark.

The paper is organised as follows: we first provide an
overview of the main predictive methods developed through
decades for predicting RNA 3D structure. We give a broad
overview of the field and include state-of-the-art deep learn-
ing approaches, with published or preprint works. Finally,
we benchmark the models available on a common dataset to
assess their global performances.

Methods
Computational methods aim to predict the atomistic posi-
tions and interactions in the RNA molecule. They tend to
follow the same steps: sampling the conformational space
(creation of a set of candidate structures) and discrimination
of the candidates. The final structure is usually chosen with
either the lowest energy or the center of a cluster of lowest
energy structures. Methods can be classified as ab initio,
template-based or deep learning-based. Ab initio methods in-
tegrate the physics of the system, while template-based meth-
ods are based on constructing a mapping between sequences
to known motifs. Deep learning approaches use data to feed a
neural network architecture that predicts RNA 3D structures
from sequence or MSA (Multiple Sequence Alignment).

We present in the following a description of the state-of-
the-art methods for RNA 3D structure prediction. The meth-
ods are organised by approach type (ab initio, template-based
and deep learning) and chronologically. A timeline of all the
methods, including the required inputs, is shown in Figure 1.

The availability of a web server and/or a standalone code
is provided for each method. A summary of the state-of-the-
art tools, including information on their implementation, is
given in Table S1 of the Supplementary file.

Ab initio methods
Ab initio (or prediction-based) methods tend to simulate
the physics of the system. They also capture the folding
dynamics, such as energy landscapes. RNA molecules
are represented at the atom level, and forces are applied
to simulate real environment conditions. To explore the
conformation space, sampling algorithms are used, like
Monte Carlo (MC) (14) or molecular dynamics sampling
(15). As the simulation can be time-consuming, a key
parameter of ab initio methods is the granularity of the
nucleotide representation. It is defined as the number of
beads per nucleotide, where atoms are omitted to be replaced
by representative ones. A bead refers to the number of atoms
per nucleotide, which defines the granularity of the method.
NAST (16), for instance, uses one atom per nucleotide,
while other methods like iFoldRNA (17), OxRNA (18),
HIRE-RNA (19), SimRNA (20), IsRNA1 (21), IsRNA2 (22)
and RNAJP (23) tend to have more atoms per nucleotide.
Other methods use different granularity like Ernwin (24)
with helix as a base or BARNACLE (25) with a bayesian
model.

iFoldRNA (17) is a three-bead per nucleotide method
with discrete molecular dynamics to simulate the RNA fold-
ing process. Another version of iFoldRNA, called iFol-
dRNA v2 (26), adds clustering on root mean square deviation
(RMSD) after simulation to reconstruct the center of founded
clusters. Each bead represents a phosphate, sugar or nucle-
obase. The force field incorporates angle interactions, base
pairing, base stacking, or hydrophobic interactions.

A web server is provided, but not the source code. The
web server requires having an account. When connected, a
user can make predictions from a sequence and, optionally,
a 2D structure. The computation time is high: a sequence
with less than 100 nucleotides takes more than one day to be
processed.

NAST (16) models at the one-point-per-residue resolu-
tion but considers the geometrical constraints from ribosome
structures before discriminating the obtained structures with
root-mean-square deviation. It utilizes knowledge-based sta-
tistical potential to guide the simulation and cluster-generated
structures. The bead is located at the C3′ atom.

No web server is provided; the source code is available
and written in Python 2.

BARNACLE (25) is based on a Bayesian parametrized
model using the seven angles characterizing a nucleotide with
a hidden Markov chain process. It models marginal distribu-
tions for the dihedral angles using a mixture of probability
distributions. It links the dependencies between angles with
a Markov chain of hidden states. It helps reduce input rep-
resentation while capturing the length distribution of helical
regions.

No web server is provided, but the source code is
available. We tried to run the code, but we got errors. We
also tried to convert the Python 2 code to Python 3 without
success.

OxRNA (18) is a 5-bead coarse-grained approach that
uses both virtual move Monte Carlo (VCMC) and umbrella
sampling (27) to sample the conformational space. It man-
ages to characterize the thermodynamics of RNA molecules.
The potential energy of the model splits terms that are non-
nearest-neighbour pairs of nucleotide and neighbours. It also
incorporates temperature dependence, as the coarse-grained
interaction is assumed to be free energy rather than potential
energy.

A web server and source code are available. Nonetheless,
the source code details the web server. The required inputs
for the local or web servers are of a specific format, with
configuration and topology files. Therefore, it is not straight-
forward to properly convert a sequence to server inputs.

Ernwin (24) uses Markov chain Monte Carlo (MCMC)
with a helix-based model that maps the helices to cylinders
and loops to close edges connected to a helix. The force field
uses five energy terms like steric clash energy or knowledge-
based potential of mean force.
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Figure 1. State-of-the-art of the main works for predicting RNA 3D structures. The different inputs are either raw sequence, secondary structure, tertiary structure or multiple
sequence alignment (MSA). Dashed methods are preprint works.
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A web server and a source code are available. The web
server only returns coarse-grained molecules. There is still,
up-to-date, no full-atom reconstruction included.

HiRE-RNA (19) shows that noncanonical and multiple
base interactions are necessary to capture the full physi-
cal behaviour of complex RNAs, with a six-bead nucleotide
method. It uses a model with geometric parameters deter-
mined from 200 structures. The potential integrates stack-
ing and base-pairing terms that consider base orientations.
The Replica-Exchange Molecular Dynamics (REMD) simu-
lations are used for sample strategies.

There is no web server nor source code available.

SimRNA (20) uses Monte Carlo steps with a five-bead
nucleotide approach guided by an energy that considers lo-
cal and non-local terms. The local term includes bond length
or angle interactions, while non-local terms consider base-to-
backbone interactions. The sampling procedure is the asym-
metric Metropolis algorithm (28). The predicted structures
are based on clustering methods of lower energies.

Web server and standalone server are available. The
code is well-documented and can be used easily. The web
server is hardly usable as it can only have three jobs at a
time. Multiple days are required to process a prediction,
preventing automation and easy access to the model. When
running locally with default parameters, the outputs were
always the same and did not relate to any RNA tertiary
structure.

IsRNA (29), IsRNA1 (21) and IsRNA2 (22) are based
on a coarse-grained method with five-bead per nucleotide to
predict noncanonical base pairs. The energy used includes
bond length, bond angle bending and torsion angle energies.
The energy also combines covalent energy functions for base-
pairing interactions. Non-local terms like base-base, base-
backbone and backbone-backbone interactions are also in-
cluded. In the IsRNA1 model, the canonical base-pairing
adds interaction distances to consider bond strength com-
pared to IsRNA. IsRNA2 better integrates noncanonical base
pairing interactions in large RNAs compared to IsRNA1.

A web server is available for IsRNA1, while the source
code can only be downloaded with an account. The instal-
lation requires multiple libraries that also require having an
account on other websites. The web server takes multiple
hours to predict hundreds of nucleotides. No web server is
available for IsRNA2, and the web server for IsRNA1 starts
its simulation process with structures predicted from IsRNA.

RNAJP (23) uses a coarse-grained approach at both atom
and helix levels. It represents a nucleotide with five beads
to describe the Watson-Crick, Hoogsten and sugar edges in
bases. The force field used is a sum of 12 energy terms con-
sidering bonded interactions in length, bond and torsion an-
gles, as well as base pairing and base stacking interactions.
The energy integrated uses terms for the manipulation of he-
lices and loops.

No web server is available and the source code can
only be downloaded with an account. We had errors with
the bp_stk_paras folder, where capitalization variations
were missing. We managed to get the program running by
modifying this folder.

Using physics-based modelling, coarse-grained ap-
proaches can predict RNA tertiary structures from raw se-
quences. The energy-based scoring function helps discrimi-
nate or guide predicted structures. Final predictions are usu-
ally either the lowest energy molecules or centroid of clus-
ters. Current coarse-grained approaches fail to consider the
formation of non-canonical pairs and, even more, the base
side of interactions. The size of the considered RNA lim-
its those methods: the longer the sequence, the more time-
consuming the simulation is. The increase in the sequence
length is not linear with the simulation time: the number of
conformational states grows exponentially with the sequence.
Having an efficient sampling method is a challenging task
and the key to efficient ab initio methods. The final limita-
tion of those methods is the discriminator function, which is
usually energy-based. An inaccurate energy function could
result in a non-native predicted structure and bias the sam-
pling method, which often guides the sampling procedure.

Template-based methods

Template-based (or fragment-assembly) approaches rely
on the fact that molecules that have evolution similitude
adopt similar structures. A template molecule can be used
as a structural basis, where other mutated sequences tend
to retain similar and global conformations. A database
of known RNA structures is used as a reference. Those
structures have a mapping between their sequence and mo-
tif/structure/fragment. The size of the fragments considered
is a key parameter for the efficiency and accuracy of the
method. It can be at the nucleotide level or at the secondary
structure elements (SSEs) level, for instance. Methods like
RNABuilder (30) and ModeRNA (31) use one nucleotide
per fragment, while FARNA/FARFAR (32) and FARFAR
2 (33) use three nucleotides per fragment. MC-Sym (34),
RNAComposer (35), Vfold (36), VfoldLA (37), 3dRNA
(38), Vfold Pipeline (39) and FebRNA (40) consider as base
representation SSEs. The predicted structure can be refined
to prevent clashes with energy minimization.

FARNA/FARFAR (32) is one of the first template-based
methods to predict RNA 3D structures. It is inspired by
Rosetta low-resolution protein structure prediction method
(41). It uses an energy function of six terms relying on
physics-based constraints, a metropolis criterion for fragment
assembly using torsion angles replaced at each Monte Carlo
step. While energy is computed atomistically with FARFAR,
FARNA uses a simplified coarse-grained potential. Both en-
ergies can form non-canonical pairs but are limited by size
and cannot predict large molecules. FARNA/FARFAR uses
short segments as blocks (three-nucleotide segments) and
thus needs numerous MC samplings to find a stable struc-
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ture. FARFAR 2 (33) was proposed to increase the accuracy
and speed. It also adds a clustering method to discriminate
the most common structures.

There is a web server for FARFAR and FARFAR 2, but
no source code is available. The prediction time is quite
high, with multiple days for a single prediction.

MC-Sym (34) uses the SSEs, with nucleotide cycle mod-
ulus as blocks. It takes as inputs both raw sequence and
2D structures from MC-Fold (34) method to minimize the
physics-based force field. It relies on a representation of nu-
cleotide relationships named nucleotide cyclic motif (NCM),
incorporating more context-dependent information. This rep-
resentation is used to infer a scoring function for both sec-
ondary and tertiary structure prediction. A database with
lone-pair loops and double-stranded NCMs is used in the
pipeline and in the scoring function.

The source code is unavailable, but a well-documented
web server is provided. The web server is user-friendly, and
there is almost no waiting time for a job to run. However, it
requires secondary structures from MC-Fold to predict 3D
structures.

RNABuilder (30) uses multi-resolution modelling
(MRM) and multibody dynamics simulation. It is based on
a target-template alignment that assigns correspondences be-
tween residues and spatial constraints. It is described to pre-
dict Azoarcus group I intron and can be extended to other
structured RNAs. It combines secondary and tertiary base
pairing contacts in the force field. It can also solve structures
with small connecting regions without a template.

No web server is available but a source code is available,
well-documented and usable.

ModeRNA (31) searches for fragments in a database to
replace the mutated structure before using energy minimiza-
tion to refine the final structure. It uses atomic coordinates
of the template and prevents backbone discontinuities by
adding short fragments of other structures. It provides dif-
ferent strategies to build RNA structures that can be modified
easily.

A web server and a code are provided. Both of them
require a 3D structure as input.

Vfold3D (42) constructs 3D structures from fragment
databases. It uses the lowest free energy secondary struc-
tures converted to known fragments. The reconstruction of
fragments is coarse-grained before being converted to all-
atom. The final refinement of the structures uses AMBER
energy minimization (43, 44). VfoldLA (37) uses a tem-
plate database with single-stranded loops or junctions. In-
stead of searching for whole motifs, its granularity is finer
and allows smaller blocks to be integrated. It helps prevent
the limit of Vfold3D, which uses whole motifs (instead of
smaller blocks) limited by the number of available RNA data.
Integration of two previous methods has been done in Vfold-
Pipeline (39). Given a sequence in input, the pipeline uses

Vfold2D (45) to predict the secondary structure and then uses
either Vfold3D or VfoldLA for the final 3D structure predic-
tion.

A web server is available for either Vfold3D, VfoldLA
and Vfold-Pipeline. The source code is also available and
usable.

RNAComposer (35) creates a database (named
FRABASE) with fragment mapping 2D elements to 3D mo-
tifs before using refinement. The SSEs are used as minimum
blocks to assemble the different fragments. The method
uses the Kabsch algorithm (46) to assemble the 3D structure
elements. The refinement of the structure concatenates two
energy minimization methods: torsion angles energy (using
CYANA (47)) and atom coordinate with CHARMM (48).

There is a web server accessible, but no source code is
provided.

3dRNA (38, 49) uses a fragment assembly approach
guided by a scoring function, 3dRNAScore (50), where the
SSEs considered are improved by more base pairs from con-
nected stems. It uses SSEs as blocks and predicted struc-
tures with a clustering approach using 3dRNAScore as crite-
ria. An improvement of the 3D template library is proposed
in 3dRNA by an increase of about ten times the number of
templates (51).

A web server is provided, and the source code is available
only after login. It is required to have other software installed
to run the standalone code.

FebRNA (40) creates a 3D fragment ensemble and iden-
tifies the 3D coarse-grained structure using cgRNASP (52)
score, with three-bead per nucleotide. It performs all-atom
reconstruction followed by refinement. The building of frag-
ments is executed with secondary structure tree (SST) (53),
where each stem is considered as a node of a tree structure.
A 3D structure is build through sequential superposition be-
tween coarse-grained atoms of a loop and stem according to
the SST order.

No web server is accessible, but the source code is
available and well-documented. Nevertheless, we did not
manage to run the code because we had errors.

Template-based methods allow the prediction of RNA 3D
structures with the help of available data. They create a
database mapping sequence to fragments (or motifs) before
assembling it to refine final structures. However, the num-
ber of experimental RNA structures is a bottleneck for the
good accuracy of the models. Templates like SSEs tend to be
inaccurate or missing in the constituted database, preventing
good predictions of structures. They also fail to generalize to
unseen structures. As many RNA families have not yet been
discovered, such approaches would probably fail to predict
new families.
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Deep learning approaches

In the CASP competition, an end-to-end approach has
been introduced and overperformed all previous works for
predicting protein 3D structure: AlphaFold (7, 8). It has
changed the structural biology field and raised the interest
of researchers. Recent works have been done to predict
RNA 2D structures (54, 55), as the available data is much
higher than solved 3D structures. Other deep learning works
try to predict energy function (56, 57), while others infer
torsion angles from the sequence (58). Such angles can
nevertheless be used to help the prediction of 3D structures.
Preprint works have been released like DeepFoldRNA (59),
RhoFold (60), RoseTTAFoldNA (61), and NuFold (62) to
predict 3D structures with attention-based (63) methods.
Three deep learning approaches, epRNA (64), DRfold (65)
and trRosettaRNA (66), have recently been published. As
advancements in the field are moving fast, we describe both
preprint and published works in the following.

DeepFoldRNA (59) is a preprint work that predicts
RNA structures from sequence alone by coupling deep self-
attention neural networks with gradient-based folding simu-
lations. It predicts distance and orientation maps, as well as
torsion angles, with transformer-like blocks. It uses MSA and
2D structure as inputs. A BERT-like (67) loss was also im-
plemented to make the model more robust. A self-distillation
approach is used to get around the lack of data. It incorpo-
rates bp-RNA-1m (68) sequences to predict their structures
and integrate them into the training set. To convert the neu-
ral network outputs to 3D structures, they use L-BFGS (69)
folding simulations with energy defined by the weighted sum
of the negative log-likelihood of the binned probability pre-
dictions.

A web server and a source code are provided. We tried to
predict sequences from the web server but never received the
results.

RhoFold (60) is a preprint work with an end-to-end
differentiable approach for predicting RNA 3D structures.
The model’s input is the MSA, and features are extracted
with a pre-trained model RNA-FM (70) (trained over more
than 23 million sequences). RNA-FM gives an MSA co-
evolution matrix and pairwise residue features. A module
called E2EFormer with gated attention layers is applied to
predict the main frame (C′

4, C′
1, N1/N9) in the backbone

and four torsion angles (α,β,γ,ω). An IPA (invariant point
attention) is used in modelling 3D positions. It predicts each
frame’s rotation and translation matrices based on the se-
quence and pair representation from the E2Eformer module.
Given the predicted frames and angles, the structure mod-
ule can generate the full-atom coordinates of an RNA with-
out simulation. It also uses self-distillation with bp-RNA-1m
(68) and combines the training process with a loss that takes
into account 1D (sequence masking), 2D and 3D (Frame
Aligned Point Error (FAPE)) elements.

A web server and a source code are provided. The web
server is easily usable, while the standalone code requires

more than 500 GB of space to download the database, even
for inference.

RoseTTAFoldNA (61) is a preprint work with an end-
to-end deep learning approach that predicts 3D structure for
RNA molecules and protein-DNA and protein-RNA com-
plexes. It incorporates three representations of molecules: se-
quence (1D) with MSA representation, residue-pair distances
(2D) and cartesian coordinates (3D). The 3D representation
uses the position and orientation of phosphate, as well as
torsion angles. The model can take as input protein, DNA
and RNA. It was trained on five types of structures: protein
structures, AlphaFold2 predictions, protein complexes, pro-
tein/NA complexes and RNA structures. Two losses were
used: one for the training process and the other for the fine-
tuning stage. The first loss is a weighted sum of distogram
loss, structure loss (averaged backbone FAPE loss (8) over
structure layers of the model), torsion prediction loss and
pLDDT loss. The second loss incorporates energy terms to
ensure model feasibility.

A source code is provided, but no web server exists.
The source code requires more than 500Gb of free space to
download sequence and structure databases.

trRosettaRNA (66) is a published work inspired by two
methods for 3D protein structure prediction, AlphaFold2 (8)
and trRosetta (71–73). It uses MSA and secondary structure
(predicted by SPOT-RNA (74)) as inputs. The network ar-
chitecture is inspired by AlphaFold2 Evoformer block and
thus uses transformer networks. The full atom reconstruc-
tion uses energy minimization with restraints from predicted
geometries weighted by parameters optimized from random
RNA from the training set. The model is trained on PDB
data with sequences that have homologs. It uses bpRNA (68)
from Rfam (5) for self-distillation to increase the available
data. Distillation is regulated with a Kullback-Leibler diver-
gence.

A web server is available, but no standalone code.

epRNA (64) is a published work with an Euclidean
parametrization-based neural network that predicts RNA ter-
tiary structure from sequence only. It is trained to predict
a distance matrix that is then validated with Hoffmann and
Noé (75) algorithm and added to the loss. The network uses
convolutional networks and uses one hot encoding as input.
epRNA uses RNAs from the PDB and splits them into train-
ing and test sets (60% for training and 40% for testing). The
method achieves E(3) invariance (rotations, translations and
reflections) but does not achieve SE(3) invariance. It means
that the mirror image of a chiral molecule is chemically dis-
tinct, but this distinction is not made in the network.

A source code is available, but no web server. The code
is easy to use, and the installation process is straightforward.
There is no need to install huge datasets to perform predic-
tions.

NuFold (62) is a preprint work with an adaptation of Al-
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phaFold2 work for RNAs. It considers the base frame with
four atoms: O4′, C1′, "C4’ and either N1 (for C and U)
or N9 (for G and A). It also adds heads to predict the dis-
tance between C4′ and P , and the dihedral angle between
residue pairs. It uses as inputs MSA and secondary structure
predicted by IPknot (76). The NuFold network comprises
two key components: the EvoFormer block and the structure
model. The EvoFormer part is a transformer model that em-
beds information into single and pair representations. The
structure model converts the embedding into 3D structures.
It is recycled three times to increase the accuracy of predic-
tions. The network outputs are the translation and rotation of
the four base frames and torsion angles. The torsion angles
help the reconstruction of full-atom representation.

No web server is available, and no code yet. It is said that
the code will be available after a clean-up by the authors.

DRfold (65) is a published work with an end-to-end
transformer-based approach that takes as input RNA se-
quence and secondary structure. It uses a three-bead rep-
resentation for a nucleotide. It converts the inputs into se-
quence and pair representations before feeding them to trans-
former blocks. A structure module outputs frames converted
to FAPE (frame aligned point error) potential, while a geom-
etry module predicts rotation and translation property con-
verted to geometry potentials. These predicted frame vec-
tors and geometry restraints are aggregated to a potential for
structure reconstruction. The final step includes all-atom re-
construction and refinement using Arena (77) and OpenMM
(78).

No web server is provided, but a source code is available.
It requires the download of numerous libraries.

Deep learning methods are promising and have good per-
formances on testing datasets. Nonetheless, deep learning
models need a huge amount of data, which is unavailable for
RNA 3D structures. To avoid this bottleneck, methods use
self-distillation. They also mainly input MSA representation
like AlphaFold. MSA remains a limitation as the number of
known RNA families is restricted. The overall quality of the
predicted structures remains to be validated with new data
from unseen families.

Results
In this section, we detail the results of available methods for
RNA 3D structure prediction. To have a fair comparison be-
tween existing methods, we benchmark them on a unique test
set widely used in the community, RNA-Puzzles (79). We
evaluated and compared the predicted structures using stan-
dard metrics described in a previous work (80).

Benchmarked tools
As discussed in the previous section and summarized in Table
S1 of Supplementary file, some of the state-of-the-art meth-
ods do not have a web server or a standalone code avail-
able. It is the case of Hire-RNA (19) and NuFold (62).
Among the remaining tools, unfortunately, many are hard to

use or not working. Among the available standalone codes,
we only manage to run RNAJP (23). DeepFoldRNA (59),
FebRNA (40) or RoseTTFoldNA (61) require the download
of databases. Those databases could have more than 500Gb
and thus be hardly usable for users. Ernwin (24) and epRNA
(64) only return coarse-grained structures and thus increase
the use complexity. Among the web servers available, Mod-
eRNA (31) needs as input an initial 3D structure, which we
did not have for the benchmark (and would also bias the com-
parison with the other methods). OxRNA (18) requires a spe-
cific input format, which makes it hard for the user to use.
SimRNA (20) and FARFAR 2 (33) have web servers with
computation time too long to be included (multiple days of
predictions). DeepFoldRNA (59) and Drfold (65) have web
servers where we did not get the structures after making the
request. The server of iFoldRNA (17) is very hard to con-
nect to and failed to perform all the predictions: we were
only able to have a few predictions As a benchmark, we thus
considered the remaining nine methods described in Table
1. We used RNA-tools (81) to clean the predicted structures
and to normalize them. This software enables the operation
of RNA structures and allows their standardisation to help
better evaluate them. All methods were used with their web
servers except for RNAJP, which was used locally. We set a
computation limit for RNAJP computation (50×106 steps in
the simulation).

Not all tools could predict directly from the sequences,
a secondary structure being required. We decided, when
needed, to use the secondary structure predicted by MXFold2
(82), a recent deep learning-based tool giving good prediction
results. The choice of MXFold2 was arbitrary but should be
consistent between the models to have a fair comparison. For
MC-Sym, it is required a secondary structure from MC-Fold
(34).

Model Inputs Method Type
MC-Sym (34) Seq+2D Template-based
Vfold3D (42) Seq+2D Template-based

RNAComposer (35) Seq+2D Template-based
3dRNA (38) Seq+2D Template-based
IsRNA1 (21) Seq+2D Ab initio
RhoFold (60) Seq Deep Learning

trRosettaRNA (66) Seq Deep Learning
Vfold-Pipeline (39) Seq+2D Template-based

RNAJP (23) Seq+2D Ab initio

Table 1. Benchmarked tools. The state-of-the-art tools are listed from the less to
the most recent. For each tool is given its inputs and its method type. Seq refers to
the raw sequence, and 2D for the secondary structure.

Test Set
As an adaptation of the CASP competition, the community
created RNA-Puzzles (79) in 2011. It is used as an RNA
test set to assess the model’s quality on unseen RNA struc-
tures. The RNA molecules proposed through the years as a
challenge are solved structures that have challenging prop-
erties: double-stranded structures, ribozymes, riboswitches
and more. We decided to use this dataset as a benchmark.
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The dataset contains both single-stranded and multi-stranded
RNAs, whereas not all models can predict RNA complexes
(multi-stranded RNAs). We decided only to consider single-
stranded RNAs for a fair comparison between models. This
represents 22 RNAs with a sequence between 27 and 188 nu-
cleotides. More details about the considered RNAs, as well
as their families, are given in Table S2 of the Supplementary
file.

A collaboration between RNA-Puzzles and CASP teams
led to the CASP 15 (83) competition. 12 RNA targets were
proposed. We tried to predict these targets with the nine con-
sidered methods, but it led to non-realistic predictions. Most
models did not predict RNA targets because the RNA se-
quences were too long. The RNA targets are complex and
require more tuning to adjust model prediction. As we did
not get a lot of predictions, we decided to not include the
CASP RNAs in this study.

Evaluation metrics
To evaluate and compare the quality of predictions, we used
different metrics. We considered the well-known Root-
Mean-Square-Deviation (RMSD), which is very sensitive to
local differences. The INF (84) metric tries to incorporate
RNA key interactions to evaluate RNA 3D structures bet-
ter. Another tentative to incorporate RNA specificities is the
ϵRMSD (85). We also considered the TM-score (86, 87) and
lDDT (88), which are, respectively, the normalisation of atom
deviation metric and interatomic differences, both inspired
by protein evaluation metrics. Finally, we also used the P-
VALUE (89), which assesses if a prediction is better than a
random one.

RMSD, ϵRMSD and P-VALUE metrics have good results
when the values are low, whereas high values are better for
INF, lDDT and TM-score.

Each of these metrics has its specificity, which is why
it is important to calculate each of them. A description and
comparison of all these metrics is provided in (80).

Note that two additional metrics exist in the literature and
are described in (80): DI (deformation index) (84) and GDT-
TS (90) metrics. However, they return similar measures to
RMSD and TM-score, respectively. The results obtained with
these two metrics are therefore not shown here but provided
in the Supplementary file.

Benchmark results
We present here the prediction results obtained by each of the
tools summarized in Table 1.

The predictions are reported according to the different
metrics presented above. The calculation of the metrics is
done thanks to RNAdvisor (80), a tool recently developed
in our team that helps the automation of RNA 3D structures
evaluation.

The distributions obtained by the different tools are given
in Figure 2 (mean values are available in Table S3 of the
Supplementary file). It shows the outperformance of deep
learning methods compared to ab initio and template-based
methods for almost all metrics except for INF metric. Deep

learning approaches give an overall good shape (low RMSD,
ϵRMSD and P-VALUE, and high lDDT and TM-score), but
do not output all the key RNA interactions. The base interac-
tions seem better reproduced by Vfold-Pipeline than the other
methods (higher distribution of INF). Ab initio and template-
based methods have almost the same distribution in terms of
TM-score and ϵRMSD. Vfold-pipeline is slightly better for
every metric compared to the other ab initio and template-
based approaches. The very low lDDT values for MC-Sym,
Vfold3D and RNAJP can be explained by calculation errors,
as other metrics do not show the same outliers in the dis-
tribution. The distributions for GDT-TS and DI metrics are
available in Figure S1 of the Supplementary file.

Detailed results of each method for each RNA are avail-
able in Figure 3. The figure highlights the good performances
of trRosettaRNA for all the metrics. RhoFold also has good
performances, especially for puzzle 34 (PDB ID: 7V9E).
We observe high P-VALUE on some RNAs for RNAJP,
3dRNA, RNAComposer, Vfold-Pipeline, Vfold3D and MC-
Sym. It means that some predictions are close to random
ones, whereas deep learning models are more confident and
have almost never a high P-VALUE. Some of the tools have
computation issues with certain RNAs, especially the longest
ones. It is the case of MC-Sym, Vfold3D and lsRNAl. We
also couldn’t get the prediction result of Vfold-Pipeline on
puzzle 12 (rp12). Other missing values are due to the com-
putation of the metrics. It is the case of RMSD, ϵRMSD and
P-VALUE that could not be computed on the predictions of
RNAJP for the puzzles rp32 and rp11, as well as on the pre-
diction of RNAcomposer for rp11. The results with GDT-TS
and DI metrics are available in Figure S2 of the Supplemen-
tary file.

To illustrate and compare visually the predictions ob-
tained by each of the considered methods, we arbitrarily se-
lected a structure from the RNA-Puzzles challenge: puzzle
rp3, a Riboswitch (PDB ID: 3OWZ). The predicted struc-
tures as well as the native structure are shown in Figure 4.
We did an alignment to show them on the same scale using
the matching tool of Chimera (91). The model that seems
to superimpose the reference structure well is trRosettaRNA,
with an RMSD of 2.38. We observe good visual folding for
the deep learning models and Vfold-pipeline. On the other
hand, RNAJP and RNAComposer predictions do not seem
to fit well with the native shape. The metric values for each
model for this RNA are given in Table S4 of the Supplemen-
tary file.

Computation time

As stated above, except RNAJP, all benchmarked tools are
available only as web servers. Therefore, a precise compar-
ison of computation time performances is not possible. We
thus report here for each tool the rough computation time we
measure for processing a given RNA.

Table 2 summarizes the rough inference computation
time to predict RNA 3D structures for each model. We re-
port the computation time for the RNAs with the shortest and
the most extended sequence. Vfold3D and Vfold-Pipeline
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Figure 2. Distribution of the prediction results obtained by the state-of-the-art methods on RNA-Puzzles set. The results are reported using different metrics: RMSD, INF,
P-VALUE, ϵRMSD, lDDT and TM-score. P-VALUE, RMSD and ϵRMSD are decreasing (the lower, the better) while TM-score, lDDT and INF are ascending and range between
0 and 1. Methods are sorted by release date.

Figure 3. Prediction results obtained by the state-of-the-art methods on each RNA-Puzzles challenge. The results are reported using different metrics: RMSD, INF, P-VALUE,
ϵRMSD, lDDT and TM-score. The best results are in yellow, while bad results are in dark. Missing values (in white) are due to a failure in predictions by the models or in the
metric computation. Challenges are sorted by RNA sequence length. RNA length is provided in brackets.

have similar computation time: Vfold3D and Vfold-Pipeline
are almost the same models; the only difference is the use
of VfoldLA when Vfold3D does not provide predictions in
Vfold-Pipeline. We observe that the ab initio methods have
a computation time higher than the template-based and deep
learning methods. This is due to the simulation processes that
require a high number of computation steps. The template-
based methods almost always return a structure with less
than 2 hours of computation (including the queue in the web
servers). On the other hand, deep learning methods tend to be
very fast for inference. RhoFold predicts with high through-
put, and what is the most time-consuming is the relaxation of
the prediction.

State-of-the-RNArt Dashboard

We provide a dashboard (illustrated in Figure 5) with dif-
ferent visualisations of the predicted structures for the nine
benchmarked models. The dashboard, called State-of-
the-RNArt, is freely available on the EvryRNA platform:
https://evryrna.ibisc.univ-evry.fr. The user can choose which
RNA to compare the predictions from among the different
challenges of RNA-Puzzles (79). We also included some
of the predictions we made on the CASP-RNA (83). We
make available all the obtained predictions and their evalua-
tion with the different metrics. The State-of-the-RNArt Dash-
board allows thus the reproducibily of our benchmarks and a
quick visualization of the obtained 3D structures.
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Figure 4. Predicted structures (in blue) for RNAPuzzle 03 (rp03) (id: 3OWZ, length: 84 nucleotides) compared to native structure (in green) using state-of-the-art methods.
A: MC-Sym. B: Vfold3D. C: RNAComposer. D: 3dRNA. E: IsRNA1. F: RhoFold. G: trRosettaRNA. H: Vfold-Pipeline. I: RNAJP. Alignment was done using CHIMERA (91)
and Needleman-Wunsh algorithm (92).

Figure 5. Screenshot of the Screenshot of the State-of-the-RNArt dashboard. A: The user can choose the RNA (or challenge) with its native structure to process with
the different RNA 3D structure prediction tools. The RNAs are from RNA-Puzzles challenges (79) and from some of the CASP-RNA challenges (83). B: Prediction results
were obtained by the nine benchmarked tools and evaluated with different metrics. The metrics are computed with RNAdvisor (80). C: 3D visualisations of the different
predictions of the benchmarked models. The native structure is coloured in red, while the predictions are in blue. The predictions are superimposed with the native structure
for visualisation using the US-align (93) tool. The associated metrics are also shown on top of the structures.

Discussion

Ab initio methods are physic-based approaches that incorpo-
rate different levels of granularity in nucleotide representa-
tion. The coarse-grained approach is a trade-off between ef-
ficiency in the representation and accuracy in the prediction.
We found these methods harder to use in practice as the sim-
ulation process can be very time-consuming. The standalone
codes are usually unavailable or difficult to run, and good
results would require high computation time and resources.
Further development of ab initio models could incorporate a
coarse-grained approach with efficient sample procedure and
well-chosen force-field. It must be associated with full-atom
reconstruction methods, adapted and efficient.

Template-based methods try to map sequences to struc-
tural motifs before merging them into a whole structure,
which is then refined. These methods are more efficient than
the ab initio while still being limited. Their usage is eas-

ier than ab initio methods, but standalone codes remain hard
to reproduce locally. Improvement of template-based meth-
ods could be based on the addition of existing physics-based
methods that can predict structures not already seen. It could
alleviate the prediction of unseen structures. Refining the
structure after assembling could also be improved to best in-
clude fragments.

The performances of deep learning approaches seem
promising. By using available data and self-distillation pro-
cedures, they perform well on the RNA-Puzzles dataset.
Their performances remain incomparable to AlphaFold for
proteins, and the next AlphaFold for RNA has not yet been
found (9). Their usage in terms of web servers is very user-
friendly: only a sequence is required, and the prediction is
made very quickly. We regret the standalone codes that often
require the download of a huge dataset, which is almost non-
feasible for standard users. These methods are limited by a
common neural network drawback: interpretability. Know-
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Models Time (27 nt) Time (188 nt)
MC-Sym ∼1 min ∼2 hours

Vfold3D ∼10 min ∼2 hours

RNAComposer ∼1 min ∼5 min

3dRNA ∼1 hour ∼2 hours

IsRNA1 ∼40 min ∼15 hours

RhoFold ∼1 min ∼10 min

trRosettaRNA ∼1 min ∼2 hours

Vfold-Pipeline ∼10 min ∼2 hours

RNAJP ∼2 hours ∼8 hours

Table 2. Approximate time for computation of RNA-Puzzles structures. The mini-
mum time is for an RNA of 27 nucleotides, while the maximum time is computed for
an RNA of 188 nucleotides. The computation time is an approximation, as it was
run on web servers and might be slowed down by other pending jobs. The time
reported for RhoFold is with the relaxation (which is slower than the raw prediction).
RNAJP computation time is computed locally with a simulation time set to 50×106

steps.

ing the folding process would highly increase RNA under-
standing and is a step the community would appreciate. The
integration of physics into deep learning methods could help
reduce the black box trap as well as prevent models from
overfitting.

Hybrid methods are also a direction that is taken by
the community with recent solutions (94, 95) proposed
in CASP-RNA (83). For instance, the second best so-
lution from CASP-RNA (94) uses structures predicted by
template-methods VfoldLA (37) and Vfold3D (42) before us-
ing coarse-grained simulations from IsRNA (21, 22, 29) and
RNAJP (23). Hybrid solutions are usually a mix of previous
methods to take the best of each of them. These recent meth-
ods are not yet available to users, so we did not include them
in our benchmark.

All the previously discussed models still need to be im-
proved with the possibility of outputting multiple structures
corresponding to environment-dependent RNA molecules.
Works remain to allow the prediction of long non-coding
RNAs. The sequence length is still a bottleneck, where in-
tegration of all possible interactions increases the complexity
and limits existing models.
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