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Abstract: An unusual series of germylenes and stannylenes stabilized by new tetradentate bis(amidine)
ligands RNC(R′)N-linker-NC(R′)NR with a rigid naphthalene backbone has been prepared by
protonolysis reaction of Lappert’s metallylenes [M(HMDS)2] (M = Ge or Sn). Germylenes and
stannylenes were fully characterized by NMR spectroscopy and X-ray diffraction analysis. DFT
calculations have been performed to clarify the structural and electronic properties associated with
tetradentate bis(amidine) ligands. Stannylene L1Sn shows reactivity through oxidation, oxidative ad-
dition, and transmetalation reactions, affording the corresponding gallium and aluminum derivatives.

Keywords: amidine; ligand; metallylene

1. Introduction

Amidines have been employed as ligands for numerous metallic and semi-metallic
elements [1], and one of their best features is the ability to adjust both steric and electronic
properties, leading to many substitution patterns of the CN2 framework [2–4]. In recent
years, the trend has shifted to develop bulkier systems to stabilize a broader range of metal
centers or to control the complex geometry via rigid coordination, as seen with bridged
bis(amidine) ligands.

Amidinate ligands have shown a remarkable ability to stabilize low-valent main group
elements, such as tetrylenes, forming planar NCN-Ge(II) and NCN-Sn(II) four-membered
rings [5]. The first bis(amidinato)germylene, reported by Richeson et al. in 1997, exhibited
one chelating and one dangling amidinate ligand, with the three-coordinate germanium
center adopting a trigonal–pyramidal geometry (Figure 1) [6]. Using the same synthetic
method, Karsch et al. reported in 1998 a bis(amidinato)germylene with both amidinate
ligands acting as chelates due to the less hindered substituents on the nitrogen atoms [7].
On the other hand, the first mono- and bis-(amidinato)stannylenes were reported by Tolman
et al. in 2002, using a N-silylated benzamidinate ligand (Figure 1) [8].

More recently, the first tetrylenes with 1,4-phenylene (I) and 1,4-cyclohexylene (II)
bridged bis(amidine) ligands were reported by Jones et al. in 2020 [9]. In 2021, the same
group reported a bis-germylene and a bis-stannylene with a dibenzofurandiyl-linked Dipp-
substituted bis(amidine) ligand (III) [10]. In the same year, Kretschmer et al. reported
bis-germylenes and bis-stannylenes using a terphenyl-linked bis(amidine) ligand (IV) [11].
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It is important to note that all these examples correspond to amidine fragments connected
through the carbon atom, and only one bis-germylene with a bis(amidine) ligand nitrogen
connected via a 1,3-phenylene bridge has been synthesized by Jones et al. (V) [10]. The main
characteristic of bridged bis(amidine) ligands exhibited is that the amidine functionalities
act as independent ligands, allowing the convenient preparation of stable bis-metallylenes.
Moreover, there is no report of a bis(amidine) system acting as a tetradentate ligand with
both amidine moieties coordinated to the same metal center. We therefore considered
the hypothesis that such a bis(amidine) system could influence the stabilization and the
reactivity of the corresponding tetrylenes.
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Figure 1. Examples of germylenes and stannylenes with bis(amidine) ligands [6–11].

Herein, we report the synthesis and structural characterization of novel stannylene
and germylene compounds stabilized by naphthalene-linked bis(amidine) ligands, with the
amidine functionalities connected to the naphthalene bridge through the nitrogen atoms.
In addition, the reactivity of synthesized stannylenes was explored in oxidation, oxidative
addition, and transmetalation reactions.

2. Results and Discussion
2.1. Synthesis of Bis(amidine) Ligands with a Rigid Naphthalene Backbone

Bis(amidine) ligands L1H2 and L2H2, with a rigid planar 1,8-diaminonaphthalene
linker, were prepared following the reported procedures [12,13], while the synthesis of
L3H2 was carried out through the reaction between one equivalent of N,N′-(naphthalene-
1,8-diyl)bis(2,2-dimethylpropanimidoyl chloride) and two equivalents of p-tolylamine in
dry toluene under reflux for 4 h in the presence of Et3N (Scheme 1). L3H2 was isolated
as yellow crystals in 63% yield and characterized by NMR spectroscopy. The 1H NMR
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spectrum shows two NH signals at 9.43 and 8.50 ppm, similar to those previously reported
bis(amidine) ligands [13,14]. In addition, CH3 resonances of p-tolyl and tbutyl fragments
appear as singlets at 2.05 and 2.01 ppm and at 1.38 and 1.23 ppm, respectively. The 13C
NMR spectrum also exhibits two different C=N groups at 161.3 and 160.7 ppm, confirming
the non-symmetrical character of L3H2 ligand in solution due to NH. . .N hydrogen bonds.
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Scheme 1. Synthesis of ligand L3H2.

The presence of an intramolecular hydrogen bond between the N-H group and the
nitrogen atom of the amidine moiety [ N1-(H1). . .N(3) 1.95(5) Å] is confirmed in the solid-
state structure of ligand L3H2 (Figure 2), in line with similar observations for ligands L1H2
and L2H2 [12,13].
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Figure 2. Molecular structure of L3H2. Thermal ellipsoids are represented with a 30% probability.
Hydrogen atoms (except H1 and H4A) have been omitted for clarity. Selected bond distances [Å] and
bond angles [deg]: N(1)-C(11) 1.421(5); N(2)-C(11) 1.272(5); N(3)-C(23) 1.286(5); N(4)-C(23) 1.373(5);
N1-(H1). . .N(3) 1.95(5); N(1)-C(11)-N(2) 122.5(3); N(3)-C(23)-N(4) 126.1(3).

2.2. Synthesis of Stannylenes L1–3Sn

The synthesis of stannylene L1–3Sn was carried out using protonolysis reactions due
to the simplicity of the procedure [15–17]. Therefore, the corresponding bis(amidine) ligand
L1–3H2 reacted with one equivalent of Sn(HMDS)2 in dry THF at 60 ◦C for 3 h (Scheme 2).
Stannylene L1Sn was isolated as colorless crystals from a pentane solution at −30 ◦C in 77%
yield. The formation of L1Sn was confirmed by 1H, 13C, and 119Sn NMR spectroscopy and
mass spectrometry. The 1H NMR spectrum shows a singlet at 1.97 ppm with an integration
of 6 H, corresponding to the two amidine methyl groups, and a singlet at 2.18 ppm with an
integration of 12 H, corresponding to the methyl groups of 2,6-dimethylphenyl fragments.
This observed NMR pattern agrees with a symmetrical structure around the tin center.
The 13C NMR spectrum shows a characteristic signal for the NCN fragment at 169.0 ppm,
similar to those (amidinato)stannylenes previously reported [8,15,16,18]. In the 119Sn NMR
spectrum, a resonance at −276.7 ppm confirms the tetracoordinated nature of the tin atom,
comparable to that of reported homoleptic four-coordinated bis(amidinate) tin(II) [15]. L3H2
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also reacts with Sn(HMDS)2 in the same manner to give the corresponding tetracoordinated
stannylene L3Sn, as shown by the NMR analysis. Indeed, the 1H NMR spectrum shows a
singlet at 1.30 ppm that integrates for 18 H, corresponding to the amidine tbutyl groups,
and a singlet at 2.29 ppm that integrates for 6 H, corresponding to the p-tolyl methyl groups.
The 13C NMR spectrum shows a characteristic signal for the NCN fragment at 177.5 ppm.
The symmetrical tetracoordination of the tin center is also confirmed by a resonance at
−254.9 ppm in the 119Sn NMR spectrum. In contrast, the use of the bulky bis(amidinate)
ligand L2H2 leads to the formation of a dimeric structure (L2Sn)2.
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Scheme 2. Synthesis of stannylene L1–3Sn.

Stannylene L1Sn was characterized in the solid state by single-crystal X-ray diffraction
analysis (Figure 3). The molecular structure indicates a four-coordinate tin center with a dis-
torted square-based pyramidal geometry. A few stannylenes with unbridged bis(amidine)
ligands display a similar geometry [16]. The acute N1–Sn–N2 and N3–Sn–N4 angles
of 57.38◦ and 57.74◦ are comparable to values previously recorded for Sn(II) amidinate
complexes [15,18].

The coordinates of the experimental solid-state structure are consistent with the cal-
culated values in DFT (see Supplementary Materials for more information). Indeed, the
modeling calculates values between 2.27 and 2.42 Å for the Sn–N bonds, probably due
to steric repulsion, and angles at the tin atom of 56◦. Moreover, the energy of molecular
orbitals of this species (computed using DFT) shows an electrophilic character (the first va-
cant orbital on the Sn atom is computed at −0.60 eV) and a potential nucleophilicity, as the
HOMO centered on the non-bonding pair of tin is rather accessible (−5.42 eV) (Figure 4).

The modeling demonstrates that this compound can be obtained from the bis(amidine)
ligand through the addition of Sn(HMDS)2. Indeed, starting from the resulting complex,
a prototropic shift can occur, leading to the facile formation of the corresponding RSnH
(TS = 21.63 kcal/mol) (see Supplementary Materials for more information). Subsequently,
the elimination of HMDS results in the obtaining of L1Sn, exhibiting a higher but consistent
kinetic rate with the applied experimental conditions (60 ◦C/3 h).

Because of the poor solubility of stannylene dimer (L2Sn)2 in common organic sol-
vents, the NMR characterization cannot be obtained once crystallized. Nevertheless, the
X-ray diffraction analysis shows an eight-membered cyclic structure with a Sn. . .Sn distance
of 3.7311(5) Å (Figure 5). Each Sn center has a trigonal pyramidal geometry with a sum
of angles around the Sn atom of 272◦. Interestingly, the tin atoms are coordinated to both
nitrogen atoms directly linked to the naphthalene core and, simultaneously, to one of the
nitrogen atoms from another amidinate fragment. Unfortunately, providing theoretical
arguments for the formation of dimer (L2Sn)2 is challenging. Indeed, calculations reveal an
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energetically favorable reaction pathway (∆G = −27.74 kcal/mol) to obtain the correspond-
ing monomer. We can postulate that the presence of the 2,6-dimethylphenyl and tbutyl
groups in the ligand introduces significant steric hindrance, inhibiting the arrangement of a
tetracoordinated tin center and thereby influencing the preferential formation of the dimer.
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corresponding ligand (L2H2 or L3H2) with two equivalents of Sn(HMDS)2 (via protonolysis 
reactions), have also failed (Scheme 4). In both cases, at room temperature, the formation 
of an intermediate LH-SnN(TMS)2 was first detected by 1H NMR spectroscopy. The 
subsequent heating at 60 °C for 1h affords the corresponding stannylenes (L2Sn)2 or L3Sn 
(44% and 61% yield, respectively), accompanied by the formation of H-HMDS and a black 
solid of Sn0 as by-products. 
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C(11)-N(1)-Sn(1) 112.43(18); N(1)-C(11)-N(2) 114.2(3).

Stannylene L3Sn and dimer (L2Sn)2 can also be prepared through the reaction of
deprotonated bis(amidine) ligand (L2K2 or L3K2) with one equivalent of SnCl2. The same
products, (L2Sn)2 and L3Sn, were also obtained using two equivalents of SnCl2, instead of
the expected bis-stannylenes L2Sn2 and L3Sn2 (Scheme 3).
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Other attempts to synthesize bis-stannylenes L2Sn2 and L3Sn2, by reacting the cor-
responding ligand (L2H2 or L3H2) with two equivalents of Sn(HMDS)2 (via protonolysis
reactions), have also failed (Scheme 4). In both cases, at room temperature, the formation
of an intermediate LH-SnN(TMS)2 was first detected by 1H NMR spectroscopy. The subse-
quent heating at 60 ◦C for 1h affords the corresponding stannylenes (L2Sn)2 or L3Sn (44%
and 61% yield, respectively), accompanied by the formation of H-HMDS and a black solid
of Sn0 as by-products.
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2.3. Synthesis of Germylenes Stabilized by Bis(amidine) Ligands

Following the same synthetic strategy, we have considered the reaction of bis(amidinato)
ligands L1–3H2 with Ge(HMDS)2. In the case of L1H2, only dimer (L1Ge)2 was obtained as
yellow crystals in 42% yield (Scheme 5). Because of poor solubility, it was only possible to
characterize (L1Ge)2 by an X-ray diffraction analysis. The eight-membered cyclic molecular
structure of (L1Ge)2 exhibits two trigonal pyramidal Ge centers with a Ge–Ge distance of
3.4984(3) Å (Figure 6).
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Figure 6. Molecular structure of (L1Ge)2. Thermal ellipsoids are represented with a 30% probability.
Hydrogen atoms and solvent molecules have been omitted for clarity. Selected bond distances [Å]
and bond angles [deg]: Ge(1)-N(1i) 2.0961(11); Ge(1)-N(2) 2.0048(10); Ge(1)-N(3) 1.9332(10); C(9)-N(1)
1.3074(16); C(9)-N(2) 1.3740(16); N(3)-Ge(1)-N(2) 87.48(4); N(3)-Ge(1)-N(1i) 95.69(4); N(2)-Ge(1)-N(1i)
96.79(4); N(1)-C(9)-N(2) 116.31(11); C(9)-N(2)-Ge(1) 112.38(8).

The reaction of L2H2 with Ge(HMDS)2 afforded germylene L2Ge after heating at
110 ◦C for 48 h to complete the reaction (Scheme 5). Germylene L2Ge was isolated as yellow
crystals from a pentane solution at −30 ◦C in 52% yield. The 1H NMR spectrum shows a
singlet at 1.60 ppm with an integration of 18 H, corresponding to the tbutyl groups, and
a singlet at 2.18 ppm with an integration of 12 H, corresponding to the methyl groups
of the 2,6-dimethylphenyl substituent. In addition, the 13C NMR spectrum shows the
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characteristic signal for the NCN fragment at 170.9 ppm. These data are in agreement with
a symmetrical tetracoordinated germanium center in solution. However, in the solid state,
the X-ray diffraction analysis of L2Ge shows a tri-coordinated germanium atom with a
distorted trigonal pyramidal geometry. Here, the coordination is through the two nitrogen
atoms of the naphthalene bridge and one nitrogen atom of amidine moiety, leaving the
remaining nitrogen atom dangling (Figure 7). The N–C distances [1.275(5)–1.417(5) Å]
indicate an electron delocalization within the NCN fragments, and due to the bulky nature
of the tbutyl substituents, they are in opposite directions to each other, distorting the
naphthalene ring.
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2.4. Reactivity of Stannylene L1Sn 
Several tests of reactivity were carried out with stannylene L1Sn, which is easy to 

obtain in good yields. We first considered the activation of small molecules such as 
ethylene, NH3, and CO2, but without any success because of no reactions, despite the 
multiple conditions evaluated (temperature, time, and pressure). 

However, when exposed to N2O (five bars) in THF solution, L1Sn slowly reacts (3 h 
at 70 °C) to give a dimeric amidinate-stannoxane 1a, which was isolated as colorless 
crystals in 46% yield (Scheme 6). Compound 1a is moderately soluble in THF, and the 1H 
NMR signals tend to be broadened. Therefore, the coupling of signals in the aromatic 
region cannot be clearly seen, but the integration is as expected, with two broad singlets 
at 2.07 and 1.85 ppm that integrate for 12 H, corresponding to the methyl groups of the 

Figure 7. Molecular structure of L2Ge. Thermal ellipsoids are represented with a 30% probability.
Hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and bond angles [deg]:
Ge(1)-N(1) 1.969(3); Ge(1)-N(2) 2.073(3); Ge(1)-N(3) 1.912(3); C(11)-N(2) 1.308(5); C(11)-N(1) 1.374(5);
C(24)-N(4) 1.275(5); C(24)-N(3) 1.417(5); N(1)-Ge(1)-N(2) 64.89(13); N(1)-Ge(1)-N(3) 90.95(13); N(2)-
Ge(1)-N(3) 102.00(13); N(1)-C(11)-N(2) 108.0(3); N(3)-C(24)-N(4) 124.0(3).

2.4. Reactivity of Stannylene L1Sn

Several tests of reactivity were carried out with stannylene L1Sn, which is easy to
obtain in good yields. We first considered the activation of small molecules such as
ethylene, NH3, and CO2, but without any success because of no reactions, despite the
multiple conditions evaluated (temperature, time, and pressure).

However, when exposed to N2O (five bars) in THF solution, L1Sn slowly reacts (3 h at
70 ◦C) to give a dimeric amidinate-stannoxane 1a, which was isolated as colorless crystals in
46% yield (Scheme 6). Compound 1a is moderately soluble in THF, and the 1H NMR signals
tend to be broadened. Therefore, the coupling of signals in the aromatic region cannot be
clearly seen, but the integration is as expected, with two broad singlets at 2.07 and 1.85 ppm
that integrate for 12 H, corresponding to the methyl groups of the 2,6-dimethylphenyl
fragment. In addition, a resonance at 1.76 ppm, integrating for 12 H and corresponding to
the methyl groups of the amidine moieties, was observed. The characteristic signal of the
carbon amidinate fragments in the 13C NMR spectrum resonates at 168.7 ppm. In addition,
a 119Sn chemical shift at −494.5 ppm was observed, consistent with reported stannoxane
dimers [19]. The crystal structure of 1a shows a dinuclear species with a central planar
Sn2O2 ring with two hexacoordinated tin atoms in a distorted pseudo-octahedral geometry
(Figure 8). The O–Sn distances (~2.000 Å), Sn–Sn contact (2.9779(2) Å), and O–Sn–O angles
(84.01◦) are in the range of other dimeric tin amidinate-stannoxanes reported [19].
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mixture had been stirred at room temperature for 4 h, 1H, and 119Sn NMR spectroscopy 
showed a mixture of new signals and starting stannylene. In the 119Sn NMR spectrum, next 
to the resonance of L1Sn, a new signal appears at −371 ppm, which evolves to a resonance 
singlet at −648.0 ppm after 24 h, corresponding to dimer 1b. After purification, 1b was 
isolated as pale-yellow crystals from a THF solution at −30 °C in 51% yield. The dimeric 
structure of 1b has been determined by an X-ray diffraction analysis, revealing a central 
planar Sn2S2 ring with the two tin centers in a distorted pseudo-octahedral geometry 
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Hydrogens and solvent molecules have been omitted for clarity. Selected bond distances [Å] and
bond angles [deg]: Sn(1)-N(1) 2.2236(10); Sn(1)-N(2) 2.1644(11); Sn(1)-N(3) 2.1423(10); Sn(1)-N(4)
2.2742(10); Sn(1)-O(1) 2.0079(9); Sn(1)-O(1i) 1.9996(8); Sn(1)-Sn(1i) 2.97787(19); C(11)-N(1) 1.3285(16);
C(11)-N(2) 1.3415(16); C(21)-N(4) 1.3113(17); C(21)-N(3) 1.3439(17); O(1)-Sn(1)-O(1i) 84.01(4); Sn(1)-
O(1)-Sn(1i) 95.98(4); N(1)-C(11)-N(2) 110.50(11); N(3)-C(21)-N(4) 112.95(11).

Usually, stannylenes readily react with chalcogenides [6,20–25], and therefore we have
investigated the reaction of L1Sn with elemental sulfur (Scheme 7). After the reaction
mixture had been stirred at room temperature for 4 h, 1H, and 119Sn NMR spectroscopy
showed a mixture of new signals and starting stannylene. In the 119Sn NMR spectrum, next
to the resonance of L1Sn, a new signal appears at −371 ppm, which evolves to a resonance
singlet at −648.0 ppm after 24 h, corresponding to dimer 1b. After purification, 1b was
isolated as pale-yellow crystals from a THF solution at −30 ◦C in 51% yield. The dimeric
structure of 1b has been determined by an X-ray diffraction analysis, revealing a central
planar Sn2S2 ring with the two tin centers in a distorted pseudo-octahedral geometry
(Figure 9). The S–Sn distances are ~2.400 Å and Sn–Sn contact is 3.3847(10) Å [25], longer
than that observed for the di-oxygen analog dimer 1a due to the size of the sulfur atom.

In addition, compound 1b was characterized by NMR spectroscopy. The 1H NMR
spectrum exhibits broadened signals. In the 13C NMR spectrum, the characteristic signal of
the NCN fragment appears at 167.4 ppm. In the 119Sn NMR spectrum, a very high field
chemical shift at −648.0 ppm is observed, a resonance signal that is more high-field shifted
than those of previously reported Sn2S2-bridged dimeric complexes [26,27].
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Figure 9. Molecular structure of 1b. Thermal ellipsoids are represented with a 30% probability.
Hydrogen atoms and solvent molecules have been omitted for clarity. The asymmetric unit contains
two independent but very similar molecules; data for only one molecule are discussed. Selected bond
distances [Å] and bond angles [deg]: Sn(1)-N(1) 2.130(4); Sn(1)-N(2) 2.374(3); Sn(1)-N(3) 2.240(3); Sn(1)-
N(4) 2.198(4); Sn(1)-S(1) 2.4172(14); Sn(1)-S(1i) 2.4585(13); C(11)-N(1) 1.345(6); C(11)-N(2) 1.315(5);
C(21)-N(3) 1.332(5); C(21)-N(4) 1.328(5); Sn(1)-S(1)-Sn(1i) 87.92(4); S(1)-Sn(1)-S(1i) 92.08(4); N(1)-C(11)-
N(2) 112.8(4); N(3)-C(21)-N(4) 110.9(4).

L1Sn reacts with p-tolyldisulfide in THF at 70 ◦C overnight via an oxidative addition
reaction with a tin insertion into the S–S bond (Scheme 8) to give a hexacoordinate Sn(IV)

species 2a [22]. This molecule presents a characteristic 119Sn chemical shift at −456.7 ppm,
consistent with a hexacoordinated tin center [24]. In addition, the X-ray diffraction analysis
of 2a reveals a monomeric Sn(IV) species in a distorted octahedral coordination sphere that
included the four nitrogen atoms of the two chelating amidinates and the two p-tolyl sulfur
fragments (Figure 10). The equivalence of C–N bond lengths within NCN frameworks
and their magnitudes (1.301 to 1.361 Å) indicate that the π electrons within the ligands
are delocalized.

3,5-di-tert-butyl-ortho-quinone also reacts with L1Sn to afford the corresponding
[4 + 1]-cycloadduct 2b (Scheme 9). The 1H NMR spectrum reveals the characteristic signals
of the quinone group in the aromatic region, doublets at 6.57 and 6.39 ppm (JHH = 2.4 Hz),
and two singlets at 1.06 and 1.16 ppm, corresponding to the CH3 groups of tbutyl in
the aliphatic area. Also, the signals corresponding to the amidine CH3 groups’ moieties
integrating for 6 H as a singlet at 2.00 ppm and to the CH3 groups of 2,6-dimethylphenyl
moieties integrating for 12 H as a singlet at 2.08 ppm, respectively, are observed. The 119Sn
NMR spectrum shows a singlet at −512.2 ppm, in agreement with the cycloadduct structure.
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The mass analysis (DCI/CH4) spectrum exhibits a peak at 786.29, which corresponds to
[M]+ of compound 2b, evidencing its formation.
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Figure 10. Molecular structure of 2a. Thermal ellipsoids are represented with a 30% probability.
Hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and bond angles [deg]:
Sn(1)-N(1) 2.132(3); Sn(1)-N(2) 2.411(3); Sn(1)-N(3) 2.230(3); Sn(1)-N(4) 2.180(3); Sn(1)-S(1) 2.4297(15);
Sn(1)-S(2) 2.4483(16); C(11)-N(1) 1.361(4); C(11)-N(2) 1.301(4); C(21)-N(3) 1.334(4); C(21)-N(4) 1.337(4);
N(1)-Sn(1)-N(4) 132.96(11); N(1)-Sn(1)-N(3) 78.01(11); N(3)-Sn(1)-N(4) 59.72(10); N(1)-Sn(1)-N(2)
58.27(11); N(2)-Sn(1)-N(4) 97.20(12); N(2)-Sn(1)-N(3) 86.71(11); N(1)-Sn(1)-S(1) 111.48(9); N(4)-Sn(1)-
S(1) 102.83(8); N(3)-Sn(1)-S(1) 158.14(7); N(2)-Sn(1)-S(1) 82.44(9); N(1)-Sn(1)-S(2) 105.90(9); N(4)-Sn(1)-
S(2) 97.26(9); N(3)-Sn(1)-S(2) 94.06(9); N(2)-Sn(1)-S(2) 163.67(8); S(1)-Sn(1)-S(2) 101.67(7); N(2)-C(11)-
N(1) 113.5(3); N(3)-C(21)-N(4) 110.6(3).

As reported by So et al., an amidinatogermylene can act as a good ligand to form
a germylene→ECl2-type adduct with GeCl2 and SnCl2 [28]. In contrast, L1Sn reacts
with GeCl2(dioxane) in THF at room temperature via a transmetalation reaction to give
a germylene dimer (L1Ge)2 (Scheme 10). The 119Sn NMR spectrum shows a resonance at
−214.0 ppm, in agreement with the formation of SnCl2 [29].
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Transmetalation reactions were also observed with AlCl3 and GaCl3, affording the 
corresponding Al(III) 3a and Ga(III)-chlorides 3b, and in both cases, forming one equivalent 
of SnCl2 (Scheme 11). The modeling confirms an exergonic reaction (−18.92 kcal/mol) 
during this “metal” exchange process. L1Sn reacts with AlCl3 quickly in THF at room 
temperature for 30 min to give 3a, which was isolated as a white solid in 83% yield. The 
1H NMR spectrum shows, in the aromatic region, the expected resonances and integrals, 
and in the aliphatic area, two singlets at 2.33 and 1.90 ppm, integrating for 12 H, 
corresponding to the methyl groups of 2,6-dimethylphenyl fragments and a singlet at 2.13 
ppm (6 H) related to the -CH3 of the amidine groups. In the 13C NMR spectrum, the 
characteristic NCN signal is observed at 176.4 ppm. The symmetry of the 1H and 13C NMR 
spectra are in agreement with a pentacoordinated aluminum complex. Using the same 
experimental conditions, L1Sn also reacts with GaCl3 to give Ga(III)-chloride 3b, which was 
isolated as colorless crystals from a pentane solution at −30 °C in 88% yield. Gallium 
chloride 3b was fully characterized by NMR spectroscopy (very similar to that of 3a) and 
by X-ray diffraction analysis. The molecular structure of 3b (Figure 11) shows a 
pentacoordinated gallium center with a distorted square-based pyramidal geometry. The 
Ga–Cl bond distance of 2.183 Å is in the range expected for such compounds [30]. 
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Scheme 10. Synthesis of L1Ge by transmetalation reaction.

Transmetalation reactions were also observed with AlCl3 and GaCl3, affording the
corresponding Al(III) 3a and Ga(III)-chlorides 3b, and in both cases, forming one equivalent
of SnCl2 (Scheme 11). The modeling confirms an exergonic reaction (−18.92 kcal/mol)
during this “metal” exchange process. L1Sn reacts with AlCl3 quickly in THF at room
temperature for 30 min to give 3a, which was isolated as a white solid in 83% yield. The 1H
NMR spectrum shows, in the aromatic region, the expected resonances and integrals, and in
the aliphatic area, two singlets at 2.33 and 1.90 ppm, integrating for 12 H, corresponding to
the methyl groups of 2,6-dimethylphenyl fragments and a singlet at 2.13 ppm (6 H) related
to the -CH3 of the amidine groups. In the 13C NMR spectrum, the characteristic NCN signal
is observed at 176.4 ppm. The symmetry of the 1H and 13C NMR spectra are in agreement
with a pentacoordinated aluminum complex. Using the same experimental conditions,
L1Sn also reacts with GaCl3 to give Ga(III)-chloride 3b, which was isolated as colorless
crystals from a pentane solution at −30 ◦C in 88% yield. Gallium chloride 3b was fully
characterized by NMR spectroscopy (very similar to that of 3a) and by X-ray diffraction
analysis. The molecular structure of 3b (Figure 11) shows a pentacoordinated gallium
center with a distorted square-based pyramidal geometry. The Ga–Cl bond distance of
2.183 Å is in the range expected for such compounds [30].
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recorded with the following spectrometers for 1H, 13C, and 119Sn: Bruker Avance II 300 
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shift has been counted positively versus the low field and expressed in part per million 
(ppm). The mass spectrometric analysis was performed using three techniques: direct 
chemical ionization (DCI-CH4) methods recorded on a GCT Premier Waters mass 
spectrometer (Headquarters, MN, USA); electrospray ionization (ESI, Los Angeles, CA, 
USA) recorded on a Waters Xevo G2 Q-TOF mass spectrometer; and a Maldi micro-MX 
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Scheme 11. Synthesis of 3a and 3b via transmetalation reactions.



Molecules 2024, 29, 325 13 of 18

Molecules 2024, 29, x FOR PEER REVIEW 13 of 19 
 

 

N N

NN Sn ECl3 THF, r.t., 30min

N N

NN E
Cl

SnCl2

E = Al  3a 
     Ga 3b

E = Al, Ga

 
Scheme 11. Synthesis of 3a and 3b via transmetalation reactions. 

 
Figure 11. Molecular structure of 3b. Thermal ellipsoids are represented with a 30% probability. 
Hydrogens have been omitted for clarity. Selected bond distances [Å] and bond angles [deg]: Ga(1)-
N(1) 1.984(4); Ga(1)-N(2) 2.017(4); Ga(1)-N(3) 1.981(4); Ga(1)-N(4) 2.051(4); Ga(1)-Cl(1) 2.1828(14); 
N(1)-Ga(1)-N(3) 85.32(15); C(11)-N(1) 1.320(5); C(11)-N(2) 1.345(6); C(21)-N(3) 1.327(6); C(21)-N(4) 
1.342(6); N(2)-Ga(1)-N(3) 139.06(16); N(1)-Ga(1)-N(2) 65.43(16); N(3)-Ga(1)-N(4) 65.69(15); N(1)-
Ga(1)-N(4) 130.88(15); N(2)-Ga(1)-N(4) 112.06(16); N(3)-Ga(1)-Cl(1) 110.32(12); N(1)-Ga(1)-Cl(1) 
115.30(11); N(2)-Ga(1)-Cl(1) 107.98(12); N(4)-Ga(1)-Cl(1) 111.79(12); N(1)-C(11)-N(2) 108.5(4); N(3)-
C(21)-N(4) 110.1(4). 

3. Materials and Methods 
3.1. General Comments 

All manipulations were performed under an inert argon or nitrogen atmosphere 
using standard Schlenk-line and glovebox techniques. Dry, oxygen-free solvents were 
employed. Reagents were obtained from commercial suppliers unless otherwise stated. 
N-(2,6-dimethylphenyl)acetamide [31], N-(2,6-dimethylphenyl)acetimidoyl chloride [29], 
N,N′-(naphthalene-1,8-diyl)bis(2,2-dimethylpropanamide) [13], N,N′(naphthalene-1,8-
diyl)bis(2,2-dimethylpropanimidoyl chloride) [13], L1 [12], and L2 [13] were synthesized 
following reported procedures. The Lappert’s germanium(II) and tin(II) derivatives were 
prepared according to the literature procedures [32]. The 1D and 2D NMR spectra were 
recorded with the following spectrometers for 1H, 13C, and 119Sn: Bruker Avance II 300 
MHz, Avance III HD 400 MHz, and Avance I and II 500 MHz spectrometers. The chemical 
shift has been counted positively versus the low field and expressed in part per million 
(ppm). The mass spectrometric analysis was performed using three techniques: direct 
chemical ionization (DCI-CH4) methods recorded on a GCT Premier Waters mass 
spectrometer (Headquarters, MN, USA); electrospray ionization (ESI, Los Angeles, CA, 
USA) recorded on a Waters Xevo G2 Q-TOF mass spectrometer; and a Maldi micro-MX 
micro–mass in a pyrene matrix (ratio of product/matrix 1/100). Melting points were 

Figure 11. Molecular structure of 3b. Thermal ellipsoids are represented with a 30% probability. Hy-
drogens have been omitted for clarity. Selected bond distances [Å] and bond angles [deg]: Ga(1)-N(1)
1.984(4); Ga(1)-N(2) 2.017(4); Ga(1)-N(3) 1.981(4); Ga(1)-N(4) 2.051(4); Ga(1)-Cl(1) 2.1828(14); N(1)-
Ga(1)-N(3) 85.32(15); C(11)-N(1) 1.320(5); C(11)-N(2) 1.345(6); C(21)-N(3) 1.327(6); C(21)-N(4) 1.342(6);
N(2)-Ga(1)-N(3) 139.06(16); N(1)-Ga(1)-N(2) 65.43(16); N(3)-Ga(1)-N(4) 65.69(15); N(1)-Ga(1)-N(4)
130.88(15); N(2)-Ga(1)-N(4) 112.06(16); N(3)-Ga(1)-Cl(1) 110.32(12); N(1)-Ga(1)-Cl(1) 115.30(11); N(2)-
Ga(1)-Cl(1) 107.98(12); N(4)-Ga(1)-Cl(1) 111.79(12); N(1)-C(11)-N(2) 108.5(4); N(3)-C(21)-N(4) 110.1(4).

3. Materials and Methods
3.1. General Comments

All manipulations were performed under an inert argon or nitrogen atmosphere
using standard Schlenk-line and glovebox techniques. Dry, oxygen-free solvents were em-
ployed. Reagents were obtained from commercial suppliers unless otherwise stated. N-(2,6-
dimethylphenyl)acetamide [31], N-(2,6-dimethylphenyl)acetimidoyl chloride [29], N,N′-
(naphthalene-1,8-diyl)bis(2,2-dimethylpropanamide) [13], N,N′(naphthalene-1,8-diyl)bis(2,2-
dimethylpropanimidoyl chloride) [13], L1 [12], and L2 [13] were synthesized following
reported procedures. The Lappert’s germanium(II) and tin(II) derivatives were prepared
according to the literature procedures [32]. The 1D and 2D NMR spectra were recorded
with the following spectrometers for 1H, 13C, and 119Sn: Bruker Avance II 300 MHz, Avance
III HD 400 MHz, and Avance I and II 500 MHz spectrometers. The chemical shift has been
counted positively versus the low field and expressed in part per million (ppm). The mass
spectrometric analysis was performed using three techniques: direct chemical ionization
(DCI-CH4) methods recorded on a GCT Premier Waters mass spectrometer (Headquarters,
MN, USA); electrospray ionization (ESI, Los Angeles, CA, USA) recorded on a Waters Xevo
G2 Q-TOF mass spectrometer; and a Maldi micro-MX micro–mass in a pyrene matrix (ratio
of product/matrix 1/100). Melting points were measured with capillary Electrothermal
Stuart SMP40 apparatus, and samples were prepared in the glovebox before the analysis.
FT-IR spectra were measured on a ThermoNicolet 6700 (Waltham, MA, USA) Nexus and
recovered in a solid state (KBr). Single-crystal X-ray data were collected at a low tempera-
ture (193(2)K) on a Bruker APEX II Quazar (Billerica, MA, USA) diffractometer equipped
with a 30W air-cooled microfocus source [(L2Sn)2, L2Ge, 2a and 3b] or on a Bruker D8
VENTURE diffractometer equipped with a PHOTON III detector [L3H2, L1Sn, (L1Ge)2, 1a
and 1b] using MoKα radiation (λ = 0.71037 Å). The structures were solved by the intrinsic
phasing method (SHELXT) [33] and refined by the full-matrix least-squares method on
F2 [34]. All non-H atoms were refined with anisotropic displacement parameters and all
the hydrogen atoms were refined isotropically at calculated positions using a riding model.
For 2a, some solvent molecules were highly disordered and difficult to model correctly.
Therefore, the SQUEEZE function of PLATON [35] was used to eliminate the contribution
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of the electron density of those solvent molecules from the intensity data. Calculations were
performed with the Gaussian 16 suite of programs [36] using the density functional method
B3LYP with dispersion (D3) [37–40]. Tin atoms were treated with a Stuttgart–Dresden
pseudopotential in combination with its adapted basis set [41]. All other atoms have been
described with a 6–31G(d,p) basis set. Geometry optimizations were carried out without
any symmetry restrictions. Frequency calculations were undertaken to confirm the nature
of the stationary points, yielding one imaginary frequency for transition states (TS) and
all of them were positive for minima. The connectivity of the transition states and their
adjacent minima was confirmed by intrinsic reaction coordinate (IRC) calculations [42,43].

3.2. Synthesis

Synthesis of L3H2. p-toluidine (591 mg, 5.6 mmol) was added to a solution of N,N′-
(naphthalene-1,8-diyl)bis(2,2-dimethylpropanimidoyl chloride) (1 g, 2.8 mmol) in dry
toluene (50 mL). Then, Et3N (559 mg, 5.6 mmol) was added to the mixture. The reac-
tion was stirred for 4 h under reflux. All volatiles were removed under reduced pressure.
The solid residue was taken up in 40 mL of Et2O and washed with 25 mL of a saturated
solution of Na2CO3. Then, the organic layer was washed with water (3 × 30 mL) and
dried over Na2SO4. After that, the solvent was removed, and the crude product was recrys-
tallized with CH2Cl2/pentane (1:2). Yellow crystals were obtained (63% yield). Melting
point: 116–122 ◦C. 1H NMR (DMSO-d6, 500 MHz): δ 9.43 (s, 1H, NH); 8.50 (s, 1H, NH);
7.26 (d, JHH = 6.5 Hz, 1H, aryl); 6.94 (d, JHH = 7.9 Hz, 1H, aryl); 6.88–6.83 (m, 3H, aryl);
6.80 (m, 3H, aryl); 6.66 (d, JHH = 8.1 Hz, 2H, aryl); 6.58–6.51 (m, 2H, aryl); 6.32–6.20 (m,
2H, aryl); 2.05 (s, 3H, CH3); 2.01 (s, 3H, CH3); 1.38 (s, 9H, C(CH3)3); 1.23 (s, 9H, C(CH3)3).
13C{1H} NMR (DMSO-d6, 125 MHz): δ 161.3 (C=N); 160.7 (C=N); 147.2 (aryl, C); 146.5 (aryl,
C); 138.6 (aryl, C); 137.2 (aryl, C); 135.6 (aryl, C); 131.2 (aryl, C); 130.4 (aryl, C); 128.7 (aryl,
CH); 128.0 (aryl, CH); 127.7 (aryl, CH); 124.8 (aryl, CH); 121.4 (aryl, CH); 120.9 (aryl, CH);
119.8 (aryl, CH); 116.5 (aryl, C); 114.8 (aryl, CH); 28.8 (C(CH3)3); 28.3 (C(CH3)3); 20.3 (CH3).
IR (KBr, cm−1): 3373 (∨NH); 1623 (∨C=N). ESI m/z: 504.33 ([M]+).

3.2.1. General Synthetic Procedure of Metallylenes

THF (5 mL) was added to a mixture of one equiv. of MCl2 (M = Sn or Ge) and two
equiv. of K[N(SiMe3)2]2 in a 20 mL vial inside the glovebox. The mixture was stirred for
30 min at room temperature. After this time, a white precipitate was obtained. The mixture
was filtered, and the solution was added to one equiv. of the corresponding L1–3H2, stirring
at 60 ◦C for 3 h. Then, all the volatiles were removed and the residual solid was washed
with pentane (3 × 5 mL).

L1Sn. Colorless crystals were obtained by recrystallization from pentane at −30 ◦C
(77% yield). Melting point: 202 ◦C (decomposition). 1H NMR (THF-d8, 500 MHz): δ 7.42
(dd, JHH = 8.2, 1.1 Hz, 2H, C10H6); 7.31–7.27 (m, 2H, C10H6); 7.07 (dd, JHH = 7.5, 1.1 Hz, 2H,
C10H6); 6.96 (d, JHH = 7.4 Hz, 4H, C6H3); 6.83 (t, JHH = 7.5 Hz, 2H, C6H3); 2.18 (s, 12H, CH3);
1.97 (s, 6H, CH3). 13C{1H} NMR (THF-d8, 125 MHz): δ 169.0 (NCN); 145.3 (C6H3ipso); 144.5
(C10H6ipso); 138.6 (C10H6ipso); 134.4 (C6H3ipso); 128.8 (C6H3); 126.4 (C10H6); 124.8 (C6H3);
123.4 (C10H6); 119.8 (C10H6); 20.0 (CH3); 17.9 (CH3). 119Sn{1H} NMR (THF-d8, 186 MHz):
δ −276.7. ESI m/z: 565.15 ([M]+); 449.27 ([M − Sn]+).

(L2Sn)2. Yellow crystals (44% yield). Melting point: 243 ◦C (decomposition). MS
(Maldi-TOF) m/z: 649.3 ([M/2, monomer]+). Meaningful solution state spectroscopic data
for the compound could not be obtained for the compound as it shows negligible solubility
in normal non-coordinating deuterated solvents once crystallized.

L3Sn. Yellow solid (61% yield). Melting point: 189 ◦C (decomposition). 1H NMR
(THF-d8, 400 MHz): δ 7.38 (d, JHH = 7.5 Hz, 2H, C10H6); 7.24–7.19 (m, 2H, C10H6); 7.09
(d, JHH = 7.1 Hz, 2H, C10H6); 7.05 (d, JHH = 8.0 Hz, 4H, C6H4); 6.97 (d, JHH = 8.2 Hz, 4H,
C6H4); 2.29 (s, 6H, CH3); 1.30 (s, 18H, C(CH3)3). 13C{1H} NMR (THF-d8, 125 MHz): δ 177.5
(NCN); 146.7 (C6H4ipso); 145.7 (C10H6ipso); 138.4 (C10H6ipso); 133.0 (C6H4ipso); 130.4 (C6H4);
126.3 (C10H6); 124.9 (C6H4); 123.4 (C10H6); 121.3 (C10H6); 43.6 (C(CH3)3); 31.8 (C(CH3)3);
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21.0 (CH3). 119Sn{1H} NMR (THF-d8, 186 MHz): δ −254.9. MS (Maldi-TOF) m/z: 621.2
([M]+); 503.4 ([M–Sn]+).

(L1Ge)2. Yellow crystals (42% yield). Melting point: 259 ◦C (decomposition). MS
(Maldi-TOF) m/z: 519.14 ([M/2, monomer]+). Meaningful solution state spectroscopic data
for the compound could not be obtained for the compound as it shows negligible solubility
in normal non-coordinating deuterated solvents once crystallized.

L2Ge. Toluene was used instead of THF as solvent. Yellow crystals were obtained by
recrystallization from pentane at −30 ◦C. (52% yield). Melting point: 199 ◦C (decomposi-
tion). 1H NMR (C6D6, 300 MHz): δ 6.98–6.91 (m, 2H, C10H6); 6.89–6.81 (m, 2H, C10H6); 6.62
(d, JHH = 7.7 Hz, 4H, C6H3); 6.47–6.40 (m, 2H, C6H3); 6.33 (d, JHH = 6.3 Hz, 2H. C10H6); 2.18
(s, 12H, CH3); 1.60 (s, 18H, C(CH3)3). 13C{1H} NMR (C6D6, 125 MHz): δ 170.9 (NCN); 151.8
(C6H3ipso); 148.8 (C10H6ipso); 139.7 (C10H6ipso); 138.5 (C6H3ipso); 128.3 (C6H3); 126.3 (C10H6);
120.4 (C6H3); 114.9 (C10H6); 108.8 (C10H6); 41.9 (C(CH3)3); 30.6 (C(CH3)3); 19.7 (CH3).

Synthesis of 1a. In a J. Young valve NMR tube, a THF (0.4 mL) solution of L1Sn
(30 mg, 0.053 mmol) was exposed to 5 bar of N2O. The reaction was monitored by NMR
and proceeded quantitatively after 3 h at 70 ◦C. Colorless crystals were observed and
separated from the solution by filtration. Then, the crystals were washed with pentane
(3 × 2 mL). Colorless crystals were obtained (46% yield). Melting point: 204 ◦C. 1H NMR
(THF-d8, 500 MHz): δ 7.42 (d, JHH = 6.4 Hz, 4H, C10H6); 7.26 (t, JHH = 7.8 Hz; 4H, C10H6);
7.13 (d, JHH = 6.8 Hz, 4H, C10H6), 7.01 (s, 4H, C6H3); 6.92–6.83 (m, 8H, C6H3); 2.07 (s,
12H, CH3); 1.85 (s, 12H, CH3); 1.76 (s, 12H, CH3). 13C{1H} NMR (THF-d8, 125 MHz): δ
168.7 (NCN); 143.6 (C6H3ipso); 142.7 (C10H6ipso); 138.5 (C10H6ipso); 137.0 (C10H6ipso); 135.3
(C6H3ipso); 128.7 (C6H3); 128.3 (C6H3); 126.3 (C10H6); 125.7 (C6H3); 124.8 (C10H6); 120.6
(C10H6); 19.8 (CH3); 19.0 (CH3); 15.8 (CH3). 119Sn{1H} NMR (THF-d8, 186 MHz): δ −494.5.
MS (Maldi-TOF) m/z: 1161.26 ([M]+); 583.13 ([M/2, monomer]+).

3.2.2. General Reactivity Evaluation Procedure

THF was added to a mixture of one equiv. of L1Sn and one equiv. of S8, p-tolyldisulfide,
3,5-di-tert-butyl-o-benzoquinone, AlCl3, or GaCl3, accordingly. The mixture was stirred for
the corresponding time and temperature. Then, the solvent was removed and the residual
solid was washed with pentane (3 × 0.5 mL).

1b. Stirred overnight at room temperature. Pale-yellow crystals were obtained by
recrystallization from THF at −30 ◦C (51% yield). Melting point: 229 ◦C (decomposition).
1H NMR (THF-d8, 300 MHz): δ 7.40 (d, JHH = 7.5 Hz, 4H, C10H6); 7.22 (t, JHH = 7.8 Hz,
4H, C10H6); 7.11–7.02 (m, 4H, C10H6); 6.93 (bs, 12H, C6H3); 2.11 (br s, 24H, CH3); 1.75
(s, 12H, CH3). 13C{1H} NMR (THF-d8, 125 MHz): δ 167.4 (NCN); 142.7 (C10H6ipso); 138.2
(C10H6ipso); 135.9 (C6H3ipso); 128.8 (C6H3); 126.4 (C10H6); 125.7 (C6H3); 124.8 (C10H6); 121.5
(C10H6); 19.7 (CH3); 16.4 (CH3)). 119Sn{1H} NMR (THF-d8, 186 MHz): δ −648.0. MS
(Maldi-TOF) m/z: 1193.10 ([M]+); 597.04 ([M/2, monomer]+).

2a. Stirred overnight at 70 ◦C. Pale-brown crystals (51% yield). Melting point: 199 ◦C.
1H NMR (THF-d8, 500 MHz): δ 7.40 (dd, JHH = 8.1, 1.1 Hz, 2H, C10H6); 7.25–7.21 (m,
2H, C10H6); 7.17 (dd, JHH = 7.5, 1.2 Hz, 2H, C10H6); 7.05–6.96 (m, 6H, C6H3); 6.63 (d,
JHH = 8.1 Hz, 4H, C6H4); 6.44 (d, JHH = 7.9 Hz, 4H, C6H4); 2.19 (s, 12H, CH3); 2.09 (s, Sn
satellite: JHSn = 7.3 Hz, 6H, CH3); 1.79 (s, Sn satellite: JHSn = 2.4 Hz, 6H, CH3). 13C{1H}
NMR (THF-d8, 125 MHz): δ 168.8 (NCN); 143.8 (Sn satellite: JCSn = 5.2 Hz, C10H6ipso);
143.3 (Sn satellite: JCSn = 7.2 Hz, C6H3); 138.4 (Sn satellite: JCSn = 3.3 Hz, C10H6ipso);
136.1 (Sn satellite: JCSn = 12.8 Hz, C6H4); 135.6 (Sn satellite: JCSn = 3.1 Hz, C6H3); 135.5
(C6H4ipso); 131.4 (C6H4ipso); 129.2 (C6H3); 129.0 (Sn satellite: JCSn = 6.6 Hz, C6H4); 127.6
(C10H6ipso); 126.4 (C10H6); 126.4 (C6H3); 125.2 (C10H6); 121.1 (Sn satellite: JCSn = 11.2 Hz,
C10H6); 21.1 (CH3); 19.9 (CH3); 16.4 (Sn satellite: JCSn = 21.40 Hz, CH3). 119Sn{1H} NMR
(THF-d8, 186 MHz): δ −456.7. MS (Maldi-TOF) m/z: 687.13 ([M − S(tolyl)]+); 565.05
([M − 2 S(tolyl)]+).

2b. Stirred for 15 min at room temperature. White solid (96% yield). Melting
point: 240 ◦C (decomposition). 1H NMR (THF-d8, 500 MHz): δ 7.65–7.62 (m, 2H, C10H6);
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7.44–7.39 (m, 4H, C10H6); 6.98–6.92 (m, 6H, C6H3); 6.57 (d, JHH = 2.4 Hz, 1H, C6H2); 6.39 (d,
JHH = 2.4 Hz, 1H, C6H2); 2.08 (s, 12H, CH3); 2.00 (s, Sn satellite: JHSn = 3.5 Hz, 6H, CH3); 1.16
(s, 9H, C(CH3)3); 1.06 (s, 9H, C(CH3)3). 13C{1H} NMR (THF-d8, 125 MHz): δ 171.6 (NCN);
151.3 (Sn satellite: JCSn = 5.1 Hz, C6H2ipso); 147.1 (Sn satellite: JCSn = 3.3 Hz, C6H2ipso); 142.0
(Sn satellite: JCSn = 3.9 Hz, C10H6ipso); 140.9 (Sn satellite: JCSn = 7.5 Hz, C6H3ipso); 138.7
(C6H2ipso); 138.5 (C10H6ipso); 136.1 (C6H3ipso); 134.1 (C6H2ipso); 129.1 (C6H3); 127.1 (C6H3);
126.7 (C10H6); 126.1 (C10H6ipso); 126.0 (C10H6); 121.2 (Sn satellite: JCSn = 11.6 Hz, C10H6);
111.5 (C6H2); 110.3 (Sn satellite: JCSn = 40.2 Hz, C6H2); 35.3 (C(CH3)3); 34.9 (C(CH3)3); 32.4
(C(CH3)3); 30.2 (C(CH3)3); 19.1 (CH3); 15.5 (Sn satellite: JCSn = 33.7 Hz, CH3). 119Sn{1H}
NMR (THF-d8, 186 MHz): δ −512.2. ESI m/z: 786.29 ([M]+).

3a. Stirred for 30 min at room temperature. White solid (85% yield). Melting point:
124 ◦C. 1H NMR (THF-d8, 500 MHz): δ 7.46 (dd, JHH = 8.3, 1.1 Hz, 2H, C10H6); 7.35–7.31
(m, 2H, C10H6); 7.24 (dd, JHH = 7.5, 1.2 Hz, 2H, C10H6); 7.02–6.90 (m, 6H, C6H3); 2.33
(s, 6H, CH3); 2.13 (s, 6H, CH3); 1.90 (s, 6H, CH3). 13C{1H} NMR (THF-d8, 125 MHz): δ
176.4 (NCN); 141.9 (C10H6ipso); 141.8 (C10H6ipso); 140.6 (C6H3ipso); 138.4 (C10H6ipso); 135.8
(C6H3ipso); 135.1 (C6H3ipso); 129.4 (C6H3); 128.8 (C6H3); 126.6 (C10H6); 126.2 (C6H3); 124.1
(C10H6); 123.9 (C10H6ipso); 117.8 (C10H6); 19.9 (CH3); 19.3 (CH3); 15.6 (CH3). 27Al{1H} NMR
(THF-d8, 130 MHz): δ 69.4.

3b. Stirred for 30 min at room temperature. Colorless crystals were obtained from
recrystallization with pentane at −30 ◦C (88% yield). Melting point: 209 ◦C (decomposi-
tion). 1H NMR (THF-d8, 500 MHz): δ 7.46 (dd, JHH = 8.3, 1.1 Hz, 2H, C10H6); 7.34–7.30
(m, 2H, C10H6); 7.20 (dd, JHH = 7.5, 1.2 Hz, 2H, C10H6); 7.03–6.90 (m, 6H, C6H3); 2.34
(s, 6H, CH3); 2.12 (s, 6H, CH3); 1.98 (s, 6H, CH3). 13C{1H} NMR (THF-d8, 125 MHz): δ
172.3 (NCN); 142.9 (C10H6ipso); 141.9 (C6H3ipso); 138.6 (C10H6ipso); 136.1 (C6H3ipso); 135.5
(C6H3ipso); 128.8 (C6H3); 126.4 (C10H6); 126.4 (C6H3); 124.3 (C10H6); 123.1 (C10H6ipso); 118.3
(C10H6); 19.8 (CH3); 15.1 (CH3). MS (Maldi-TOF) m/z: 551.06 ([M]+); 517.04 ([M − Cl]+);
449.10 ([M − GaCl]+).

3.3. X-ray Data

CCDC-2303009 (L3H2), CCDC-2266345 (L1Sn), CCDC-2266346 [(L2Sn)2], CCDC-
2266347 [(L1Ge)2], CCDC-2266348 (L2Ge), CCDC-2266349 (1a), CCDC-2266350 (1b), CCDC-
2266351 (2a), and CCDC-2266352 (3b) contain the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

4. Conclusions

Three tetradentate bis(amidine) ligands RNC(R′)N-linker-NC(R′)NR with a rigid naph-
thalene linker L1–3 were successfully used for the stabilization of metallylenes. The corre-
sponding stannylenes and germylenes (LSn and LGe) have been prepared by protonolysis
reaction of Lappert’s metallylenes [M(HMDS)2] (M = Ge or Sn) and were fully characterized
by NMR spectroscopy and X-ray diffraction analysis. Structures in the solid state show
either a monomer or a dimer depending on the different substituents of the amidine moiety,
demonstrating that the nature of the bis(amidine) system can influence the stabilization and
the reactivity of the corresponding tetrylenes. DFT calculations have been performed in
order to define the electronic properties associated with tetradentate ligands. The reactivity
of stannylene L1Sn was explored in oxidation, oxidative addition, and transmetalation
reactions to form in particular the corresponding gallium and aluminum derivatives.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29020325/s1, NMR spectra, crystal structure refinements,
and computational investigations (PDF).
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