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We revisit the classical problem of a liquid film falling along a vertical wall due to the
action of gravity, i.e. the Kapitza paradigm (Zhurn. Eksper. Teor. Fiz., vol. 18, 1948,
pp. 3-28). The free-surface of such a flow is typically deformed into a train of solitary
pulses that consists of large asymmetric wave humps preceded by small precursory rip-
ples, designated as “capillary waves”. We set out to answer four fundamental questions:
(i) By what mechanism do the precursory ripples form? (ii) How can they travel at
the same celerity as the large-amplitude main humps? (iii) Why are they designated
as “capillary waves”? (iv) What determines their wavelength and number and why do
they attenuate in space? Asymptotic expansion as well as direct numerical simulations
and calculations with a low-dimensional integral boundary layer model have yielded the
following conclusions: (i) Precursory ripples form due to an inertia-based mechanism at
the foot of the leading front of the main humps, where the local free-surface curvature is
large. (ii) The celerity of capillary waves is matched to that of the large humps due to
the action of surface tension, which speeds-up the former and slows-down the latter. (iii)
They are justly designated as “capillary waves”, because their wavelength is systemati-
cally shorter than the visco-capillary cut-off wavelength of the Kapitza instability. Due to
a nonlinear effect, namely that their celerity decreases with decreasing amplitude, they
nonetheless attain/maintain a finite amplitude because of being continuously compressed
by the pursuing large humps. (iv) The number and degree of compression of capillary
waves is governed by the amplitude of the main wave humps as well as the Kapitza num-
ber. Large-amplitude main humps travel fast and strongly compress the capillary waves
in order for these to speed-up sufficiently. Also, the more pronounced the first capillary
wave becomes, the more (spatially attenuating) capillary waves are needed to allow a
smooth transition to the back of the next main hump. These effects are amplified by de-
creasing the Kapitza number, whereby, at very small values, streamwise viscous diffusion
increasingly attenuates the amplitude of the capillary waves.

Key words: interfacial flows (free-surface), thin films, capillary waves

1. Introduction

We consider a Newtonian viscous liquid film flowing down a vertical wall due to the
action of gravity in a two-dimensional setting. As shown in figure 1 and famously in the
seminal experiments of Kapitza (1948), the free-surface of such a film may deform into a
train of solitary pulses, travelling at constant celerity (Pumir et al. 1983) and displaying
a very distinct shape. This consists of a large-amplitude asymmetric main hump in the
form of a tear, which is preceded by a number of small ripples, typically designated as
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Figure 1. Fully-developed travelling free-surface profile of a vertically falling wavy liquid film:
Re=q̃/ν=15, f̃=16 Hz, Λ=20.8 mm, Ka=σ/(ρ g1/3 ν4/3)=509.5. Large non-symmetric wave
humps form due to the Kapitza instability (Kapitza 1948) and are preceded by so-called “capil-
lary waves”. How do these precursory waves form, how can they keep up with the large humps,
why are they called “capillary waves”, and what determines their wavelength and number?

“capillary waves”, that form on the residual film separating subsequent wave trains. In
this manuscript, we set out to answer a number of fundamental questions regarding this
generic wave shape: (i) By what mechanism do the precursory ripples form? (ii) How can
they travel at the same celerity as the large-amplitude main humps? (iii) Why are they
designated as “capillary waves”? (iv) What determines their wavelength and number and
why do they attenuate in space? First, we provide a short literature overview in order to
put the objective of our manuscript into context.
Recent reviews on falling liquid films can be found in the monographs of Alekseenko

et al. (1994), Chang & Demekhin (2002), and Kalliadasis et al. (2012) and the articles
by Chang (1994) and Craster & Matar (2009). Early works elucidated the linear stability
behaviour of this flow (Brooke Benjamin 1957; Yih 1963), showing the instability to be
of the long-wave type at low Reynolds number values (Re=q̃0/ν, q̃0 and ν designating
the dimensional flow rate per unit width of the unperturbed film and kinematic viscosity,
respectively), the stability cut-off being determined by surface tension, expressed through
the Kapitza number (Ka=σ/(ρg1/3 ν4/3), σ, ρ, and g denoting surface tension, density
and gravity), and streamwise viscous diffusion (Ruyer-Quil & Manneville 1998). At large
Re, short-wave shear modes were shown to occur (Floryan et al. 1987).

Later, numerical simulations based on the Navier-Stokes equations (Salamon et al.
1994; Ramaswamy et al. 1996; Miyara 1999; Malamataris et al. 2002; Gao et al. 2003;
Nosoko & Miyara 2004; Trifonov 2008) and experiments using optical measuring tech-
niques (Liu & Gollub 1994; Lel et al. 2005; Tihon et al. 2006; Dietze et al. 2009) focussed
intensively on elucidating the kinematics of surface waves and the flow field they generate.
This was complemented by the development of low-dimensional models (Benney 1966;
Gjevik 1970; Shkadov 1967; Ruyer-Quil & Manneville 2000), which enable physically-
consistent simulations on very long domains. Such simulations have represented the full
transition of a wavy liquid film from its smooth-surface state at the inlet to interfacial
spatio-temporal chaos several meters downstream (Chang et al. 1996). This evolution is
associated with a number of secondary instabilities (Liu et al. 1993) as well as interac-
tion and coalescence events between non-linear surface waves (Malamataris et al. 2002;
Pradas et al. 2011). For brevity, we have focused here on two-dimensional studies and
merely point out a number of works devoted to the more complicated three-dimensional
problem (Joo & Davis 1992; Chang et al. 1993; Park & Nosoko 2003; Demekhin et al.
2007a,b, 2010; Kofman et al. 2014; Dietze et al. 2014).

In reviewing the above literature, we have found that questions (i) to (iv), relating
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to precursory capillary waves on falling liquid films, have, to the best of our knowledge,
not been answered. Meanwhile, capillary waves play an important role for the dynamics
of these wavy flows and a number of works have highlighted this point. For instance,
Malamataris et al. (2002) have shown that capillary waves may prevent the coalescence
of neighbouring large humps of moderately disparate amplitude and Pradas et al. (2013)
discovered that self-sustained oscillations between large humps of same amplitude may
occur when the latter are initially placed at a short distance from one another. Under-
standing how capillary waves form on wavy falling liquid films and under what circum-
stances they are most pronounced and greatest in number, may help to elucidate the
mechanisms underlying such interactions.
On the other hand, capillary waves generate adverse pressure gradients sufficiently

strong to overcome gravity and cause local flow reversal. This was, in principle, already
conjectured by Kapitza (1948) based on his low-dimensional model and later confirmed
by simulations based on the Navier-Stokes equations (Salamon et al. 1994; Miyara 1999;
Malamataris et al. 2002), while the governing mechanism was elucidated by Dietze et al.
(2008) and experimental proof was provided by Tihon et al. (2006) and Dietze et al.
(2009). Meanwhile, Malamataris & Balakotaiah (2008) showed the existence of multiple
flow reversal regions when several strongly-pronounced capillary waves are present and
Dietze et al. (2014) identified regions of three-dimensional flow reversal. More recently,
Doro & Aidun (2013), confirmed by direct numerical simulation (DNS) that flow reversal
may also form for sinusoidal surface waves. The authors deduce from this that backflow
“is not dependent on the presence of capillary waves.” However, the wavelength of their
sinusoidal waves is short and not very far from that of typical capillary ripples preceding
the asymmetric large hump in figure 1. By understanding the nature of capillary waves
on falling liquid films, our manuscript will help to establish whether it is necessary to
distinguish these two wave types. Finally, a phase diagram for the onset of flow reversal
was recently constructed by Rohlfs & Scheid (2015). Bearing in mind the controlling
relevance of capillary waves for the onset of flow reversal, the current manuscript may
help to provide a physical basis for such correlations.
In summary, despite a number of studies focussing on the effects of capillary waves on

falling liquid films, the mechanisms governing their inception, growth, and final state as
well as the matching of their celerity to that of the large humps, i.e. questions (i)-(iv),
seem not to have been understood yet. Nonetheless, a number of interesting indications
toward answering these questions can be found in the literature. For instance, Ruyer-Quil
& Manneville (2000), based on their WRIBL model, found that streamwise viscous diffu-
sion plays an important role in shaping capillary waves. Also, two intriguing remarks were
made by Chang (1994), who, referring to the wavelength of capillary waves, suggested
“These humps have steep fronts which are relaxed by a series of front-running bow waves
whose wavelength is close to the monochromatic waves at inception” and “the bow waves
have a wave number close to the neutral wave number α0 which is in excellent agreement
with experimental observation.” A fundamental question then is whether the wavelength
of the “bow waves” is smaller or greater than the neutral stability cut-off, i.e. whether
they are stable or unstable in terms of the primary Kapitza instability. In section 5, we
provide an answer to this question. On a more general note, the wave profile in figure
1 is distinctly reminiscent of ripples forming around objects travelling on deep water.
By elucidating the underlying mechanisms of capillary waves on falling liquid films, our
manuscript will help judging if these two situations are indeed comparable.
The manuscript is structured as follows. In the first part, section 2, we discuss the

mechanics of single-peaked surface waves occurring on an initially smooth falling liquid
film due to the Kapitza instability. Such waves appear at low Re and can be described
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with the so-called Benney equation (Benney 1966; Gjevik 1970), which we use to obtain
analytic expressions for growth rate and celerity contributions resulting from different
physical effects, linking the latter to the shape of the free-surface (through the film
thickness δ and its derivatives). This part complements the qualitative description of the
primary instability mechanism in Kalliadasis et al. (2012). It will serve in the second part
of the manuscript, sections 3 to 5 devoted to the precursory capillary waves, which evolve
from single-peaked solutions once the main hump amplitude becomes large. In part two,
we use DNS of the Navier-Stokes equations, combined with the physical insight gained in
the first part, to answer questions (i)-(iii) based on the flow conditions shown in figure 1
(which are outside the validity domain of the Benney equation). In the last part, section 6,
we use the low-dimensional weighted residual integral boundary layer (WRIBL) model of
Ruyer-Quil & Manneville (2000) to perform extensive parameter variations and answer
question (iv). In the conclusion, section 7, we summarize the principal results of the
manuscript by succinctly answering the four questions we have posed at the onset. The
appendix contains two figures showing additional simulation data, which will be relevant
in section 3, and a third figure validating all employed simulation methods (based on
the Benney, integral boundary layer, and Navier-Stokes equations, respectively) with
experiments of Dietze et al. (2009). Also, the coefficients of the second-order Benney
equation, which is used in section 2, are written out there.

2. Mechanics of single-peaked Kapitza waves

The occurrence of capillary waves on falling liquid films is inherently linked to condi-
tions in the large humps that they precede. In fact, capillary waves evolve from single-
peaked travelling wave solutions (consisting of a single hump and trough) once the ampli-
tude of the main hump becomes large. Consequently, we start in this section by explaining
the mechanics of single-peaked surface waves, developing on an initially smooth falling
liquid film due to the Kapitza instability. In this limit, surface waves are of moderate am-
plitude and long length and can be described by asymptotic expansion (Oron et al. 1997)
around the smooth film base flow, which results from an equilibrium between gravity and
viscous stresses and is given by the dimensionless streamwise velocity profile:

u0 (y) = 3 [y − y2

2
] (2.1)

(y is the wall-normal or crosswise coordinate), where the length scale was chosen as the
unperturbed film thickness L=δ̃0=(3 q̃0 (µ/ρ)/g)1/3 (µ denotes dynamic viscosity and q̃0
dimensional flow rate per unit width), and the velocity scale as the corresponding mean
velocity U=q̃0/δ̃0 (the time scale is L/U). Asymptotic expansion truncated at first order
in the long-wave parameter ǫ=δ̃0/Λ (where Λ denotes the wavelength) yields the so-called
Benney equation (Benney 1966; Gjevik 1970):

∂tδ = −3δ
2 ∂xδ −

3

5
Re [12 δ5 (∂xδ)2 + 2 δ6 ∂xxδ] − 1

Bo
δ2 [3∂xδ∂xxxδ + δ∂xxxxδ] , (2.2)

written here in non-conservative form, which describes the evolution of the film thickness
δ. On the RHS of (2.2), the first term expresses the balance between gravity and crosswise
viscous diffusion, the second, scaled by the Reynolds number Re = q̃0 ρ/µ, the effect of
inertia, and the third, scaled by the inverse Bond number Bo=3/(ReWe)=ρg L2/σ (where
We = σ/(ρU2L) denotes the Weber number), the effect of surface tension σ.
In addition, by taking into account the integral continuity equation:

∂tδ + ∂xq = 0 (2.3)
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Figure 2. Kinematic wave governed by (2.7): δ̃0=0.1 mm, g=9.81 m/s2, µ=0.001 Pas, ρ=1000

kg/m3, Λ=100δ̃0. Starting from a harmonic initial condition, the wave moves from left to right
at times t̃=0, 0.02, 0.04, and 0.06 s, steepening without growing in amplitude. Filled/open circles
mark loci of minimal δ/maximal ∂xxδ (at t̃=0, these points coincide).

(derived using the kinematic condition v∣y=δ = dδ/dt), a relation for the celerity of trav-
elling waves (dδ=0) can be obtained:

c = ∂δq. (2.4)

Employing the flow rate to film thickness relation underlying (2.2):

q = δ3 [1 + 6

5
Re δ3∂xδ +

1

Bo
∂xxxδ] , (2.5)

one then obtains from (2.4):

c = 3δ2 +
36

5
Re δ5∂xδ +

3

Bo
δ2∂xxxδ +

Ψ

∂xδ
, (2.6a)

with

Ψ =
6

5
Re δ6∂xxδ +

1

Bo
δ3∂xxxxδ. (2.6b)

Equations (2.2) and (2.6a) will be used to highlight different mechanisms governing the
growth rate and celerity of single-peaked waves. We will loosely refer to ∂tδ as the “growth
rate”, although the proper form of a growth rate requires δ−1∂tδ. Also, the local “growth
rate” ∂tδ is different from the total “growth rate” dδ/dt=∂tδ + u∣δ ∂xδ, but the dynamics
are contained in ∂tδ and ∂tδ=dδ/dt at the wave extrema.
In the limit of inertialess flow without surface tension (Re → 0, 1/Bo→ 0):

∂tδ = −3δ
2 ∂xδ, c = 3δ2, q = δ3, (2.7)

which describes so-called kinematic waves (Brooke Benjamin 1957) depicted in figure
2 for a representative set of parameter values. We may discern two key features from
this (see Kalliadasis et al. (2012)): (i) The wave humps travel faster than the troughs
(c = 3δ2), leading to a compression of the wave fronts and an elongation of the wave tails
into a non-symmetric waveform. This development is never arrested, eventually leading
to a shock (not shown in the graph); (ii) The growth rate at the extrema is zero and
the wave amplitude imposed by the initial condition remains unchanged over time. From
a physical point of view, kinematic waves occur because the flow rate q is greater in
thicker than in thinner regions of the film, which, by mass conservation, drains regions
of increasing and inflates regions of decreasing film thickness.
The cause for the growth of Kapitza waves is inertia. For this, we consider (2.2) and
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Figure 3. Dynamic wave governed by (2.8a): δ̃0=0.1 mm, g=9.81 m/s2, µ=0.001 Pas, ρ=1000
kg/m3, Λ=100 δ0. Starting from a harmonic initial condition, the wave moves from left to right
at times t=0, 0.01, 0.02, 0.03, and 0.04 s, growing in amplitude due to the effect of inertia.

(2.5) at finite Reynolds number and in the limit 1/Bo→ 0:

∂tδ = −3δ
2 ∂xδ −

3

5
Re [12 δ5 (∂xδ)2 + 2 δ6 ∂xxδ] , (2.8a)

q = δ3 [1 + 6

5
Re δ3∂xδ] . (2.8b)

Now the growth rate at the extrema is no longer null due to the second derivative ∂xxδ

in (2.8a). This causes wave humps, where ∂xxδ < 0, to grow in height and troughs, where
∂xxδ > 0, to grow in depth. The effect is scaled by δ6 so that humps grow faster than
troughs deepen. These features are illustrated in figure 3, plotting the solution of (2.8a)
for the same parameters as figure 2. Because (2.8a) contains no attenuating terms, the
amplitude of the waves in figure 3 eventually diverges, which is unphysical.
Mechanically, the effect of inertia can be explained as follows. Lack of it means that flow

rate variations adapt infinitely fast to film thickness variations. In that case, considering
two points either side of and infinitely close to an extremum, e.g. a wave crest, the
associated film thicknesses are the same, and consequently, the flow rate in (2.7) does
not vary. According to (2.3), the growth rate must thus be null. However, if inertia is
present, the film thickness history, resulting from the passage of surface waves at the two
points, must be taken into account. Indeed, the downstream point has just increased its
film thickness (as ∂xδ < 0). Considering that the corresponding flow rate needs a finite
time to react to this change, its value (2.8b) is thus slightly too low. Conversely, at the
upstream point (where ∂xδ < 0), the flow rate is slightly too high. This leads to a negative
∂xq and thus a positive growth rate ∂tδ at any wave hump. The contrary is true at a
wave trough, where the free-surface curvature ∂xxδ > 0. Throughout this manuscript,
we will refer to ∂xxδ as the free-surface curvature although the precise formulation is
∂xxδ/(1+∂xδ)3/2. This is convenient and tenable, as the correction involving ∂xδ vanishes
at extrema, is negligible for long surface waves and does not influence the sign of the
curvature. Meanwhile, the inertia-effect in (2.8) is scaled by powers of δ, because the flow
rate adapts to film thickness variations by way of momentum diffusion in y-direction.
The second term in (2.8a), although it vanishes at the extrema, does play a role in the

wave front and back, where it always (by being proportional to (∂xδ)2) decreases the
growth rate. This again results from the inertia-induced lag (relative to the kinematic
waves) of the flow rate in adapting to a time-varying film thickness and, in particular,
the increase of lag magnitude with increasing film thickness. In the wave front, ∂xδ < 0
and the flow rate lag is decreasingly negative as δ decreases, causing a negative growth



Kapitza instability and capillary waves 7
(a)

0.0 0.5 1.0 1.5 2.0
0.8

0.9

1.

1.1

1.2

x̃/Λ

δ

(b)

0.0 0.5 1.0 1.5 2.0
-6
-4
-2

0
2
4
6
8

x̃/Λ

δ
3
∂
x
x
x
x
δ
/Bo

(1
0
3
)

t̃=0

t̃=1.92 s

Figure 4. Saturating wave governed by (2.2): δ̃0=0.1 mm, g=9.81 m/s2, µ=0.001 Pas, ρ=1000

kg/m3, σ=0.072 N/m, Λ=100 δ̃0, Re=3.27. Starting from a harmonic initial condition, the wave
moves from left to right at times t̃=0, 0.22, 0.54, 1.07, 1.8 and 1.92 s, growing initially and
saturating to a constant amplitude due to the effect of surface tension forces. (a) Film thickness
profile; (b) profile of δ3∂xxxxδ/Bo in (2.2) evaluated at t̃=0 s, 1.92 s.

rate contribution: ∂xq > 0→ ∂tδ < 0. In the wave back, ∂xδ > 0 but the flow rate lag there
is positive and increases with δ so that once again: ∂xq > 0→ ∂tδ < 0.
The saturation of Kapitza waves to a finite amplitude is caused by surface tension

forces and their effect on the streamwise pressure gradient. For this, we consider the full
form of equation (2.2), the solution of which is shown in panel 4a for the same parameters
as in figures 2 and 3, additionally setting the surface tension to the value of water σ=0.072
N/m. This surface tension evidently causes the wave amplitude to saturate, creating a
travelling wave of fixed shape in its own reference frame. The arrest of growth at the
extrema is caused by the last term in (2.2) and determined by the sign of the fourth
derivative ∂xxxxδ. Panel 4b plots this term for the initial (sinusoidal) profile and that of
the final travelling wave. We see that ∂xxxxδ is always negative at the troughs, increasing
∂tδ according to (2.2), and positive at the humps, decreasing ∂tδ there.
Physically, this can be explained by considering that ∂xxxδ imposes the streamwise

pressure gradient ∂xp = −We∂xxxδ through the effect of surface tension forces. Indeed,
when moving from a wave trough toward a hump, the free-surface curvature decreases
(∂xxxδ <0) and surface tension forces create a pressure gradient directed from the hump
to the trough, which in simple terms tends to equalize film thickness variations. To
be more accurate, the effect of this pressure gradient on the flow rate (2.5) must be
considered. A pressure gradient directed counter to the flow will tend to reduce q and
vice-versa. Spatial flow rate variations (which through (2.3) impose the local growth rate)
can thus be generated by a change in pressure gradient, i.e. ∂xxp = −We∂xxxxδ ≠ 0. This
introduces the fourth film thickness derivative, which, even for a sinusoidal profile (figure
4b), is positive at the humps (∂xxp < 0 → ∂xq > 0 → ∂tδ < 0) and negative at the troughs
(∂xxp > 0 → ∂xq < 0 → ∂tδ > 0). Meanwhile, the effect scales with δ3 in (2.2), so that
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Figure 5. Free-surface evolution according to (2.2) as wave hump and trough converge in
celerity. (a) Streamwise distance between trough and hump; (b) free-surface curvature at the
hump (dashed line) and trough (solid line). Celerity matching is accompanied/generated by a
streamwise compression of the hump-trough separation, increasing the curvature magnitudes.

it is stronger (and increasingly so with increasing δ) at the humps than at the troughs,
nicely balancing the inertia-induced growth disparity between extrema. Physically, this
scaling results from the sensitivity of the flow rate (2.5) to the pressure gradient, which
accelerates/decelerates the flow over the entire film thickness.
In preparation of the second part of the manuscript, we seek to identify what mecha-

nisms allow the trough and hump of the travelling wave in figure 4a to eventually prop-
agate at the same celerity. The local celerity is given by (2.6a). At the extrema x=xE ,
both ∂xδ and Ψ tend to zero (limx→xE

(Ψ)=0 follows from requiring a finite celerity), so
that l’Hôpital’s rule needs to be applied to the last term in (2.6a):

Ξ = lim
x→xE

Ψ

∂xδ
=
6

5
Re δ6

∂xxxδ

∂xxδ
+

1

Bo
δ3

∂xxxxxδ

∂xxδ
, (2.9a)

which yields:

c∣x=xE
= 3δ2 +

3

Bo
δ2∂xxxδ +Ξ. (2.9b)

Evaluating this relation for the profile at t=1.92 s in figure 4a, led to the following
observations. The first term of (2.9b) is proportional to δ2 and causes the wave hump to
travel faster than the wave trough. This effect is amplified by the inertial term in (2.9a)
because ∂xxxδ < 0 and the free-surface curvature is negative at the hump (∂xxδ < 0)
and positive at the trough (∂xxδ > 0). Conversely (because ∂xxxxxδ > 0), this change in
curvature between hump and trough tends to slow down the former and speed up the
latter through the capillary term in (2.9a). It is thus the effect of surface tension, through
the last term in (2.9a), that arrests the celerity disparity between humps and troughs.
Figure 5 plots the time evolution of the streamwise separation between wave hump

and trough from figure 4 as well as the free-surface curvature at these positions. The
initial celerity difference between the extrema causes a compression of the wave front
(decreasing ∆xE) that is at first rapid and subsequently slower and degressive as the
celerities converge. In the process, the magnitude of the free-surface curvature increases,
whereby ∣∂xxδ∣ attains a greater value at the trough than at the hump.
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We conclude by discussing the effect of streamwise viscous diffusion, which we will later
show to play a role in shaping capillary waves. This effect enters asymptotic expansion
at higher order and we must consider the Benney equation truncated at ǫ2 (Lin 1974):

∂tδ = ∂tδ(2.2) − ∂x [D (∂xδ)2 +E ∂xxδ +F ∂xxxxδ +G∂xδ ∂xxxδ

+H (∂xxδ)2 δ + I (∂xδ)2 ∂xxδ] ,
(2.10)

where the coefficients D to I are all functions of δ and are given in the appendix (8.1),
whereas the underlying relation for the flow rate is:

q = q(2.5) +D (∂xδ)2 +E ∂xxδ + F ∂xxxxδ +G∂xδ ∂xxxδ

+H (∂xxδ)2 δ + I (∂xδ)2 ∂xxδ.
(2.11)

The contributions related to streamwise viscous diffusion are:

∂tδµ = −∂x [7δ3∂xδ2 + 3δ4∂xxδ] and qµ = 7δ
3∂xδ

2
+ 3δ4∂xxδ. (2.12)

In the first equation, only the term −3δ4∂xxxδ is non-zero at the extrema and thus the
growth rate there is prescribed by the third film thickness derivative ∂xxxδ. Physically,
this can be understood as follows. At zeroth order, the local instantaneous velocity profile
is u = 3δy − (3/2)y2 and so ∂xxu ≈ 3y∂xxδ. This means that, at a wave hump (∂xxδ < 0),
fluid elements are subjected to an upstream resulting streamwise viscous stress, while
the contrary is true at a wave trough (∂xxδ > 0). This effect tends to reduce the flow
rate at the hump and increase it at the trough (2.12). The corresponding streamwise
change in flow rate ∂xq is then given by the change in free-surface curvature, i.e. ∂xxxδ,
which is negative at both the wave hump and trough. Consequently, streamwise viscous
diffusion increases the growth rate at both extrema ∂tδµ = −∂xqµ > 0. Of course, for the
trough, ∂tδµ > 0 means that it grows less deep. As opposed to surface tension, the effect
of streamwise viscous diffusion is thus “non-symmetrical”.
Finally, let us consider how this affects the celerity at the extrema. Differentiating

(2.11) with respect to δ, considering the limit x = xE , and retaining only terms related
to streamwise viscous diffusion, yields:

cµ∣x=xE
= 26 δ3 ∂xxδ + 3δ

4 ∂xxxxδ

∂xxδ
. (2.13)

It turns out that both terms on the RHS of (2.13) counteract the celerity difference
between maxima and minima resulting from (2.7). Indeed, the first term is proportional
to the free-surface curvature, which tends to slow down the hump (∂xxδ < 0) and speed up
the trough (∂xxδ > 0). The second term needs to be evaluated numerically. A calculation
based on (2.10) for the same parameters as in figure 4 showed that ∂xxxxδ > 0 at the
hump and ∂xxxxδ < 0 at the trough, which tends to further counteract celerity differences.

3. How are capillary waves generated?

Capillary waves evolve from single-peaked wave solutions once the wave amplitude
becomes large. This happens at greater Reynolds number values than considered up
until now, when the solution of (2.2) diverges due to the strong non-linearities contained
therein (Pumir et al. 1983). Consequently, we will base our analysis in sections 3-5 on
DNS of the Navier-Stokes equations using the volume-of-fluid/continuum-surface-force
code Gerris (Popinet 2009). Nonetheless, the basic relationships identified in section
2 between governing mechanisms of wave growth/celerity and free-surface kinematics
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Case µ (Pas) ρ (kg/m3) σ (N/m) f̃∞ (Hz) Λ (mm) ¯̃
δ (µm) Re∞ Bo

1 3.13 ⋅ 10−3 1098.3 0.0484 16 20.80 302 15.0 0.026
2 3.13 ⋅ 10−3 1098.3 0.0484 20 21.25 298 10.7 0.020

Table 1. Parameters for the DNS in section 3. The Kapitza number Ka=σ/(ρ g1/3 ν4/3)=509.5
for both cases and “∞” denotes the hydrodynamically developed state. See appendix for vali-
dation of the two simulations with experiments by Dietze et al. (2009).

will help in identifying plausible physical mechanisms surrounding the inception and
dynamics of capillary waves, which we will subsequently verify with our DNS data.
DNS of two representative flow scenarios (table 1) have been performed. These two

simulations, case 1 and case 2, have been validated in the appendix with appropriate
experiments (Dietze et al. 2009; Dietze 2010). They were conducted on a domain of
length Λ using a periodic boundary condition in streamwise direction and starting from
a sinusoidal film thickness perturbation about a flat film:

δ∣t=0 = δ̄ [1 + ǫ cos(2π x̃/Λ)], (3.1)

where the mean film thickness δ̄ and the domain length Λ represent the actual control pa-
rameters, which fix the Reynolds number Re∞ and wave frequency f∞ of the developed
state (denoted by “∞”). The perturbation amplitude ǫ=0.4 and the initial streamwise
velocity u∣t=0 = 3 δ∣t=0 y−(3/2)y2. We point out that the use of periodic boundary condi-
tions fixes the volume of the liquid film to a constant throughout the simulation. Thus, it

is the Reynolds number Re=(ρ/(Λµ)) ∫ Λ

0 ∫ δ̃

0 ũ dỹ dx̃ and wave frequency that vary over
time, starting from a value set by the initial conditions and converging toward the fully
developed values Re∞ and f∞. Though DNS studies showing the time evolution of sur-
face waves have been performed before (Malamataris et al. 2002; Dietze et al. 2008; Doro
& Aidun 2013), these have not focussed on explaining the inception of capillary waves.
The inception of capillary waves is a direct consequence of the primary Kapitza in-

stability discussed in section 2 and the non-symmetric surface waves it generates. This
is shown for case 1 in figure 6, depicting free-surface profiles evolving over time during
growth of a large wave hump (see figure 8 for later times). The earliest, i.e. bottom-
most, profile displays a large asymmetric wave hump preceded by a single wave trough.
It is similar to those plotted in figure 4a as it exhibits a single maximum and a single
minimum. This remains so over roughly the next five profiles while growth of the wave
hump increasingly compresses/steepens the wave front. However, from the eighth profile
onwards, a new local wave trough, which we will call “capillary trough”, develops near
the foot of the wave front and increases in depth as time goes on, eventually undercutting
the erstwhile global wave trough. This is highlighted by the inset in figure 6, showing a
blown-up view of the free-surface profile in finer time resolution.
The underlying mechanism can be inferred as a first approximation by going back to

the growth rate expression (2.2) (see discussion surrounding (3.2) for confirmation with
DNS), where we had established the importance of free-surface curvature ∂xxδ in driv-
ing inertia-induced growth. According to this, we conjecture that the capillary trough
develops within the wave front of the main hump due to large positive curvature and as-
sociated inertia-induced negative growth there. The locus of maximal ∂xxδ is highlighted
with an open circle for each profile in figure 6. Interestingly, in the early stages, it does not
correspond to the global film thickness minimum (filled circles). Rather, the maximum of
∂xxδ occurs near the foot of the wave front, close to where the capillary trough eventually
develops (onwards from profile 8). Growth in depth of this local trough further increases
the related free-surface curvature and thus amplifies itself, causing it to become the new
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Figure 6. DNS of a vertically falling film: ¯̃
δ=302 µm, Re∞=15, f̃∞=16 Hz, Ka=509.5 (see

appendix for validation with experiments). Time evolution of the free-surface profile over the

timespan t = t̃/τ ∈ [0.75 ∶ 0.2 ∶ 4.15] (time scale: τ=(H3ρ/σ)1/2, with H=1.5 mm denoting the
height of the DNS domain). Profiles in the main graph are represented over the film thickness
interval δ/δ̄ ∈ [0.4,2.4] and those in the blown-up inset over δ/δ̄ ∈ [0.6,0.9]. In the initial stages,
as the main wave front steepens, a maximum of free-surface curvature (open circle) is established
at its “foot” and not at the global wave trough (filled circle). According to (2.8a), this locally
increases the magnitude of the (negative) growth rate there, eventually producing a new global
film thickness minimum (see evolution between profiles 8 and 9 in inset), and, as a result, the
first capillary wave, “sandwiched” between the former and actual global minimum.

global film thickness minimum from the ninth profile onwards. This self-amplification of
the growth mechanism is demonstrated in figure 7, representing free-surface curvature
profiles corresponding to the third to ninth (panel a) and the tenth (panel b) film thick-
ness profiles in figure 6. Indeed, the curvature maximum therein (open circle) significantly
increases during the development of the capillary trough (filled circle).

We point out that the capillary trough does not occur exactly at the free-surface
curvature maximum, as can be seen in figures 6 and 7. This is because the curvature
maximum appears within the wave front, where ∂xδ < 0 and the kinematic growth rate
contribution (2.7) is positive (and dominates the slope-related inertial contribution in
(2.8a)). Consequently, the total (negative) growth rate maximum is moved toward a
position of lesser ∣∂xδ∣, i.e. slightly downstream. This kinematic retardation effect weakens
with increasing Reynolds number (increasing relevance of inertia). We have verified this
with an additional simulation that is almost identical to case 1, but starts from a greater
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Figure 7. Profiles of the free-surface curvature ∂xxδ corresponding to the third to ninth (panel
a) and the tenth (panel b) profile in figure 6. The locus of the wave hump is marked with a plus
sign, that of the wave trough with a filled circle, and that of the precursory capillary hump by a
diamond (panel b), while the open circle marks the curvature maximum. Panel (a) shows that
this curvature maximum occurs between the main hump and trough, causing the inertia-driven
inception of a capillary trough at the foot of the wave front (figure 6). Because the depth of this
trough increases, the associated curvature magnitude becomes very large (panel b).

initial Reynolds number value. Figure 20 in the appendix shows this simulation and may
be directly compared to figure 6. For comparison, the instantaneous Reynolds number for
the tenth profile is Re=13.5 in figure 6 while it is Re=38 in figure 20. Once the capillary
trough has formed, ∂xδ=0 and the kinematic growth rate contribution vanishes.
Emergence of a capillary trough at the foot of the main wave front thus requires that

the locus of the free-surface curvature maximum separates from that of the global wave
trough. These loci coincide for the harmonic perturbation to which the film is initially
subjected, and their separation is caused by the non-symmetric growth of the main hump.
This ingredient is already contained in the kinematic waves plotted in figure 2, where
open circles mark the curvature maximum and filled circles the film thickness minimum.
A consequence of the growing capillary wave trough in figure 6 is that it produces a

local maximum of negative curvature slightly further downstream (figure 7), owing to
the necessity to “reconnect” the free-surface to the predominantly flat film separating
neighbouring large wave humps. This negative curvature generates the capillary hump
seen to emerge from the tenth profile onwards in figure 6. Panel 7b, where the locus of the
capillary hump is highlighted with a diamond, suggests that this is again caused by the
curvature-related inertial growth mechanism. Because this mechanism is self-amplifying,
the capillary hump, just as the capillary trough, quickly grows as time progresses (figure
6). Figure 8 shows this evolution at later times. Therein, we see that growth of the first
capillary hump eventually generates a second capillary trough further downstream, which
itself produces another capillary hump and so on and so forth. This series of capillary
humps, “sandwiched” between capillary troughs, is what we call “capillary waves”.
Given that the physical explanations presented above are based on equation (2.2),

which, strictly-speaking, is not valid for wave regimes deviating substantially from the
primary flow, we check them against the Navier-Stokes equations. We will show that the
latter confirm the main physical mechanisms identified with (2.2). For this, we focus on
two of the profiles in figures 6 and 8: (i) The eighth profile in figure 6 (t∗ = 2.15) where
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Figure 8. Capillary wave evolution following early events in figure 6. The timespan is
t∗ = t̃/τ ∈ [3.95 ∶ 0.2 ∶ 7.15] (time scale τ as in figure 6). Growth of the first capillary trough
kicks-off the creation of additional capillary humps/troughs of decreasing curvature magnitude.

the capillary trough is just about to appear, and (ii) the thirteenth profile in figure 8
(t∗ = 6.55) where the capillary waves are much closer to saturation.
To untangle the different mechanisms governing ∂tδ, we derive a similar expression

to (2.2) based on the Navier-Stokes equations. This is done in three steps successively
applied to the differential x-momentum balance. First, isolate ∂yyu (crosswise viscous
diffusion term) and integrate in y direction twice to isolate the streamwise velocity u(y)
(using u∣y=0=0 and ∂yu∣y=δ=0 in the process). Second, integrate across the film thickness

to isolate the flow rate q = ∫ δ

0 u(y)dy:

q = Re

δ

∫
0

y

∫
0

δ

∫
y

−du
dt

d3y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ti

+Re
δ

∫
0

y

∫
0

δ

∫
y

−∂xpd3y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Tp

+3
δ

∫
0

y

∫
0

δ

∫
y

d3y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tg

+
δ

∫
0

y

∫
0

δ

∫
y

∂xxud
3y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Tµ

.

(3.2a)
Third, differentiate in streamwise direction to isolate ∂tδ=−∂xq:

∂tδ = −∂xq = −∂xTi − ∂xTp − ∂xTg − ∂xTµ. (3.2b)

This equation can be applied to the DNS data to quantify the growth rate contributions
of inertia, pressure, gravity, and streamwise viscous diffusion (Ti, Tp, Tg, and Tµ). Figure
9 represents profiles of the dominant terms in (3.2b) (panels 9b and 9d) as well as the
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Figure 9. Different contributions to the growth rate ∂tδ in the region of the capillary waves
for two different time points. (a,b) Early stage (eighth profile in figure 6, t∗ = 2.15); (c,d) Wave
structure closer to saturation (thirteenth profile in figure 8, t∗ = 6.55). Panels (a,b) depict film
thickness profiles, and panels (c,d) profiles of different contributions to the growth rate according
to (3.2b). Dashed lines: ∂tδ; dot-dashed lines: −∂xTg=−3∂xδ; solid lines: −∂x (Ti + Tp + Tµ); open
circles: curvature maximum; filled circles: local curvature minimum.

corresponding free-surface profiles (panels 9a and 9c) at the two above-mentioned time
points. Plus signs mark the locus of the main wave maximum, open circles that of the
curvature maximum (roughly where the first capillary trough appears), and filled circles
that of the adjacent local curvature minimum (roughly where the first capillary hump
appears). Dashed lines in panels 9b and 9d represent the growth rate ∂tδ. The contri-
bution of gravity, just as for kinematic waves (2.7), can be evaluated to −∂xTg = −3∂xδ
and is plotted with dot-dashed lines. It is null at extrema and cannot explain the growth
nor decay of capillary humps and troughs. Rather, this growth is governed by a balance
between the destabilizing effect of inertia −∂xTi and the stabilizing effects of capillary-
induced pressure gradients −∂xTp and streamwise viscous diffusion −∂xTµ. Solid lines in
panels 9b and 9d represent this balance, i.e. −∂x(Ti + Tp + Tµ).
Starting with the earlier time point (panels 9a and 9b), we see that the kinematic

growth rate contribution (dot-dashed line in panel 9b) follows the gradient of the wave
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profile, assuming negative values in the wave back, positive values in the wave front, and
zero at the extrema. The growth rate ∂tδ (dashed line) roughly follows this evolution
with two exceptions: ∂tδ is positive at the main wave hump (plus sign), which is thus
growing, and negative at the position where the first capillary trough is about to appear
(slightly downstream of the open circle). Inspecting the profile of −∂x(Ti+Tp+Tµ) (solid
line in panel 9b), which is positive at the first and negative at the second position, we
deduce that this growth follows from an excess in the destabilizing inertial contribution
−∂xTi. Our qualitative statements based on (2.2) are thus confirmed.
As the capillary waves approach saturation, we expect the stabilizing growth rate

contributions -∂xTp and -∂xTµ to play an increasing role. This is confirmed by panels
9c and 9d. Therein, we observe that −∂xTp and −∂xTµ have taken the upper hand at
both the capillary trough (open circle) and hump (filled circle), causing a slight reversal
of growth rates there. Incidentally, these stabilizing contributions already play a role at
the earlier time point (panel 9b) as they significantly counteract the inertial effect at the
curvature maximum (open circle), which contributes to moving the point where the first
capillary trough will appear slightly downstream.
Figure 10 shows the time evolution of the mechanisms at play during inception, growth,

and attenuation of the first capillary trough and hump. It represents time traces of the
film thickness (panel 10a), free-surface curvature (panel 10c), and growth rate ∂tδ (panel
10d), as well as individual contributions −∂xTi, −∂xTp, and +∂xTµ (panels 10e and 10f).
Thereby, Tµ was approximated with ∂xx(q/δ)δ3/3 to avoid excessive error amplification
when differentiating the numerical data. In addition, panel 10b depicts time traces of the
streamwise separation ∆x between main-hump/capillary-trough (plus signs), capillary-
trough/capillary-hump (diamonds), and main-hump/capillary-hump (circles).
Panel 10a shows that the capillary trough (circles) increasingly deepens in the early

stages, reaches a minimum, and then slowly approaches its saturated depth. The cor-
responding free-surface curvature (panel 10c) is correlated quite well with the depth of
the trough but it is also affected by its width (panel 10b). Reciprocal observations apply
to the first capillary hump (diamonds). In terms of the mechanisms underlying these
kinematics, panel 10e confirms our prior assumption that the growth rate contribution of
inertia −∂xTi (solid line) is destabilizing, while that of pressure −∂xTp (dot-dashed line)
and streamwise viscous diffusion −∂xTµ (dashed line) is stabilizing. Indeed, at the capil-
lary trough, −∂xTi is negative while the other terms are positive (the opposite applies to
the capillary hump, which is not shown here). We point out that −∂xTi and −∂xTp in the
earliest stages are exceedingly small and could not be (individually) evaluated reliably
due to numerical errors. These data were omitted from panel 10e.
Of course, the growth rate ∂tδ is finally determined by a balance of the three effects.

Although the inertial and pressure terms are far greater in magnitude than the viscous
term, the latter still plays an important role as the former partially cancel each other.
This is shown in panel 10f, which compares −∂xTi−∂xTp to +∂xTµ at the capillary trough
(circles) and hump (diamonds), respectively (note that +∂xTµ and not −∂xTµ is plotted
here to better compare magnitudes of same-symbol curves). We see that −∂xTi − ∂xTp

and −∂xTµ are comparable in magnitude, meaning that streamwise viscous diffusion sig-
nificantly shapes capillary waves in falling liquid films. This is in-line with Ruyer-Quil &
Manneville (2000), who showed that taking it into account in their model significantly
damped the capillary waves (see figure 5 in that reference). The destabilizing effect of in-
ertia −∂xTi by and large surmounts the stabilizing effect of pressure −∂xTp, meaning that
variations of −∂xTi − ∂xTp in magnitude (as compared to −∂xTµ) and not in sign dictate
whether the capillary waves grow or decay. This is confirmed by the strong correlation
between ∂tδ (panel 10d) and ∣−∂xTi − ∂xTp∣ (panel 10f).
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Figure 10. Dynamics of capillary ripples. Time traces at the first capillary trough (circles) and
hump (diamonds). (a,c,d) Film thickness, free-surface curvature, and growth rate; (b) distance
between main-hump/capillary-trough (plus signs), capillary-trough/capillary-hump (diamonds),
and capillary-hump/main-hump (circles); (e) different growth rate contributions at the first
capillary trough according to (3.2b): inertia −∂xTi (solid line), pressure −∂xTp (dot-dashed line),
and streamwise viscous diffusion −∂xTµ (dashed line); (f) comparison of −∂xTi−∂xTp (solid line)
and +∂xTµ (dashed line). Inertia drives growth of the capillary trough and hump against the
stabilizing effects of capillary-induced pressure gradients and streamwise viscous diffusion.
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By comparing the mechanical contributions plotted in panels 10e and 10f with the
kinematic quantities plotted in panels 10a to 10d, we may draw the following main con-
clusions. Inertia is indeed responsible for the inception and growth of the first capillary
trough. This growth is arrested by capillary-induced pressure gradients and streamwise
viscous diffusion once the local film thickness (panel 10a) and the width of the capillary
trough (panel 10b) have become sufficiently small, while the local curvature (panel 10c)
has become large. Indeed, increasingly compressing the deepening capillary trough be-
tween the main and capillary humps, creates large gradients of curvature (augmenting
capillary-induced pressure gradients) and film thickness (augmenting streamwise veloc-
ity gradients and viscous stresses). Reciprocal observations apply to the first capillary
hump, which saturates at a much smaller amplitude than the main hump because the
short wavelength imposed by the capillary trough immediately produces large curvature
gradients. The smaller capillary hump in turn produces a less pronounced second capil-
lary trough and so on and so forth. Precursory capillary ripples, which are initiated in
the most curved portion of the steepening front of a single-peaked wave hump, thus come
to their saturation in the form of a compressed (and attenuating) capillary wave train,
exhibiting large gradients in free-surface curvature and film thickness.

4. Celerity matching: How do capillary waves keep up?

In this section, we investigate through what mechanism capillary waves eventually
adjust their celerity to that of the much greater main humps. Evaluating c = ∂xq/∂xδ
at extremal points using l’Hôpital’s rule (∂xδ=0 and, if c is assumed to be finite, ∂xq
must also tend to zero), yields the celerity c∣x=xE

= ∂xxq/∂xxδ∣x=xE
there, which may be

decomposed into its respective dynamic contributions based on (3.2a):

c =
∂xxq

∂xxδ
= ∂xxTi/∂xxδ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ci

+∂xxTp/∂xxδ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cp

+∂xxTg/∂xxδ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cg

+∂xxTµ/∂xxδ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cµ

, (4.1)

where the subscript x = xE was omitted for convenience. The contribution of gravity can
be evaluated to cg = 3δ

2 and corresponds to the celerity of kinematic waves (2.7). Strictly
speaking, (4.1) only holds for waves of constant amplitude, i.e. when dδ=0, but we will
nonetheless apply it to characterize conditions prior to saturation. This amounts to a
quasi-stationary treatment of the celerity evolution.
The different celerity contributions in (4.1) are plotted in figure 11 (over the same

timespan as figure 10) at the main hump (plus signs) and capillary trough (open circles),
respectively, while figure 12 plots the corresponding film thickness, curvature and stream-
wise separation. Panels 11a and 11b show that the kinematic contribution cg (symbol-only
curves) tends to impose a much greater celerity at the main hump than at the capillary
trough, owing to the considerable difference in film thickness between these locations.
Nonetheless, the full celerity c (solid lines) at the two extrema is eventually matched
at c ≈ 2.5. In the process, the celerity of the main hump drops much more significantly
with respect to cg than that of the capillary trough rises. This is driven by the interplay
between the contributions of capillary-induced pressure variations cp and inertia ci.
Separate evaluation of these contributions proved problematic due to amplification of

numerical errors that withstood the good spatio-temporal resolution of our simulation
(the time increment was ∆t̃=10−8 s and the minimal film thickness δ̃min ≈ 150µm was
resolved with about 25 grid points). However, for the larger Re simulation in figure 20,
the problem is lesser. We thus refer to figure 21 in the appendix, which plots separate
time traces of cp and ci for that very similar simulation. These show that the celerity
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Figure 11. Time evolution (τ as in figure 8) of different contributions to the wave celerity
according to (4.1) evaluated at the main hump (plus signs) and capillary trough (open circles).
(a,b) Full celerity c (solid lines) and contribution of gravity cg (symbols only); (c) resulting
contribution of inertia and pressure ci + cp (solid line) and contribution of streamwise viscous
diffusion cµ (dashed line). At the hump, cµ is noisy but negligibly small and thus not shown.

of the capillary trough is increased by capillary-induced pressure gradients (cp > 0, dot-
dashed lines) and decreased by inertia (ci < 0, solid lines), while the opposite holds at the
main hump (cp < 0, ci > 0). The sum of the two celerity contributions ci + cp is plotted
in figure 11c (solid lines), showing that cp dominates ci, which increases the celerity of
the capillary trough and decreases that of the main hump. Meanwhile, the contribution
of streamwise viscous diffusion cµ is considerable at the capillary trough (dashed line),
decreasing its speed, and negligibly small at the hump (data not plotted).
Comparing solid lines in panels 11a and 11b, we see that the capillary trough initially

travels much (two times) slower than the main hump and then speeds up significantly,
while the main hump slows down only slightly. The acceleration of the capillary trough
is driven by the streamwise separation between main hump and capillary trough/hump.
Indeed, in the early stages, the fast-approaching main hump increasingly compresses the
capillary trough (panel 12c), while increasing its curvature (panel 12b). This in turn
causes ∣cp∣ to rise with respect to ∣ci∣ (panel 11c) and thus speeds up the capillary trough.
We point out that similar mechanics govern the evolution of all subsequent capillary
humps and troughs, until all celerities are matched and all amplitudes are saturated.
The main hump’s celerity (panel 11a) and amplitude (panel 12a) are arrested when the

leading wave front steepens (panel 12c) while coming up on the initially slow capillary
trough, increasing ∣∂xxδ∣ at the wave maximum (panel 12b). In this sense, we may also
conclude that capillary waves limit the celerity and amplitude of the main humps.
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Figure 12. Evolution (τ as in figure 8) of the shape of the main hump (plus signs) and capillary
trough (open circles) over the time span in figure 11. (a) Film thickness δ; (b) free-surface
curvature ∂xxδ; (c) streamwise separation between main-hump/capillary-hump (open circles),
main-hump/capillary-trough (plus signs), and capillary-trough/capillary-hump (diamonds).

In summary, celerity matching between main humps and capillary waves is achieved
when these structures are compressed into a wave train of sufficiently large free-surface
curvature magnitudes at the extrema, allowing capillary-induced pressure gradients cp
(and streamwise viscous diffusion cµ) to slow down the main hump and speed up the
capillary trough. We observed in section 2 that these mechanisms strongly scale with
δ. Assuming this holds qualitatively in figure 12, it explains why ∣∂xxδ∣ at the capillary
trough is much greater than at the main hump (panel 12c).

5. Why are they called “capillary waves”?

Throughout this manuscript, we have used the words “capillary waves” to designate
the small ripples preceding the large wave humps in figure 1. However, we have not
explained the capillary nature of these ripples. We have shown that their growth is
arrested by surface tension forces (as well as streamwise viscous diffusion), but this is
also true for the main wave humps. Something else must thus be at play.
It turns out that the wavelength of capillary waves on falling liquid films is systemati-

cally shorter than the visco-capillary cut-off wavelength of the Kapitza instability. Figure
13 shows this for a large variety of wave trains (see figures 17-19 for profiles) computed
using the simplified second-order Weighted Residual Integral Boundary Layer (WRIBL)
model of Ruyer-Quil & Manneville (2000), which has been validated against experiments
and DNS in the appendix. This model, coupled with the continuation software Auto07P
(Doedel 2008), allowed parameter sweeps at moderate computational cost. Solid lines
in panels 13a-13d represent the dimensionless wave number of the first capillary wave
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Figure 13. Wave number of first capillary wave αc=2πδ̃0/Λc (solid lines) compared to visco–
capillary cut-off of the Kapitza instability (dashed lines). Solid lines: simplified second order
WRIBL model (Ruyer-Quil & Manneville 2000); dashed lines: Orr-Sommerfeld temporal linear
stability analysis (Brooke Benjamin 1957). Parameters vary about case 1 in table 1: (a) influ-

ence of the Kapitza number Ka=σ/(ρ g1/3 ν4/3); (b) influence of the Reynolds number Re; (c)
influence of the large hump wavelength Λ; (d) influence of the large hump frequency f . All quan-
tities are non-dimensionalized with primary flow scales except for the dot-dashed line in panel

(b) which rescales the dashed-line-data using δ̃ν=(µ/ρ)2/3g−1/3=93.9 µm. The wave number of
capillary waves is systematically greater than the visco-capillary cut-off. Thus, these waves are
stable in terms of the primary Kapitza instability and justly designated as “capillary waves”.

αc=2πδ̃0/Λc, where Λc is the streamwise distance between the first and second capil-
lary trough, as a function of the Kapitza number Ka, Reynolds number Re, wavelength
Λ, and frequency f , respectively. We use the Kapitza number Ka=σ/(ρg1/3 ν4/3) here
instead of the Bond number because it contains only fluid properties.
Dashed lines in panels 13a-13d represent the visco-capillary cut-off wave number of the

primary Kapitza instability, which was obtained by linear stability analysis of the Navier-
Stokes equations (Brooke Benjamin 1957; Yih 1963). It is apparent in figure 14a, plotting
linear temporal growth rate versus wave number for selected parameter combinations.
The cut-off wave number is the short-wave intersection with the α-axis and decreases with
decreasing Reynolds number/increasing Kapitza number. It is of visco-capillary nature
because both surface tension and streamwise viscous diffusion (see figure 3 in Ruyer-Quil
& Manneville (1998)) stabilize the inertia-driven Kapitza instability.
Comparing solid and dashed lines in figure 13, we may thus conclude: Capillary waves

on falling liquid films are systematically shorter than the visco-capillary cut-off wave-
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Figure 14. Temporal linear stability data obtained from Orr-Sommerfeld solution. (a) Growth

rate Ψ (non-dimensionalized with δ̃0/ ũ0∣δ̃0) versus wave number; (b) celerity versus wave num-

ber. Parameters vary about case 1 (filled circles) in table 1. ●: Re=15, Ka=509.5; ▼: Re=1,
Ka=509.5; ◆: Re=30, Ka=509.5; +: Re=15, Ka=2000. The visco-capillary cut-off wave number
(panel a) decreases with decreasing Reynolds number and increasing Kapitza number. Celerity–
matched waves of increasingly disparate wave number are possible beyond the unstable branch
(highlighted by symbols in panel b), especially at large Re and low Ka.

length of the Kapitza instability, are thus dominated by (visco-)capillary forces, and
justly designated as “capillary waves”. Regarding the earlier cited statements of Chang
(1994), we may observe that, although the trend of the capillary wave number in terms
of the control parameters (except for frequency) is roughly in agreement with that of the
linear cut-off wave number, there is a significant disagreement between the actual values.
Comparing the wave number of the nonlinear capillary waves with the linear cut-off

wave number for the primary flow is not precisely adequate because the local Reynolds
number in the capillary wave region is smaller. However, taking into account a lower
Reynolds number, would yield an even lower linear cut-off wave number (dot-dashed
line in panel 13b). Meanwhile, the “wiggles” of the solid curves in panels 13c and 13d
appear at small wavelengths and large frequencies when the capillary waves directly
interact with the back of the next main hump. Each “wiggle” is associated with the
addition/subtraction of a capillary hump to/from the train of capillary waves.
We add an observation regarding the linear celerity curves plotted in figure 14b. These

curves are composed of a branch that decreases and one that increases with wave number.
Thus, the linear behaviour of falling liquid films already allows waves of different wave-
length to be matched in celerity. To accommodate considerably disparate wavelengths,
the short waves (large wave number) must exit the unstable part of the celerity curve
(highlighted by symbols), i.e. transcend the visco-capillary cut-off.
The above conclusions imply that capillary waves on falling liquid films are linearly

stable in terms of the Kapitza instability and should attenuate if they were travelling
on their own. How is it then possible that they nonetheless attain/maintain a finite
amplitude? This could not work if they would behave like capillary waves in the sense of
Whitham (1974), the celerity of which depends only on their wave number:

c̃ = [(σ α̃/ρ) tanh(α̃ δ̃)]1/2 . (5.1)
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Figure 15. Celerity of capillary waves. (a) Influence of the wave number. Solid line: nonlinear
waves from figure 13a; dot-dashed line: conventional capillary waves in the sense of (Whitham

1974) c̃ = [(σ α̃/ρ) tanh(α̃ δ̃)]
1/2

; (b) influence of the wave amplitude (nonlinear waves), i.e. the

height difference between first capillary trough and hump ∆δ̃. Here, natural scales are used

for non-dimensionalization: δν = (µ/ρ)2/3g−1/3 and Uν = (µg/ρ)1/3. Contrary to conventional
capillary waves, the celerity of capillary waves on falling liquid films depends on their amplitude.

Figure 15a compares this relation (dot-dashed line) with the celerity of the nonlinear cap-
illary waves (solid line), showing a clear discrepancy. Indeed, the nonlinear celerity curve
shows that capillary waves of the same wave number may travel at different celerities (e.g.
points 1 and 2), which is not compatible with (5.1). This is because their celerity also
depends on their amplitude, as shown in panel 15b. More specifically, the capillary wave
celerity increases with amplitude. Consequently, considering a capillary wave travelling
in front of a main wave hump, it will tend to attenuate due to its linear stability, but this
would reduce its celerity, causing the main hump to catch up and compress/speed-up
the capillary wave once-again (section 4). We can thus conclude that large wave humps
travelling on falling liquid films continuously transfer energy to the precursory capillary
ripples for these to maintain a finite amplitude. This is comparable to capillary wakes of
objects travelling on liquid surfaces (Raphaël & de Gennes 1996; Moisy & Rabaud 2014).

6. Capillary waves in fully developed wave trains

Once the mechanisms governing the amplitude and celerity of main humps and capil-
lary ripples have settled into an equilibrium, the final wave shape in figure 16 is obtained.
Panel 16a represents case 1 and panel 16b case 2, which has a different Reynolds number
and wavelength (see table 1). Comparing the two panels, we see that the capillary ripples
are significantly altered by changing the wavelength and amplitude of the main humps.
We proceed by explaining how this relation is natured based on physical insights from
the previous sections. To do so, we again consider the parameter variations performed
for figure 13 using the WRIBL model of Ruyer-Quil & Manneville (2000).
We start by varying the Reynolds number Re around the WRIBL simulation of case 1,

while maintaining the Kapitza number and wavelength constant. Figure 17 shows wave
profiles obtained this way, with Re decreasing from top to bottom. The amplitude of the
main humps increases with the Reynolds number due to the mounting relevance of inertia
(Ti in equation 3.2) and also increases their celerity. This compresses the precursory
capillary waves more and more into a train of increasing curvatures ∣∂xxδ∣ and decreasing
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Figure 16. Saturated shape of a train of solitary pulses on a falling liquid film, consisting of a
main hump and precursory capillary waves, obtained from DNS for cases 1 and 2 in table 1. (a)
Case 1: Re=15, f=16 Hz; (b) case 2: Re=10.7, f=20 Hz. Capillary waves are strongly modified
by changing the wavelength and amplitude of the large wave humps.

wavelength, so that capillary and viscous effects (Tp, Tµ and cp, cµ in equations 3.2 and
4.1) may arrest the rising inertial contributions and produce a saturated and phase-locked
solution. Meanwhile, the number of precursory capillary waves rises with increasing Re,
which results from the increasing curvature ∂xxδ of the first capillary trough. Indeed,
the number of capillary waves is fixed by the condition that the last of the spatially-
attenuating capillary troughs must transition smoothly to the back of the next main
hump. Consequently, when the curvature of the first capillary trough is greater, additional
spatially-attenuating ripples are needed to sufficiently reduce ∂xxδ.
Figure 18 shows the effect of the large-hump wavelength Λ. Increasing Λ (from the

bottom to the top panel) while maintaining the Reynolds and Kapitza numbers constant,
increases the linear growth rate of the primary Kapitza instability and, consequently, the
amplitude of the large humps. Similarly to the previous figure, this creates increasingly
compressed capillary waves of rising number. In contrast to figure 17, the three cases
with largest amplitude (panels 18a-18c) develop a flat residual film. This results from
the way in which the increase in height of the main humps is sustained in figures 18 and
17, respectively. In figure 18, the Reynolds number and thus the mean film thickness are
constant so that the region between two subsequent main humps must increasingly drain
in order to sustain their growth. Conversely, in figure 17, the increase in wave height is
in part sustained by increasing the mean film thickness, which increases with Re.
Once this flat residual film has formed, the last capillary hump/trough can always

smoothly connect to it (as ∂xδ=0 there) and so the number of capillary ripples ceases to
increase. Instead, the length of the capillary wave train is simply shortened. Incidentally,
transition from capillary waves interacting with the back of the next main hump to
formation of a flat residual film coincides with the “wiggles” in figures 13c and 13d.
Figure 19 shows the effect of reducing the Kapitza number Ka=σ/(ρg1/3 ν4/3) (from

top to bottom), which can be achieved e.g. by reducing the surface tension. On the one
hand, this directly affects the capillary waves, which increase their curvature magni-
tude (see ∂xxδ in bottom right corner of panels) and decrease their wavelength so that
capillary-induced growth rate and celerity contributions (Tp, cp in equations 3.2, 4.1)
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Figure 17. Influence of Reynolds number on amplitude, wavelength and number of cap-
illary waves: Ka=509.5; Λ/δ̃ν=226, fluid properties according to table 1. Length scale:

δ̃ν = (µ/ρ)2/3g−1/3. (a) Re=40, c̃=0.497 m/s; (b) Re=30, c̃=0.450 m/s; (c) Re=20, c̃=0.384
m/s; (d) Re=15 (case 1, table 1), c̃=0.342 m/s; (e) Re=10, c̃=0.288 m/s; (f) Re=5, c̃=0.202
m/s. Simulations with simplified second-order WRIBL model (Ruyer-Quil & Manneville 2000).
Increasing Re increases amplitude of main humps, increasingly compressing capillary waves.
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Figure 18. Influence of large hump wavelength Λ on amplitude, wavelength and number of
capillary waves: Ka=509.5; Re=15, fluid properties according to table 1. (a) Λ/δ̃0=140, c̃=0.438

m/s; (b) Λ/δ̃0=112, c̃=0.410 m/s; (c) Λ/δ0=84, c̃=0.375 m/s; (d) Λ/δ̃0=56, c̃=0.330 m/s; (e)

Λ/δ̃0=45, c̃=0.308 m/s; (f) Λ/δ̃0=38, c̃=0.293 m/s. Simulations with simplified second-order
WRIBL model (Ruyer-Quil & Manneville 2000). Increasing Λ increases the amplitude of main
humps, increasingly compressing capillary waves.
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Figure 19. Influence of Kapitza number Ka=σ/(ρ g1/3 ν4/3) on amplitude, wavelength and

number of capillary waves: Re=15; Λ/δ̃0=63.4, fluid properties (except σ) according to table
1. (a) Ka=2000, c̃=0.322 m/s; (b) Ka=1400, c̃=0.318 m/s; (c) Ka=800, c̃=0.333 m/s; (d)
Ka=510 (case 1, table 1), c̃=0.343 m/s; (e) Ka=200, c̃=0.358 m/s; (f) Ka=100, c̃=0.366
m/s. Simulations with simplified second-order WRIBL model (Ruyer-Quil & Manneville 2000).
Decreasing Ka increases curvature ∂xxδ∣○ by compression of the capillary wave train, until
streamwise viscous diffusion becomes strong and dampens the capillary amplitude.
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can be maintained in the face of weakening σ, in order to counter inertial contributions
(Ti, ci in equations 3.2, 4.1). On the other hand, reducing surface tension means that
the main humps saturate at a greater amplitude and thus travel faster, compressing the
capillary wave train even further. This indirect Ka-effect is comparable to figures 17 and
18.

The amplitude of capillary waves in panels 19a to 19d (see δ∣◇ − δ∣○ in lower right cor-
ner) varies very little. Their speed-up mechanism in the face of diminishing Ka mainly
consists in reducing their wavelength, which is a capacity already exhibited by the linear
celerity curves of figure 14b (therein, capillary waves are situated beyond the symbol-
marked unstable branches). Nonetheless, when the capillary wavelength becomes very
small (panels 19e and 19f), the capillary amplitude starts to decrease noticeably. This
is due to streamwise viscous diffusion (Tµ, cµ in equations 3.2, 4.1), which increases its
relative importance as Ka diminishes and streamwise velocity gradients between capil-
lary troughs and humps become strong. In this low Ka limit, the capillary waves still
significantly increase their curvature ∣∂xxδ∣ with decreasing Ka but they do this while re-
ducing both their wavelength and their amplitude. This is in agreement with Ruyer-Quil
& Manneville (2000) (see figure 5 there), who observed that “switching on” streamwise
viscous diffusion in their WRIBL model reduces the capillary amplitude and wavelength.

To explain this intricate effect, we extract the growth rate contribution of streamwise
viscous diffusion ∂tδµ from the WRIBL model, i.e. equation (41) in Ruyer-Quil & Man-
neville (2000). This is possible in the case of travelling waves, where we may employ
q = qMF+c δ to express the flow rate in terms of the film thickness and the moving-frame-
flow-rate qMF = q0 − c δ̄ < 0:

∂tδµ =
1

Re
[4qMF

c δ2
− 1

2 δ
] (∂xδ)2 − 1

Re
[6qMF

c δ
+ 3

2
]∂xxδ, (6.1a)

whereas the capillary contribution ∂tδp = −∂xTp is given by:

∂tδp =
5

2 c

1

BoRe
δ∂xxxδ. (6.1b)

These two quantities as well as ∂tδµ/∂tδp are quantified in panels 19a-19f, confirming
that the relative importance of ∂tδµ rises significantly with decreasing Ka.

Inspecting (6.1a), we see that the RHS consists of two terms, one that is proportional
to (∂xδ)2 and always negative, and another that is proportional to ∂xxδ. The second
term is active at the capillary humps and troughs, while the first is active in the flanks
separating these extrema and does not differentiate between ascending (∂xδ > 0) and
descending (∂xδ < 0) flanks. Both terms react differently to changes in the wavelength of
the capillary waves and this explains how the latter are modified between panels 19e and
19f. We have established that the capillary wave train needs to be compressed from panel
19e to 19f to compensate for the loss in surface tension. This compression increases the
curvature magnitude at the extrema and thus the magnitude of ∂tδµ there. However, if
the compression were realized at constant amplitude, the increase in slope of the capillary
flanks would be too great, producing a too negative ∂tδµ there. Consequently, this slope
is reduced by decreasing the height difference between capillary humps and troughs.

In summary, when streamwise viscous diffusion becomes a coequal stabilizing mecha-
nism (at low Ka), capillary waves are, as usual, compressed, producing large curvature
magnitudes at the capillary extrema. But, this compression is done at diminishing ampli-
tude in order to reduce the slope of the capillary flanks compared to a constant-amplitude
compression. Decreasing the Kapitza number beyond its value in figure 19f, further re-
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duces the capillary wave amplitude, yet an increasingly curved capillary trough always
remains, until the limiting case of a shock (where ∂xxδ is infinite) is reached at σ=0.

7. Conclusion

The typical shape of a fully-developed train of solitary pulses travelling on a vertically
falling liquid film is represented in figures 1 and 16. It consists of a large-amplitude asym-
metrical (tear-shaped) main hump of long wavelength, which is preceded by a number of
small-amplitude small-wavelength ripples, travelling in phase lock. We have investigated
these precursory ripples based on direct numerical simulations (section 3 to 5) as well as
low-dimensional models (sections 2 and 6) in order to answer the following questions.
(i) How do precursory ripples form on wavy falling liquid films? Precursory ripples

evolve from single-peaked wave solutions once the amplitude of the main hump becomes
large and its leading front sufficiently steepens. The first ripple-trough does not emerge
from the global trough of the single-peaked wave but forms within the leading wave
front (figure 6), close to the locus where the free-surface curvature is positively maximal
(figure 7). There, the inertia-induced growth rate contribution (−∂xTi in (3.2b) and panel
10f) is dominantly negative, causing a new global trough to form. Thereby, occurrence
of a curvature maximum within the leading wave front is a property already exhibited
by kinematic waves (figure 2). Growth of the first ripple-trough (figure 6) produces a
local negative curvature maximum slightly downstream (figure 7), which generates a
corresponding ripple-hump and so on and so forth (figure 8) until a train of ripples covers
the residual film separating subsequent large humps (figure 16).
(ii) How can capillary waves travel at the same celerity as the main humps? Linear

stability analysis (figure 14b) already shows that waves of disparate wavelengths can
travel at the same speed on falling liquid films. Physically, it is the effect of surface tension
forces (as well as streamwise viscous diffusion) that allows large humps and precursory
ripples to match their respective celerities. The capillary-induced contribution to the
nonlinear wave celerity (cp in (4.1) and figure 21) is negative at the main hump, thus
slowing it down, and positive at the ripple trough, thus speeding it up. The magnitude of
this term in relation to the opposite-sign inertial contribution (ci in (4.1) and figure 21)
rises when the main hump and ripple trough are increasingly compressed (figures 11 and
12), as the initially fast-travelling main wave catches up with the initially slow-travelling
precursory ripple, until phase lock is eventually achieved.
(iii) Why are the precursory ripples designated as “capillary waves”? Precursory rip-

ples are justly designated as “capillary waves”, because their wavelength is systematically
shorter than the visco-capillary cut-off wavelength of the Kapitza instability (figure 13).
They are thus stable and would attenuate if they were travelling on their own. That they
nonetheless reach a finite amplitude results from a nonlinear effect, namely that their
celerity decreases with amplitude (figure 15b). This tends to slow-down decaying capil-
lary waves relative to the pursuing main hump and causes the latter to re-approach and
re-compress the capillary waves into a faster-travelling shape (see (ii) above). Capillary
waves are thus sustained at finite amplitude by the main hump, which constantly trans-
fers energy to compensate dissipation. This is similar to capillary wakes around objects
travelling on a liquid surface (Raphaël & de Gennes 1996; Moisy & Rabaud 2014).
(iv) Under what conditions do many/few strongly/weekly-pronounced capillary waves

occur? The number and degree of compression of capillary waves is governed by the
amplitude of the main wave humps as well as the Kapitza number. Large-amplitude main
humps travel fast and strongly compress the capillary waves in order for these to speed-up
sufficiently (figure 18). This also affects the number of capillary waves, because the more
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pronounced the first capillary wave becomes, the more (spatially attenuating) capillary
waves are needed to allow a smooth transition to the back of the next main hump.
This is shown in figures 17, 18, and 19, where the main hump amplitude was increased
trough increasing the Reynolds-number/main-wavelength and decreasing the Kapitza
number, respectively. There is also a strong direct Kapitza number effect. Decreasing
Ka, significantly increases the curvature magnitude at the capillary trough (figure 19) in
order for capillary growth rate and celerity contributions to remain sufficiently strong to
compensate inertial contributions in the face of diminishing surface tension. Then, once
the Kapitza number is very small, streamwise viscous diffusion becomes increasingly
important. This effect tends to decrease the amplitude of capillary waves while their
curvature magnitude is increased, until the limiting case of a shock is reached at σ=0.
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8. Appendix

Figures 20 and 21 show results of a simulation almost identical to case 1 in table 1 and
are to be compared with figures 6 and 11. The difference between the two simulations
is that a greater initial Reynolds number is imposed in figures 20 and 21. This increases
the relevance of inertia, amplifying the sequence of events producing the first capillary
trough. Figure 21 shows that the capillary celerity contribution cp (see equation 4.1)
speeds up the capillary trough and slows down the hump, while the inertial contribution
ci slows down the trough and speeds up the hump. Figure 22 compares data obtained by
different numerical simulation methods throughout this manuscript (DNS, simulations
based on (2.2), and WRIBL simulations) with experimental data of Dietze et al. (2009).
The coefficients of the second-order Benney equation (2.10) used in section 2 are:

D(δ) = 7δ3 + 381

35
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Re

Bo
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Re

Bo
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