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The aim of this paper is to show that the spontaneous sliding of drops forming from an8

interfacial instability on the surface of a wall-bounded fluid film is caused by a symmetry-9

breaking secondary instability. As an example, we consider a water film suspended from10

a ceiling that drains into drops due to the Rayleigh-Taylor instability. Loss of symmetry11

is observed after the film has attained a quasi-steady state, following the buckling of12

the thin residual film separating two drops, whereby two extremely thin secondary13

troughs are generated. Instability emanates from these secondary troughs, which are14

very sensitive to surface curvature perturbations because drainage there is dominated by15

capillary pressure gradients. We have performed two types of linear stability analysis.16

Firstly, applying the frozen-time approximation to the quasi-steady base state and17

assuming exponential temporal growth, we have identified a single, asymmetric, unstable18

eigenmode, constituting a concerted sliding motion of the large drops and secondary19

troughs. Secondly, applying transient stability analysis to the time-dependent base state,20

we have found that the latter is unstable at all times after the residual film has buckled,21

and that localised pulses at the secondary troughs are most effective in triggering the22

aforementioned sliding eigenmode. The onset of sliding is controlled by the level of23

ambient noise, but, in the range studied, always occurs in the quasi-steady regime of24

the base state. The sliding instability is also observed in a very thin gas film underneath25

a liquid layer, which we have checked for physical properties encountered underneath26

Leidenfrost drops. In contrast, adding Marangoni stresses to the problem substantially27

modifies the draining mechanism and can suppress the sliding instability.28

Key words: Thin films, capillary flows29

1. Introduction30

It is known that large-amplitude humps forming from an interfacial instability on the31

surface of a wall-bounded fluid film can spontaneously slide and break the symmetry of32

the solution. This has been observed for drops on a liquid film suspended from a ceiling33

(Glasner 2007), bubbles underneath a settling liquid droplet (Lister et al. 2006a), and34

collars on mucus films within pulmonary capillaries (Dietze & Ruyer-Quil 2015). Lister35

et al. (2006a) have conjectured that sliding results from an instability. This has prompted36

us to revisit the problem by investigating the stability of the symmetrical nonlinear37

base state (Hammond 1983) from which the sliding motion departs. We do this for the38

† Email address for correspondence: dietze@fast.u-psud.fr
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Figure 1. Problem sketch and notations: x, y, h, D, and Λ have been non-dimensionalised

with the average film thickness h0, so h̄=
∫ Λ

0
h dx/Λ=1. The film spans Λ=2

√
2 π/

√
Bo with

Bo=|ρ1 − ρ2| h2
0 g/σ, i.e. the most-amplified wavelength of the Rayleigh-Taylor instability for a

passive atmosphere. A slip boundary at y = D, with 1 ≪ D ≪ Λ, mimics an unconfined outer
phase. (a) Water film suspended from a ceiling: Bo=0.134 (h0=1 mm, ρ1=998.2 kg/m3, ρ2=1.2
kg/m3, µ1=10−3 Pas, µ2=1.8·10−5 Pas, σ=0.073 N/m, D=4); (b) gas film underneath a liquid
layer with properties according to experiments of Burton et al. (2012): Bo=0.0016 (h0=100 µm,
ρ1=0.47 kg/m3, ρ2=958.4 kg/m3, µ1=1.8·10−5 Pa s, µ2=0.28·10−3 Pa s, σ=0.059 N/m, D=10).

representative case of a liquid film suspended from a ceiling subject to the Rayleigh-39

Taylor instability (panel 1a). Several new contributions have come out of our stability40

analysis: (1) we show that sliding results from a secondary instability of the nonlinear base41

state; (2) through a frozen-time analysis, we identify a single unstable, unsymmetrical,42

exponentially growing eigenmode, that constitutes a concerted sliding motion of large-43

amplitude humps and the residual film that separates them; (3) we explain the governing44

mechanism of the sliding instability, i.e. why there is a positive feedback amplifying45

the aforementioned eigenmode; (4) through transient stability analysis, we show that46

the sliding eigenmode is most-effectively triggered by locally perturbing the very thin47

secondary troughs which form on the residual film; and (5) that the base state is unstable48

to such perturbations well before a quasi-steady state is reached but that sliding is49

effectively observed only within this regime.50

Basic features of the sliding instability are illustrated in figure 2, which depicts the51

key stages in the evolution of a suspended water film (the orientation of the graph is52

flipped vertically relative to panel 1a). After the initial development of the Rayleigh-53

Taylor instability (panels a-c), the thin residual film in-between large drops flattens as54

it approaches the no-slip wall and then buckles, forming a central secondary hump out55

of which fluid drains symmetrically into the drops, via extremely thin secondary troughs56

(panels d-f and supplementary movie1). This flow is maintained in the face of strong57

viscous stresses by capillary pressure gradients associated with curvature variations of58

the interface across the troughs. At this stage, the film’s evolution is quasi-steady and59

its symmetry is closely linked to the shapes of the two secondary troughs, which remain60

mutually symmetric for a very long time. Eventually, however, symmetry is lost and the61

film begins to slide (panels g-i and supplementary movie2). As will be shown later, the62

asymmetry initially appears as a flattening and thinning of one trough and simultaneous63

curving and thickening of the other. This creates a flow imbalance within the secondary64

hump, more fluid is drained through the thicker trough, which feeds back onto the shape65

of the film in a manner reinforcing the initial asymmetry.66

From an energetic point of view, the primary instability guides the film from its67

initial state toward a lower-energy static equilibrium state consisting of sinusoidal drops68

separated by a zero thickness film (Yiantsios & Higgins 1989; Lister et al. 2006b). To reach69
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Figure 2. Evolution of the suspended water film (panel 1a, Bo=0.134) from an unstable

flat surface perturbed symmetrically at the wavelength Λ=2
√
2π/

√
Bo. The orientation of the

graphs is flipped vertically with respect to panel 1a. Plus signs mark the wall and the middle
of the domain. Early on (panels a-c), growth of the Rayleigh-Taylor instability is progressive.
Then, it slows under the increasing influence of the wall, causing the trough to flatten (panel d)
and buckle (panel e). The resulting quasi-steady two-trough shape (panel f ) spontaneously loses
symmetry (panel g), causing the film to slide to the left (panels h and i). Two supplementary
movies, movie1 and movie2, show these evolution stages in action.

this state, the residual film in-between drops needs to fully drain through the secondary70

troughs. We have found that the total drainage rate is larger when these troughs are71

unsymmetric, i.e. when one is thinner than the other. In the face of viscous drag, it is72

easier for the fluid to drain through one thick trough rather than two thin ones (figure 12).73

Thus, unsymmetric drainage is energetically favourable over symmetric drainage, i.e. the74

lower-energy droplet state can be reached faster. However, explaining the spontaneous75

emergence of this asymmetry and its evolution into a concerted sliding motion requires76

a stability analysis.77

We first focus on the simple case of a single fluid phase and use a combination of78

numerical simulations and linear stability analyses to identify the essential ingredients79

necessary for sliding. This insight allows us to anticipate other, more complex, situations80

in which sliding should occur. At the same time, it also suggests ways to suppress81

sliding. We pursue both these avenues: (i) we demonstrate that all features of the sliding82

instability are retained in the case of a very thin gas film underneath a liquid layer83

(panel 1b), assuming physical properties typically encountered underneath Leidenfrost84

drops (Burton et al. 2012) but without accounting for evaporation. Such drops are known85

to move autonomously even on flat surfaces (Ma et al. 2015); (ii) we show that sliding86

can be suppressed by thermal Marangoni stresses and we identify which ingredients of87

the instability mechanism this negates, explaining why sliding does not occur in the88

traditional Marangoni problem (Boos & Thess 1999; Oron 2000).89

To set our study in the context of previous research, we discuss four works in particular.90

Yiantsios & Higgins (1989) considered a viscous fluid film underneath a heavier fluid in91

the limit of Stokes flow. When an asymmetric initial perturbation was applied to the flat-92

film base state, large differently-sized humps produced by the primary Rayleigh-Taylor93

instability were observed to slide along the wall, whereas, when the initial perturbation94

was symmetrical, the film evolved toward a perfectly-symmetrical quasi-steady state.95

Based on the results of our study, this quasi-steady state would ultimately have become96

unstable and slid if the simulation had been continued. We have verified this with our97

own calculation and this finding contradicts Yiantsios and Higgins, who believed that98

drops could not begin to slide from their symmetrical initial conditions.99

Page 3 of 29
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Lister et al. (2006b) observed liquid collars sliding on an annular fluid film coating the100

outer surface of a cylinder of radius R and subject to the Plateau-Rayleigh instability.101

A lubrication equation was obtained in the limit of a small film thickness to tube radius102

ratio, in which case the mathematical description collapses to that of a Rayleigh-Taylor103

problem. Simulations with this equation were performed on a domain representing one104

half of a symmetrically-perturbed film of wavelength Λ. Symmetry conditions were im-105

posed at the lateral boundaries of this domain. No sliding was observed on short domains,106

i.e. when the wavelength Λ was lower or equal to twice the cut-off wavelength Λc=2πR of107

the primary instability. In that case, which is the one we consider here, there is a single108

possible final equilibrium state (Hammond 1983; Yiantsios & Higgins 1989) and sliding109

can only occur due to a spontaneous loss of symmetry of the corresponding quasi-steady110

state. This was precluded in the simulations of Lister et al. (2006b) because they used111

symmetrical boundary conditions. On longer domains, i.e. when Λ > 2Λc, Lister et al.112

(2006b) did observe sliding. This resulted from an asymmetric distribution of differently-113

sized humps emerging from the nonlinear evolution of the primary instability. These114

humps had the freedom to move, because, for Λ > 2Λc, there exist an infinite number115

of possible final states, which differ in terms of the number, volume and separation of116

sinusoidal equilibrium humps (Yiantsios & Higgins 1989).117

For very long domains, Lister et al. (2006b) found that a sliding hump can repeatedly118

bounce back and forth between two neighbours pinned to the symmetric domain bound-119

aries. As the hump slides, it peels off the thin film lying in front of it and re-deposits120

a thinner film at its trailing edge. It was shown that the film thickness there obeys the121

Landau-Levich equation (Landau & Levich 1942), where only variations of longitudinal122

curvature and radial viscous diffusion intervene.123

In a companion paper, Lister et al. (2006a) applied their lubrication equation to124

describe the drainage of a fluid film underneath a droplet settling toward a wall. In125

particular, the authors report one simulation where a bubble forming underneath the126

droplet spontaneously slides, and they deduce that this must result from an instability.127

The fourth study is that of Glasner (2007), who used a lubrication equation to simulate128

two-dimensional drops sliding on a liquid film suspended from a permeable ceiling that129

continuously supplies additional fluid. In the case of multiple drops, collisions occur and130

the author showed that these are always repulsive, confirming the observations of Lister131

et al. (2006b). Most of Glasner’s simulations were started from a nonlinear asymmetrical132

initial condition which, according to the author, guaranteed the migration of droplets.133

However, in one simulation, the initial condition consisted of a weak (unspecified)134

asymmetrical perturbation of the uniform film. Interestingly, although slight asymmetry135

was present at the start, droplets slid only after a quasi-steady seemingly symmetrical136

state had been reached (the above-mentioned simulation of Lister et al. (2006a) behaved137

the same way). This raises the question whether the transient evolution toward a quasi-138

steady state is stable with respect to sliding. We answer this question in the present139

manuscript by applying transient stability analysis (Schmid 2007; Balestra et al. 2016).140

Glasner (2007) also introduced a reduced model to describe the dynamics of sliding141

drops. This model consists of a drop in static equilibrium situated between two thin films142

of uniform but different thickness, which are connected to the drop by so-called internal143

layers. Based on a thought experiment, the author demonstrated that it is energetically144

favourable for the drop to slide toward the thicker rather than toward the thinner film.145

However, it remained to be shown whether a sliding drop is energetically favourable over146

a purely-symmetrical non-sliding evolution. Our current manuscript provides this missing147

information by showing that drops slide as the result of a secondary instability, drainage148

toward their final equilibrium state occurring quicker than in a symmetric evolution.149
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We point out that observing sliding in a particular numerical experiment is not the150

same as performing a linear stability analysis of the symmetrical base state from which151

the sliding motion departs. A stability analysis allows the identification of the most-152

unstable among all possible perturbations. This perturbation maximizes destabilizing153

versus stabilizing contributions and thus allows the identification of the instability154

mechanism. Our frozen-time analysis has uncovered a single exponentially-growing sliding155

eigenmode and our transient analysis has shown that this mode is most-effectively156

triggered by locally perturbing the secondary troughs.157

We study the sliding instability with a long-wave model obtained in the framework158

of the weighted residual integral boundary layer (WRIBL) method (Ruyer-Quil & Man-159

neville 2002). We use this model to simulate the evolution of an initially-flat film surface160

subjected to an unstable symmetrical perturbation of wavelength Λ. We distinguish two161

types of simulations. The first type represents the entire wavelength Λ and a periodicity162

condition is imposed at the lateral boundaries of the domain. The film is thus allowed163

to slide sideways as a whole, shifting its center of gravity, but nothing in the initial164

arrangement orients toward such an event. Sliding, if it occurs, is triggered by numerical165

noise as the result of an instability. Such simulations allow us to identify when symmetry is166

lost. The second type of simulation represents Λ/2 and symmetry conditions are imposed167

at the domain boundaries. This allows us to produce a perfectly-symmetrical base state,168

upon which we then perform a stability analysis (after having mirrored the solution onto169

the full wavelength Λ).170

Our WRIBL model in its full form accounts for inertia, longitudinal viscous diffusion,171

and the interaction with an outer phase. By comparing results in the limit of creeping172

flow with the full-model prediction, we show that inertia, although affecting the early173

dynamics of the film, does not trigger sliding before a quasi-steady state is reached and174

does not alter this state. The dominant physics of the sliding instability can thus be175

treated in the framework of lubrication theory and we use an appropriate simplified176

version of our model for most of the remaining manuscript. We then revert back to the177

full model to treat the related problem of a gas film underneath a much more viscous178

liquid layer (panel 1b), which we consider in section 8. Throughout the manuscript, full179

model will be used to refer to the full form of the WRIBL model, notwithstanding that180

this still constitutes an approximation of the Navier-Stokes equations.181

All our calculations concern films of either liquid water (panel 1a) or water vapour182

(panel 1b). In both cases, the observed minimal film thickness upon sliding is at least183

two orders of magnitude greater than the range of long-range van der Waals forces, which184

is of the order of ≈10 nm (Bonn 2009; Israelachvili 2011). Thus, sliding is expected to185

occur before spinodal film rupture and the sliding instability ought to be experimentally186

observable. Parameters for the studied cases, which are specified in the caption of figure187

1 and will remain unchanged throughout, are chosen accordingly.188

Our manuscript is structured as follows. In §2, we present the employed mathematical189

models and introduce our scaling. We then focus on the problem of a water film suspended190

from a ceiling (panel 1a). In §3, we describe the kinematics of the film evolution, from the191

linear stage of the primary instability, through the nonlinear symmetrical quasi-steady192

state, up to the onset of sliding. In 4, we discuss the draining mechanisms leading up to193

the quasi-steady state. In §5, we perform a frozen-time linear stability analysis of this194

quasi-steady state and, in §6, we deconstruct the mechanism of the sliding instability.195

In §7, we investigate the stability of the evolving base state using transient stability196

analysis, and determine the sensitivity of the sliding onset to noise. In §8, we show that197

the sliding instability also occurs in a gas film underneath a liquid (panel 1b), assuming198

physical properties typically encountered underneath Leidenfrost drops (Burton et al.199
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2012). Conversely, we demonstrate in §9 that adding thermal Marangoni stresses can200

suppress the sliding instability mechanism. Conclusions are drawn in §10.201

2. Mathematical models202

We consider the two configurations in panels 1a and 1b, where both phases consist203

of Newtonian fluids with constant density ρi and viscosity µi (the subscript i=1, 2204

differentiates between the two phases), and where g designates gravitational acceleration.205

The surface tension σ will be assumed constant except in section 9, where we will study206

the additional effect of thermal Marangoni stresses. We assume that the film thickness h is207

small compared to the wavelengthΛ and use the weighted residual integral boundary layer208

(WRIBL) model of Dietze & Ruyer-Quil (2013), which accounts for inertia, longitudinal209

viscous diffusion, and inter-phase coupling. In dimensionless form, this reads:210

∂th = −∂xq1, qtot(t) = q1 + q2, (2.1a)
211

Re {Si ∂tqi + Fij qi∂xqj +Gij qiqj∂xh} = ±(1−Πρ)∂xh
−Bo−1 ∂x [κ] + (Cj1 −Πµ Cj2)qj
+Jj qj (∂xh)

2
+Kj ∂xqj∂xh+ Lj qj∂xxh+Mj ∂xxqj ,

(2.1b)

where i and j are to be permuted through the phase indices 1 and 2 using Ein-212

stein summation. In (2.1), h designates the film thickness, qi the phase-specific flow213

rate per unit width, and κ=∂xxh the interfacial curvature (at second order in the214

long-wave expansion). Following Yiantsios & Higgins (1989), we have used for non-215

dimensionalisation the length scale L=h0, corresponding to the average film thickness,216

the velocity scale U=|∆ρ| g h2
0/µ1 with ∆ρ=ρ1-ρ2, obtained by balancing viscous drag217

and gravity, and the time scale T =L/U=µ1/ |∆ρ| /g/h0. This choice yields the Reynolds218

number Re=Uh0 |∆ρ| /µ1 and the Bond number Bo=|∆ρ| g h2
0/σ, which are completed219

by the density and viscosity ratios Πρ=ρ2/ρ1 and Πµ=µ2/µ1. At places, we will also220

relate the dimensionless horizontal coordinate x to the dimensionless wavelength Λ.221

In (2.1b), the sign of the gravity term (first term on RHS) is positive for the suspended222

film (panel 1a) and negative for the gas film (panel 1b). The coefficients Fij , Gij , Cij , Sj ,223

Jj , Kj, and Mj are known functions of h and the domain height D. Our coefficients are224

slightly different than in Dietze & Ruyer-Quil (2013), as we impose a slip boundary at225

y = D (∂yu|D=v|D=0) instead of a wall (the coefficient definitions have been provided226

in a supplemental MathematicaR© file). The slip boundary is sufficiently far to prevent227

influencing the large humps produced by the primary instability, i.e. D ≫ 1, and228

sufficiently close to satisfy the long-wave approximation in both layers, i.e. D ≪ Λ.229

We have verified for both the suspended film (panel 1a, D=4=0.16Λ) and the gas film230

(panel 1b, D=10=0.04Λ) that the quasi-steady state reached prior to sliding is virtually231

insensitive to D. In this sense, our simulations mimic an unconfined outer-phase.232

We solve (2.1) numerically, using second-order central differences for spatial and the233

Crank-Nicolson method for time discretisation, and linearising nonlinear terms around234

the old time step. In terms of boundary conditions, we distinguish two cases: (i) periodic235

simulations on a domain of length Λ, where ∂xih|x=0 = ∂xih|x=Λ, ∂xiq|x=0=∂xiq|x=Λ236

and the film is free to slide, and (ii) symmetric simulations on a domain of length Λ/2,237

where ∂xh=∂xxxh=0 (implying q=0) at x=0 and Λ/2, in order to capture the non-sliding238

quasi-steady solution. The wavelength Λ is set to the most-amplified wavelength of the239

Rayleigh-Taylor instability for a passive outer phase Λ=
√
2Λc, where Λc=2π/

√
Bo is240

the corresponding cut-off wavelength. This quantity is convenient because it is known in241

closed form and, for all our simulations, it differs by less than 0.5 percent from the actual242
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Sliding instability of draining fluid films 7

most-amplified wavelength (i.e. for an active outer phase). We will loosely refer to
√
2Λc243

as the most-amplified wavelength of the Rayleigh-Taylor instability.244

For the suspended water film, which we mainly focus on, we have used the full245

model (2.1) as a reference to identify those ingredients that are sufficient for the sliding246

instability, i.e. gravity, surface tension, and crosswise (y-direction) viscous diffusion.247

Retaining only these ingredients in (2.1), we obtain the following simplified model:248

∂th = −∂xq, (2.2a)
249

q =
1

3

[

h3∂xh+
1

Bo
h3∂xxxh

]

, (2.2b)

where the outer phase is neglected (Πρ=Πµ=0) and thus the phase index has been250

dropped. The Bond number reduces to Bo=ρ1 g h
2
0/σ and remains the sole dimensionless251

group. We will use (2.2) for our stability analysis and most of the discussions in sections 3252

to 7. We point out that it is the same as the lubrication equation in Lister et al. (2006b).253

In section 9, we will study the effect of additional thermal Marangoni stresses due to254

heating the suspended film from the bounding wall, assuming ∂Tσ < 0. To account for255

this, (2.2b) needs to be extended:256

q =
1

3

[

h3∂xh+
1

Bo
h3∂xxxh

]

+
1

2

Ma

Bo
h2∂x θ|h , (2.3)

where Ma=∂Tσ(Tw − T∞)/σ designates a modified Marangoni number, θ|h=(T |h −257

Tw)/(Tw − T∞)=−Bih/(1 + Bih) the dimensionless film surface temperature, Bi =258

H h0/k1 the Biot number, and Tw and T∞ the wall and ambient temperature. The Biot259

number contains the interfacial heat transfer coefficient H and the thermal conductivity260

k1. We point out that (2.3) was previously used in Alexeev & Oron (2007), where the261

film was cooled from the wall, and thus Marangoni stresses were stabilizing (Ma > 0) in262

terms of the primary instability, as opposed to our case (we will set Ma=-0.2).263

In §8, we will show that a very thin gas film underneath a (much more viscous) liquid264

layer is also prone to the sliding instability. For this configuration, we will use the full265

model (2.1) in order to account for viscous coupling with the outer phase.266

All our simulations were started from a symmetric initial condition:267

h|t=0 = 1+ ε cos(2π x/Λ), (2.4)

with a very small relative perturbation amplitude ε = 0.0009. When using the full model268

(2.1), the initial flow rate q|t=0 was computed from the inertialess limit (2.2b) using (2.4).269

Our initial condition ensures that sliding, if it occurs, does so spontaneously.270

3. Kinematics of the sliding instability271

For the time being, we focus on the configuration of a suspended water film of average272

thickness h0=1 mm and Bo=0.134 which is surrounded by air, as illustrated in panel273

1a (see caption for other properties). We have simulated the evolution of this film with274

the full (2.1) and simplified (2.2) models, starting from the fully-symmetrical initial275

condition (2.4) (perturbation amplitude ε=0.0009), using periodic boundary conditions276

on a domain spanning the wavelength Λ=2
√
2π/
√
Bo=24.2 and discretized with 1001277

grid points. Figure 3 shows how the film evolves from the symmetrical initial state to an278

asymmetrical sliding state through four characteristic stages, which are also discernible279

in figure 2. In contrast to panel 1a, gravity points upward in figures 2 and 3.280

Panels 3a and 3b represent time traces of the position xmin and thickness hmin of281
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Figure 3. Kinematics of the sliding sequence for the suspended water film (see figure 1a):
h0=1 mm, Bo=0.134, Λ=24.2. In panels (a,b), dashed lines correspond to the full model (2.1),
solid lines to (2.2), and the red solid line in panel b to a simulation of the full Navier-Stokes
equations (discussed at the end of section §3). Symbols refer to characteristic stages in panels
(c-f), where profiles evolve from dashed to dot-dashed lines. The horizontal coordinate x has
been related to the (dimensionless) domain length Λ. (a) Time trace of the trough position (left
trough after buckling); (b) film thickness at trough position corresponding to panel a; (c) surface
profiles during first stage: progressive growth; (d) flattening and buckling of the film surface;
(e) quasi-steady two-trough shape (see also supplementary movie1); (f) loss of symmetry and
sliding (see also supplementary movie2).

the film surface minimum. Different symbols refer to different evolution stages, which282

are illustrated through surface profiles in panels 3c to 3f. Data were obtained with the283

inertialess model (2.2), except for the dashed lines in panels 3a and 3b, which correspond284

to the full model (2.1), and the red line in panel 3b, which was obtained from a simulation285

of the full Navier-Stokes equations (detailed at the end of section 3). For convenience,286
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we have normalized x with the domain length Λ. The large values of t in panels 3a and287

3b occur because sliding sets in very late in terms of the typical time scales of viscous288

capillary-gravity flows (Yiantsios & Higgins 1989; Lister et al. 2006b; Glasner 2007).289

The first three evolution stages in figure 3 have been discussed in detail by Yiantsios &290

Higgins (1989) and so we recap them only briefly. In the first stage (crosses in panels 3a291

and 3b), growth of the surface perturbation is progressive and the corresponding spatial292

profiles (panel 3c) exhibit a single trough that increasingly thins while remaining in the293

middle of the domain. During the second stage (filled circles in panels 3a and 3b), the294

film surface around the trough flattens and then buckles upon further approaching the295

wall, forming two secondary troughs enclosing a secondary hump in the middle (panel296

3d, where the range of the abscissa has been reduced). In panels 3a and 3b, it is the297

left secondary trough that is tracked from the buckling event onwards. This secondary298

trough (and its twin on the other side) moves outward and increasingly thins. At the299

same time, the secondary hump in the middle grows more pronounced. This evolution300

continues for some time but increasingly slows down, until the film reaches a quasi-301

steady state (diamonds in panels 3a and 3b), constituting the third evolution stage.302

Corresponding surface profiles in panel 3e change only very slightly over a considerable303

time interval. In particular, the locations of the secondary troughs remain virtually fixed.304

The supplementary movie1 shows the first three evolution stages in action (the ordinate305

has been scaled logarithmically to highlight the secondary troughs).306

In the fourth evolution stage (open circles in panels 3a and 3b), the quasi-steady307

buckled film surface spontaneously loses its symmetry, causing the entire film to slide to308

the left (panel 3f). The supplementary movie2 shows these events in action (the ordinate309

has again been scaled logarithmically). The speed of the sliding motion, based on the310

displacement of the right trough in panel 3f, is roughly c = 1.2 · 10−4 (corresponding to311

a dimensional value of 1.2 mm/s).312

We now focus on the loss of symmetry with the help of figure 4 by comparing our313

periodic simulation (dashed and dot-dot-dashed lines in panels 4a to 4c) with a symmetric314

simulation on a domain spanning Λ/2 (solid lines in panels 4a to 4c). Although the315

symmetric simulation represents only one of the secondary troughs, we have produced316

the other by mirroring the simulation data to the other side. Comparing the two solutions317

in panel 4a, we conclude that symmetry is lost at t ≈ 7×104, when the periodic simulation318

departs from the symmetric one in that both the left and right secondary troughs move319

to the left. At the same time, the film thickness at the left secondary trough starts to320

decrease, while it increases at the right trough (panel 4b). During the leftward migration321

of the secondary troughs, the film is peeled off on their right and deposited on their left,322

in accordance with the motion described by Lister et al. (2006b). This is comparable to323

a track vehicle putting down its chains while moving forward.324

At the left trough, deposition occurs faster than peeling and thus the trough becomes325

increasingly flat, whereas the opposite occurs at the right trough, which becomes in-326

creasingly curved. Quantitative evidence of this is shown in panel 4c, which plots time327

traces of the surface curvature ∂xxh at the two troughs. Comparing the periodic with the328

symmetric data after the film surface has buckled (unshaded region), shows that, at the329

onset of sliding (t ≈ 7× 104), the curvature at the left secondary trough (dot-dot-dashed330

line) suddenly decreases, i.e. the trough flattens, while it increases at the right secondary331

trough (dashed line). By contrast, ∂xxh in the symmetric simulation (solid line) never332

ceases to increase, as the film converges to its final equilibrium state shown in panel 4e.333

To verify that the simplified model (2.2) does not preclude any dominant physical334

effects, we return to panels 3a and 3b, where we have also included results obtained with335

the full model (2.1), represented with dashed lines. We see that both calculations evolve336
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Figure 4. Symmetry loss of the quasi-steady state in panel 3e. Panels (a)-(c) compare the
periodic simulation (discontinuous lines) to a symmetric simulation on a domain spanning Λ/2
(solid lines). Dashed lines correspond to the right secondary trough and dot-dot-dashed lines to
the left secondary trough. Open circles mark time points highlighted in panel 3a. (a) Trough
positions; (b) film thickness at the troughs; (c) surface curvature ∂xxh at the troughs; (d) film
surface in the two-trough region immediately after symmetry loss (t=6.8×104 until t=10.5×104);
(e) symmetric simulation showing evolution to final equilibrium state (4.1), represented as a
dashed line. The supplementary movie2 shows the loss of symmetry and sliding motion in action.

exactly to the same quasi-steady state (diamonds on solid line). After that, sliding sets337

in slightly later for the full model calculation, but the ensuing evolution is the same.338

However, before reaching the quasi-steady regime, the full-model produces a number of339

oscillations that consist in the secondary troughs periodically moving toward and away340

from each other (see figure 5). These oscillations result from inertia, but they do not341

cause any loss of symmetry before the quasi-steady state has been reached.342

We have validated our full model (2.1) with a direct numerical simulation (DNS) based343

Page 10 of 29



Sliding instability of draining fluid films 11

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

3 4 5 6 7 8 9 10 20

t ×103

x
m
in
/
Λ

(b)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

h
m
in

x/Λ

Figure 5. Inertia-driven oscillations of the buckled film in figure 3. Solid lines represent
data obtained from the periodic simulation of the full model (2.1) and diamonds represent
a corresponding DNS of the Navier-Stokes equations using the code Gerris (Popinet 2009). (a)
Time traces of the secondary trough positions (DNS data is only shown at two time points); (b)
surface profiles at the two characteristic time points marked by diamonds in panel 5a.

on the full Navier-Stokes equations (diamonds in figure 5 and red line in panel 3b). The344

DNS was performed with the finite-volume code Gerris (Popinet 2009), using periodic345

boundary conditions and adaptive grid refinement. Grid refinement was limited to a346

minimum cell size of ∆x=∆y=0.004. As a result, the DNS data in panel 3b can be347

trusted as long as hmin >0.016, when the thickness of the secondary troughs is resolved348

by at least 4 grid points. We have continued our DNS past this point and, although349

the accuracy of the ensuing data is open to discussion, they do exhibit the same sliding350

behaviour as the full model (dashed line in panel 3b), albeit earlier.351

In figures 2 to 4, sliding occurs in leftward direction, but the film is equally likely to352

slide to the right. The direction in a given computational run is decided by uncontrollable353

numerical noise, which perturbs the unstable film and sets off the sliding motion. We will354

see later, from our linear stability analysis, just what sort of perturbation in this noise is355

needed for the sliding to occur and how sensitive the sliding onset is w.r.t. noise level.356

4. Draining mechanisms357

In the absence of noisy perturbations, the buckled film in panel 3e would evolve in358

a perfectly-symmetrical manner until attaining its final equilibrium state. In our case,359

where Λ < 2Λc, this final state consists of two sinusoidal drop halves spanning the360

cut-off wavelength Λc = 2π/
√
Bo of the Rayleigh-Taylor instability and separated by a361

zero-thickness film segment (Hammond 1983). It is obtained by setting (2.2b) to zero and362

the left half of this symmetric solution is given by:363

h =
Λ

Λc
[1 + cos(2π x/Λc)] for 0 6 x 6 Λc/2, (4.1a)

364

h = 0 for Λc/2 6 x 6 Λ/2. (4.1b)

The final state is represented with a blue line in panels 6a, 6b, 6e, and 6f. We use figure365

6 to discuss the draining mechanisms driving evolution toward this state. It represents366

surface plots and profiles of the driving pressure gradient at four characteristic time367

points, as obtained from the symmetric simulation of (2.2) for the conditions in figure368

3. In the surface plots 6a, 6b, 6e, and 6f, the red line represents the initial condition369

Page 11 of 29



12 G. F. Dietze, J. R. Picardo and R. Narayanan

(2.4). In the corresponding pressure gradient plots (panels 6c, 6d, 6g, and 6h), solid lines370

represent the full pressure gradient ∂xp, dot-dot-dashed lines the contribution of gravity371

∂xp|g, and dashed lines the capillary contribution ∂xp|σ according to:372

∂xp = − ∂xh
︸ ︷︷ ︸

∂xp|g

− 1

Bo
∂xxxh

︸ ︷︷ ︸

−∂xp|σ

. (4.2)

The driving pressure gradient ∂xp is always counteracted by viscous drag, which moder-373

ates the action of ∂xp on the flow rate through the term h3/3:374

q = −h3

3
∂xp =

h3

3
∂xh

︸ ︷︷ ︸

q|g

+
h3

3

1

Bo
∂xxxh

︸ ︷︷ ︸

q|σ

. (4.3)

In order for the weakly-deformed film in panel 6a to reach its final equilibrium state,375

the liquid contained underneath the trough region needs to be fully drained to the376

main hump. During the first evolution stage (panel 6a), the pressure gradient for this377

is provided by gravity, which symmetrically drives liquid outward from underneath the378

initial single trough (dot-dot-dashed line in panel 6c), while capillarity counteracts this379

drainage (dashed line in panel 6c).380

When the trough becomes sufficiently thin (panel 6b), viscous drag causes the film sur-381

face there to flatten (Yiantsios & Higgins 1989), and this attenuates the gravity-induced382

flow rate contribution q|g=(h3/3)∂xh. Gravity alone can no longer drain sufficient liquid383

from underneath the trough to accommodate the growth of the main hump, where viscous384

drag is much weaker and the initial balance of power is maintained (panel 6d). At the385

same time, flattening of the trough region increases |∂xxxh| such that the capillary flow386

rate contribution q|σ=(h3/3/Bo)∂xxxh now helps and even dominates drainage there.387

As the trough becomes even thinner (panel 6e), capillary drainage needs to further388

increase, in order to continue draining sufficient liquid to the main hump, and this389

eventually requires the film surface to buckle (Yiantsios & Higgins 1989). Drainage in the390

region between the newly-formed secondary troughs is now entirely driven by capillarity,391

the sign of ∂xp|g=−∂xh having changed due to the inversion of surface slope (panel 6g).392

In panel 6f, showing the quasi-steady state, the film has almost attained its final393

equilibrium state (blue line). In particular, the width of the main hump has reached the394

cut-off wavelength of the Rayleigh-Taylor instability Λc=2π/
√
Bo and thus the position395

of the secondary troughs is fixed from now on. To fully reach the final state, all liquid396

remaining in the secondary hump needs to be drained into the main hump through the397

very thin secondary troughs. This drainage is entirely driven by capillarity, as ∂xp and398

∂xp|σ are virtually identical around the troughs (dashed and solid lines in panel 6h).399

Moreover, the pressure gradient is considerable only around the secondary troughs,400

where it exhibits large-magnitude pulses (panel 6h). By contrast, ∂xp is almost exactly401

zero within the main hump and thus the latter is virtually in static equilibrium. This402

results from the slowness of the drag-limited draining process in the trough region,403

allowing the main hump to always relax toward equilibrium (Hammond 1983). In fact,404

the main hump closely follows the sinusoidal profile given by (4.1a) (blue line in panel 6f),405

which is the neutral mode of the Rayleigh-Taylor instability at the cut-off wavelength406

Λc. It is thus neutrally-stable toward a pure translation and stable toward any other407

volume-preserving perturbation and can be displaced with minimal energy input.408

Within the secondary hump, ∂xp is also very small but its magnitude increases409

noticeably toward the secondary troughs (panel 6h). According to Hammond (1983), the410
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Figure 6. Symmetric simulation of the suspended water film (panel 1a): h0=1 mm, Bo=0.134.
Capillary and gravity-induced drainage driving the film from the initial condition to the final
equilibrium state. (a,b,e,f ) Surface profiles at four characteristic time points (t=427, 641, 1068,
6.4 × 104). Solid lines: solution of (2.2) using symmetry conditions on a domain of length
Λ/2 (data was mirrored onto the full-wavelength domain); red and blue lines: initial condition
(2.4) and final equilibrium state (4.1); (c,d,g,h) profiles of the pressure gradient. Solid line: full
pressure gradient (4.2); dot-dot-dashed: gravity-induced contribution ∂xp|g; dashed: capillary
contribution ∂xp|σ. Open circles in panels e-h highlight loci of the secondary troughs.

Page 13 of 29



14 G. F. Dietze, J. R. Picardo and R. Narayanan

secondary hump continually adjusts to the short sinusoidal equilibrium shape known as a411

lobe (Lister et al. 2006a). However, such a lobe exhibits a finite slope at its extremities and412

thus cannot connect smoothly to the secondary troughs, as opposed to the equilibrium413

solution of the main hump (4.1a), the slope of which decreases to zero at the troughs.414

Also, the pressure within the lobe is higher than that within the main hump (Lister et al.415

2006b). Therefore, lobes eventually drain out completely and the final state of the film416

cannot include lobes (Yiantsios & Higgins 1989).417

Further change of the quasi-steady state in panel 6f is driven by capillary pressure418

gradients ∂xp|σ = −(1/Bo)∂xxxh, which are governed by surface curvature variations.419

When symmetry is imposed, they drive the film toward its final equilibrium state by420

symmetrically draining the remaining liquid from underneath the secondary hump,421

otherwise they drive the sliding motion of the film (Lister et al. 2006a).422

5. Frozen-time linear stability analysis423

We have shown in panels 4a, 4b, and 4c that the quasi-steady buckled film surface424

obtained from our periodic simulation loses symmetry roughly at t=7 × 104, when the425

left secondary trough starts to thin and flatten and the right trough starts to thicken and426

curve with respect to a fully-symmetric simulation. Panel 7a represents surface profiles427

corresponding to this time, as obtained from the periodic (crosses) and symmetric (solid428

line) simulation, respectively (symmetric data were mirrored onto the full length of the429

periodic domain). We have checked that both simulations have fully converged in terms430

of grid resolution (1001 grid points per wavelength Λ).431

We now perform a linear stability analysis upon the perfectly-symmetric surface profile432

in panel 7a (solid line). We designate this profile as base profile and denote it H(x),433

neglecting its temporal evolution, which is extremely slow. This amounts to a so-called434

frozen-time approach. Next, we perturb the base profile infinitesimally, introducing the435

linear film thickness perturbation h∗(x, t), which is assumed to grow exponentially:436

h(x, t) = H(x) + h∗(x, t) = H(x) + ĥ(x) exp (η t) . (5.1)

Upon inserting (5.1) into (2.2) and linearising in terms of ĥ, an eigenvalue problem437

with eigenvalue η and eigenfunction ĥ is obtained:438

η ĥ = −∂x
[
H3

3

(

∂xĥ+
1

Bo
∂xxxĥ

)

+H2

(

∂xH +
1

Bo
∂xxxH

)

ĥ

]

. (5.2)

We choose a Fourier series ansatz with N = 100 for the eigenfunction ĥ:439

ĥ(x) =

N∑

j=1

Aj cos (j 2πx/Λ) +Bj sin (j 2πx/Λ) , (5.3)

and solve the eigenvalue problem with the Galerkin approach (Boyd 1989). We then440

identify the most-unstable (greatest η) eigenfunctions for two perturbation types: (i)441

asymmetric perturbations, when Aj=0; and (ii) symmetric perturbations, when Bj=0.442

Panel 7b represents the thus obtained eigenfunctions (solid black lines). The asymmet-443

ric eigenfunction is associated with a positive eigenvalue η=1.8× 10−4. This proves that444

the film is subject to a symmetry-breaking secondary instability, secondary in the sense445

that it occurs after the primary Rayleigh-Taylor instability has developed. We call this446

instability sliding instability. It is associated with a very particular eigenfunction. In fact,447

the unsymmetric eigenfunction in panel 7b is the sole unstable unsymmetric eigenmode.448
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Figure 7. Frozen-time linear stability analysis of the suspended water film (h0=1 mm,
Bo=0.134) at the time of symmetry loss in panel 4a: t=7 × 104. Open circles mark loci of
secondary troughs. (a) Solid line: base state H(x) obtained from symmetric simulation on
domain of length Λ/2 (501 grid points) and mirrored onto full-wavelength domain; crosses:
profile from periodic simulation on domain of length Λ (1001 grid points) after loss of symmetry;
(b) linear stability results. Solid lines: most-unstable asymmetric (Aj=0) and symmetric (Bj=0)

eigenfunctions ĥ(x) (5.3) obtained from linear stability analysis of the perfectly-symmetric profile
in panel a (solid line there); asterisks: actual perturbation associated with symmetry loss, i.e.
difference between periodic and symmetric profiles in panel a; red-dashed line: perturbation
resulting from pure translation of base profile H(x) with speed c, i.e. ∂th=−c ∂xH ; (c)
perturbation profiles from panel b normalised with local film thickness H(x); (d) time derivative

of surface curvature ∂t(∂xxh)=η ∂xxĥ associated with most-unstable eigenfunctions in panel b.

Moreover, it is the sole unstable eigenmode altogether, as all symmetric eigenfunctions449

are stable, the greatest symmetric eigenvalue being negative η = −1.9× 10−5 (panel 7b).450

Crosses in panel 7b represent the actual perturbation associated with the loss of451

symmetry of the periodic simulation. This is easily obtained by taking the difference452

between the periodic and symmetric surface profiles in panel 7a. Good agreement in453

panel 7b between the actual perturbation (crosses) and the asymmetric eigenfunction454

(solid black line) validates both our frozen-time decomposition (5.1) and our Fourier455

series ansatz (5.3). Validity of the frozen-time approach is further confirmed by the fact456

that our greatest eigenvalue η = 1.8 × 10−4 is an order of magnitude greater than the457

actual growth rate of the base state at the secondary troughs. We also point out that our458

stability results have been checked for convergence in terms of N in (5.3). Moreover, the459
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same results were obtained independently by the first two authors and were additionally460

cross-checked by the second author with a pseudo-spectral solver.461

To better understand how the asymmetric eigenfunction ĥ(x) in panel 7b affects the462

base profile H(x) in panel 7a, we have included an additional curve in panel 7b. The463

red-dashed line there represents a pure translation of H(x) at constant speed c, in which464

case the perturbed film thickness would satisfy ∂th=−c ∂xH . It turns out that ĥ(x)465

corresponds exactly to such a translation within the main hump, as the solid black and466

red-dashed lines in panel 7b collapse there. Differences between the two curves are more467

apparent when normalising with the base profileH(x), and this is represented in panel 7c.468

We see that the red-dashed and black solid lines almost perfectly coincide within the main469

hump. This is because the main hump has virtually attained its sinusoidal equilibrium470

shape of width Λc, corresponding to the neutral mode of the Rayleigh-Taylor instability471

(see section 4). This mode is neutrally-stable toward a pure translation and stable toward472

all other volume-preserving perturbations. Pure translation is thus the only symmetry-473

breaking option for the main hump and it requires a minimal energy input. It also means474

that the main hump does not actively contribute to the sliding instability mechanism.475

By contrast, at the secondary troughs, ĥ/H , which through (5.1) sets the linear476

growth rate ∂th/H=(ĥ/H) η exp(η t), cannot be represented by a pure translation. Such477

a translation would impose ∂th=−c ∂xH=0 at the troughs, but our eigenfunction ĥ/H478

is clearly non-zero there (open circles in panel 7c). At the left trough, ĥ/H < 0 implying479

∂th/H < 0, thus the trough is pushed down and further thins, whereas, at the right480

trough, ĥ/H > 0 implying ∂th/H > 0, thus the trough is pulled up and further thickens.481

Closer investigation of the ĥ/H profile in panel 7c shows that the film at the trough482

locus itself is less affected than the immediate surroundings. Indeed, the film is more483

strongly pushed down to the left of the left trough and more strongly pulled up to the right484

of the right trough. This tends to move the trough loci leftward, constituting a sliding485

motion. It also produces a localised surface curvature decrease/increase at the left/right486

secondary trough. In panel 7d, we have plotted η ∂xxĥ, which according to (5.1) is propor-487

tional to the time derivative of the perturbed surface curvature ∂t(∂xxh)=η ∂xxĥ exp(η t).488

This quantity displays highly-localized pulses at the secondary troughs, evidencing a489

flattening of the left and a curving of the right trough.490

6. Mechanism of the sliding instability491

We seek to identify the positive feedback mechanism causing amplification of the492

unstable perturbation ĥ/H in panel 7c and we focus on the secondary troughs, as the493

main hump does not actively participate in the instability mechanism (see section 5).494

Additional evidence for the dynamical importance of the secondary troughs is provided495

by the transient stability analysis in 7.496

Panel 8a represents an enlarged view of the buckled portion of the surface profile497

H(x) used for the stability analysis (black line). The thick red line corresponds to the498

final equilibrium state (4.1) toward which the film evolves by draining the remaining499

liquid from the secondary hump through the troughs. Drainage is governed by a balance500

between the driving capillary pressure gradient ∂xP |σ=-(1/Bo)∂xxxH , generated through501

variations in surface curvature ∂xxH , and viscous drag, which scales with 1/H3. Because502

the secondary troughs are so thin, and viscous drag there is so strong, a very steep ∂xxH503

profile is established to drive liquid through them. This is plotted with a solid black line504

in panel 8b, whereas the thick red line corresponds to the final equilibrium state, with505
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Figure 8. Feedback mechanism amplifying the action of the unstable eigenfunction ĥ in panel
7c. (a) Zoomed view of the base profile H(x) (panel 7a). Open circles mark loci of secondary
troughs, asterisks loci of growth rate extrema (panel e), and the thick red line represents the final
equilibrium state (4.1); (b) surface curvature profiles ∂xxH corresponding to panel a. Dashed
lines indicate evolution toward equilibrium state; (c) pressure gradient perturbation amplitude
according to (6.1). Solid line: total amplitude ∂xp̂; dots: capillary contribution ∂xp̂|σ; dot-dashed:
gravity-induced contribution ∂xp̂|g; (d) flow rate perturbation amplitude. Solid line: total

amplitude q̂; dashes: pressure gradient contribution q̂|p=− 1

3
∂xp̂ H

3; dot-dot-dashed: viscous

drag contribution q̂|h=−∂xpH
2 ĥ; (e) initial growth rate of the perturbation η ĥ/H=−∂xq̂.

a ∂xxH discontinuity at the juncture of the sinusoidal and zero-thickness film segments506

(Yiantsios & Higgins 1989). Dashed lines indicate the evolution toward this state.507

Due to the steepness of the base state curvature profile (solid black line in panel 8b),508

the localised ∂xxĥ pulses caused by the unstable eigenfunction (panel 7d) produce large509

opposite-sign perturbations of the third derivative ∂xxxĥ either side of the secondary510

troughs. These translate into perturbation extrema of the capillary pressure gradient511

∂xp̂|σ ∝ ∂xxxĥ that destabilize the film, as shown in panel 8c.512
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In this panel, we have represented the linear response of the driving pressure gradient513

(4.2) to the perturbed film thickness h (5.1):514

∂xp = ∂xP + ∂xp̂ exp(η t), ∂xp̂ = − ∂xĥ
︸ ︷︷ ︸

∂xp̂|g

− 1

Bo
∂xxxĥ

︸ ︷︷ ︸

−∂xp̂|σ

, (6.1)

where, as in (5.1), ∂xp corresponds to the perturbed quantity, ∂xp̂ to the perturbation515

amplitude, and ∂xP to the quasi-steady base state. The total perturbation amplitude516

∂xp̂ is plotted with a solid black line in panel 8c, whereas the dot-dashed line represents517

the gravity-induced constituent ∂xp̂|g, and filled circles the capillary constituent ∂xp̂|σ.518

We see that the pressure perturbation is dominated by its capillary contribution ∂xp̂|σ.519

The sign difference of the ∂xp̂ extrema either side of the secondary troughs acts to520

produce a disparity of flow rate disturbances there. We show this in panel 8d, which521

represents the linear response of the flow rate q=−(h3/3) ∂xp (4.3) to the perturbed film522

thickness h (5.1). The solid line corresponds to the total flow rate perturbation amplitude523

q̂, the dashed line to the contribution of the pressure perturbation q̂|p = − 1
3 ∂xp̂H

3,524

and the dot-dot-dashed line to the contribution of the viscous drag perturbation q̂|h =525

−∂xpH2 ĥ. The effect of the pressure perturbation alone ( q̂|p, dashed line) is to reduce526

the flow toward the left trough and to increase the flow away from it (note that the base527

flow rate around the left trough is negative, i.e. to the left), which tends to drive the left528

trough to thin (and vice-versa for the right trough), amplifying the action of the unstable529

eigenfunction ĥ/H . At the same time, ĥ/H alters the viscous drag around the secondary530

troughs and this has the opposite effect on the flow rate disturbances ( q̂|h, dot-dashed531

line). Indeed, around the left trough, viscous drag is increased to a greater extent on its532

left than on its right, and thus the flow away from the trough is reduced more than the533

flow toward it (the opposite holds at the right trough). However, the net result of the534

two opposing effects on the total flow rate perturbation q̂ (solid line) is to increase the535

flow rate difference across the left trough and to reduce it across the right one.536

The spatial variation of q̂ (solid line in panel 8d) governs growth and decay of the film537

thickness through the continuity equation (2.2a), yielding the growth rate η ĥ/H=−∂xq̂,538

which we have plotted in panel 8e. Concentrating on the left secondary trough (opposite539

arguments apply to the right trough), we see that the growth rate minimum is not540

situated at the trough locus itself but slightly to the left, while there is a smaller local541

maximum slightly to the right. This has two consequences. First, it causes the trough to542

move even further to the left, amplifying the action of the ĥ/H perturbation in panel 7c.543

Second, the film is deposited more rapidly on the left of the trough than it is peeled off544

on the right and this further reduces the local surface curvature, amplifying the action545

of the ∂xxĥ perturbation in panel 7d.546

These two positive feedbacks are caused by the way in which the flow rate perturbations547

in panel 8d behave around the trough. The pressure-related perturbation q̂|p alone548

(dashed line) tends to produce a growth rate minimum at the trough locus itself, where549

∂xq̂|p is strongest. However, the drag-related flow rate perturbation q̂|h (dot-dot-dashed550

line) strongly counteracts this effect in the immediate vicinity of the trough, as its slope551

is opposed. Outside of this region, the relevance of the drag-related perturbation rapidly552

decays with increasing film thickness (and decreasing magnitude of ĥ/H). Indeed, while553

the magnitude of q̂|p keeps increasing to the left of the left trough, that of q̂|h slowly554

decreases after having reached a maximum. This shifts the total growth rate minimum555

to the left of the trough locus (leftmost star in panel 8e).556

The growth rate maximum to the right of the left trough (also marked by a star in557
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panel 8e) occurs for the same reasons. However, it is smaller in magnitude because of558

the asymmetric shape of the trough region, which connects the steep front of the main559

hump to the weakly-sloped flank of the secondary hump. The thickness of the base state560

increases more rapidly to the left of the trough than to the right and so the double-561

pulsed pressure perturbation ∂xp̂ (panel 8c) unfolds its effect on the flow rate differently562

on either side (see q̂|p marked by dashed line in panel 8d).563

Although the engine of the sliding instability is the capillary-induced migration of the564

secondary troughs, its most-visible consequence is the translation of the main hump,565

which contains most of the liquid. At first sight, it is surprising that the inconspicuous566

secondary troughs drive the main hump and not vice versa. However, the main hump567

has virtually attained a static equilibrium shape (i.e. the cut-off mode of the primary568

instability) that is neutrally-stable toward a pure translation and stable toward all other569

volume-preserving perturbations. On the one hand, this means that only a minimal570

driving force is required to move the main hump and thus the latter follows the motion571

dictated by the secondary troughs. The actual driving force moving the hump results572

from a capillary pressure difference built up around it by the curvature perturbations in573

panel 7d. These induce a greater pressure in the trailing edge of the main hump (left flank574

in panel 7a) and a lower one in the leading edge (right flank in panel 7a). On the other575

hand, by resisting all other volume-preserving perturbations, the main hump selects the576

possible sliding instability modes. In particular, the hump’s width is fixed and thus it577

resists compression/expansion. The two secondary troughs, which in our periodic setting578

enclose the main hump, are thus required to move in concert in the same direction. They579

are coupled in that the left one must be perturbed in the exact opposite manner than580

the right one. This requires the corresponding eigenfunction to be point-symmetric about581

the main hump, a condition satisfied by the unstable mode uncovered in panel 7c.582

7. Transient stability analysis and the onset of sliding583

The frozen-time analysis has demonstrated that the film is susceptible to a secondary584

sliding instability and shed light on the mechanisms involved. However, this method585

cannot be applied at earlier times when the film evolves more rapidly. Therefore, to586

investigate the onset of sliding, we relax the assumption of a frozen base state and587

instead linearize (2.2) around the time-evolving base state H(x, t):588

∂th
∗ + ∂xq

∗ = 0,

q∗ =
1

3
H3

[

∂xh
∗ +

1

Bo
∂xxxh

∗

]

+ h∗H2

[

∂xH +
1

Bo
∂xxxH

]

,
(7.1)

where h∗ and q∗ denote the linear perturbations of film thickness and flow rate. We begin589

by computing the linear noise response of the perfectly-symmetrical base state, starting590

from three representative time points ti=1922, 20000, and 70000 (see figure 3a to situate591

ti in the evolution of the sliding film), for which the profiles H(x, ti) are plotted in figure592

9a (a logarithmic ordinate is chosen for better distinction).593

We solve (7.1) for h∗(x, t), starting from a noisy initial condition h∗(x, ti)=hnoise594

(defined in (7.6) and represented by a black line in panel 9b), while advancing H(x, t)595

from t=ti to t=ti+T over a relatively long time horizon T (see caption of figure 11).596

Coloured lines in panel 9b represent the obtained linear responses h∗(x, ti + T ). For597

all three cases, the noisy initial perturbation evolves into a sliding mode similar to the598

eigenfunction obtained with the frozen-time approach (see figure 7b). The growth rate is599
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Figure 9. Transient instability and the onset of sliding. (a) Surface profiles H(x, ti) of the
perfectly-symmetrical base state at three representative time points (see figure 3a): ti=1922
(red), 20000 (green), and 70000 (blue). A logarithmic ordinate is used for better distinction;
(b) long-term linear responses h∗(x, ti + T ) to a noisy perturbation (black line) of the H(x, ti)
profiles over time horizons T=2000 (red), 6000 (green), and 10000 (blue). Solutions to (7.1)
while advancing the base state H(x, t) from ti to ti+T ; (c) most-unstable perturbations
(solid lines) from transient stability analysis (Balestra et al. 2016) applied to the H(x, ti)
profiles over relatively short time horizons T=200 (red) and 1000 (green/blue). Dashed
lines represents corresponding responses h∗(x, ti + T ), rescaled for a clear comparison; (d)
nonlinear response of the periodic simulation in figure 3a to an injection of noise hnoise (7.6)
at t=683. Time traces of the center of mass xC are represented for different noise levels
ε=max(hnoise) − min(hnoise)=0 (solid), 1.3 × 10−4 (dashed), 1.3 × 10−3 (dotted), 1.3 × 10−2

(dot-dashed), and 0.04 (dot-dot-dashed). These correspond to the typical surface roughness of
different materials, ranging from glass to steel.

largest for the earliest (red line, ti=1922) and lowest for the latest (blue line, ti=70000)600

base state profile H(x, ti).601

Next, we follow the transient stability analysis outlined in Balestra et al. (2016) (see602

also Schmid (2007)) to identify the most-unstable perturbations associated with the base603

state profiles H(x, ti). We repeatedly solve the direct problem (7.1) from an iteratively604

improved initial condition:605

h∗(x, ti) =
1

2
h†(x, ti)G(T )

∫ L

0

h∗old(x, ti)
2 dx, (7.2)
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obtained by solving the adjoint problem:606

∂th
† − 1

3

[

∂x(q H
3) +

1

Bo
∂xxx(q H

3)

]

+ q H2

[

∂xH +
1

Bo
∂xxxH

]

= 0,

q = ∂xh
†,

(7.3)

starting from the end condition:607

h†(x, ti + T ) = 2
h∗(x, ti + T )

∫ L

0 h∗(x, ti)2 dx
, (7.4)

and stepping backwards in time from ti+T to ti. The procedure converges to a maximal608

value of the gain G(T ):609

G(T ) =

∫ L

0
h∗(x, ti)

2 dx
∫ L

0
h∗(x, ti + T )2 dx

, (7.5)

which quantifies growth over the time horizon T . Panel 9c represents the thus-obtained610

most-unstable perturbations h∗(x, ti) for the three base state profiles H(x, ti) in panel611

9a over relatively short time horizons T (see caption).612

All h∗(x, ti) profiles display localized pulses that respectively thin and thicken the613

two secondary troughs. Over the time horizon T , they all evolve toward the sliding614

eigenmode obtained with our frozen-time analysis (5.1), as shown by the dashed lines in615

panel 11c, which represent the linear responses h∗(x, ti + T ). Thus, the most-unstable616

scenario identified through our transient analysis exhibits the same long-time asymptotic617

behaviour, i.e. a concerted sliding motion of the entire film. This sliding eigenmode, which618

grows in a shape preserving form, is most effectively triggered by localized asymmetric619

disturbances at the secondary troughs, highlighting the importance of these regions for620

the onset of sliding.621

Applying the transient analysis at earlier times, we have observed a qualitative change622

in the behaviour of the film near the time of buckling. In the pre-buckling regime, the623

most-unstable disturbance corresponds to a pure translation that merely produces a624

phase shift in the evolving film. It is only after buckling has occurred that the most-625

unstable disturbance mode takes on the non-trivial, localized form shown in figure 9c.626

Thereafter, it remains virtually unchanged in form, with a gain G(T ) that is always627

greater than unity. In fact, we find that G(T ) is lower for later ti, which is probably due628

to the increase in viscous stresses. Thus, there is no intrinsic/inherent fixed time for the629

onset of sliding. Rather, the onset of a macroscopically visible sliding motion is controlled630

by the level of ambient noise, e.g. due to surface roughness or pressure fluctuations. To631

demonstrate this, we have solved our nonlinear model (2.2), subject to periodic boundary632

conditions and starting from the initial condition (2.4), while injecting synthetic noise at633

a specific time tnoise=683, i.e. just after the film surface has buckled (see figure 3a). This634

is done through the random film thickness perturbation hnoise (Chang et al. 1996):635

hnoise = ǫ
N∑

j=1

cos(j ∆k x− ϕrand), ∆k = 100 kc/N, kc =
√
Bo, (7.6)

which consists of sinusoidal modes of random phase shift ϕrand that cover 100 times the636

unstable range of the primary instability. By changing the coefficient ǫ, the noise level637

ε=max(hnoise)-min(hnoise) was varied in five simulation runs: ε=0, 1.3×10−4, 1.3×10−3,638

1.3×10−2, and 0.04. These values correspond to the typical surface roughness of different639

materials, ranging from glass to steel. Panel 9d represents time traces of the position640
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xC of the film’s center of mass (initially in the middle of the domain, i.e. xC/L=0.5),641

as obtained from the five runs. The onset of sliding is considerably precipitated with642

increasing noise level but, in the range studied, always occurs in the quasi steady-regime643

of the base state (t > 2× 10−4, see figure 3a). Thus, although linear theory suggests that644

the film is susceptible to sliding at any time after buckling, nonlinearly, we find that the645

sliding eigenmode is only able to emerge after the film has slowed down to a quasi-steady646

state with quasi-equilibrium humps and sharp secondary troughs.647

8. Gas film underneath a liquid layer648

The ingredients of the sliding instability, identified for a suspended liquid film in §6,649

are quite general and can be found in other systems as well, albeit in the presence of650

additional effects that may call for more complex models. One such scenario, which651

involves two active fluid phases, is related to the spontaneous motion of Leidenfrost652

drops on a heated surface. Liquid in contact with the hot surface evaporates to form653

a thin vapour film that supports the drop. Burton et al. (2012) measured the vapour654

film underneath a Leidenfrost drop made of water and showed that the vapour-liquid655

interface is buckled, similar to what we have observed in panel 3d for the suspended656

water film. In a follow-up paper, Ma et al. (2015) mention that the smooth aluminium657

substrate heating their Leidenfrost drop was curved “in order to keep drops stationary658

and suppress the buoyancy-driven Rayleigh-Taylor instability in the vapor layer”. They659

also contend that the dynamical traits of Leidenfrost drops, such as self-propulsion (Linke660

et al. 2006; Quéré 2013), depend “on a sensitive coupling between deformations of the661

liquid/vapor interface and lubrication flow in the thin (≈100 µm) vapor layer”. Most662

recently, experiments of Ma et al. (2017) have shown that the oscillatory dynamics of663

Leidenfrost drops, which are linked to the drainage of vapour below the drop, depend only664

on the capillary length of the liquid, “indicating a purely hydrodynamic (nonthermal)665

origin for the oscillations”.666

These experimental observations have prompted us to check whether a vapour film667

underneath a liquid layer, such as illustrated in panel 1b, is prone to the sliding instability668

in a purely hydrodynamical sense, i.e. without accounting for evaporation. We consider669

the parameters quantified in the caption of panel 1b, which are based on the experiments670

of Burton et al. (2012), i.e. the gas layer consists of water vapour and the liquid layer of671

liquid water. The physical properties of the liquid (µ2, ρ2) and the surface tension σ were672

evaluated at the experimental saturation temperature T=100 ◦C, whereas the vapour673

properties (µ1, ρ1) were evaluated at T=235 ◦C, corresponding to the average between674

the experimental wall and saturation temperatures. The mean vapour thickness was set675

to h0=100 µm, yielding a Bond number of Bo=0.0016 comparable to the experiments.676

We have performed a periodic simulation of this configuration with our full model (2.1),677

which accounts for coupling between the thin gas film and the much more viscous liquid678

phase, the viscosity ratio beingΠµ=2×103. The domain length was set to Λ=2
√
2 π/
√
Bo679

(the most-amplified wavelength of the Rayleigh-Taylor instability) and its height D=10680

was chosen so large that the liquid phase is quasi-unconfined.681

Our simulation has shown that the vapour film indeed slides spontaneously, displaying682

all the characteristic features of the sliding instability identified in section 6. Panel 10a683

represents the vapour film surface at two characteristic time points, just before and684

somewhat after the onset of sliding. We have additionally included a profile of the685

suspended water film from section 3 just before it slides (symbols in panel 10a). We686

have chosen logarithmic scaling on the ordinate to accentuate any differences between the687

vapour film and the suspended water film. At the sliding onset, the surface profiles for the688
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Figure 10. Spontaneous sliding of a very thin gas film underneath a liquid layer (see sketch
in panel 1b), as simulated with the full model (2.1). Fluid properties (see caption of panel
1b for values) correspond to a water vapour film underneath a water drop, according to the
experiments of Burton et al. (2012). The mean film thickness is h0=100 µm and the Bond
number Bo=0.0016. The domain length corresponds to the most-amplified wavelength of the
Rayleigh-Taylor instability Λ=2

√
2π/

√
Bo. (a) Logarithmic profiles of the film surface. Solid

lines: profiles just before and after the onset of sliding; circles: suspended water film from figure
3; (b) film thickness time traces at the left and right secondary troughs. Solid: full model (2.1),
dashed: full model in the limit Πµ → 0, dot-dot-dashed: simplified model (2.2).

two cases, which have been scaled horizontally with the domain length Λ=2
√
2π/
√
Bo,689

are virtually identical. This follows from capillary pressure gradients dominating the690

long-time evolution of the film, in which case (2.2) reduces to ∂th ∝ ∂x(h
3 ∂xxxh) after691

rescaling the horizontal coordinate x with Λ and adjusting the time scale accordingly.692

The sliding onset for the vapour film is discernible in panel 10b, showing time traces of693

the film thickness at the two secondary troughs. The role of viscous coupling is evidenced694

by comparing the full model prediction (2.1) (solid line) with the limit Πµ → 0 (dashed695

line). Viscous stresses in the outer phase, through their action at the gas-liquid interface,696

modify the velocity profile and the associated viscous drag within the gas film. As a697

result, the onset of sliding is significantly delayed. These stresses also suppress the inertia-698

induced oscillation of the secondary troughs which had been observed for the suspended699

water film in panel 3b and figure 5. However, they do not qualitatively alter the loss of700

symmetry and sliding. In panel 10b, we have also included the prediction of the simplified701

model (2.2) for completeness (see dot-dot-dashed line).702

Our simplified analysis is far from proving that the sliding instability is linked to703

the spontaneous motion of Leidenfrost drops. Nonetheless, it has identified a possible704

mechanism. To verify whether this mechanism holds underneath a Leidenfrost drop,705

further analysis needs to include evaporation. The effect of evaporation may be stabilizing706

in that it tends to thicken a trough that has been thinned by a perturbation. On the707

other hand, it creates additional fluid within the secondary hump that needs to be drained708

through the troughs and this should be destabilizing. Evaporation maintains the interface709

at uniform temperature. This precludes the development of Marangoni stresses, which710

normally play a key role in the evolution of heated films. This is the subject of the next711

section, in which we show that such stresses can suppress the sliding instability.712
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Figure 11. Suppression of sliding by thermal Marangoni stresses. Heating the suspended water
film from the wall suppresses the sliding instability and instead causes a cascade of buckling
events (see also supplementary movie3) similar to the traditional Marangoni problem (Boos &
Thess 1999; Oron 2000). Numerical simulation of (2.3) using Ma=-0.2, Bi=1.0, and Bo=0.134
(see caption of panel 1a for other quantities). (a) Surface profile after three buckling events
(t=2 · 104). Inset shows enlarged view of boxed region around left tertiary hump; (b) formation
of left tertiary hump from second buckling event; (c) formation of leftmost quaternary hump
(boxed region in inset of panel a) from third buckling event; (d) flow rate contributions (9.1)
(normalised with h3) corresponding to the thick red profile in panel b. Open circles mark loci
of tertiary troughs. Thick red solid line: total flow rate q; dashed: thermocapillary contribution
q|Ma ; dot-dot-dashed: capillary contribution q|σ. Thick red profiles all correspond to same time.

9. Suppression of sliding by Marangoni stresses713

Let us revisit the suspended liquid film in panel 1a, but with the wall at a higher714

temperature than the ambient passive gas. Then modulations of the film thickness will715

result in temperature variations along the interface, which will in turn produce thermal716

Marangoni stresses. Since they act along the interface, the effect of these stresses on fluid717

drainage will be very different from that of capillary pressure gradients, which act within718

the bulk of the fluid. In fact, as we will show, these stresses can completely suppress719

sliding provided the wall is sufficiently hot.720

In this analysis, we assume that surface tension decreases with temperature, ∂Tσ < 0,721

in which case the problem is governed by (2.3), where the modified Marangoni number722

Ma=∂Tσ(Tw−T∞)/σ is negative. The Marangoni effect is thus destabilizing in terms of723

the primary instability. We have performed periodic simulations of (2.3) using the same724
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parameter values as in section 3 (see caption of panel 1a), additionally setting the Biot725

number to Bi=1 and increasing the magnitude of Ma < 0 step by step from zero.726

Our simulations have shown that sliding is suppressed above a certain threshold727

value for |Ma|. Instead of sliding, the film undergoes a cascade of buckling events728

that constantly produce new generations of humps and associated troughs, as has been729

observed in the traditional Marangoni problem (Boos & Thess 1999; Oron 2000).We focus730

our remaining discussion on a representative simulation for Ma = −0.2, results of which731

are plotted in figure 11. We have also provided a supplementary movie, movie3, which732

shows the buckling cascade in action (therein, the ordinate has been scaled logarithmically733

to highlight the evolution of the troughs).734

Panel 11a represents the film surface after three buckling events. The inset shows an735

enlarged view of the boxed region surrounding the left tertiary hump, which results from736

the second buckling event. Panel 11b displays the time evolution of this second buckling737

event, from the dot-dashed unbuckled profile to the thick red profile, where the tertiary738

hump and associated troughs have already formed. Subsequently, the tertiary troughs739

(marked by open circles in panel 11b) undergo a third buckling event, forming quaternary740

humps and troughs. This is shown in panel 11c for the leftmost tertiary trough.741

We now focus on the thick red profile in panel 11b, which results from the second742

buckling event, and evaluate the different flow rate contributions:743

q = q|g + q|σ −
1

2

Ma

Bo
h2 ∂xh

Bi

(1 + Bi h)
2

︸ ︷︷ ︸

− q|Ma

, (9.1)

where q|Ma denotes the contribution due to Marangoni stresses and q|g and q|σ are744

defined according to (4.3). These contributions are plotted in panel 11d, where we have745

normalised q with h3. The thick red line corresponds to the total flow rate q, the dot-dot-746

dashed line to the capillary contribution q|σ, and the dashed line to the thermocapillary747

contribution q|Ma , while q|g is negligible and thus not plotted.748

Considering the region around the left tertiary trough (leftmost open circles in panels749

11b and 11d), we see that the thermocapillary contribution q|Ma (dashed line in panel750

11d) is significant compared to the capillary one (dot-dot-dashed line). In contrast to751

the isothermal case in panel 6h, drainage is thus not dominated by variations in surface752

curvature ∂xxh. Instead, the surface slope ∂xh, which determines q|Ma in (9.1), also plays753

an important role. We have verified that this holds for subsequent buckling events.754

The reason q|Ma remains relevant even when the film is very thin, in contrast to q|g755

(4.3) which is also proportional to ∂xh but subsides after producing the first buckling756

event (see figure 6), is that it scales with h2 instead of h3. The Marangoni effect, which757

acts at the film surface, is less hindered by viscous drag.758

Thermocapillary drainage q|Ma ∝ ∂xh is fundamentally different from capillary759

drainage in that it is symmetric about the troughs (where ∂xh=0). That is, liquid760

underneath a trough is driven away to both sides, as evidenced by the profile of q|Ma761

(dashed line) around the leftmost tertiary trough in panel 11d. Marangoni stresses thus762

help capillary drainage on one side of a trough and counteract it on the other and this763

is responsible for both the buckling cascade and the suppression of sliding.764

Closer investigation of panels 11b and 11c shows that the buckling events from the765

second one onward differ from the first buckling event (panel 3d) in that the buckling766

trough does not split into two new identical daughter troughs on either side. Instead,767

a new trough forms always on the inside of the original trough, which itself moves768

outward. This follows from the competition between thermocapillary q|Ma and capillary769

Page 25 of 29



26 G. F. Dietze, J. R. Picardo and R. Narayanan

q|σ drainage, which produces a divergence point (q=0) to the right of the leftmost tertiary770

trough in panel 11d (see thick red line). From this divergence point, liquid is drained771

to either side, ultimately producing a quaternary trough there, when the slope of the772

secondary hump ∂xh, which scales q|Ma in (9.1), has sufficiently grown.773

Marangoni stresses, which in the present case are sufficiently strong to compete with774

capillary drainage, are also directly responsible for suppressing the sliding instability.775

First, they prevent the film from attaining a quasi-steady state. In fact, (2.3) possesses776

no steady solution for Ma <0, in contrast to the final equilibrium state for the isothermal777

case (4.1). Instead, the film repeatedly buckles, producing ever thinner troughs, which778

would eventually disjoin due to long-range van der Waals forces between the wall and the779

film surface. Thereby, the fact that the width of the main hump is no longer constrained780

by an equilibrium state allows it to be increasingly compressed by the two adjacent781

troughs, which increasingly approach one another following each buckling event.782

Second, Marangoni stresses counteract the way in which the film surface around a783

secondary trough would be modified by a sliding motion. Such a motion would peel-off784

the film on the inside of an outward sliding secondary trough, whereas thermocapillary785

buckling would pull it down in the process of forming a new tertiary trough (see panel786

11b). Third, the growth rate contribution of Marangoni stresses (in the small h limit):787

∂th/h|Ma ≈
Ma Bi

Bo
(∂xh)

2 +
1

2

Ma Bi

Bo
h ∂xxh, (9.2)

reduces to a single term proportional to the surface curvature ∂xxh (second term above)788

when evaluated at a trough (where ∂xh=0). For Ma < 0, this term tends to increase789

the thickness of a flattened secondary trough and reduce it at a curved trough, thereby790

opposing the positive feedback mechanism of the sliding instability discussed in §6.791

10. Conclusion792

We have identified a secondary instability that causes the spontaneous sliding motion793

of large drops forming on the surface of a wall-bounded fluid film draining due to an794

interfacial instability. The sliding instability is observed when the thin residual film in-795

between two drops has buckled due to viscous drag and fluid is forced to drain through796

the thus formed extremely-thin secondary troughs. It requires the following ingredients:797

(i) the dominance of capillary pressure gradients in draining fluid through the secondary798

troughs; and (ii) a large gradient of the surface curvature across the secondary troughs.799

The onset of the sliding motion is observed after the draining film has reached a quasi800

steady state, where the very slow growth of the sliding instability can make a difference801

and where the large drops have virtually attained a static equilibrium that is neutrally-802

stable toward translation and stable toward all other volume-preserving perturbations.803

We have performed a frozen-time stability analysis of the quasi-steady base state and804

uncovered a single unstable eigenmode, which constitutes a concerted sliding motion of805

the large drops and secondary troughs. Instability emanates from the secondary troughs,806

which are extremely sensitive to perturbations of the surface curvature ∂xxh. The sliding807

eigenmode flattens one of the secondary troughs (i.e. reduces ∂xxh there) and curves808

the other (i.e. increases ∂xxh there). At the flattened trough, the flow toward it is809

reduced to a greater extent than the flow away from it, due to changes in the curvature-810

controlled capillary pressure gradient either side of the trough. As a result, the trough811

thins. However, the thinning rate is not maximal at the trough itself but at a slightly812

outward position due to the asymmetric nature of the trough region, which connects the813

steep front of the main hump to the weakly-sloped flank of the buckled film portion. This814
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causes the locus of the trough to move outward. The trough is deformed in a way that815

amplifies the unstable perturbation, i.e. it is further flattened, and we have explained816

the underlying positive feedback mechanism (§6). The opposite happens at the other817

secondary trough. As a result, the two secondary troughs slide in concert, displacing the818

large drops, which in a periodic setting are situated in-between them. Because these large819

drops have virtually attained the neutral mode of the primary instability, they offer no820

resistance to the translation, but they do impose a fixed distance between the troughs821

as their width is constrained to the cut-off wavelength of the primary instability.822

Using transient stability analysis, we have also investigated the stability of the base823

state prior to the quasi-steady regime, finding that it is always unstable after the film has824

buckled. The thus-identified most-unstable perturbations show that the above-discussed825

sliding eigenmode can be triggered most-effectively by pulse-shaped perturbations that826

are localized at the secondary troughs. In the absence of a distinct stable/unstable827

transition, the onset of sliding is controlled by ambient noise. However, for noise levels828

studied here, which are based on the surface roughness of typical materials, sliding is829

always observed in the quasi-steady regime.830

From an energetic point of view, the primary instability guides the film from its831

initial state toward a lower-energy static equilibrium state consisting of sinusoidal drops832

separated by a zero thickness film. To reach this state, the residual film in-between drops833

needs to fully drain through the secondary troughs. The total drainage rate is larger when834

these troughs are unsymmetric, i.e. when one is thinner than the other. Indeed, in the835

face of viscous drag, it is easier for the fluid to drain through one thick trough rather than836

two thin ones. This is shown for the suspended water film in panel 12a, representing time837

traces of the liquid volume contained in this region, which we have highlighted as Vneck838

in panel 12b. The solid line in panel 12a corresponds to a sliding solution and the dashed839

line to a non-sliding symmetric solution. We see that sliding significantly accelerates840

drainage and, thus, it is the energetically favourable route toward the lower-energy final841

state.842

Our analysis has been mostly focused on the case of a water film suspended from a843

ceiling, but also applies to other configurations. We have shown this for a very thin gas844

layer underneath a much more viscous liquid layer, assuming physical properties typically845

encountered underneath Leidenfrost drops (Burton et al. 2012).846

Marangoni stresses can entirely suppress the sliding instability by fundamentally847

modifying the draining mechanism at the troughs. In that case, the film undergoes a848

cascade of buckling events instead of sliding, similar to the traditional Marangoni problem849

(Boos & Thess 1999; Oron 2000).850

Finally, we note that the stability characteristics of nonlinear interfacial states can851

be affected by the size of the periodic computation domain. For example, Frumkin &852

Oron (2016) and Duruk & Oron (2016) obtain steady-state patterns that are unstable on853

infinite domains, but stable on sufficiently small periodic domains. This is not the case for854

the sliding instability studied here, which reveals its basic features in a periodic domain855

containing a single wavelength, provided it is not smaller than the cut-off wavelength Λc856

of the primary instability.857
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