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TRUNCATED LSQR FOR MATRIX LEAST SQUARES PROBLEMS
AND APPLICATION TO DICTIONARY LEARNING ∗

LORENZO PICCININI† AND VALERIA SIMONCINI‡

Abstract. We are interested in the numerical solution of the matrix least squares problem

min
X∈Rm×m

∥AXB + CXD − F∥F ,

with A and C full column rank, B,D full row rank, F an n×n matrix of low rank, and ∥·∥F the Frobe-
nius norm. We derive a matrix-oriented implementation of LSQR, and devise an implementation
of the truncation step that exploits the properties of the method. Experimental comparisons with
the Conjugate Gradient method applied to the normal matrix equation and with a (new) sketched
implementation of matrix LSQR illustrate the competitiveness of the proposed algorithm. We also
explore the applicability of our method in the context of Kronecker-based Dictionary Learning, and
devise a representation of the data that seems to be promising for classification purposes.

Key words. Matrix least squares, Kronecker products, rank truncation, large matrices, dictio-
nary learning.

AMS subject classifications. 65F45, 65F55, 15A23.

1. Introduction. We are interested in the numerical solution of the Generalized
algebraic Sylvester equation

(1.1) AXB + CXD = F,

for the unknown matrix X, with A,C ∈ Rn×m, B,D ∈ Rm×n and F ∈ Rn×n, with
n > m. In the following we assume that all coefficient matrices A,BT , C and DT

have maximum rank, and that they have the same dimensions. The problem can
be easily adapted to the case where X is rectangular. For general F the problem is
overdetermined, hence a least squares formulation is more appropriate, that is

(1.2) min
X∈Rm×m

∥AXB + CXD − F∥F ,

where ∥ · ∥F denotes the Frobenius norm. In the following, we will also assume that
F has low rank, that is F = F1F

T
2 with F1, F2 having few columns.

Least squares matrix formulations have recently emerged as good candidates for
memory-saving coefficient representation strategies in ill-posed problems [19],[34], and
in data science problems such as dictionary learning [8],[7], in addition to being build-
ing blocks for more complex procedures, see, e.g., [26].

More general forms that allow for distinct unknowns in the two matrix terms have
been addressed in the recent literature. More precisely, the problem can be written
as minX,Y ∈Rm×m ∥AXB + CY D − F∥F (see, e.g., [43]), where X,Y could also have
different dimensions. As a special case, the T-least squares problem

(1.3) min
X∈Rm×m

∥AXB + CXTD − F∥F
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can be considered, as it also occurs for instance in certain semi-definite programming
problems [4]. A different solution direction has recently been explored, solving these
least squares problems via gradient-descent type methods and other optimization
procedures; see, e.g., [20],[9] and references therein.

In this work we limit our attention to (1.2), while noticing that many of the
strategies also apply to other contexts, such as (1.3); see, e.g., [33]. In particular, we
stress that all proposed algorithms apply without significant changes to the multiterm
setting, that is to problems of the form

(1.4) min
X∈Rm×m

∥
ℓ∑

i=1

AiXBi − F∥F ,

with conforming dimensions for all given matrices.
A classical way to solve (1.2) consists of transforming the problem into vector

form via the Kronecker product. More precisely, let us set A = BT ⊗ A +DT ⊗ C,
x = vec(X) and f = vec(F ), where vec transforms a matrix into a vector by lining up
its columns, and M ⊗ A is the Kronecker product of the two matrices A,M , defined
as

M ⊗A =

AM1,1 . . . AM1,m

...
. . .

...
AMn,m . . . AMn,m

 ∈ Rnn×mm, A,M ∈ Rn×m.

Then (1.2) is equivalent to

(1.5) min
x∈Rm2

∥Ax− f∥,

where ∥ · ∥ is the Euclidean vector norm. In the single term case, that is for C and D
equal to zero, then direct methods that exploit the QR factorization can be efficiently
adapted [11]. Direct QR-based methods can also be applied in the general case, as
long as the involved matrices in (1.5) have small dimensions, so that A can be handled
efficiently.

The problem becomes significantly more challenging for n,m large. Standard
iterative methods can be used for (1.5), though A should never be explicitly computed
as it is generally dense. In addition, it is crucial to take into account the structure
more directly, so as to limit the use of memory allocations. In the past decade,
several iterative system solvers and minimal residual methods have been adapted to
directly exploit the matrix and tensorial structure of the given problem, so as to
avoid the explicit use of matrix vectorizations, which destroy the problem structure
[31],[6],[22],[23],[41]; this is particularly crucial in the case of fully tensorized problems,
see, e.g., [5],[24]. A class of methods that aim at addressing these issues is that of
truncated matrix-oriented iterative solvers. The idea is to take a classical iterative
method for (1.5), in our case, recover the matrix form of all iterates, and then employ
truncation procedures to store iterates as low-rank factors, rather than full matrices
or very long vectors; all methods cited above share these properties.

We propose to employ the LSQR method ([29]) for the vectorized problem, by
first deriving the matrix-oriented version of the method, and then using a new im-
plementation of the truncation that exploits the algorithmic properties. To the best
of our knowledge this variant of LSQR has not been explored in the past, for matrix
least squares problems as that in (1.2).

In the vector case it is known that LSQR is preferable to the conjugate gradient
method (CG) on the normal equation because of stability issues, although the two
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methods are mathematically equivalent. In the truncated matrix setting, other dif-
ferences arise. On the one hand, the generated space bases in LSQR are bound to
quickly lose their orthogonality properties, so that the reduced least squares problem
is no longer related to the original problem. On the other hand, CG requires explic-
itly working with the normal equation, which entails addressing a multiterm linear
matrix equation. For these reasons, truncations of the matrix iterates may have very
different effects on the two algorithms. Other issues are of concern, such as the com-
putational cost of stopping criteria, and the role of the parameters employed during
the truncation at different stages of the iteration. We will address all these issues, and
in particular we will devise a new form for the truncation strategy that exploits the
properties of LSQR. The new formulation allows us to decrease the cost of computing
the recurrence coefficients, and lowers the cost of the orthogonalization step. As an
alternative to this new formulation, we have also implemented a preliminary sketched
version of the matrix-oriented LSQR method, in which the algorithmic coefficients are
computed by embedding the bases in a fixed subspace [27]. Our experiments show
that the sketched algorithm is not competitive, with respect to the method with the
new truncation implementation. Finally, we explore the application of this method-
ology in the context of Dictionary Learning, with the problem formalized in [7, 8],
towards its use in image classification. We propose a new way to set up the data
and to analyze the resulting solution, that appear to successfully classify a new given
image. These promising results will be deepened in future work on the topic.

The paper is organized as follows. Section 2 recalls the vector LSQR method. Sec-
tion 3 introduces some properties of the matrix least squares problem, while section 4
devises the new matrix-oriented version of LSQR. Section 4.1 discusses the concerns
associated with the stopping rule, and section 5 describes the new implementation
of the truncation step, so as to take advantage of the existing orthogonality. A few
considerations on the effect of truncation are detailed in section 6. Section 7 describes
a possible implementation of the sketched matrix LSQR, while section 8 reports on
our experimental study. Section 9 describes the application of LSQR to the dictionary
learning problem, and derives a classification strategy. Finally, section 10 contains
the conclusions.

Throughout the paper bold face letters refer to matrices and vectors used in the
Kronecker formulation. All experiments were ran in Matlab [28].

2. Vector version of the LSQR method. For later derivations, in this section
we recall the standard LSQR method first described in [29] to solve the least squares
problem

(2.1) min
x∈Rm2

∥Ax− b∥2

with A ∈ Rn2×m2

and b ∈ Rn2

, assuming n > m and A full column rank. The
procedure can be derived from the Golub-Kahan-Lanczos bidiagonalization [14]. This
method allows us to compute the orthogonal matrices U ,V satisfying A = UÃV H

with Ã lower bidiagonal.
Starting from problem (2.1), we compute the lower bidiagonalization as follows.

Given the initial vectors v0 = 0, u1 = b/β1, where β1 = ∥b∥ ≠ 0, the algorithm
computes for i = 1, 2, . . .

(2.2) αivi = ATui − βivi−1, ∥vi∥ = 1, βi+1ui+1 = Avi − αiui, ∥ui+1∥ = 1,

until αi = 0 or βi+1 = 0 or i = min{n,m}. Denote with Uk = [u1,u2, . . . ,uk] and
Vk = [v1,v2, . . . ,vk] the matrices with orthonormal columns, Lk the square lower
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bidiagonal matrix with main diagonal [α1, . . . , αk] and subdiagonal [β2, . . . , βk], and
letBk = [LT

k , βk+1ek]
T . Then the procedure stops at iteration p when either αp+1 = 0

or p = m, giving
ATUp = VpL

T
p , AVp = Up+1Bp.

Let xk = Vkyk for some vector yk to be determined, and let rk = b − Axk be
the associated residual. Recalling that b = Uk+1e1β1 and AVk = Uk+1Bk, we can
obtain

rk = Uk+1e1β1 −AVkyk = Uk+1(e1β1 −Bkyk) =: Uk+1tk+1.

We determine yk so as to minimize the residual norm. Using that Uk+1 has orthonor-
mal columns, this leads us to solve a reduced dimension least squares problem, that
is

(2.3) min
xk

∥b−Axk∥ = min
yk

∥e1β1 −Bkyk∥.

Since Bk is bidiagonal, it is advantageous to solve (2.3) using Givens rotations, so

that Bk = Qk

[
Rk

0

]
. We write:

(2.4) ∥e1β1 −Bkyk∥ =

∥∥∥∥QT
k e1β1 −

[
Rk

0

]
yk

∥∥∥∥ =

∥∥∥∥[ϕk −Rkyk

Φ̄k+1

]∥∥∥∥ ,
where ϕk = [Φ1, . . . ,Φk]

T . The vectors yk and tk+1 can be found from

Rkyk = fk, tk+1 = QT
k

[
0

Φ̄k+1

]
.

Since [Rk,fk] is obtained from [Rk−1,fk−1] by adding a row and column, the iterate
xk can be updated as

xk = VkR
−1
k fk = Gkfk,

where Gk = [g1, g2, . . . , gk] is defined by solving the system RT
kG

T
k = V T

k by forward
substitution. Setting g0 = x0 = 0, it holds that

gk =
1

ρk
(vk − θkgk−1), xk = xk−1 +Φkgk.

Finally, we recall that the QR decomposition at each iteration only requires the k-th
plane rotation to act on the last two rows of [Bk, e1β1] to annihilate βk+1, that is[

ck sk
sk −ck

] [
ρ̄k 0 Φ̄k

βk+1 αk+1 0

]
=

[
ρk θk+1 Φk

0 ρ̄k+1 Φ̄k+1

]
,

where ρ̂1 = α1, Φ̄1 = β1 and the scalars ck and sk are the rotation coefficients.
The complete procedure can be found in [29] and is reported for future reference in
Algorithm 2.1.

The original stopping criterion fully relies on the orthonormality of the bases,
and in particular on the equivalence (2.3); see [29]. In our setting, we will see that
orthonormality of the two bases is lost, so that it will not be possible to cheaply
evaluate the true least squares residual norm or, as it is common, the residual norm
of the normal equation, through the computed scalars. If desired, these quantities
must be evaluated directly.

4



Algorithm 2.1 LSQR ALGORITHM

Require: A, b, imax
β1u1 = b, α1v1 = ATu1, g1 = v1, x0 = 0, Φ̄1 = β1, ρ̄1 = α1

while i < imax do
i = i+ 1
βi+1ui+1 = Avi − αiui

αi+1vi+1 = ATui+1 − βi+1vi

ρi = (ρ̄2i + β2
i+1)

1/2

ci = ρ̄i/ρi, si = βi+1/ρi
θi+1 = siαi+1, ρ̄i+1 = −ciαi+1

Φi = ciΦ̄i, Φ̄i+1 = siΦ̄i

xi = xi−1 + (Φi/ρi)gi
gi+1 = vi+1 − (θi+1/ρi)gi
test for convergence

end while

3. The matrix least squares problem. We start by analyzing some alge-
braic properties of the problem, that can be used in its numerical solution when the
dimensions are small.

We recall a general rank equivalence result, for the more general setting of two
unknown matrices. The statement is adapted to our setting.

Proposition 3.1. [16, Th. 4.4.25] Let A ∈ Rn×m, D ∈ Rm×n and F ∈ Rn×n.
There are matrices Z ∈ Rm×n and Y ∈ Rn×n such that AZ + Y D = F if and only if

rank

[
A D
0 F

]
= rank

[
A 0
0 F

]
.

In our context, that is for Z = Y , we cannot in general use the if-and-only-if statement.
However, one of the directions still holds. Indeed, we can use the theorem above to
say that if (1.1) has a solution X, by setting Z = XB and Y = CX, we can infer that
the rank equality holds. On the other hand, even assuming that the rank condition
holds, so that the two matrices Z and Y exist, then this does not necessarily imply
that these two matrices are related as Z = XB and Y = CX, so as to ensure X
exists. Hence, posing the problem in terms of a least squares problem appears to be
essential.

The least squares solution can be obtained by solving the vector oriented version
of the problem, using the Kronecker product, as in (1.5). Nonetheless, the problem
structure can be taken into account so as to avoid the QR factorization of the large
Kronecker product matrix, as shown in the following proposition.

Proposition 3.2. Let

[A,C] = Q

[
R1,1 R1,2

R2,2

]
, [BT , DT ] = U

[
S1,1 S1,2

S2,2

]
,

be the reduced QR decompositions of the given matrices. Then the problem (1.5) can
be rewritten as

min
x

∥c̃−
([

S1,2

S2,2

]
⊗R1,1 + S1,1 ⊗

[
R1,2

R2,2

])
x∥

with c̃ = vec(QTCU).
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Proof. We just need to notice that

BT ⊗A+DT ⊗ C = (Q⊗ U)

([
S1,2

S2,2

]
⊗R1,1 + S1,1 ⊗

[
R1,2

R2,2

])
,

from which the final least squares problem follows.

The previous derivation does not make any assumption on the rank of [A,C],
hence either R factor of the considered QR factorizations could be rank deficient.
In the extreme case where range(A)=range(C), the matrix problem simplifies. Let
us write C = AGA and BT = DTGB for some nonsingular GA, GB (specifically,
GA = (ATA)−1ATC, and similarly for GB). Then (1.1) becomes

(3.1) XGT
B +GAX = (AT )−1ATFDT (DDT )−1,

that is, X solves a standard Sylvester equation. In general, the following simple result
holds.

Proposition 3.3. Assume that A is full column rank, so that the unique solution
x to (2.1) exists, and let X be such that x = vec(X). Assume also that A and D
are full column rank. Then it holds that the spectra of GA = (ATA)−1ATC and
GB = (DDT )−1DBT do not intersect, except possibly in zero.

Proof. Let R = AXB+CXD−F , so that X solves the matrix equation AXB+
CXD = F +R. Multiplying from the left by AT and from the right by DT we obtain
ATAXBDT +ATCXDDT = AT (F +R)DT . Dividing by ATA from the left and by
DDT from the right, we obtain the square matrix equation in (3.1).

If at least one of the matrices GA, GB is nonsingular, the solution X is unique,
and it must hold that GA and GB have disjoint spectra [16].

Matrix oriented algorithms aim at approximating the solutionX as a low-rank fac-
torization. It is important to recognize that using low-rank approximation makes sense
if the exact solution can be well approximated by a low-rank matrix. While singular
value decay of the solution for Sylvester equations has been investigated in the litera-
ture, with very insightful results especially in the symmetric case [1],[36],[15][32],[37],
we are not aware of corresponding results for the overdetermined equation. Hence,
in the following we proceed with the low-rank approximation assuming that it is ap-
propriate. Whenever the problem dimensions allowed, the singular value decay of the
least squares solution was verified, by using the solution of the vector formulation.
We leave this fundamental analysis to later research.

4. Matrix-oriented LSQR with standard truncation implementation.
We start by writing the matrix-oriented version of the LSQR method described in
section 2, which merely corresponds to replacing vectors with their counterpart ma-
trices, whenever possible, using the vec operator. For example:

xk+1 = xk +
ϕ1

ρ1
gk −→ Xk+1 = Xk +

ϕ1

ρ1
Gk,

and
xTy = trace(XTY ), ∥x∥2 = ∥X∥F .

With these modifications, the algorithm computes the same quantities of the method
in vector form, with the only advantage taking place if dense matrix-matrix op-
erations can be performed efficiently. The “vanilla” matrix version of LSQR is
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reproduced in Algorithm 4.1, where L : Rm×m → Rn×n is the operator associ-
ated to the matrix equation, that is L(X) = AXB + CXD, while its transpose is
LT (Y ) = ATY BT + CTY DT . The algorithm solves the original least squares prob-
lem without ever explicitly building LT (L(·)), that from now on will be called the
normal operator.

Algorithm 4.1 LSQR ALGORITHM (MATRIX VERSION)

Require: L, LT , F , tol, imax
β = ∥F∥F , U = F

β , r = β, V = LT (U), α = ∥V ∥F , V = V
α

ϕ = β, ρ = α, i = 0, X = 0, G = V , r0 = β
while i < imax, r

r0
> tol do

i = i+ 1
U = L(V )− αU , β = ∥U∥F , U = U

β

V = LT (U)− βV , α = ∥V ∥F , V = V
α

ρ1 =
√
ρ2 + β2, c = ρ

ρ1
, s = β

ρ1

θ = sα, ρ = −cα, ϕ1 = cϕ, ϕ = sϕ
X = X + ϕ1

ρ1
G, G = V − θ

ρ1
G

r = ϕ
check convergence

end while

To take full advantage of the matrix form in terms of both memory consumption
and computational costs, it has become standard practice to perform some kinds of
truncation to maintain iterates in factored form, whenever the known matrix F can
be approximated well by a low-rank matrix, with known factors – in our setting F is
in fact always given as a low-rank matrix; we refer to, e.g., [23],[21],[30],[38] and their
references. The implementation is then modified in such a way that each updating
step is done only on the low-rank factors. To compute the low-rank factors of a given
matrix, we can proceed as follows; see [23]. Let Yj = QjRj , j = 1, 2 be the reduced
QR decomposition of each factor of Y = Y1Y

T
2 . Then

Y = Q1(R1R
T
2 )Q

T
2 = Q1USV TQT

2

≈ (Q1U:,1:rS
1
2
1:r,1:r)S

1
2
1:r,1:r(Q2V:,1:r)

T =: Y1Y
T
2 .(4.1)

The final matrices Y1, Y2 replace the original factors, and have hopefully lower column
dimension. The new rank is obtained with the following truncation criterion

r = min
ℓ≤k

(∑ℓ
i=1 S1:i,1:i∑k
i=1 S1:i,1:i

> 1− tol

)
,

where k is the rank of the original matrix Y . The generic update V (k+1) = V (k)+P (k)

is performed by using the addend factors: assuming that the two matrices V (k), P (k)

are in factored form, then

V (k) + P (k) = V
(k)
1 (V

(k)
2 )T + P

(k)
1 (P

(k)
2 )T = [V

(k)
1 , P

(k)
1 ][V

(k)
2 , P

(k)
2 ]T .

Hence, by rank reducing the two factors [V
(k)
1 , P

(k)
1 ], [V

(k)
2 , P

(k)
2 ] as in (4.1), we obtain

V (k+1) := V
(k+1)
1 (V

(k+1)
2 )T .
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We stress that in computing V (k+1) we accumulate two types of truncation errors:
the one stemming from the already performed truncation of both V (k) and P (k),
and that incurred in truncating the factors of V (k+1). The truncation procedure is
applied to every iterate update inside the LSQR algorithm, so that all matrices are
kept in factored form. Two parameters are used: the truncation tolerance (tol in the
truncation criterion above), and the maximum allowed rank rmax. In our experiments
we focused on the latter value, while keeping tol small. A specific comment deserves
the factorization step of the matrix after the operators are applied. More precisely,

L(V1V
T
2 ) =

[
AV1 CV1

] [
BTV2 DTV2

]T
= L1L

T
2 ;

similarly for LT . At each iteration k, by denoting L
(k)
1 =

[
AV

(k)
1 , CV

(k)
1

]
and L

(k)
2 =[

BTV
(k)
2 , DTV

(k)
2

]
, the update for the U iterate becomes:

U
(k+1)
1 =

[
L
(k)
1 , −α

1/2
k U

(k)
1

]
, U

(k+1)
2 =

[
L
(k)
2 , α

1/2
k U

(k)
2

]
.

The truncation strategy can be applied first to L
(k)
1 , L

(k)
2 and subsequently to

U
(k+1)
1 , U

(k+1)
2 , hence acting on two blocks at the time, or directly to the three block

matrix U
(k+1)
j =

[
AV

(k)
1 , CV

(k)
1 , ±α

1/2
k U

(k)
1

]
, for j = 1, 2. The latter requires more

temporary storage.
We conclude this section by recalling an important property of the trace, that

makes the overall computation more accessible for low-rank matrices.

Remark 4.1. Given Y,Z ∈ Rn×m, Y = Y1Y
T
2 , Z = Z1Z

T
2 with Y1, Z1 ∈ Rn×r

and Y2, Z2 ∈ Rm×r and r ≪ n,m, we have that

trace(Y ZT ) = trace((Y1Y
T
2 )(Z2Z

T
1 )) = trace((ZT

1 Y1)(Y
T
2 Z2)).

Clearly this is more efficient because both ZT
1 Y1 and Y T

2 Z2 are r×r. This will be used
in all instances in our experiments.

With this remark, we observe that β = ∥U∥F with U = U1U
T
2 changes into

β = (trace((UT
1 U1)(U

T
2 U2)))

1/2.

4.1. Stopping criteria. As already mentioned, truncation destroys the equiv-
alence between the true residual norm and the reduced residual norm. As a conse-
quence, if the true residual norm is meant to be used to check convergence, it requires
an explicit computation, with a significant impact on the overall computational effort.
The fact that X(k) is in factored form allows us to avoid the explicit computation of
the large dense residual matrix, so that we can proceed as follows. First the residual
factors are computed as

R
(k+1)
1 = [F1,−AX

(k+1)
1 ,−CX

(k+1)
1 ], R

(k+1)
2 = [F2, BX

(k+1)
2 , DX

(k+1)
2 ],

then ∥Rtrue
k ∥2 = trace(((R

(k+1)
1 )TR

(k+1)
1 )((R

(k+1)
2 )TR

(k+1)
2 )).

In the vector LSQR algorithm, the residual norm of the normal equation is also
used as stopping criterion. Computing such a norm can be performed also in our
setting, though the computational and memory costs of dealing with the corresponding
residual factors can be significantly large, due to the presence of several terms in the
equation (see the discussion for truncated CG in section 8).
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An additional issue that needs to be taken into account is that the minimization
of the true residual norm is no longer ensured. Hence, in the truncated case the
residual norm can actually have a non-monotonic behavior. We have experienced this
phenomenon in case the truncation rank was chosen too small. Although the residual
norm can still decrease at later iterations, this behavior is a clear indication that the
procedure has significantly departed from the full rank regime, so that a norm increase
may be taken as a stopping criterion.

Algorithm 5.1 Fully three-term Truncation function

Require: QY1 , SY , QY2 , QZ1 , SZ , QZ2 , tol, r
F1,2 = QT

Y1
QZ1

W = QZ1
−QY1

F1,2

[Q,F2,2] = qr(W, 0)
Q1 =

[
QY1 , Q

]
% Q matrix

R1 =

[
I F1,2

0 F2,2

] [
SY 0
0 SZ

]
% R matrix

P1,2 = QT
Y2
QZ2

W = QZ2
−QY2

P1,2

[Q̃, P2,2] = qr(W, 0)
Q2 =

[
QY2

, Q̃
]

% Q matrix

R2 =

[
I P1,2

0 P2,2

]
% R matrix

[U, S, V ] = svd(R1R
T
2 , 0) %thin SVD

t = find(cumsum((diag(S))./sum(diag(S)) > 1− tol, 1)
t = min(r, t)
QY1

= Q1U(:, 1 : r), QY2
= Q2V (:, 1 : r), S = S(1 : r, 1 : r)

5. A new three-term truncated factorized form. The truncation step is
time consuming, and in the standard algorithm it is supposed to be performed at least
four times per iteration. Even worse, it does not seem to take full advantage of the
previous factorizations, except for appreciating the factors presence. The truncation
step in fact generates two terms with orthonormal columns, and a diagonal term, that
is, in the algorithm notation,

Y1Y
T
2 = (Q1U:,1:r)S(Q2V:,1:r)

T =: QY1
SY Q

T
Y2
.

If the orthonormality of the two matrices is acknowledged, then it can be exploited
in later computations. First of all, ∥Y1Y

T
2 ∥F = ∥SY ∥F = ∥diag(SY )∥, since SY is

diagonal; this can be exploited for instance in the computation of β. Moreover, if two
terms have this factored form, then their sum can be obtained more cheaply. Indeed,

V (k) + P (k) = Q
(k)
V1

SV (Q
(k)
V2

)T +Q
(k)
P1

SP (Q
(k)
P2

)T

= [Q
(k)
V1

, Q
(k)
P1

]

[
SV

SP

]
[Q

(k)
V2

, Q
(k)
P2

]T .

The two tall blocks each have block-orthonormal columns, so that the orthogonaliza-
tion step can be limited to one of the blocks, the smallest one whenever possible. This
procedure is summarized in Algorithm 5.1. Note that the algorithm assumes that the
factors of the first matrix, that is QY1

, QY2
, have orthonormal columns. We refer to

Algorithm 5.2 for the actual call.

9



Algorithm 5.2 LSQR ALGORITHM (TRUNCATED VERSION)

Require: L, LT , F1, F2, tol, tol tr, rmax, imax
β = ∥F1F

T
2 ∥F , U1 = F1/

√
β, U2 = F2/

√
β

[QU1
, RU1

] = qr(U1, 0), [QU2
, RU2

] = qr(U2, 0), r = β
[W1, SU ,W2] = svd(RU1R

T
U2
, 0)

[V1, V2] = LT (U1W1, U2W2, SU )
[QV1

, QV2
, SV ] = Alg. 5.1([ ], [ ], V1, I, [ ], V2, tol tr, rmax)

α = ∥diag(SV )∥, SV = SV /α
ϕ = β, ρ = α, i = 0, X1 = 0, X2 = 0
QD1 = QV1 , QD2 = QV2 , SD = SV , r0 = β
while i < imax, r

r0
> tol do

i = i+ 1
[Ũ1, Ũ2] = L(QV1

, QV2
, SV )

[QU1
, QU2

, SU ] = Alg. 5.1(QU1
,−αSU , Ũ1, I, QU2

, Ũ2, tol tr, rmax)
β = ∥diag(SU )∥, SU = SU/β
[Ṽ1, Ṽ2] = LT (QU1 , QU2 , SU )
[QV1 , QV2 , SV ] = Alg. 5.1(QV1 ,−βSV , Ṽ1, I, QV2 , Ṽ2, tol tr, rmax)
α = ∥diag(SV )∥, SV = SV /α
ρ1 = (ρ2 + β2)1/2, c = ρ

ρ1
, s = β

ρ1

θ = sα, ρ = −cα, ϕ1 = cϕ, ϕ = sϕ, ξ1 = ϕ1

ρ1
, ξ2 = θ

ρ1

[QX1
, QX2

, SX ]=Alg.5.1(QX1
, SX , QD1

, ξ1SD, QX2
, QD2

,tol tr, rmax)
[QD1

, QD2
, SD]=Alg. 5.1(QV1

, SV , QD1
,−ξ2SD, QV2

, I, QD2
, I, tol tr, rmax)

r = ϕα|c|
check convergence

end while

I stands for an identity matrix of conforming size

L(P,Q, S) stands for L(PSQT ), and [ ] stands for an empty matrix

To ensure better orthogonality properties, the two Gram-Schmidt steps leading
to the working matrix W are each done twice in the practical implementation [12].
Possible rank deficiency of the resulting block (matrix W in Algorithm 5.2) may be
treated via rank revealing or SVD. In general, these procedures are more expensive,
while rank deficiency is also taken care of in the subsequent thin SVD of R1R

T
2 . The

implementation of the truncation in the two bases deserves an explicit description.
For instance, given a basis iterate V (k) = QV1SV Q

T
V2
, U (k) = QU1SUQ

T
U2

in factored

form, the next iterate U (k+1) is given by

U (k+1) = L(QV1
SV Q

T
V2
)− αU (k)

=
[
AQV1 CQV1

] [SV 0
0 SV

] [
BTQV2 DTQV2

]T − αQU1
SUQ

T
U2

= [QU1 , AQV1 , CQV1 ]

−αSU

SV

SV

 [QU2 , AQV2 , CQV2 ]
T .(5.1)

Hence, Algorithm 5.1 can be applied to the two blocks QU1
(with orthonormal col-

umns) and [AQV1
, CQV1

] and corresponding terms. A similar form can be deduced
for the V recurrence. Note that Algorithm 5.1 is thus applied to larger blocks, where
the second block no longer has orthonormal columns. Nonetheless, orthogonalization

10



is taken care of by Algorithm 5.1.
The final complete method with three-term factorized iterates is reported in Al-

gorithm 5.2. The algorithm stores block iterates of size at most n× r, where r is the
maximum allowed rank. However, the iterate updates, the residual computation and
the application of the operators necessitate temporary storage for at most 3r vectors
at the time, see, e.g., the representation in (5.1). We also notice that the orthogo-
nality associated with the U -recurrence involves vectors of length n, while that with
the V -recurrence mostly uses m-length vectors. In case m ≪ n, the two recurrences
entail quite different costs.

6. Effects of truncation. In this section the effects of truncation in the LSQR
algorithm are analyzed. The recurrences in the algorithm have different roles, and
one could consider using different truncation rank and threshold for the different
recurrences.

We recall that the recurrences {U (k)} and {V (k)} construct the biorthogonal ap-
proximation bases (in matrix form). Hence, their truncation modifies the space where
the approximation is sought, yielding a “perturbed” space. Orthogonality among the
basis vectors is also lost. However, as long as linear independence is maintained,
the approximation process seems to continue nonetheless. This will be shown in
Example 6.1. Similar properties have been shown in other “inexact” computations
associated with the construction of Krylov subspace bases [39].

Due to truncation, the iterate G(j), j = 1, . . . , k no longer precisely accounts for
each column of VkR

−1
k , since on the one hand, the matrix version of Vk is truncated,

and on the other hand the term G(k) is itself truncated. To cope with this double
inaccuracy, one may want to enforce larger rank on this term, or a different update
strategy. Finally, truncation strongly impacts the solution iterate; though this step
does not influence any other computation, it possibly suffers from the most visible
truncation side effect.

Let us linger over the loss of accuracy in the vector biorthogonalization relations
(2.2). At each iteration, truncation of the matrix form can be thought of as a modi-

fication of the exact vector u
(ex)
i+1 to give an approximation ui+1, that is

ui+1 = Avi − αiui + ϵi.

Collecting these iterates, we obtain the inexact relation

AVp = Up+1Bp +Ep, Ep = [ϵ1, . . . , ϵp].

Note that none of the computed matrices is the same as if Ep were zero. Assume
now truncation is only performed in the two bases, so that the vectors di and xi are
computed exactly with these bases vectors. Hence, the residual norm is written as

∥Axk − b∥ = ∥AVkyk −Uk+1e1β0∥
= ∥Uk+1Bkyk −Uk+1e1β0 +Epyk∥
≤ ∥Uk+1(Bkyk − e1β0)∥+ ∥Epyk∥
≤ ∥Uk+1∥ ∥Bkyk − e1β0∥+ ∥Epyk∥.(6.1)

These inequalities show that the reduced problem solved by LSQR, that is

min
y(k)

∥β1e1 −B(k)y(k)∥,

11



is no longer equivalent to solving the original least squares problem. The columns
of Up+1 cease to be orthonormal, though the bound ∥Up+1∥ ≤

√
p+ 1 holds if the

columns have unit norm. Moreover, the inexact biorthogonal relation adds a nonzero
term involving Ekyk, where the norm of each column of Ek is associated with the
truncation threshold. In this case, and referring to previous related works (see, e.g.,
[39]), we can observe that

∥Ekyk∥ = ∥
k∑

i=1

ϵi(yk)i∥ ≤
k∑

i=1

∥ϵi∥ ∥(yk)i∥,

that is, the extra term ∥Ekyk∥ has low perturbation effect as long as each product
∥ϵi∥ ∥(yk)i∥ is small, and not both factors. In other words, if we expect the final
residual to be small, we know that the components ∥(yk)i∥ will decrease with i, then
the corresponding ∥ϵi∥ are allowed to be large, thus maintaining the same magni-
tude of ∥Ekyk∥. We should keep in mind, however, that if the final residual is not
small, ∥Ekyk∥ ≈ ∥Ek∥, with corresponding effects on the true residual norm after
truncation. Denoting with rk the true residual, (6.1) yields

∥rk∥ ≤
√
k + 1|ρk|+ ∥Epyk∥.

This bound shows that the true residual norm can actually increase, if the extra term
has sizable magnitude. This property seems to be confirmed by our experiments.
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Fig. 6.1. Example 6.1. Top: for truncation parameter r = 50, 100, 150 (left to right), true
normal equation residual, angles |uT

k uk−1|, |vT
k vk−1|; the vertical line corresponds to the iteration

at which the maximum rank is reached for either basis. Bottom: magnitude of first discarded singular
value in the biorthogonal bases.

To help our intuition on the loss of orthogonality we proceed with an experiment.
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Example 6.1. We consider the following Matlab reproducible data

n=300; m=200;

A=toeplitz([3,-1,-1/2,zeros(1,n-3)],[3,1,zeros(1,m-2)]); B=A’;

C=toeplitz([-1,3,zeros(1,n-2)],[-1,1/2,-1, zeros(1,m-3)]); D=C’;

F1=ones(n,1);F2=ones(n,1);

We are interested in analyzing the loss of orthogonality in the two bases {uk}
and {vk}, caused by the rank truncation of the corresponding matrices. That is, at
each iteration of Algorithm 5.2 we define uk = QU1

SUQ
T
U1

and similarly for vk, and
compute their inner product. Results are reported in Figure 6.1. Both the residual
norm of the normal equation and the local orthogonality of the bases are reported in
the plots (Top), for different values of the truncation parameters (r = 50, 100, 150).
The truncation threshold was set to 10−12, so as to play a minimal role. We observe
that the residual convergence degrades - the norm even increases - as soon as loss
of orthogonality is so severe to reach the same magnitude as the residual norm. On
the other hand, we notice that convergence is not significantly affected as long as
the basis vectors remain well linearly independent, though no longer orthogonal. In
the bottom plots the magnitude of the neglected singular values at truncation is also
reported. We notice that this closely follows the pattern of the loss of orthogonality,
as expected, however it sets in to a larger value, and consistently earlier than for the
monitored basis inner products.

Finally, we report that we experimented with more ill conditioned matrices in the
same family, as it is sufficient to increase the entry 1/2 in C to make the Kronecker
sum increasingly more badly behaved. However, the patterns shown in Figure 6.1
remained unvaried.

7. Sketched-LSQR. Randomization algorithms have become ubiquitous in nu-
merical linear algebra (NLA) [27]. A way to incorporate randomized NLA strategies
consists of embedding the iterates onto a significantly smaller space by means of a pos-
sibly oblivious subspace, see, e.g., [44]. In the context of minimum residual methods,
and in particular in least squares problems, this procedure can be interpreted as using
a semidefinite norm, see, e.g., [10],[35],[42]. This can be defined as minimizing the
vector or matrix residual in the given semidefinite inner product, defined as xTWx,
with W symmetric and semidefinite [3]. Indefinite inner products have been analyzed
in detail as a source of special properties [13], while semi-definite inner products have
recently been used in signal processing, data science, eigenvalue computations, see,
e.g., [18],[40], in addition to sketching-based projections [2].

Given a matrix A, whose columns span a low-dimensional subspace V of Rn, an
oblivious subspace embedding allows us to embed V into Rs with s ≪ n, such that
the norms are distorted as follows

⟨u, v⟩ − ϵ∥u∥∥v∥ ≤ ⟨S(u),S(v)⟩ ≤ ⟨u, v⟩+ ϵ∥u∥∥v∥,

for all vectors u, v ∈ V, where ϵ ∈ [0, 1) and S : Rn −→ Rs. Clearly, if u = v the
condition becomes

(1− ϵ)∥v∥2 ≤ ∥S(v)∥2 ≤ (1 + ϵ)∥v∥2,

for all v ∈ V. We will refer to S(·) as the sketching operator. The term oblivious
comes from the fact that the subspace V is not known a-priori. In this case the
sketching operator is built using probabilistic methods requiring just the dimension
of the subspace we want to embed and the target dimension s of the embedding space.
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We are interested in applying sketching to make the computation of the iterate
coefficients faster. Indeed, we cannot use sketching in order to embed the matrix
iterates used at each iteration since we would not be able to retrieve the solution
in the original space. In the context of iterative Krylov subspace methods for linear
systems, this idea has been used by Babalanov, Grigori and collaborators, for instance.

The coefficients used in LSQR that can take advantage of this procedure are
α = ∥V ∥F and β = ∥U∥F . For U and V in factored form, that is U = U1U

T
2 and

V = V1V
T
2 , we have α = trace((V T

1 V1)(V
T
2 V2))

1/2 and β = trace((UT
1 U1)(U

T
2 U2))

1/2.
By defining the sketching operators S1(·) : Rn → Rs and S2(·) : Rm → Rs, we can
write

α = trace
(
S2(V1)

TS2(V1) S2(V2)
TS2(V2)

)
,

β = trace
(
S1(U1)

TS1(U1) S1(U2)
TS1(U2)

)
.

We aim to consider this procedure as an attempt to lower the computational costs of
the version of LSQR with standard truncation. Indeed, given the matrices U1, U2 ∈
Rn×r and V1, V2 ∈ Rm×r with r ≪ n,m, after applying the sketching operators we
have S1(U1),S1(U2) ∈ Rs1×r and S2(V1),S2(V2) ∈ Rs2×r, implying a cheaper matrix
product operations, for s1, s2 ≪ n,m. We expect this procedure not to be competitive
with respect to the three-term form devised in section 5, which reduces the inner
product to a vector norm of size n. In the next section we will experimentally show
that this is indeed the case. A sketching strategy that involves more parts of the code
may provide more significant benefits to the overall computational costs.

8. Numerical experiments. In this section we present some computational
experiments, focusing on the comparison between the truncated versions of the LSQR
and the CG algorithms, the latter applied to the normal equation in matrix-oriented
form. The truncated CG method is taken from [23],[38]. We recall that in our context,
truncated CG is applied to a matrix equation with operator LT (L(·)), which gives
rise to a multiple term matrix equation. The residual associated with an approximate

solution X
(k)
1 (X

(k)
2 )T of rank r is given by R(k) = LT (F1F

T
2 )−LT (L(X(k)

1 (X
(k)
2 )T )),

and it can still be factorized, although the number of vector allocations exceeds 4r,
which is more than the (at most) 3r required by LSQR. More precisely, we have

R(k) = ATF1F
T
2 DT − ETF1F

T
2 BT −AT (AX

(k)
1 (X

(k)
2 )TD − EX

(k)
1 (X

(k)
2 )TB)DT

−ET (AX
(k)
1 (X

(k)
2 )TD + EX

(k)
1 (X

(k)
2 )TB)BT

=
[
ATF1 ETF1 −ATAX

(k)
1 −ATEX

(k)
1 −ETAX

(k)
1 −ETEX

(k)
1

]
[
DF2 BF2 DDTX

(k)
2 DBTX

(k)
2 BDTX

(k)
2 BBTX

(k)
2

]T
= R

(k)
1 (R

(k)
2 )T .

We notice that no preconditioning is used for CG. Although preconditioning may
enhance convergence in terms of number of iterations, its effect on the iterates rank
may be too negative. In addition, it is hard to devise a successful preconditioner due
to the presence of several terms in the coefficient matrix; see, e.g., the analysis in [26].

The three-term factorization cannot be adapted to the CG algorithm. The idea
of partitioning the QR decomposition is based on the fact that when we update a
matrix, at least a block of it remains orthogonal. This is not happening in CG except
for the updating of the matrix P . Furthermore, in LSQR this procedure makes sense
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Trunc CG Trunc LSQR Trunc S-LSQR
# CPU Final # CPU Final # CPU Final

m iter time norm iter time norm iter time norm
1000 97 7.46 0.86 77 4.45 0.86 *550 - -
1200 102 8.25 0.80 77 4.93 0.80 268 21.8 0.80
1400 107 9.36 0.71 81 5.48 0.71 130 10.3 0.71
1600 118 11.99 0.60 84 5.94 0.60 164 14.7 0.60
1800 168 37.01 0.43 82 6.34 0.43 145 16.2 0.43

* max allowed # iterations
Table 8.1

Example 8.1, n = 2001. Matrix C as in (8.1).

because in most cases the updated matrix is made of two blocks, consequently we
have to orthogonalize just one block. Due to the use of the normal operator LT (L(·)),
the updates in CG involve several terms, leading to a higher computational cost when
orthogonalizing each block.

Example 8.1. We consider an enlarged version of the problem in Example 6.1,
with A=toeplitz([3,-1,-1/2,zeros(1,n-3)],[3,1,zeros(1,m-2)]);, B = AT ,
D = CT and two different selections of C, that is

(8.1) C = toeplitz([−1, 3, zeros(1, n− 2)], [−1, 1/2,−1, zeros(1, m− 3)]);

and

(8.2) C = toeplitz([−1, 3, zeros(1, n− 2)], [−1, 2,−1, zeros(1, m− 3)]);

We consider n = 2001 and m = 1000, 1200, . . . , 1800, leading to a coefficient matrix
in Kronecker form of size 4 · 106 × 3.2 · 106. The maximum rank for truncation is
set to r = 100, and the truncation threshold is equal to 10−12. All methods use the
explicitly computed true matrix residual norm, and the stopping criterion is∣∣∥Rtrue

k ∥ − ∥Rtrue
k−1∥

∣∣
∥Rtrue

k ∥
≤ 10−9,

and we remark that monotonic behavior of the residual norm was observed for all
methods on this problem. We compare the performance of truncated CG applied
to the normal equation, as implemented in [24],[38], with that of truncated LSQR
(Algorithm 5.2). Results are shown in Table 8.1 (in Table 8.2) for C defined in (8.1)
(in (8.2)). For completeness we also report results with the sketched LSQR method
described in section 7, with sketched space of dimension s = 200. Both tables report
the number of iterations required to satisfy the criterion, the CPU time in seconds,
and the achieved final residual norm. Although CG and LSQR are mathematically
equivalent, they are not so in their truncated variant, and the number of iterations may
change significantly, with Truncated CG paying a high toll. The CPU time changes
accordingly. Nonetheless, the final residual remains the same for both methods. Also
the sketched approach reaches the final residual in all instances, with CPU time lower
than for CG, but the number of iterations is affected. We explicitly observe the
non-convergence anomaly of the sketched method for m = 1000 with C as in (8.1).
Somewhat similar comments apply for the second choice of C, although on the one
hand, number of iterations and CPU times are significantly lower, and on the other
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Trunc CG Trunc LSQR Trunc S-LSQR
# CPU Final # CPU Final # CPU Final

m iter time norm iter time norm iter time norm
1000 41 2.10 0.86 42 1.87 0.86 47 2.64 0.86
1200 43 2.39 0.80 44 2.05 0.80 138 8.30 0.80
1400 46 2.89 0.71 47 2.49 0.71 58 3.78 0.71
1600 68 5.66 0.60 65 4.32 0.60 130 10.10 0.60
1800 79 7.42 0.43 70 4.72 0.43 110 9.21 0.43

Table 8.2
Example 8.1, n = 2001. Matrix C as in (8.2).

hand, sketched LSQR is less competitive. Notice that the final residual norm has the
same first digits as for the other case, although the dynamics of the methods is quite
different for the two choices of C. To deepen our understanding of this phenomenon,
we considered a problem of smaller size: the solutions to the two vectorized problems
were explicitly computed, and we noticed that the distance between the solutions was
sizable, and that the singular values displayed similar decays in the two cases. Hence
the different performance for the two different choices of C does not seem to be due
to the rank properties of the two solutions, but on how the approximation process
proceeds.

Example 8.2. The second example is a building block in the solution of large
scale Lyapunov equations by means of Petrov-Galerkin projection methods. The
computational treatment of the least squares problem resulting after projection was
first discussed in [17] and then further analyzed in detail in [26]. The problem comes
from approximating the solution to the Lyapunov equation AX +XAT − F1F

T
1 = 0

as X ≈ Xm = VmYmVT
m, where the columns of Vm are an orthonormal basis for

the block Krylov subspace Km(A,F1) and Ym is to be determined. Here and in the
following A is square and we assume that F1 has column rank p. A Petrov-Galerkin
method with test space AKm(A,F1) corresponds to a minimization problem in the
Frobenius norm [17], so that the solution Ym is obtained as

(8.3) Ym = arg min
Ym∈Rm×m

∥AVmYmVT
m + VmYmVT

mAT − F1F
T
1 ∥F .

The problem (8.3) can be simplified by using the standard Arnoldi relation

AVm = Ṽm+1Hm, with Ṽm+1 = [V1, . . . , Vm, Ṽm+1],

where Ṽm+1 ∈ Rn×p, has orthonormal columns, and Hm ∈ R(m+1)p+×mp. Then the
minimization problem (8.3) can be written as

(8.4) Ymp = arg min
Y ∈Rmp×mp

∥HmY IT + IY HT
m −

[
F̃1F̃

T
1 0

0 0

]
∥F ,

where I =

[
Imp

0

]
∈ R(m+1)p×mp and F1 = V1F̃1. This formulation precisely corre-

sponds to our setting in (1.2).
For this example, A stems from a five-point stencil finite difference discretization

of the operator −∆u+10xux+10yuy on the unit square, and the zero boundary con-
ditions of the associated partial differential equation. The right-hand side is obtained
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Trunc CG Trunc LSQR
m r Final CPU Final CPU

norm time norm time
600 50 6.5241e-01 7.46 1.1832e+00 4.60
600 75 6.5089e-01 14.00 7.7435e-01 8.50
600 100 6.4893e-01 23.17 6.5080e-01 14.64
600 125 6.4806e-01 33.96 6.4781e-01 23.39
600 150 6.4736e-01 66.20 6.4733e-01 33.26
800 50 6.4857e-01 11.47 1.2665e+00 10.34
800 75 6.5082e-01 32.88 7.6861e-01 12.74
800 100 6.4922e-01 39.83 6.5026e-01 27.25
800 125 6.4811e-01 60.30 6.4785e-01 31.37
800 150 6.4741e-01 78.03 6.4731e-01 60.68
1000 50 6.5178e-01 15.19 1.2738e+00 10.02
1000 75 6.5111e-01 39.77 7.7703e-01 16.61
1000 100 6.4939e-01 44.11 6.5106e-01 30.11
1000 125 6.4808e-01 69.24 6.4781e-01 33.06
1000 150 6.4763e-01 93.23 6.4732e-01 56.54

Table 8.3
Example 8.2, n = m + 1. Truncated CG uses matrices with at most 4r columns; Truncated

LSQR at most 2r.

with F1 a vector (so that p = 1) with random entries uniformly distributed in the
interval (0, 1). We compare truncated CG applied to the matrix normal equation and
truncated LSQR for solving the reduced problem (8.4) as the Krylov subspace grows.
More precisely, we fix a discretization dimension so that A has size 14400 × 14400,
and then generate the Krylov space of dimension up to mmax = 1000. We report
the performance of the considered methods in solving the inner least squares problem
for m = 600, 800, 1000 and with varying truncation rank (and truncation threshold
10−10), while we fix the maximum number of iterations to 300. Results are reported
in Table 8.3, where we display the final true residual norm and the total CPU time.
This norm is computed for both methods at each iteration. We remark that conver-
gence is very slow, and that truncation takes place quite early in the iteration for
both methods. However, as already mentioned, truncated CG uses twice the amount
of memory as LSQR for the explicit computation of the residual matrix factors. This
memory unbalance shows that we should in general compare the performance of CG
with that of LSQR using a larger truncation rank - though not necessarily twice the
size to limit computational costs. Disregarding this possibility, Table 8.3 shows that
LSQR outperforms CG in terms of CPU time in all cases, for the same number of
iterations, and less memory. On the other hand, we observe that if the truncation
parameter r is too small (r = 50), the LSQR final residual norm is unsatisfactory.
What happens in practice is that at some point the residual norm starts to slowly
increase again. An informed stopping criterion could take into account this behavior
to determine the final attainable accuracy.

9. Application to Dictionary Learning. Dictionary Learning is a branch of
machine learning and signal processing that, given input data f ∈ Rn, aims to find
a dictionary Dn×m and a sparse representation x ∈ Rm, such that f ≈ Dx. The
dictionary D can be either underdetermined (large) or overdetermined (tall), and
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collects samples of objects from different classes. The problem can be represented as

(D,x) = argmin
D,x

∥f −Dx∥2F .

We are interested in exploring the dictionary learning framework in the case that
D is a given Kronecker sum of sub-dictionaries, as proposed in [7],[8]. More precisely,
we consider

D = BT ⊗A+DT ⊗ C,

with A,BT , C and DT tall matrices. The case of more than two addends can be
treated similarly. We readily recognize that by setting x = vec(X) and f = vec(F ),
the problem fits our setting with

F ≈ AXB + CXD.

We use this formulation for classification purposes: given a fixed dictionary D and
a new image f , we look for a solution x that allows us to recognize the class the
new image belongs to. To this end, we switch to the more convenient matrix form,
due to the Kronecker structure of the dictionary matrix. We will see that the matrix
formulation makes the classification step very natural.

Fig. 9.1. Left: example of an image in MNIST. Right: example of how patches are built.

We experiment with this data science framework by using the benchmark image
dataset MNIST [25] of handwritten digits. The dataset is made of a training sample
set of about 60000 images and a test set of about 10000 images. Each image has size
28× 28 pixels.

In the following we introduce a (possibly new) way to generate the multiterm
dictionary by using a rich sample of images from the training set of all digits. Each
matrix A to DT collects a randomly chosen sample of 200 images for each considered
digit from 0 to 9, so that all four (different) coefficient matrices have m = 2000
columns. To determine the content of each matrix column, we split each 28 × 28
training image into 4×4 overlapping patches, starting from the top-left corner moving
towards the right with step two, and then using lexicographic ordering so as to cover
the whole image. An instance of the patching scheme is displayed in Figure 9.1.
Overall, this gives 169 patches for the processed image.

We then collect the vectorization of all these 169 image patches as a single vector.
Since each patch has a total of 16 pixels, the resulting column has dimension 2704.
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The right-hand side is built in the same way, by patching and then vectorizing a single
image to be classified.

Summarizing, A,BT , C,DT ∈ R2704×2000 and X ∈ R2000×2000. By defining the
right-hand side F = ffT with f ∈ R2704 built as explained, we need to solve

min
X

∥AXB + CXD − ffT ∥2F .

We have run our new method to classify three different test images, corresponding
to the digits 1, 2 and 7 (see Figure 9.2-9.4). In the experiments we have used a
truncation tolerance tol tr = 10−12 and maximum rank after truncation r = 100,
while for the stopping criteria we have used maximum number of iterations max it =
350 and tolerance tol = 10−8, as described in section 4.1. The solution obtained
with the methods discussed in this paper is not generally sparse. However, as it is
common in other sparsity-promoting formulations, threshold-based sparsification can
be performed a-posteriori. In all figures (left plots) we report the largest elements in
X in absolute value. The sparsity threshold depends on the choice of the right-hand
side; experimentally a good choice that allows the user to appreciate the result is
usually of the order O(10−4 − 10−3). Recalling that X is multiplied by the left and
by the right by dictionaries, e.g., AXB, we realize that each block of rows in X is
multiplied by the column block (specific digit sample) in the matrix A. The same for
the columns of X. We readily see that the largest elements in X capture the correct
portion of the dictionary partition.

Digit ’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’
to be classified

Test ’1’ 1.5 12.6 2.4 1.9 2.5 1.1 2.4 1.7 3.2 1.2
Test ’2’ 5.4 3.3 48.5 10.7 5.2 5.6 8.4 3.5 4.9 2.7
Test ’7’ 4.3 1.8 4.6 3.7 5.4 5.3 3.0 24.9 4.8 7.8

Table 9.1
Norm×10−3 of each diagonal block of X, associated with a digit from 0 to 9.

Fig. 9.2. Left: most significant elements of the solution. Right: image of the digit 1 used to
build the right-hand side.

To provide a more automatic classification procedure, we propose to evaluate
the norm of the diagonal 200 × 200 blocks in X. The largest norm will provide the
best-fit class among the digits. The left plots in Figure 9.2-9.4 already illustrate that
the highest density of largest values is indeed on the diagonal blocks. We report in
Table 9.1 the Frobenius norm of the solution blocks for each considered image to be
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Fig. 9.3. Left: most significant elements of the solution. Right: image of the digit 2 used to
build the right-hand side.

Fig. 9.4. Left: most significant elements of the solution X. Right: image of the digit 7 used to
build the right-hand side.

classified. The norm of the “correct” digit is in most cases one order of magnitude
larger than for the other ones, resulting in a particularly satisfactory strategy.

Although X is in general not sparse, a-posterior sparsification does provide the
sought after structure. Moreover, the obtained X has low rank, which is another
common way to enforce sparsity. The norm of the diagonal blocks in the solution
appears to contain the key information. In particular, we notice that to compute these
norms, the solution X does not need to be explicitly formed, since this information
can be obtained by simply multiplying the corresponding blocks of the two factors.

For completeness, in Table 9.2 we report the performance of the two analyzed
methods. For this example a fixed number of iterations was used, and a maximum
rank r = 100 was enforced. The results are consistent with those in the previous
examples.

10. Conclusions and outlook. We have presented a new matrix oriented ver-
sion of LSQR, with a new implementation of the truncation strategy for enforcing
low rank in all iterates. The computational results show that the method maintains
a good performance when compared to matrix-oriented and truncated CG on the as-
sociated normal matrix equation. The derived sketched LSQR procedure, although
well behaved compared to CG, does not compete with the effectiveness of the new
version of LSQR.

Several problems remain open. Among them, is the generalization to problems
with more than to terms, and the implementation of a tensorized version for tensor
least squares problems. In terms of further enhancing strategies, different randomized
techniques could be implemented, such as using a randomized SVD approach during
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Trunc CG Trunc LSQR
Digit to be r iters Final CPU Final CPU
classified norm time norm time
Test ’1’ 100 350 5.6031e-02 165.07 4.4297e-02 97.17
Test ’2’ 100 350 9.1144e-02 170.59 7.6902e-02 94.35
Test ’7’ 100 350 6.2586e-02 162.47 5.1792e-02 95.15

Table 9.2
Final true residual norms and CPU times for the examples in the Figures 9.2-9.4

the truncation steps at each iteration.
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[14] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J.
Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2 (1965),

21



pp. 205–224.
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