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Abstract

The paper deals with a load-balancing algorithm for a closed stochastic
network with two zones with different demands. The algorithm is moti-
vated by an incentive algorithm for redistribution of cars in a large-scale
car-sharing system. The service area is divided into two zones. When cars
stay too long in the low-demand zone, users are encouraged to pick them
up and return them in the high-demand zone. The zones are divided in
cells called stations. The cars are the network customers. The mean-field
limit solution of an ordinary differential equation (ODE) gives the large
scale distribution of the station state in both clusters for this incentive
policy in a discrete Markovian framework. An equilibrium point of this
ODE is characterized via the invariant measure of a random walk in the
quarter-plane. The proportion of empty and saturated stations measures
how the system is balanced. Numerical experiments illustrate the impact
of the incentive policy. Our study shows that the incentive policy helps
when the high-demand zone observes a lack of cars but a saturation
must be prevented especially when the high-demand zone is small.

Keywords: Large scale analysis, mean-field, car-sharing, incentive algorithm,
stochastic network, cluster, load balancing, closed Jackson networks,
product-form distribution

1



Springer Nature 2021 LATEX template

2 An incentive algorithm for a closed stochastic network

MSC Classification: 35A01 , 65L10 , 65L12 , 65L20 , 65L70

Acknowledgements

The authors would like to thank Communauto for providing data, funding and
allowing to do this study. They also thank the Natural Science and Engineering
Research Council of Canada (NSERC) for funding.

1 Introduction

Motivation. Car-sharing, a practice that is gaining ground in urban areas,
comes to meet ecological, economic and practical imperatives. For a decade
it has been becoming an alternative mode of transportation. The principle is
that a given number of vehicles are made available to users at stations or in
a public space in a given geographical area. The user picks up a vehicle if
available, makes his trip and then drops it off at his destination.

For the operator, managing such systems is far from simple. The random-
ness due to the user arrivals as well as to the trips generates an imbalance
in the system: some areas are more or less served by vehicles throughout the
day, depending on whether they are residential areas or in the city center for
example. Thus, the users may not find an available vehicle, which alters the
efficiency of the system. A major issue for the operators is to balance the net-
work by locating the vehicles more efficiently, i.e. getting them where they are
needed. The usual techniques are either active, such as using trucks to move
bikes or drivers for cars, or passive, such as incentive policies that encourage
users to move vehicles themselves on their trips. We can cite the example of
Velib+ which offered extra time for returning bikes in uphill stations of the
Parisian bike-sharing system or the Angel’s Rewards bikes program developed
in NYC allowing users to earn free day passes and membership extensions.

Gift incentive policy. This paper deals with an incentive policy implemented
by Communauto on its free floating car-sharing system in Montreal. In the
geographical area, a small zone is identified as a high-demand zone by the
operator. Some cars remain stationary for too long in the rest of the service area
(with low-demand, called the normal zone) while users cannot find available
cars in the high-demand zone. In order to bring back these stagnant cars from
the normal zone to the high-demand zone, Communauto designates them as
gifts on its smartphone app and offers 30 free minutes on the trip if the user
returns the gift to the high-demand zone. This policy is called here the gift
policy.

Aim of the paper. The aim is to study the impact of the incentive policy
implementing a trip discount to move some cars to a high-demand area.

For this purpose, an analysis is done on a dataset provided by the operator
in order to better understand the user behavior towards this incentive policy,
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and more generally their use of the system. Based on this, a probabilistic
model is proposed for such a system, as a large closed stochastic network of
interacting particles which are cars and gifts. The service area is divided into
cells, called here stations, which are nodes of the network, plus extra-nodes
containing moving cars and gifts.

Results. We investigate in a Markovian framework the steady state of these
stations. Although an invariant measure exists for this irreducible Markov pro-
cess on a finite state space for a fixed number of stations, it has no explicit
form as far as we know. The idea is to deal with the approximation as the num-
ber of stations and cars get large together, called the mean-field limit. Indeed,
the states of the stations are asymptotically independent and their common
distribution is given as a solution of an ordinary differential equation (ODE).
See Proposition 1. The equilibrium point of the ODE gives the long-time limit.
The special case of a model without incentive policy corresponds to the two-
cluster model studied in [1] where the equilibrium point is unique and well
determined. The two-cluster model of [1] finds in this paper a practical appli-
cation through this car-sharing system with a service area with an intensive
zone, but without an incentive policy. For the gift policy, Proposition 2 gives
a characterization of the equilibrium point as a function of the invariant mea-
sure of a random walk in the quarter-plane. It is a first step to address the
problem of existence and uniqueness of the equilibrium point.

Performance. Our performance criterion is to minimize the proportion of
empty or saturated stations, called for short problematic, in order to maximize
the efficiency of the system. Since no closed-form solution for the previous
invariant measure is derived, we perform a numerical solution of a multidimen-
sional equation for the system with incentive policy. We compare it with the
analytical solution of the model without incentives. We study the impact of the
policy in the case where everyone follows incentives. This impact is significant
when the high-demand zone lacks cars. The risk is to overload it, especially if
it is small.

Related works. The mean-field approach comes from physical statistics and
is applied for a large class of models of interacting particles. For example biol-
ogy (neuron networks), economics and social sciences (opinion dynamics). It
has applications for stochastic networks as in the context of load-balancing
strategies as Power-of-Choice and others. See references in [2] and [3]. A direct
analysis of large networks is difficult because there is either no closed-form
expression in general or some but numerically prohibitive. Thus the goal is to
find approximations. The mean-field techniques provide an approximation of
the evolution of the state distribution of a fixed node as a solution of an ODE.
One of the main problems to address is the number of equilibrium points.
This issue elucidated, it allows for the performance metrics as either explicit
expressions or a numerical solution (see [4]), depending on the models. In all
these models, the mean-field limit stands for the completely connected net-
work while in real systems, the interaction is often weaker. A great difference
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between the models is the difficulty to address the uniqueness of the equilib-
rium point. For example, in our study this question is not addressed since it is
numerically solved. Proving existence of multiple equilibrium points can also
be hard. In opinion or epidemic models, the set of states of an agent is small
(even {0, 1}) which simplifies the analysis. See [5].

For a direct approach to stochastic network models, let us briefly recall
an important class of queueing networks called closed Jackson networks. A
closed network is a network where customers stay forever in the system with no
external arrivals. A Gordon–Newell network, or simply called closed Jackson
network [6], consists of a finite number of nodes, each with one or several
servers. The service times of customers at each node are i.i.d. with exponential
distribution. The service rate at each node can depend on both the node and its
state. Specifically, if there are xi customers at node i, the service rate is denoted
by µi(xi), where µi(.) is a function from N → R+ with µi(0) = 0 and µi(x) > 0
for all x > 0. At the end of its service, a customer is directed to another node
according to a fixed routing matrix. All service times are independent. Note
that a Jackson network is the version with external arrivals and a routing
matrix including departures to the outside (see [7]). Originally, the nodes of
such a network are assumed to have infinite capacity. This description can be
generalized to a system including nodes with finite capacities. Nevertheless
one should describe the way customers must be redirected until reaching non-
saturated nodes, i.e. whose capacity is not yet reached. Consider the blocking-
rerouting policy where entering a saturated queue, the customer is rerouted
with the routing matrix at infinite speed until he finds an unsaturated node.
This blocking-rerouting policy is defined in [8] and used in [9] in a more general
version. The main interest of such a class of queueing networks is that the
equilibrium distribution is explicit with a product-form expression (see [8]).

It is conventional to model vehicle-sharing systems as closed Jackson net-
works where the vehicles play the role of the customers. The associated network
has two types of nodes: one-server nodes, that describe the stations, and
infinite-server nodes, the latter corresponding to the different routes linking
the stations. Service times at these nodes are respectively inter-arrival times
of users at stations and trip times along the corresponding routes. In a pio-
neering paper [10], an asymptotic analysis of infinite capacity closed Jackson
networks at equilibrium is proposed when the number of nodes and customers
tend to +∞ at the same rate. It is applied to vehicle-sharing systems in
the infinite capacity case. Note that the asymptotic analysis performed in
[11] is done when the number of nodes (stations and routes) is fixed, while
the number of customers (vehicles) tends to infinity. Both papers crucially
rely on the explicit product-form stationary distribution, which is well-known
in the infinite capacity case. The case of vehicle-sharing systems with finite
capacity is considered in [9]. The model is identified as a Jackson network
with the blocking-rerouting policy previously described. By [8], the invariant
distribution has a product-form in this case.
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Outline of the paper. In Section 2, an analysis is carried out on the data
provided by the Montreal operator for the free-floating car-sharing system,
which motivates the definition of our model. Section 3 deals with the model
description, the notations and the Markov process of the state of the stations
with its Q-matrix. In Section 4, the main result giving the mean-field limit as
a solution of an ODE is stated in Proposition 1. In Section 5, the equilibrium
point of the ODE is investigated in the model without gifts and with gifts.
Section 6 compares the performance in both models. A discussion focused on
the model assumptions is proposed in Section 7. Section 8 is devoted to future
work.

2 Data Analysis

2.1 Data Set

The dataset analyzed in this paper comes from Communauto, the unique car-
sharing operator in Montreal, Canada. It concerns its free-floating car-sharing
system serving Montreal and covers the period from October 2019 to Octo-
ber 2020. In order to avoid the effects of the first lockdown of Covid-19, the
three months from March to May 2020 are not taken into account. Data is also
divided in Winter (October 2019 - February 2020) and Summer (June 2020 -
October 2020) when analyzing the influence of the seasons.

The dataset consists of 1,480,473 transactions of which 52.2% was in winter
and 47.8% in summer. The service area as shown on Communauto’s app covers
nearly 100 km2 (see [12]), and is divided into a high-demand zone, called zone 1
in the following, with an estimated area of 28 km2 that can be seen in Figure 1
and a low-demand zone called zone 2 with an area of approximately 72 km2

(refer to Communauto’s app). The GPS positions of the boundaries of the
high-demand zone are used to determine in the dataset which zone a car is in.
The features available to us within the data to perform this analysis are, for
each transaction,

• Date and time of the start and end of the transaction
• Latitude and longitude of the start and end of the transaction
• Total fate (the sum of the price due to the duration of the transaction and
the price due to the distance of the transaction)

• Identifier of the vehicle and of the user
• Distance traveled.

To determine whether a transaction has started or ended in zone 1 or not,
we use Communauto’s application map. We approximate the high-demand
zone by a polygon and compute the latitude and longitude of its vertices. By
making a change of coordinates from spherical to planar, we write an algorithm
to decide if a point is inside the polygon or not.
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Fig. 1: Communauto Free-floating Car-Sharing service area and its high-
demand zone circled in red. Source: Communauto’s app on 2021/05/10.

2.2 Classifying Gifts within the data

As explained in the introduction, this paper is interested in studying an incen-
tive policy in the free floating system of Montreal that we call the gift incentive
policy. To do so, we need to define in the data which transactions are per-
formed by cars that appear in Communauto’s application with a gift symbol,
which we call gifts for short, and the gifts transactions that contribute to the
redistribution objective of the policy, which we call used gifts.

A transaction is classified as a gift if it satisfies two criteria:

• the car used for the transaction has been stationary for more than 16 hours
since its last transaction,

• the car used for the transaction is parked in the low-demand zone (zone 2).

In the first criterion, being stationary means that the car has not moved, which
may include the case where the user makes a reservation and then cancels it.
A previous study based on a dataset of the Montreal free floating system from
2014 to 2017 indicates that the average reservation lasts 22 minutes [13]. Since
this time is negligible compared to the 16 hours that a car must be stationary
to be a gift, we conclude that reservation does not have too much impact on
the gift policy and thus is not considered in this study.

A transaction is classified as a used gift if it is a gift and the car is returned
in the high-demand zone (zone 1).
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Table 1: Proportion and average daily number of transactions that are eligible
as a gift due to remaining stationary for over 16 hours (gift by time), that are
gifts, and that are used gifts. Winter is from October 2019 to February 2020
and Summer is from June 2020 to October 2020.

Period Classification Proportion (%) Average daily number

Winter
Eligible as gift by time 1.69 58.5
gift 1.36 47
used gifts 0.42 14.5

Summer
Eligible as gift by time 3.56 114
gift 2.67 86
used gifts 0.92 29.5

2.3 Impact of the gift policy

Having detected the transactions that are gifts and used gifts we can now
analyse the impact of the gift policy in the Montreal free-floating system. Such
analysis assists to build a relevant model.

2.3.1 Gifts within data

Table 1 gives the proportion of gifts and used gifts detected among the trans-
actions according to the seasons. It seems that in the summer, probably due
to the vacation period, the cars stay idle longer than during winter. The pro-
portion of gifts and used gifts among the transactions is very low. On a day,
in average 0.42% are gifts in winter and 0.92% in summer.

Figure 2 plots the neperian logarithm of the frequency of transactions made
by cars that stay stationary for at least x hours. This curve appears to follow
a Zipf’s law (see [14]) with a shape parameter of 1.65. Furthermore, we find
that 80% of the cars are used before remaining stationary for over 5 hours.

2.3.2 Popularity

Over 90% of Communauto users have never made a gift transaction. Moreover,
we find that few users are responsible for the majority of used gift transac-
tions and that most users who have ever done a used gift transaction have
done so only once. For each user in the dataset, we count the number of used
gifts transactions and rank them according to their frequency of use. The top-
ranked user is the most frequent one being responsible for 2.6% of all used gifts
trips. The 10th user is responsible for 0.6% of used gift transactions. Finally,
70% percent of users among those with at least one used gift transaction make
only one such transaction and are responsible for 33% of all used gift transac-
tions. Moreover, Figure 3 shows that the frequencies as a function of rank in a
logarithm scale is a straight line, following a Zipf distribution with parameter
0.6.
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Fig. 2: Transaction frequency as a function of the time the car is stationary
before the transaction. The log-log plot shows a Zipf distribution with a shape
parameter of 1.65.

2.3.3 A redistribution during the day

In Figure 4, the green curve with the axis on the right represents the daily
evolution of the number of gifts available at each hour of the day. The peak,
of 25 gifts, is reached around noon. Thus, a user sees no more than 25 gifts
out of 500 cars on the application at a time. A comparison can be made with
the red and blue curves in the same figure (left axis), representing the average
daily number of cars parked in each zone. The red curve for the high-demand
zone reaches its minimum at 1pm, one hour after the gift peak. Hence, we
conclude that the redistribution of cars from the low-demand zone to the
high-demand zone by the gift policy is the strongest exactly when the number
of cars available in the high-demand zone is the lowest, implying that this
policy redistributes cars when they are most needed. Moreover, we see that
it redistributes during the day, which is expected for an incentive policy at a
time when using corporate drivers would make some cars unavailable to users.

2.3.4 Looking for gift price discounts on data

We can ask how much someone saves by taking a gift to make a transaction
between the low-demand zone to the high-demand zone instead of taking a
normal car. The final price of a transaction is composed of a distance rate
plus a time rate. According to Communauto’s gift policy, when users return
gifts in the intensive zone, they earn 30 free minutes. From the dataset, the
average travel time for used gifts is of 1.24 hours, and for other transactions
from the normal zone to the intensive zone is of 1.13 hours. On the other hand,
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Fig. 3: Zipf’s law with shape parameter 0.6 (frequency a gift user uses a gift)
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Fig. 4: Changes in the average daily number of gifts (right axis) and cars (left
axis) parked using a 10-month data set (10/2019-10/2020 except 03-05/2020).
The time steps are of 5 minutes.
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the average time rate for used gifts is 4.62 dollars, while the average time rate
for normal cars is 6.14 dollars. Thus, using a gift for the transaction between
zone 2 to 1 is 31.3% times cheaper than the average time rate for normal
transactions with the same trajectory.

2.4 Data analysis conclusion

This data analysis allows us to better understand how Communauto’s free
floating system and gift policy work. We infer that gifts are used to regulate
the system by redistributing vehicles exactly when needed. Furthermore, we
see that the 30 free minutes incentive a user earns with a used gift indeed
decreases the transaction price due to the transaction’s time. However, less
than 1% of transactions are used gifts. This makes it particularly difficult to
detect changes in user behavior. In addition, 90% of Communauto users have
never made a gift transaction, and nearly 70% of gift users have used a gift
only once during the 10 months we analyse. Thus, few Communauto customers
actively use the gift policy to contribute to the redistribution of vehicles.

3 The model

3.1 Model description

In this following description and in the whole paper, a car is always a normal
car and not a gift. We propose a simplified stochastic two-cluster model for
car-sharing systems when including the gift policy. It will be further discussed
in Section 7.1. The model is described as follows.

• The arrival process of users at any station of cluster i is a Poisson process
with parameter λi, where i ∈ {1, 2}. As the rate of user arrivals is larger in
cluster 1 than cluster 2, we assume that λ1 > λ2.

• If the user arrives at a station in cluster 1 where there is available cars at
this station, the user picks up one of them to start a trip. Otherwise he
leaves the system.

• Every car parked in cluster 2 becomes a gift after a random time with
exponential distribution of parameter δ.

• When a user arrives in a station of cluster 2, if there is an available gift and
an available car in this station, he picks up a gift with probability p, and a
car with probability 1− p. If there is just one of the resources (gift or car),
the user picks it up. Otherwise he leaves the system.

• The car trip duration is assumed to have an exponential distribution of
parameter µ. When a car trip ends, the user chooses cluster i with probability
ci, then he chooses a station at random in this cluster to park the car.

• The gift trip is assumed to have an exponential distribution of parameter µc.
When a gift trip ends, the user returns the gift car to any station in cluster
i with probability qi. The gift parked appears then as a car on the app.

• A station in cluster i has capacity Ki. If the station chosen is full, the user
makes another trip until finding a station with an available parking space.
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Note that in our model the inter-arrival times of users, trip times and times
to become a gift are all independent with exponential distribution. See Figure
5 for an illustration of the model. This modeling was preceded by an analysis
of real data. The model will be discussed in Section 7.1.

cars making trips

µµµµµµ

gifts
making tripsmaking trips

µc

q2
q1

capacity K1

1

K1

N1

with N1 stations

cluster 1

λ1

c1 c2

· · ·

capacity K2

1 δ

K2

N2

cluster 2

with N2 stations

λ2

p 1− p

· · ·

Fig. 5: Illustration of the model with gifts.

3.2 Notations

Let us summarize the notations. For all the following, i ∈ {1, 2} is the cluster
type.

• Ni is the number of stations in cluster i.
• N =

∑
i Ni is the total number of stations.

• αi = limN→+∞ Ni/N is the limiting proportion of stations in cluster i.
• Ki is the capacity of a station in cluster i.
• M is the total number of cars.
• s = limN→+∞ M/N is the limiting mean number of cars per station, called
fleet size parameter.

• λi is the rate of user arrivals at a station in cluster i.
• 1/µ is the mean trip time for a normal car.
• 1/µc is the mean trip time for a gift.
• δ is the rate at which a car in a station of cluster 2 becomes a gift.
• p is the probability that a user takes a gift when cars and gifts are both
available.
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• qi is the probability that a user returns the gift in cluster i.
• ci is the probability that a user returns his normal car in cluster i.

3.3 Queueing formulation

In this paper, the system can be described as a closed stochastic network. The
nodes of the network are a set of N = N1 + N2 one-server queues of finite
capacity (the stations), divided in two clusters, cluster 1 (the zone with high
demand) with N1 stations of capacity K1, cluster 2 (the normal zone) with
N2 stations of capacity K2, plus two infinite-server queues, i.e. the two nodes
containing respectively cars and gifts making a trip. The service times at the
queues have exponential distribution with parameters respectively λ1, λ2, µ
and µc. According to the queueing vocabulary, there are M customers of two
classes: cars and gifts, and a routing matrix given by the previous description.

However, this is not a Jackson network because there are additional tran-
sitions since a car in a station of cluster 2 becomes a gift at rate δ and a gift
arriving at a station from the infinite-server node becomes a car. It does not
fit in this classical framework because of these changes of customer classes.
Note that in the case without incentive policy (δ → 0), the model is a Jack-
son network since there are no gifts. Such a model (with δ → 0) is known as
a two-cluster bike-sharing system studied in [1] and [9]. Section 5.1 is devoted
to this case called model without gifts.

3.4 The Markov process

The state process is(
X1,n(t), X2,m(t), Cm(t), ZN (t), 1 ≤ n ≤ N1 and 1 ≤ m ≤ N2

)
where

• X1,n(t) is the number of cars at a station n in cluster 1 at time t,
• X2,m(t) is the number of cars at a station m in cluster 2 at time t,
• Cm(t) is the number of gifts at a station m (necessarily in cluster 2) at time
t and

• ZN (t) is the number of gifts making a trip at time t.

Note that the number of cars making a trip at time t is equal to

M −
N1∑
n=1

X1,n(t)−
N2∑
m=1

(
X2,m(t) + Cm(t)

)
− ZN (t).

As we deal with a two-cluster model, it is sufficient to study the behavior of
one station in each cluster. It amounts to dealing with the empirical measure
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process

(Y N (t)) =
(
Y N1
1,j (t), Y

N2

2,k,l(t),
ZN (t)

N
, j ∈ χ1, (k, l) ∈ χ2

)
where Y N1

1,j (t) is the proportion of stations with j cars in cluster 1 and Y N2

2,k,l(t)
is the proportion of stations with k cars and l gifts in cluster 2, defined by

Y N1
1,j (t) =

1

N1

N1∑
n=1

1{
X1,n(t)=j

} and Y N2

2,k,l(t) =
1

N2

N2∑
m=1

1{(
X2,m(t),Cm(t)

)
=(k,l)

}
where χ1 = {j ∈ N, j ≤ K1} and χ2 = {(k, l) ∈ N2, k + l ≤ K2}. Because
the inter-arrival times, trip times and times to become a gift have exponential
distribution, (Y N (t)) is a Markov process, with finite state space

SN =

{
y = (y1,j , y2,k,l, z){j∈χ1,(k,l)∈χ2}, y1,j ∈

N
N1

, y2,k,l ∈
N
N2

, z ∈ N
N

,∑
j∈χ1

y1,j = 1,
∑

(k,l)∈χ2

y2,k,l = 1,
∑
j∈χ1

j y1,j N1+
∑

(k,l)∈χ2

(k+l) y2,k,l N2+z N ≤ M

}
.

The inequality in the previous definition of the state space SN is due to the
fact that the number of cars driving has be to added to the left-hand side of
the inequality to obtain the total number M of cars in the system. Let us write
its transitions from state y ∈ SN . To simplify the notations, let us denote by

E1 =
∑
j∈χ1

j y1,j and E2 =
∑

(k,l)∈χ2

(k + l) y2,k,l (1)

respectively the mean number of cars parked per station in cluster 1 and the
mean number of cars plus gifts parked per station in cluster 2. Also, let us
denote by (e1,j , e2,k,l, e0, j ∈ χ1, (k, l) ∈ χ2) the canonical basis of R|χ1|+|χ2|+1,
where the cardinality of set A is denoted by |A|. The transitions, from state y =
(y1,j , y2,k,l, z) ∈ SN , are due to three events: a user arrival, a gift appearance
or a car return. The transitions, from state y = (y1,j , y2,k,l, z) ∈ SN , are given
by the non-null non-diagonal terms of Q-matrix QN defined as follows.

• User arrival.

– A user arrival at a station in cluster 2 with k cars and l gifts (for short
of type (2, k, l)) taking a gift. The number of gifts decreases by 1. This
happens if l > 0. There are y2,k,lN2 possible stations. Thus this event
happens at rate λ2y2,k,lN21{l>0}

(
p+ (1− p)1{k=0}

)
. Recall that p is the

probability for a user arriving to a station in cluster 2 to choose a gift
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when cars and gifts are available.

QN (y, y +
1

N2
(e2,k,l−1 − e2,k,l) +

e0
N

) = λ2y2,k,lN21{l>0}
(
p+ (1− p)1{k=0}

)
.

– A user arrival at a station of type (2, k, l) taking a normal car.

QN

(
y, y +

1

N2
(e2,k−1,l − e2,k,l)

)
= λ2y2,k,lN21{k>0}

(
1− p+ p1{l=0}

)
.

– A user arrival at a station of type (1, j).

QN

(
y, y +

1

N1
(e1,j−1 − e1,j)

)
= λ1y1,jN11{j>0}.

• Gift appearance.

– A car becoming a gift at a station of type (2, k, l).

QN

(
y, y +

1

N2
(e2,k−1,l+1 − e2,k,l)

)
= δkN2y2,k,l.

• Car return.

– A normal car returned at a station of type (1, j).

QN

(
y, y +

1

N1
(e1,j+1 − e1,j)

)
= c1y1,jµ (M − E1N1 − E2N2 − zN)1{j<K1}.

– A normal car returned at a station of type (2, k, l).

QN

(
y, y +

1

N2
(e2,k+1,l − e2,k,l)

)
= c2y2,k,lµ (M − E1N1 − E2N2 − zN)

1{k+l<K2}.

– A gift returned at a station of type (1, j).

QN

(
y, y +

1

N1
(e1,j+1 − e1,j)−

e0
N

)
= q1y1,jµczN1{j<K1}.

– A gift returned at a station of type (2, k, l).

QN

(
y, y +

1

N2
(e2,k+1,l − e2,k,l)−

e0
N

)
= q2y2,k,lµczN1{k+l<K2}.

These transitions allow us to write the drift of process (Y N (t))t which will
be useful to the mean-field convergence (Proposition 1).
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4 Mean-field limit

Our aim is to investigate the system when M , N1 and N2 get large at the same
rate, for short, when N gets large. When N tends to +∞, the process (Y N (t))
given by the previous transitions converges in distribution to a deterministic
function which is the unique solution of a given ODE. This result is given by
the following proposition.

Proposition 1 (Mean-field convergence) For T > 0, (Y N (t))t∈[0,T ] converges in
distribution to the unique solution (y(t))t∈[0,T ] of the following ODE with y(0) fixed

dy1,j

dt
(t) = y1,j+1(t)λ11{j<K1}

+ y1,j−1(t)

(
c1
α1

µ(s− α1E1(t)− α2E2(t)− z(t)) +
q1µc

α1
z(t)

)
1{j>0}

− y1,j(t)

(
λ11{j>0} +

c1
α1

µ(s− α1E1(t)− α2E2(t)− z(t))1{j<K1} +
q1µc

α1
z(t)1{j<K1}

)
dy2,k,l

dt
(t) = y2,k,l+1(t)λ21{k+l<K2}

(
p+ (1− p)1{k=0}

)
+ y2,k+1,l(t)λ21{k+l<K2}

(
1− p+ p1{l=0}

)
+ y2,k+1,l−1(t) δ (k + 1)1{k<K2}

+ y2,k−1,l(t)

(
c2
α2

µ (s− α1E1(t)− α2E2(t)− z(t)) +
q2µc

α2
z(t)

)
1{k>0}

− y2,k,l(t)

(
λ2(1− 1{k=0,l=0}) + δk +

c2
α2

µ(s− α1E1(t)− α2E2(t)

− z(t))1{k+l<K2} +
(q2µc

α2
z(t)1{k+l<K2}

)
dz

dt
(t) = −q1 µcz(t)

∑
j∈χ1

y1,j(t)1{j<K1} + α2 λ2
∑

(k,l)∈χ2

y2,k,l(t)1{l>0}
(
p+ (1− p)1k=0

)
− q2µcz(t)

∑
(k,l)∈χ2

y2,k,l(t)1{k+l<K2}. (2)

Recall that, in these equations, s is the limiting number of cars per station and αi

the limiting proportion of stations in cluster i, i ∈ {1, 2}.

Proof The proof is standard (see [15]). The idea of the proof is that a Markov process
can be written as the sum of a martingale term and a drift term in form of an
integral on time. When N is large, one can prove that the process is tight. Moreover,
the martingale term converges to 0. Then any limiting value satisfies an ODE. The
uniqueness of the solution of the ODE gives the convergence of the process. Let us
present a sketch of the proof.

The key argument is to write the evolution equations of process (Y N (t)). It is
omitted here. It gives that

Y N (t) = Y N (0) +

∫ t

0
QN (id)(Y N (s))ds+MN (t)
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where MN (t) is a martingale. Then, using the expression of Q-matrix QN , the
previous equation can be rewritten

Y N (t) = Y N (0) +
∑

(k,l)∈χ2

∫ t

0
Y N
2,k,l(s)(

(p+ (1− p)1{k=0})λ21{l>0}

(
e2,k,l−1 − e2,k,l +

e0N2

N

)
+ λ21{k>0}

(
1− p+ p1{l=0}

)
(e2,k−1,l − e2,k,l)

+
c2µ

N2

(
M − EN

1 (s)N1 − EN
2 (s)N2 − ZN (s)N

)
1{k+l<K2}(e2,k+1,l − e2,k,l)

+δk(e2,k−1,l+1 − e2,k,l) + q2µcZ
N (s)N1{k+l<K2}

(
1

N2
(e2,k+1,l − e2,k,l)−

e0
N

))
ds

+
∑
j∈χ1

∫ t

0
Y N
1,j(s)(

λ11{j>0}(e1,j−1 − e1,j)− e0q1µcZ
N (s)1{j<K1}

+

(
c1

µ

N1

(
M − EN

1 (s)N1 − EN
2 (s)N2 − ZN (s)N

)
+ q1µcZ

N (s)
N

N1

)
1{j<K1}(e1,j+1 − e1,j)

)
ds+MN (t)

where EN
i (t), i = 1, 2 are defined from Ei given by equation (1) replacing y by Y N (t).

Using the evolution equation, one can prove the tightness of (Y N (t)) and that the
martingale term (MN (t)) tends to 0. Plugging in the previous equation, any limiting
point (y(t)) of (Y N (t)) satisfies

dy(t)

dt
=

∑
(k,l)∈χ2

y2,k,l(t)
(
(p+ (1− p)1{k=0})λ21{l>0}

(
e2,k,l−1 − e2,k,l + e0α2

)
+ λ21{k>0}

(
1− p+ p1{l=0}

)
(e2,k−1,l − e2,k,l)

+
c2µ

α2
(s− α1E1(t)− α2E2(t)− z(t))1{k+l<K2}(e2,k+1,l − e2,k,l)

+δk(e2,k−1,l+1 − e2,k,l) + q2µcz(t)1{k+l<K2}

(
1

α2
(e2,k+1,l − e2,k,l)− e0

))
+
∑
j∈χ1

y1,j(t)
(
λ11{j>0}(e1,j−1 − e1,j)− e0q1µcz(t)1{j<K1}

+

(
c1µ

α1
(s− α1E1(t)− E2(t)α2 − z(t)) + q1

µcz(t)

α1

)
1{j<K1}(e1,j+1 − e1,j)

)
which is equivalent to equation (2). But this ODE has a unique solution with fixed
y(0). This ends the proof. □
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5 The equilibrium point

To investigate the steady-state behavior of the model, we study the equilibrium
point ȳ of the mean-field ODE written as follows

dy

dt
(t) = F (y(t))

where F comes from Proposition 1. It amounts to finding ȳ such that

F (ȳ) = 0. (3)

Note that the vector ȳ is of dimension 1 + |χ1| + |χ2| = 1 + K1 + K2(1 +
K2)/2. Finding a closed-form expression of the equilibrium point ȳ is out of
reach. Let us present two points of view: the first one is based on a nice
queueing interpretation which holds for the no-gift case. The second is an
analytic approach which should be relevant for the case with gifts but is beyond
this work.

5.1 The queueing interpretation for the no-gift case

In this case, the existence and uniqueness of the equilibrium point ȳ is proved.
See [1] for details. In addition, ȳ is given by a simple queueing interpretation
of the mean-field limit. It gives that the limiting stationary number of cars
at a station of cluster i, considered as a M/M/1/Ki queue, has a geometric
distribution νρri,Ki on {0, . . . ,Ki} with parameter ρri where for i = 1, 2,
ri = Λµβi/λi with βi = qi/αi, Λ = 1/maxi(µβi/λi) and ρ is the unique
solution of the fixed point equation

s = ρΛ +

2∑
i=1

αim(νρri,Ki
). (4)

In the previous equation, we denote by m(νρ,K) the mean of the geometric
distribution νρ,K on {0, . . . ,K} with parameter ρ, given by

m(νρ,K) =

{
K
2 if ρ = 1
ρ

1−ρ − (K+1)ρK+1

1−ρK+1 otherwise
(5)

because, for ρ = 1, νρ,K is the uniform distribution on {0, . . . ,K}. It shows
that the multidimensional equilibrium point equation (3) amounts to a fixed
point equation (4) on R+. This is the purpose of [1, Theorem 1] for the cluster
case detailed in [1, Section 2.3].

5.2 Characterization of the equilibrium point

Taking into account the gift policy induces a change of classes between normal
cars and gifts. This considerably complicates the search for an equilibrium
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point and changes the nature of the limiting objects involved. The question of
existence and uniqueness of a solution of the equilibrium point in equation (3)
remains open. For simplicity, let us take the case p = q1 = 1 in order to
highlight the main difficulties of this problem. Remembering that p = 1 means
that, when available, a gift is always chosen over a car in a station of the
normal zone, and q1 = 1 means that all gifts are returned at a station of cluster
1. Heuristically, looking for an equilibrium point ȳ means that the right-hand
term in the mean-field ODE (2) is null. With obvious notations ȳ = (ȳ1, ȳ2, z̄),
note first that the number of moving gifts (ZN (t)/N) is the rescaled number
of customers in a M/M/∞ queue introduced by Kelly [16] whose limit is (z(t))
which tends to the load parameter (see [17, Section 6.5])

z̄ =
α2λ2

µc

1− ȳ2,.,0
1− ȳ1,S

(6)

where ȳ1,S is the probability that a station in cluster 1 is saturated and
ȳ2,.,0 the probability that a station in cluster 2 has no gift, i.e. 1 − ȳ1,S =∑

j∈χ1
ȳ1,j1{j<K1} and 1−ȳ2,.,0 =

∑
(k,l)∈χ2

ȳ2,k,l1{l>0}. Then a queuing inter-
pretation similar to that for the no-gift case holds. Indeed, at equilibrium, a
station of cluster 1 can be considered as a M/M/1/K1 queue, with arrival rate

γ̄1 =
1

α1

(
c1µ(s− α1Ē1 − α2Ē2 − z̄) + q1µcz̄

)
(7)

where Ēi are defined by (1) and service rate λ1. It is well known that its
invariant measure is a geometric distribution on {0, . . . ,K1} with parameter
ρ̄1 = γ̄1/λ1, i.e. ȳ1,j = ρj1(1 − ρ1)/(1 − ρK+1

1 ) for 0 ≤ j ≤ K1. Note that,
plugging equation (6) into (7), ρ̄1 depends on ȳ, only by ȳ1 and ȳ2. Moreover
ȳ2 = πρ̄2,K2

where

ρ̄2 =
1

λ2α2

(
c2µ(s− α1Ē1 − α2Ē2 − z̄) + q2µcz̄

)
and, for fixed ρ, πρ,K2

is the invariant measure of the Markov process on χ2

with matrix jump Qρ,K given by its non-null non-diagonal terms
Qρ,K(n, n− e1) = λ21{n1>0}

Qρ,K(n, n+ e2) = λ2ρ1{n2<K2}

Qρ,K(n, n+ e1 − e2) = δ1{n2>0}.

(8)

In conclusion the equilibrium point ȳ, solution of a multidimensional fixed
point equation, can be expressed as a function of (ρ̄1, ρ̄2) solution of a fixed
point equation. It is summarized by the following result.
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Proposition 2 (Equilibrium point) An equilibrium point of the ODE is given as

ȳ =

(
νρ̄1,K1

, πρ̄2,K2
,
α2λ2
µc

1−
∑K2

k=0 πρ̄2,K2
(k, 0)∑K1−1

k=0 νρ̄1,K1
(k)

)
where νρ̄1,K1

is the geometric distribution on {0, . . . ,K1} with parameter ρ̄1, πρ̄2,K2

the invariant measure associated to Qρ̄2,K2
given by (8) and (ρ̄1, ρ̄2) is the solution

of the fixed point equation

ρi =
1

λiαi

(
ciµ(s− E) + (qiµc − ciµ)

α2λ2
µc

1−
∑K2

k=0 πρ2,K2
(k, 0)∑K1−1

k=0 νρ1,K1
(k)

)
, i ∈ {1, 2}

(9)

with E = α1E1+α2E2, E1 and E2 being the means associated to νρ1,K1
and πρ2,K2

.

Proposition 2 reduces the question of existence and uniqueness of the equi-
librium point to a fixed point equation. Indeed, proving the existence and
uniqueness of the equilibrium point ȳ amounts to finding a unique (ρ̄1, ρ̄2)
solution of the fixed point equation (9). The further analysis (existence and
uniqueness) of this fixed point equation is beyond the scope of the paper. In
this direction, a first approach would be to find a closed-form expression for
the invariant measure π. An analytical method for generating function F asso-
ciated to invariant measure π is suggested as an alternative to the probabilistic
approach (see [18] for details). Some details are given in the following remark.

Remark 1 Let γ2 = λ2ρ. The global balance equation associated to π is

πk,l(γ2 + λ2(1− 1{k=l=0}) + δk)

= 1{k+l<K2}(πk,l+1λ2+πk+1,lλ21{l=0})+πk+1,l−1δ(k+1)1{l>0}+πk−1,lγ21{k>0}.

(10)

Using the generating function

F (x, y) =
∑

(k,l)∈χ2

π(k,l)x
kyl,

the global balance equation (10) yields to a functional equation on F . Although the
capacity K2 is assumed to be finite throughout the whole paper, we present here this
functional equation for the case K2 = +∞ for the sake of simplicity

F (x, y)

(
γ2(1− x) + λ2

(
1− 1

y

))
= F ′

x(x, y)δ(y − x) + π0,0λ2

(
1− 1

x

)
+ f(x)λ2

(
1

x
− 1

y

)
where f(x) =

∑K1

k=0 πk,0x
k.

Such a functional equation is not similar to the classical case studied in [18] due
to the derivative term F ′

x and we do not solve it. Without an explicit form, we wonder
whether the uniqueness problem could be directly solved. Such track is not explored.
No closed-form solution of the invariant measure π is derived. Instead of this, the
paper gives in Section 6.2 a numerical solution to equation (2).
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6 Performance

In order to evaluate the impact of the incentive algorithm on the system behav-
ior, a usual performance metric is used, i.e. the proportion of stations with no
vehicle (car or gift) or no parking space available, called problematic stations.
It characterizes how far the system is unbalanced.

Definition 1 (Performance Metric) Let ȳ be the equilibrium point of the mean-field
ODE obtained by Proposition 1. The performance metric is the limiting stationary
proportion Pb of problematic stations given by

Pb = α1(ȳ1,0 + ȳ1,K1
) + α2

(
ȳ2,0,0 +

K2∑
k=0

ȳ2,k,K2−k

)
where Ki is the station capacity and αi the limiting proportion of stations for cluster
i, i ∈ {1, 2}.

The first sum in brackets is the proportion of empty and saturated stations
in clusters 1, the first term ȳ1,0 of stations with no car, the second term ȳ1,K1

of saturated stations in the high-demand zone. The second sum in brackets is
the proportion of empty and saturated stations in cluster 2, ȳ2,0,0 of stations

with neither cars nor gifts and
∑K2

k=0 ȳ2,k,K2−k of saturated stations in the
normal zone.

Optimizing the proportion of problematic stations means maximizing the
number of transactions and the number of satisfied users. Our aim is to com-
pare the performance with gifts and without gifts. The idea is to vary the fleet
size parameter s, which is the limiting ratio of the total number of cars M by
the total number of stations N , in order to analyze how much flexibility the
gift policy gives to an operator who wants to increase the fleet size without
harming the system.

6.1 Analysis of the model without gifts

From Section 5.1, the proportion of problematic stations Pb in this case is
given by

Pb =

2∑
i=1

αi
1− ρri

1− (ρri)Ki+1
(1 + (ρri)

Ki+1)

where αi = limN→∞ Ni/N . For i = 1, 2, the proportion of problematic stations
in cluster i as a function of s is given by the parametric curve

ρ 7→

(
ρΛ +

2∑
i=1

αim(νρri,Ki
),

1− ρri
1− (ρri)Ki+1

(1 + (ρri)
Ki+1)

)
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where the first term (1−ρri)/(1−(ρri)
Ki+1) is the proportion of empty stations

in cluster i and the second term (ρri)
Ki+1(1 − ρri)/(1 − (ρri)

Ki+1) is the
proportion of saturated stations in cluster i. As explained in Section 5.2 of [1],
the proportion of problematic stations in cluster i has a minimum 2/(Ki+1) for
ρri equal to 1 i.e. for ρ = 1/ri. Thus, plugging in equation (4), this minimum
corresponds to

s∗i =
Λ

ri
+

2∑
i′=1

αi′m(νri′/ri,Ki′
).

where m(νρ,K) is defined by equation (5). The following result is the transla-
tion, with the notations of the paper, of the result of Section 5.2 of [1]. It gives
the fleet size which corresponds to the optimal performance for a given cluster
in the system without gift policy.

Proposition 3 (Optimal performance per cluster without gift policy) For the model
without gifts, the limiting stationary proportion of problematic stations in cluster
i ∈ {1, 2} is minimal and equal to 2/(Ki + 1) when

s = s∗i = αi

(
Ki

2
+

λi
µqi

)
+ α3−i

(
γ3−i

1− γ3−i
−

(K3−i + 1)γ
K3−i+1
3−i

1− γ
K3−i+1
3−i

)
where γ3−i = (qiλiαi)/(q3−iλ3−iα3−i). The last term in brackets must be replaced
by K3−i/2 for γ3−i = 1.

Note that, for s = s∗i which minimizes the proportion of problematic sta-
tions in cluster i, the proportion of problematic stations in cluster i′ ̸= i is
not optimal and is exactly νri′/ri,Ki′

(0)+νri′/ri,Ki′
(Ki′). Thus minimizing the

problematic stations in both clusters simultaneously is not possible.
For the values of Figure 7 and α1 = α2 = 0.5, Proposition 3 gives s∗1 = 29.9

and s∗2 = 13.1, and for α1 = 0.28 and α2 = 0.72, s∗1 = 21.9 and s∗2 = 20.4,
which can be checked in Figure 7.

Note the U-shape of the curves plotted in Figure 7. This shape is typical
of these performance curves (cf [19]). Indeed, for small values of the mean
number of cars per station, the proportion of empty stations is large and close
to 1. Similarly, if the mean number of cars per station is large, the proportion
of saturated stations is large and close to 1. Since the performance criterion
includes both cases, the U-shape is observed. The contribution of empty and
saturated stations to the proportion of problematic stations is illustrated by [1,
Figure 2] where the proportions of empty, saturated and problematic stations
are plotted.

6.2 Numerical solution

First of all, we numerically obtain the equilibrium point ȳ of the mean-field
ODE established in Proposition 1, the solution of the fixed point equation (3),
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as a function of the fleet size parameter s. There are many tools to solve such
an equation. We use the Anderson method implemented in Scipy, a Python
library.

Figure 6 plots the performance Pb numerically obtained as a function of
the fleet size parameter s, for the two-cluster model with and without gifts
for a naive case: both clusters have the same number of stations, so that
α1 = α2 = 0.5, and everyone follows the gift policy. That means the probability
p that a user picks up a gift if gifts and cars are available and the probability
q1 a gift is returned to cluster 1 are equal to 1. All other parameters are
given in the caption of Figure 6. We see that, for cluster 2, the cases with and
without gifts are similar. But, for cluster 1, for this set of parameter values,
it seems that an efficient gift policy (p = q1 = 1) would allow an operator to
increase the fleet size without harming the system performance and even with
improving it. Indeed, for a whole range of values of the fleet size parameter s,
typically s ≤ 20, the high demand zone suffers from a lack of available cars.
About 60% of the stations in the high demand zone are empty for a fleet size
parameter s between 10 and 20. The effect of the incentive policy is significant
in this case, since the proportion of empty stations in cluster 1 falls under 40%
and even reaches 20% for s = 20.

Note that the crosses are simulations of the system with N1 = 50 and N2 =
50, the other parameters are given in Figure 6. Compared to the performance
curves obtained numerically, it validates that the mean-field limit provides a
good approximation for N1 and N2 large enough.

Figure 7 plots the performance numerically obtained for the two-cluster
model with and without gifts for a more realistic case. The number of stations
in the high demand zone is significantly smaller than in the normal one, the
ratios are respectively α1 = 0.28 and α2 = 0.72. Figure 7 shows that the
performance curves fit for small and large parameter fleet size s for both cases,
with and without gifts. In between, there is a plateau where the proportion
of problematic stations is close to its minimum. This implies that varying
fleet size parameter s around its optimum does not degrade too much the
performance which remains close to its optimum. This stability is important for
the operator. The minimum proportion of problematic stations should depend
on capacities K1 and K2, user arrival and trip rates. It is remarkable that the
two plateaux correspond to the same values of s. Thus, the stations in cluster
1 do not saturate for s smaller than 30. Despite their small capacity, the high
demand in cluster 1 limits the saturation.

In addition, Figure 7 shows that, for a small s, the gift policy slightly
improves the performance. It is true until the two curves intersect at s ≃
12. Above this value, on the plateau of cluster 1, the performance is slightly
worse with the gift policy. Indeed, gifts seem to saturate cluster 1 and this
slightly decreases the system performance. The mean-field approximation is
again validated by simulation and the performance obtained by simulation is
indicated by crosses in Figure 7.
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Fig. 6: Performance for both clusters (1 for the high-demand zone, and 2 for
the normal zone) is numerically computed from equilibrium point equation
as a function of the fleet size per station in a system with and without gifts,
compared with the simulation curve in crosses, with the same number stations
per cluster is N1 = N2 = 50. K1 = 15, K2 = 45, λ1 = 2.6, λ2 = 1, µ = µc =
0.65, δ = 1/14, c1 = 0.5 and p = q1 = 1.

7 Discussion

7.1 Discussion of the model

Discrete Markovian framework. The exponential distributions are assumed to
obtain a Markov discrete state process, i.e. the number of gifts and cars in
the different stations. It is not true in real systems. This seems to be true for
the arrival times of users at a station, but not for the trip times which seem
heavy-tailed due to some very long trips. The behavior of the system can be
affected by a log-normal trip time distribution compared to an exponential
one. As to the threshold, it is deterministic in the real system. Intuitively,
the exponential distribution with the same mean for the threshold should not
change the behavior of the network. Large stochastic networks with general
service time distributions are still largely unexplored. See Section 8 for possible
approachs. The paper stays in a convenient framework.

Station-based state process. The model does not take into account the
detailed moves of the cars, i.e. the fact that a car goes from station i in cluster
1 for example to station j in cluster 2. For the state of stations, these detailed
moves do not matter. Mathematically, the detailed routing matrix between
stations only affects the stationary behavior of the network by its invariant
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Fig. 7: Performance for both clusters (1 for the high-demand zone, and 2 for
the normal zone) is numerically computed from equilibrium point equation
as a function of the fleet size per station in a system with and without gifts,
compared with the simulation curve in crosses, when the number of stations
per cluster is given by N1 = 28, N2 = 72. K1 = 15, K2 = 45, λ1 = 2.6, λ2 = 1,
µ = µc = 0.65, δ = 1/14, c1 = 0.5 and p = q1 = 1.

measure. In other words, this means that the driving cars are indistinguish-
able and, after their departure, the origin of the trip is no longer important.
Only the popularity of stations is significant, expressed as the probability that
a car is dropped off at that station.

Space-homogeneity. In order to simplify the presentation, we assume that
parameters do not depend on the stations. This mean-field approach can be
extended to a completely heterogeneous model. It is out of the scope of the
paper. See Section 8 for details.

This modeling was preceded by an analysis of real data which highlighted
the low proportion of gifts offered under this incentive policy. Thus we opt
for a constant probability p to choose a gift if one is available in the station.
Nevertheless, a relevant option is to choose with a probability which takes into
account the number of available gifts relative to cars in the station. The study
is similar in this case.

Time-homogeneity. In real systems, some parameters, like the arrival rate
of users, depend on time. The mathematical model does not take this into
account but simulations of the time-inhomogeneous model are performed in
Section 7.2.

Reservation. In real car-sharing systems, cars can be booked. It seems that
such a study can still be conducted. See Section 8.
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7.2 Simulations for time-inhomogeneous arrival process
and real trip time distribution

We investigate now the influence of time-inhomogeneity of the parameters,
especially the arrival rates of users and also the non exponential trip time
distribution. Simulations are performed with arrivals according to a Poisson
process with rates λ1 and λ2 in the stations of clusters 1 and 2, depending
on time, and trip time having the distribution provided by an analysis of real
data. To validate the accuracy of this time-inhomogeneous arrivals and a more
realistic trip time distribution (see [13]) with Montreal FFCS system dataset,
we plot in Figure 8 the average daily rate of arrivals obtained by simulation.
It can be compared to that provided by data, plotted in Figure 9.
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Fig. 8: Evolution of a daily arrival rate for the time-inhomogeneous simulation.
Time intervals are 20 mn. The percentage is calculated based on the average
total number of transactions.

Figure 10 plots the performance in both cases: time-inhomogeneous arrival
rates and so-called real trip time distribution versus time-homogeneous arrival
rate and trip time with exponential distribution. Performance is different for
both clusters for the whole range of fleet sizes. It can be explained as fol-
lows. For large fleet sizes, more arrivals during the day and some longer
trips contribute to prevent saturation in stations of both clusters in the
time-inhomogeneous case. For small fleet sizes, more arrivals and larger trip
times empty the stations, especially in cluster 1. It explains why the time-
inhomogeneous case performs better for a mean number of cars per station
around 30, but worse when it is smaller than this value.
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Fig. 9: Number of transactions starting in both zones during the day consid-
ering intervals of 20 mn. The percentage is calculated based on the average
total number of transactions.
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Fig. 10: Performance from a time-inhomogeneous and time-homogeneous
simulation as a function of fleet size. The thin curve is plotted for time-
inhomogeneous arrival rates and real trip time distribution of [13]. It is
compared to the thick curve plotted for time-homogeneous arrival rates and
trip times with exponential distribution of Figure 7.

In conclusion, although the homogeneous model helps us to study the
influence of parameters such as δ and q, it approximates poorly time-
inhomogeneous arrival rates combined with heavy-tailed trip time distribution.
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8 Conclusion and future work

The analytical approach The analysis highlights an interesting random
walk in the quarter-plane. Its study is important to obtain further analytical
results. This issue seems to emerge in mean-field studies (see for example [20]),
and involves difficult problems to prove the unique state of the stationary
large-scale behavior.

Possible extensions. In Section 7.1, three extensions are highlighted.
General trip time distribution. To overcome the assumption of an exponen-

tial distribution for the trip time duration, the approachs depend on whether
the trip time is bounded or not. In the first case, the approximation by an
Erlang distribution seems to be natural and it allows to remain in a Marko-
vian framework. In the second case, the main issue will be to deal with
measure-valued processes.

Space-inhomogeneity. In this paper, the parameters do not depend on the
stations within a zone. A possible extension is to consider different types of
stations within a zone by introducing clusters. These clusters are built by
grouping within a zone the stations with similar parameters. Obtaining a
mean-field limit as an ODE and its numerical solution remain appropriate. It
is a convenient framework for dealing with the spatial heterogeneity of real
systems.

Reservation. The impact of the reservation (when a user books the car
before starting the trip) on the incentive policy should be investigated. It seems
technically possible with the same method. Due to the lack of reservation data
in the dataset, the issue is left for future work.

The analytical approach for a related model. In our model, the
dynamics of the state process leads to a typical station, in the sense of statistic
physics, which is hard to study analytically. An alternative is to simplify the
dynamics by immediatly picking up the gift for a trip when it appears. This
may be relevant since the time it takes to pick it up seems negligible compared
to the time it takes to become a gift. This can be checked on the data. Such
a simplified version of the migration-contagion model is studied in [20] as the
DOCS model where DOCS means Departure On Change of State, and gives
analytical expressions for the invariant measure which allows to address the
problem of the uniqueness of the stationary large-scale behavior. It is a work
in progress.

Other performances. Another simple model in which the stations are not
taken into account, but only the two zones, seems to be a coarse approximation
but it is analytically tractable to obtain the ratio of gifts in the system, in
order to investigate the price that the operator should pay to implement such
a policy. It is a work in progress.
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