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Inflammatory macrophages reprogram to
immunosuppression by reducing
mitochondrial translation

Marlies Cortés 1 , Agnese Brischetto 1,12, M. C. Martinez-Campanario 1,12,
Chiara Ninfali 1, Verónica Domínguez2, Sara Fernández3, Raquel Celis4,
Anna Esteve-Codina5, Juan J. Lozano6, Julia Sidorova6, Gloria Garrabou3,
Anna-Maria Siegert 7, Carlos Enrich8, Belén Pintado2,
Manuel Morales-Ruiz 6,8,9, Pedro Castro 3, Juan D. Cañete4 &
Antonio Postigo 1,6,10,11

Acute inflammation can either resolve through immunosuppression or persist,
leading to chronic inflammation. These transitions are driven by distinct
molecular and metabolic reprogramming of immune cells. The anti-diabetic
drugMetformin inhibits acute and chronic inflammation throughmechanisms
still not fully understood. Here, we report that the anti-inflammatory and
reactive-oxygen-species-inhibiting effects of Metformin depend on the
expression of the plasticity factor ZEB1 in macrophages. Using mice lacking
Zeb1 in their myeloid cells and human patient samples, we show that ZEB1
plays a dual role, being essential in both initiating and resolving inflammation
by inducing macrophages to transition into an immunosuppressed state.
ZEB1 mediates these diverging effects in inflammation and immunosuppres-
sion by modulating mitochondrial content through activation of autophagy
and inhibition of mitochondrial protein translation. During the transition
from inflammation to immunosuppression, Metformin mimics the metabolic
reprogramming of myeloid cells induced by ZEB1. Mechanistically, in immu-
nosuppression, ZEB1 inhibits amino acid uptake, leading to downregulation
of mTORC1 signalling and a decrease in mitochondrial translation in macro-
phages. These results identify ZEB1 as a driver of myeloid cell metabolic
plasticity, suggesting that targeting its expression and function could
serve as a strategy to modulate dysregulated inflammation and
immunosuppression.

Inflammation is a natural protective response to infection and tissue
injury. It involves an acute inflammatory phase, which can be fol-
lowed by an immunosuppressed (tolerogenic) state, wherein
immune cells are unable to respond to a secondary challenge1–3.
Immunosuppression protects tissues from excessive inflammation,
but if prolonged over time, it can increase susceptibility to secondary

infections. On the other hand, an incomplete or dysregulated reso-
lution of acute inflammation and continuous proinflammatory sti-
muli can override immune tolerance and lead to autoimmunity and
chronic inflammation4.

The transition of monocytes/macrophages from an inflammatory
phenotype toward an immunosuppressed state involves their
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metabolic reprogramming5–7. During inflammation, there is a switch
from mitochondrial oxidative phosphorylation (OxPhos) to glycolysis
and lactate production. Mitochondria shift their role from ATP gen-
eration to succinate oxidation, which in turn stimulates the production
of reactive oxygen species (ROS) and inflammatory cytokines8,9. Lactate
is not only a byproduct of glycolysis but it also promotes the epigenetic
activation of anti-inflammatory genes, leading to their subsequent
upregulation during immunosuppression10. Inhibition of mitochondrial
translation by antibiotics of the tetracycline family and analogues of the
anti-diabetic drug Metformin reduces both bacterial lipopolysacchar-
ide (LPS)-induced production of inflammatory cytokines in vitro and
tissue damage in vivo11,12. Alterations in themetabolism of immune cells
also play a pathogenic role in the development of autoimmune chronic
inflammatory diseases (e.g., psoriasis, arthritis, colitis)13–15.

The mechanisms by which Metformin inhibits acute and chronic
inflammation are cell- and context-dependent and are still being
uncovered. Metformin exerts its anti-inflammatory effects through
various pathways, including inhibiting the mitochondrial electron
transport chain complex I (ETC-CI) and mTORC1 signaling, as well as
reducing mitochondrial ROS production16,17. However, in some cancer
cells and CD8+ tumor-infiltrating T cells, Metformin has been reported
to stimulate ROS production18,19. Metformin promotes mitophagy to
eliminate damaged mitochondria, thus dampening inflammasome
activation20. Furthermore, Metformin can inhibit inflammasome acti-
vation independently of AMPK- and NFkB signaling21,22.

The transcription factor ZEB1 enables andmaintains cell plasticity
in cancer cells and is best known for inducing an epithelial-to-
mesenchymal transition (EMT) during embryonic development and
cancer progression (reviewed in23–26). ZEB1 expression enhances the
pro-tumoral effects of tumor-associatedmacrophages27, and induces a
stem-like phenotype in macrophages upon viral infection28. This evi-
dence prompted us to investigate the potential role of ZEB1 in the
regulation of macrophage transcriptomic and metabolic plasticity
during acute and chronic inflammation.

Here, we find that ZEB1 expression is required for the inflamma-
tory and immunosuppressive phenotypes of macrophages, playing
opposing roles in both stages. In addition, we show that Metformin’s
anti-inflammatory and ROS-inhibiting effects in models of sepsis and
psoriatic disease are dependent on the expression of ZEB1 in macro-
phages. Using mice lacking Zeb1 in their myeloid cells, as well as
samples from human patients and mouse models of sepsis and psor-
iasis, we show that the diverging effects of ZEB1 in inflammation and
immunosuppression aremediated through its inhibition of amino acid
transport, mitochondrial protein translation and content, and its
induction of autophagy. Our results suggest that Metformin pre-
treatment induces an immunosuppressive-like state in inflammatory
macrophages and that ZEB1 is required for the inhibition of mito-
chondrial translation in immunosuppressed macrophages. ZEB1 limits
acute and chronic inflammation by reducing amino acid levels and
consumption in macrophages thereby inhibiting mTORC1 signaling
and mitochondrial translation.

Altogether, these results identify a mechanism that regulates
macrophage metabolic plasticity, presenting a potential target for
modulating dysregulated inflammation and immunosuppression in
sepsis and autoimmune diseases.

Results
ZEB1 has a dual role being required for both the induction and
resolution of inflammation
To study the immunogenic-to-immunosuppressive reprogramming of
macrophages in the context of acute inflammation, we used amodel of
acute inflammation triggered by lipopolysaccharide (LPS)29 (see Sup-
plementary Fig. S1A and Supplementary Methods), where mice or
macrophages were divided into different groups. One group was

subjected to the acute inflammation protocol (referred to as “LPS”),
wherein they received the vehicle (PBS) followed by a single dose of
LPS after 24h. The other group underwent the immunosuppression
protocol (referred to as “LPS + LPS”), wherein they received an initial
dose of LPS, followed by a second dose of LPS 24 h later. These LPS-
induced acute inflammation and immunosuppressive responses are
primarily mediated by macrophages30. Accordingly, expression of the
inflammatory cytokine IL6 in mouse peritoneal macrophages and
human monocyte-derived macrophages increased during acute
inflammation but to a lesser extent upon the second antigenic chal-
lenge in the immunosuppressive protocol (Supplementary Fig. S1B and
S1C). We also compared IL6 expression in human peripheral blood
mononuclear cells (PBMC) in different conditions. Firstly, we com-
pared PBMCs from septic patients at ICU admission (0 h, representing
an acute inflammatory state) with the PBMCs of the same patients
collected three days later (72 h, representing an immunosuppressed
state) (Supplementary Fig. S1D). Additionally, we compared PBMCs
from healthy donors with those from patients with a chronic inflam-
matory disease, namely psoriatic arthritis (PsA), which affects
approximately 30% of patients with psoriatic disease (Supplementary
Fig. S1E). In all cases, PBMCs were either left untreated (PBS) or sub-
jected to in vitro incubation with LPS for 2 hours. In line with their
immunosuppressed state, the response of PBMCs from septic patients
at 72 h to a new inflammatory challenge was only around 26% relative
to the response of PBMCs from septic patients at 0 h (Supplementary
Fig. S1D). In contrast, in the PBMCs of patients with PsA, IL6 increased
around 500 times relative to PBMCs from healthy donors (Supple-
mentary Fig. S1E).

The transcription factor ZEB1 is best known for promoting cellular
plasticity in epithelial cells during cancer initiation and
progression24,25,31,32. We found that ZEB1 levels increased when both
human and mouse macrophages transitioned to an immunosup-
pressed state (Supplementary Fig. S1F–S1H). To examinewhether ZEB1
modulates the phenotype and function of macrophages during acute
inflammation or immunosuppression, we generated a Zeb1fl/fl mouse
(hereinafter referred to as Zeb1WT mouse) that was then crossed with
LysmCre mice to delete Zeb1 in myeloid cells (hereafter referred to as
Zeb1ΔM) (Supplementary Fig. S1I–S1K).

Zeb1WT and Zeb1ΔM mice were each divided into two cohorts and
subjected to the LPS-induced lethal endotoxemia and LPS + LPS-
induced immunosuppression protocols (see Supplementary Fig. S1A
and Supplementary Methods). In the LPS cohort (systemic acute
inflammation protocol), Zeb1ΔM mice exhibited greater survival than
Zeb1WT mice (Fig. 1a). Interestingly, in the LPS + LPS cohort (immuno-
suppressive protocol), the reverse pattern was found; Zeb1ΔM mice
exhibited lower survival than Zeb1WTmice. The composition ofmyeloid
cells entering the peritoneal cavity varies during the LPS responsewith
an increase in the proportion of monocytes during the course of
sepsis33. However, we observe no difference in the distribution of
myeloid subpopulations between Zeb1WT and Zeb1ΔM mice (Supple-
mentary Fig. S1L).

The above data suggest that ZEB1 plays opposing roles in the
macrophage-mediated inflammatory and immunosuppressive
responses to LPS. Todefine themechanismsbywhichZEB1 does so, we
conducted a bulk RNA sequencing (RNAseq) of peritoneal macro-
phages isolated from Zeb1WT and Zeb1ΔM mice subjected to the LPS and
LPS + LPS protocols (Supplementary Fig. S1M, N). In the LPS condition
(acute inflammation), Zeb1ΔM macrophages expressed lower levels of
inflammatory genes (e.g., Il1a, Il6, Nfkb1) than their Zeb1WT counter-
parts (Fig. 1b–f andSupplementary Fig. S1O). In theLPS + LPS condition
(immunosuppression), inflammatory genes were expressed similarly
in macrophages of both genotypes. However, a reverse pattern was
observed with regard to several anti-inflammatory and homeostatic
genes (e.g., Il4, Retnlg) (Fig. 1d, e, g). Although Zeb1WT and Zeb1ΔM
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macrophages expressed similar levels of these anti-inflammatory and
homeostatic genes during LPS, Zeb1ΔM macrophages expressed lower
levels of those genes than Zeb1WT macrophages during LPS + LPS
(Fig. 1e and g). Taken together, these findings suggest that ZEB1 plays
dual roles inboth the induction and resolutionphases of inflammation.
ZEB1 appears to modulate macrophage plasticity by upregulating

inflammatorygenes during acute inflammation andhomeostatic genes
during immunosuppression.

ZEB1 increases glycolysis during acute inflammation
The transition of macrophages from an inflammatory state to an anti-
inflammatory state is accompanied by metabolic reprogramming,
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shifting from glycolysis to oxidative phosphorylation (OxPhos)6.
Consistent with the inflammatory signature linked to ZEB1 in acute
inflammation, Zeb1WT macrophages expressed higher levels of genes
associated with glycolysis, (e.g., Slc2a1, Hk2, Hk3, Pdk3) compared to
Zeb1ΔM counterparts during acute inflammation (Fig. 1h–j). However, in
the LPS + LPS condition, we found that enzymes associated with lower
glycolysis that catalyze the conversion of glyceraldehyde-3-phosphate
to pyruvate (e.g., Gapdh, Pkm, Pgam1, Ldha) were upregulated in both
genotypes (Fig. 1h). In the same line, our analysis of a published array
of the transcriptome of septic patients during the first week at the ICU
(GSE131411)34 indicated that ZEB1 expression correlates with inflam-
matory (IL1B) and glycolytic (SLC2A1) genes at the beginning of the
septic process (16 h and 48 h) and with anti-inflammatory (IL4) and
anti-oxidant (GSS) genes at the immunosuppressive state (Supple-
mentary Fig. S1P).

Lactate production by macrophages in the aftermath of acute
inflammation is required for the subsequent activation of anti-
inflammatory genes in immunosuppressed macrophages10,35. In that
line, we found that Zeb1WT macrophages subjected to LPS + LPS pro-
duced more lactate than those under LPS (Supplementary Fig. S1Q).
Zeb1ΔM macrophages produced less lactate than Zeb1WT macrophages
during immunosuppression (Fig. 1k), which may contribute to the
impaired anti-inflammatory transition in Zeb1ΔM macrophages and the
decreased survival of Zeb1ΔM mice following two doses of LPS.

ZEB1 reduces mitochondrial content during
immunosuppression
It hasbeen reported that, during acute inflammation, the expression of
mitochondrial DNA (mtDNA)-encoded genes in leukocytes correlates
with the severity of sepsis36. Interestingly, our RNAseq analysis
revealed that LPS-treated Zeb1WT macrophages exhibited higher
expression of mtDNA-encoded genes compared to Zeb1ΔM macro-
phages (Supplementary Fig. S2A). Thehigher induction of IL6 inZeb1WT

macrophages compared to Zeb1ΔM macrophages was accompanied by
an upregulation of TOMM20, a nuclear DNA (nDNA)-encoded mito-
chondrial protein that we used as a proxy for mitochondrial content
(Supplementary Fig. S2B). This suggests that the reduced inflamma-
tory response of Zeb1ΔM macrophages may be related to their altered
mitochondrial function.

Peritoneal macrophages from mice either untreated (PBS) or fol-
lowing treatment with one or two doses of LPS were assessed for their
mitochondrial content by their staining for MitoTracker™ Green
(MTG). Immunosuppressed macrophages from mice treated with
LPS + LPS showed lower mitochondrial content than macrophages
from mice injected with PBS or a single dose of LPS (Fig. 2a). A com-
parable decrease in mitochondrial content—assessed by both MTG
staining and MT-CO1 (mitochondrially-encoded Cytochrome C Oxi-
dase I) expression—was also found in the immunosuppressed PBMCs
of septic patients at 72 h relative to the immune-responsive PBMCs

from the same septic patients at 0 h or healthy donors (Fig. 2b–d, and
Supplementary Fig. S2C).

These results prompted us to investigatewhether alterations in the
mitochondria content can contribute to in vivo immunosuppression in
mice.We conducted a transmission electronmicroscopy (TEM) analysis
to examine the ultrastructure ofmacrophages isolated from Zeb1WT and
Zeb1ΔM mice that had either been left untreated or treated with a single
dose of LPS for different durations (30min, 3 h, and 12 h), aswell aswith
LPS + LPS. Interestingly, macrophages isolated from Zeb1ΔM mice trea-
ted with LPS at 3 h contained fewer mitochondria compared to mac-
rophages from Zeb1WT mice. However, when mice were treated with
LPS + LPS,macrophages from Zeb1ΔMmice hadmoremitochondria than
macrophages from Zeb1WT mice (Fig. 2e, f). These results support the
hypothesis that ZEB1 regulates mitochondria content in opposite
directions in inflammation and immunosuppression.

ZEB1 activates p62 and promotes autophagy during
inflammation
The accumulation of damaged mitochondria during inflammation
increases ROS production and activates inflammasome signaling,
highlighting the importance of mitophagy as an important anti-
inflammatory self-limiting mechanism37,38. Compared to Zeb1WT coun-
terparts, and particularly in the LPS condition, Zeb1ΔM macrophages
expressed lower levels of autophagy/mitophagy-related genes (e.g.,
Sqstm1, Tbc1d17, Rab9, Cisd2) and higher levels of anti-autophagy/
mitophagy ones (e.g. Usp30) (Fig. 2g). p62 (encoded by Sqstm1) binds
damaged mitochondria—as well as other damaged organelles and
ubiquitinated proteins—and recruits them to autophagosomes, which
subsequently fuse with autolysosomes for degradation (mitophagy) in
a mTORC1-dependent manner39. Mitophagy prevents the release of
inflammasome-activating signals and limits excessive ROS production
during acute inflammation40–42.

Treatment of Zeb1WT and Zeb1ΔM mice with LPS upregulated p62
mRNAandprotein expression inZeb1WTmacrophagesbut not inZeb1ΔM

counterparts (Fig. 2h, i, and Supplementary Fig. S2D). Analysis of the
SQSTM1 promoter identified several consensus sequences for ZEB1
whose capacity to recruit ZEB1 were tested in chromatin immuno-
precipitation (ChIP) assays. ZEB1 bound to SQSTM1 promoter and to a
larger extent in human monocyte-derived macrophages treated with
LPS than in those treated with LPS + LPS (Supplementary Fig. S2E). In
addition, compared to LPS-treated Zeb1ΔM peritoneal macrophages,
LPS-treated Zeb1WT macrophages showed increased co-localization of
lysosome staining (Lyso DyeTM) with the Mtophagy DyeTM, indicating
enhanced lysosomal-mediated degradation (Supplementary Fig. S2F).
Next, we examined macrophages from both genotypes treated with a
single dose of LPS for signs of autophagy using TEM. Zeb1WT macro-
phages, in comparison to Zeb1ΔM macrophages, exhibited a higher
number of autolysosomes (Fig. 2J, yellow asterisks) containing cyto-
solic material, including mitochondria, indicative of damaged

Fig. 1 | ZEB1 plays a dual role being required for both the induction and reso-
lution of inflammation. a Survival plots of 8–10 weeks old female Zeb1WT and
Zeb1ΔM mice treated with LPS (15 Zeb1WT, 12 Zeb1ΔM) to induce acute inflammation,
and treated with LPS + LPS (14 Zeb1WT, 12 Zeb1ΔM) to induce immunosuppression.
b Peritoneal macrophages from Zeb1WT and Zeb1ΔM mice were untreated, or treated
with LPS or LPS + LPS and blotted for IL6 along with β-ACTIN as a loading control.
The blot shown is representative of five independent experiments. c quantification
of IL6 levels relative to β-ACTIN levels in n = 5 biologically independent experi-
ments as in (b). d Left Panel: GSEA plots for inflammatory signatures comparing
macrophages from Zeb1WT and Zeb1ΔM mice treated with LPS. Right panel: GSEA
plots for anti-inflammatory signatures comparing macrophages from Zeb1WT and
Zeb1ΔM mice treated with LPS + LPS. e Heatmap of inflammation-related genes in
peritoneal macrophages from Zeb1WT and Zeb1ΔM mice treated with either LPS or

LPS + LPS. f Il6 mRNA levels in peritoneal macrophages from Zeb1WT and Zeb1ΔM

mice either untreated, treated with LPS, or treated with LPS + LPS (n = 5,5,8,8,9,7).
g as in (f), but for Il4 (n = 3,3,7,6,8,4). h Heatmap of glycolytic genes in peritoneal
macrophages from Zeb1WT and Zeb1ΔM mice subjected to either LPS or LPS + LPS.
i GSEA plots for Glycolysis and Gluconeogenesis signature comparing macro-
phages from Zeb1WT and Zeb1ΔM mice treated with LPS. j As in (f), but for Slc2a1
(n = 4,3,5,4,5,3). k Lactate levels in macrophages from Zeb1WT and Zeb1ΔM mice
treated with LPS (n = 8) or LPS + LPS (n = 7). Statistical analysis of Kaplan Meier
survival plots was assessed by the Log-rank (Mantel-Cox) test. Graphbars represent
mean values +/− SEM with two-tailed unpaired Mann-Whitney test. p ≤0.001 (***),
p ≤0.01 (**) or p ≤0.05 (*) levels, or non-significant (ns) for values of p >0.05.
Numerical values had been added for 0.05 < p <0.075. Raw data along p values for
statistical analyses are included in the Source Data file.
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mitochondria undergoing mitophagy (Fig. 2j and Supplementary
Fig. S2G). These data suggest that ZEB1 promotes autophagy in the
context of acute inflammation.

Metformin depends on ZEB1 expression in macrophages for its
anti-inflammatory effects
Prompted by the above data suggesting that the decrease in
mitochondria in macrophages under the LPS + LPS condition
accounts for their compromised immune response, we investi-
gated the effects of Metformin, known for inhibiting mitochon-
drial function and the inflammatory response of macrophages to
LPS17. We hypothesized that the anti-inflammatory effects of Met-
formin mimic the immunosuppression observed in macrophages

under the LPS + LPS condition. To test that hypothesis, we exam-
ined the in vivo and in vitro effects of Metformin in the
response to LPS.

Mouseandhumanmacrophageswere treated in vitrowith a single
dose of LPS in the presence or absenceofMetformin orwith two doses
of LPS (Fig. 3a and Supplementary Methods). As expected, Metformin
reverted the LPS-induced upregulation of IL6 in both human and
mouse macrophages (Supplementary Fig. S3A and S3B). In human
macrophages, pre-treatment with Metformin before LPS resulted in
upregulation of ZEB1 and reduced expression of MT-CO1, which mir-
rored the expression changes observed in the immunosuppressed
PBMCs of septic patients at 72 h shown above or following two doses
of LPS (Supplementary Figs. S3C and S3D).

a c

g h i j

0

10

20

30

40

N
um

be
r o

f m
ito

ch
on

dr
ia

 / 
ce

ll

UNT LPS
30 min

LPS
3 h

LPS
12 h

LPS
LPS

ns **

Zeb1 WT 

Zeb1 ΔM

GAPDH

0.0

0.5

1.0

1.5

2.0

M
T-

C
O

1 
/ G

AP
D

H

Human PBMC

Healthy
Donors

Sepsis
0h

Sepsis
72h

1 2 3 1 2 3 1 2 3

MT-CO1

e

p62

Zeb1 WT

Unt LPS LPS
LPS Unt LPS

Healthy
donors

Sepsis
0h

Sepsis
72h

Untreated
Zeb1 WT Zeb1 ΔM Zeb1 WT Zeb1 ΔM Zeb1 WT Zeb1 ΔM

LPS LPS + LPS

15
KX

40
KX

LPS
LPS

0.0

0.5

1.0

1.5

m
R

N
A 

R
el

at
iv

e 
ex

pr
es

si
on

Untr LPS LPS
LPS

M

M

Nucleus

M

ER

* *

*

Zeb1 WT

Zeb1 ΔM

Zeb1 ΔM

β-ACTIN

LPS 3h

Sqstm1

*

ns

**
****

**
**ns

Zeb1 WT 

Zeb1 ΔM
Pmaip1
Hsh2d
Alpl
Sqstm1
Rab9
Map1lc3b
Tbc1b17
Zfyve1
Fundc2
Gabarap
Mcl1
Cisd2
Usp30
Gabarapl1
Ulk1

1

Ze
b1

 W
T

Ze
b1

 ΔM

Ze
b1

 W
T

Ze
b1

 ΔM

2 3 1 2 3 1 2 1 2 3

LPS LPS LPS

Autophagy/Mitophagy Genes

50

ns

ns

**
**

*

2

1

0

-1

-2

d

f

b

Mouse Macrophages

50

37

75
50

50
37

Human PBMC

104 105

Sepsis 0h
Sepsis 72h

Healthy Donors

Mito Tracker TM Green

LPS

Mouse macrophages

Zeb1 WT Mac

LPS LPS

101 102 103 104

Untreated

Mito Tracker TM Green
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Metformin reduces the oxygen consumption rate (OCR) of
macrophages treated with LPS21. To determine whether ZEB1 mod-
ulates the effect of Metformin on the overall metabolic profile of
macrophages during inflammation and immunosuppression, Zeb1WT

and Zeb1ΔM macrophages were subjected to the protocols in Fig. 3a
and assessed for their OCR by Seahorse cell metabolic flux analysis
(Fig. 3b, c). We found that the pre-treatment of Zeb1WT macrophages

with Metformin prior to LPS resulted in a reduction in basal OCR and
Spare respiratory capacity to levels comparable to those found in
macrophages treated with LPS + LPS. Additionally, Metformin did not
alter OCR in Zeb1ΔM macrophages, suggesting that the metabolic
effects of Metformin on OCR require the presence of ZEB1.

To test whether the anti-inflammatory effects of Metformin also
depended on ZEB1, peritoneal macrophages from Zeb1WT and Zeb1ΔM
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mice were subjected to the experimental conditions in Fig. 3a, and
their inflammatory status was assessed by their Il6 expression. As
expected, Metformin alone had no effect on Il6mRNA levels of Zeb1WT

and Zeb1ΔM macrophages (Fig. 3d). However, pre-treatment with Met-
formin reduced the induction of Il6 by LPS in Zeb1WT macrophages but
had no effect in LPS-treated Zeb1ΔM macrophages (Fig. 3d). Further-
more, the effect of Metformin on the systemic inflammatory status in
mice of both genotypes was evaluated bymeasuring their serum levels
of IL6. Consistent with the findings in the septic shock model, Zeb1WT

mice exhibited higher levels of IL6 in response to LPS compared to
Zeb1ΔM mice (Fig. 3e). Remarkably, Metformin effectively inhibited the
LPS-induced upregulation of IL6 in Zeb1WT mice, while no significant
effect was observed in Zeb1ΔM mice (Fig. 3e). Similar results were
observed in the analysis of IL6 intracellular staining by FACS in mac-
rophages of both genotypes (Fig. 3f, g).

To gain a comprehensive understanding of the inflammatory
response of Zeb1WT and Zeb1ΔM macrophages, we evaluated the protein
levels of a panel of inflammatory markers using a quantitative bead-
based cytokine/chemokine multiplex array, which was analyzed by
FACS (Fig. 3h). As expected, Metformin alone did not have any effect
on macrophages from either genotype. Under the LPS condition,
Zeb1ΔM macrophages exhibited reduced levels of IL1β, IL6, TNFα, and
CXCL1 compared to LPS-treated Zeb1WT macrophages. Interestingly,
the pretreatment with Metformin brought the expression levels of
these inflammatorymarkers inZeb1ΔMmacrophages to a similar level as
that of Zeb1WT macrophages (Fig. 3h). In contrast, under the LPS + LPS
condition, Zeb1ΔM macrophages exhibited higher levels of IL6 and
CXCL1, whereasnodetectable levels of IL1βor TNFαwereproducedby
macrophages of either genotype (Fig. 3h). These findings suggest that
the anti-inflammatory effects of Metformin in macrophages are
dependent on and, at least partially, mediated by ZEB1.

Comparing our RNAseqdatawith a publishedRNAseq (GSE98731)
of Metformin-regulated genes in alveolar macrophages during an
inflammatory response to air pollution in wild-type mice22, we found
that like the alveolar macrophages in the aforementioned study, our
Zeb1WT peritoneal macrophages, in contrast to Zeb1ΔM peritoneal
macrophages, exhibited enrichment of Metformin-induced genes
during LPS-induced immunosuppression (Supplementary Fig. S3E).
This led us to explore by RNAseq the gene signature regulated by
Metformin in vivo in peritonealmacrophages isolated from Zeb1WT and
Zeb1ΔM mice that had been pre-treated with Metformin before the
administration of LPS. Metformin differentially induced a “negative
regulation of the inflammatory response” signature in Zeb1WT macro-
phages relative to Zeb1ΔM macrophages (Fig. 3i). Of all the DEGs
between the conditions LPS and Metformin + LPS, Metformin regu-
lated 2,034 genes in the same direction in Zeb1WT and Zeb1ΔM macro-
phages. However, 1,628 and 1,668 genes were specifically regulated by
Metformin in Zeb1WT and Zeb1ΔM macrophages. Interestingly, within
gene signature specific for Zeb1WT macrophages, Metformin increased

genes associated with an anti-inflammatory response (e.g., Arg1, Mrc1,
Il4) and gene annotations related to the induction of tolerance (e.g.,
Acod1), positive regulation of mitochondrial depolarization (e.g.,
Tspo), wound healing, metalloproteinase activity (e.g. Timp1, Cldn1),
reactive oxygen species (ROS)metabolic processes (e.g., Sod2). In turn,
in the specific signature of Zeb1ΔM macrophages, Metformin-regulated
genes were associated with a signature of maturation of SSU-rRNA
(e.g., Wdr3) (Fig. 3j). These analyses suggested that dependence on
ZEB1 forMetformin’s anti-inflammatory effects is at least in part due to
the regulation of mitochondrial function.

ZEB1 mediates the immunosuppression-mimicking effect of
Metformin by reducing mitochondrial content and ROS levels
The late stages of an acute systemic inflammatory response are char-
acterized by the apoptosis of the majority of immune cells, which
contributes to the subsequent immunosuppression stage43. The
accumulation of ROS and oxidative stress trigger apoptosis, while
autophagy serves as an adaptive mechanism to counteract oxidative
stress to overcome apoptosis.

At the end of the LPS protocol, Zeb1ΔM mice exhibited a decreased
macrophage count compared to Zeb1WT mice (Supplementary
Fig. S4A). Zeb1ΔM macrophages exhibited higher levels of apoptosis
during acute inflammation as assessed by Annexin V (Supplementary
Fig. S4B) and a lower expression of anti-apoptotic genes (e.g., Bcl2 and
Mcl1) (Supplementary Fig. S4C).

During acute inflammation, there is a reduction in ATP generation
from mitochondria, leading to an increase in the membrane potential
(ΔΨm), which is necessary for the generation of ROS9. In response to
LPS, Zeb1WT macrophages exhibited lower ATP levels compared to
Zeb1ΔM macrophages (Supplementary Fig. S4D). In contrast, pre-
treatment with Metformin or exposure to LPS + LPS resulted in the
opposite effect. In macrophages from Zeb1WT mice, treatment with
Metformin + LPS or LPS + LPS resulted in the upregulation of an anti-
oxidant signature—as many of the genes in the GSEA annotation
“superoxide metabolic process”—compared to Zeb1WT mice treated
with LPS alone. This signature was also upregulated in Zeb1WT mice
treated with Metformin + LPS or LPS + LPS compared to Zeb1ΔM mice
with the same treatments.

In order to assess the in vivo antioxidant effect of pre-treatment
with a previous dose of LPS, we measured ROS production using the
luminescence probe L-012 (8-amino-5-chloro-7-phenyl-pyrido[3,4-d]
pyridazine-1,4(2H,3H)dione). It was found that Zeb1WT mice exhibited
higher levels of ROS compared to Zeb1ΔM mice during treatment with
LPS, but not during LPS + LPS (Supplementary Fig. S4E). Furthermore,
we also evaluated ROS production, mitochondrial content, and ΔΨm
of macrophages from Zeb1WT and Zeb1ΔM mice during LPS and LPS +
LPS using staining with 6-carboxy-2’,7’-dichlorodihydrofluorescein
diacetate (CH2-DCFDA),MTG, and tetramethylrhodaminemethyl ester
perchlorate (TMRM), respectively. In line with the transcriptomic

Fig. 3 | Metformin depends on ZEB1 expression in macrophages for its anti-
inflammatory effects. a Experimental design for the in vivo and ex vivo treatment
withMetformin (MET).bOxygen consumption rates (OCR)ofZeb1WTmacrophages,
either untreatedor subjected to the LPS,Metformin + LPS or LPS + LPS protocols as
in (a), were assessed by Seahorse XF Cell Mito Stress Test Kit. Average from at least
two independent experiments each including two mice per genotype and condi-
tion, each in triplicate. Quantification of basal OCR and Spare Respiratory Capacity
of Zeb1WT macrophages (n = 5,6,4,7). Untreated is set to 100. c As in (b), but for
Zeb1ΔMmacrophages.d Il6mRNA levels in peritonealmacrophages from Zeb1WT and
Zeb1ΔM untreated (PBS), treated with Metformin, LPS or Metformin + LPS
(n = 4,5,4,5,4,5,4,5). e Zeb1WT and Zeb1ΔM mice were injected i.p. with PBS or LPS,
Metformin + LPS or LPS + LPS. IL6 serum levels were measured by ELISA 3 h after
the last LPS injection. (n = 6,4,7,3,4,4,5,4 mice). f Intracellular IL6 was assessed by
FACS in F4/80+ peritoneal macrophages from Zeb1WT and Zeb1ΔM subjected to the
indicated treatments. A representative plot of at least three independent

experiments. g Quantification of IL6+ macrophages in (f) (n = 7,5,2,2,8,7,8,8,5,4).
h Cytokine/chemokine production was assessed in the supernatant of peritoneal
macrophages from Zeb1WT and Zeb1ΔM mice subjected to the indicated treatments.
n = 4 with a pool of two mice per sample. i GSEA plots for negative regulation of
inflammatory response signature comparing LPS versus Metformin + LPS in Zeb1WT

or Zeb1ΔM macrophages or Metformin + LPS in Zeb1WT versus Zeb1ΔM macrophages.
j Venn diagram and gene ontology Cytoscape analysis on the effect of Metformin
(MET) in the gene signature of LPS (MET+ LPS versus LPS) for each genotype.
Specific Metformin signatures for Zeb1WT (blue) Zeb1ΔM (orange) or shared sig-
natures (green). Each node shows selectedDEGs associatedwith its ownGOcluster.
Graph bars in Fig. 3 represent mean values +/− SEM with two-tailed unpaired
Mann–Whitney test. p ≤0.001 (***), p ≤0.01 (**) or p ≤0.05 (*) levels, or non-
significant (ns) for values of p >0.05. Numerical values had been added for
0.05 < p < 0.075. Raw data along p values for statistical analyses are included in the
Source Data file.
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analysis shown in Fig. 4a, in LPS, pre-treatment with Metformin or a
first sublethal dose of LPS resulted in reduced ROS production, mito-
chondrial content, andΔΨm inZeb1WTmacrophages (Fig. 4b–d). These
effects were not observed in Zeb1ΔM macrophages under the same
treatment. Additionally, Metformin pre-treatment decreased TMRM
and CH2-DCFDA staining in human macrophages treated with LPS
(Supplementary Fig. S4F and S4G). Similar reductions in MTG and
TMRM staining were observed in CD14+ PBMCs from septic patients at
72 h compared to baseline levels at 0 h (Fig. 4e).

Based on the above results, we can draw three main conclusions.
Firstly, Zeb1WT macrophages under acute inflammation exhibited
higher ROS production compared to Zeb1ΔM macrophages. Secondly,
Zeb1ΔM macrophages under immunosuppression showed higher
mitochondrial content, ΔΨm, and ROS production compared to
Zeb1WT macrophages. Lastly, Metformin pre-treatment reduced mito-
chondrial content, ΔΨm, and ROS levels in Zeb1WT macrophages, while
no such reduction was observed in Zeb1ΔM macrophages.

ZEB1 inhibitsmitochondrial protein translation in inflammatory
macrophages
Metformin pre-treatment resulted in a reduction of phosphorylated
p65 (P-p65) and MT-CO1 protein expression in inflammatory human
macrophages (LPS) to levels comparable to those found in immuno-
suppressed human macrophages (LPS + LPS) (Fig. 4f, g, and Supple-
mentary Fig. S4H). Analysis of our RNAseq data showed that Zeb1ΔM

macrophages treated with LPS had higher expression of a signature
related to “positive regulation ofmitochondrial translation” compared
to Zeb1WTmacrophages (Fig. 4h). To explore the potential involvement
of ZEB1 in mitochondrial translation in macrophages under LPS
treatment, we examined the incorporation and tracing of L-homo-
propargylglycine (HPG), an analogue of methionine that enables the
quantification of newly synthesized proteins. We used emetine to
specifically inhibit cytosolic translation and doxycycline to inhibit
mitochondrial translation44,45.

As expected, the combination of doxycycline and emetine more
effectively reduced the incorporation of HPG (as a measure of new
protein synthesis) in Zeb1WT macrophages compared to emetine alone
(Supplementary Fig. S4I). While there was no difference in mitochon-
drial protein synthesis between Zeb1WT and Zeb1ΔM macrophages under
basal conditions, treatment of mice from both genotypes with LPS or
LPS + LPS resulted in higher mitochondrial translation in Zeb1ΔM mac-
rophages compared to Zeb1WT macrophages (Fig. 4i). These findings
suggest that ZEB1 modulates the macrophage response during acute
inflammation and immunosuppression by influencing mitochondrial
translation.

Inhibition of mitochondrial mRNA translation by tetracyclines
reduces in vitro LPS-induced macrophage upregulation of inflamma-
tory cytokines and ameliorates lung and liver damage in endotoxin-
induced systemic inflammation11. We found here that doxycycline
inhibition of ROS production and Il6 expression in inflammatory
macrophages treated is also dependent on ZEB1 expression; in con-
trast to Zeb1WT macrophages, pre-treatment with doxycycline did not
have an effect in LPS-treated Zeb1ΔM macrophages (Fig. 4j, k, and
Supplementary Fig. S4J). In human monocyte-derived macrophages,
doxycycline exhibited a similar immunosuppressive effect as LPS +
LPS, resulting in the reduction of MT-CO1 expression Supplementary
Fig. S4K).

Lactate and the inhibition of mitochondrial translation inhibit
chronic inflammation in a psoriasis model
We questioned whether the role and mechanism of action of ZEB1 in
the regulation of acute inflammation and immunosuppression are
conserved in the context of chronic autoimmune inflammation. To
that effect, we selected the psoriatic disease, an immune-mediated
chronic inflammatory condition affecting not only the skin but also

other tissues like joints, where myeloid cell metabolism plays a key
pathogenic role13,46. While psoriasis is primarily characterized by ery-
thematous and indurated skin plaques, it is considered a systemic
inflammatory disease that is associated with increased levels of
inflammatory markers in the serum, and about a third of patients will
develop psoriatic arthritis (PsA)47,48.

We investigated whether elevated lactate levels or decreased
mitochondrial translation can limit chronic inflammation, similar to
their effects in acute inflammation. Topical application of imiquimod
(IMQ), a TLR7/8 activator, on the ear ofmice leads to the development
of psoriasiform skin lesions and epidermal thickening (acanthosis),
resembling milder forms of human psoriatic skin lesions49,50.

The ears of Zeb1WT mice were left untreated or treated with
imiquimod, with or without prior and concurrent systemic treatment
of PBS, lactate, or doxycycline (Fig. 5a). Doxycycline and lactate exert
their effects through different mechanisms. Doxycycline reduces
inflammation by suppressing mitochondrial translation, while lactate
exerts its effects by triggering anti-inflammatory and reparative
responses10,11. We explored whether inhibition of mitochondrial
translation by doxycycline has an anti-inflammatory effect not only in
acute inflammation but also in chronic inflammation. Treatment with
lactate and doxycycline in Zeb1WT mice, improved psoriasiform
lesions, resulting in reduced ear and epidermal thickening (Fig. 5b,
c), and increased lactate production by their macrophages (Fig. 5d).
Doxycycline increased ZEB1 expression while reducing MT-CO1
protein levels, whereas lactate had the opposite effects (Fig. 5e
and Supplementary Fig. S5A and S5B). Additionally, compared to
lactate, doxycycline exhibited greater effectiveness in reducing sys-
temic inflammation, as evidenced by its effects on imiquimod-
induced splenomegaly and ROS production (Supplementary Fig. S5C
and S5D).

Metformin requires ZEB1 expression inmacrophages for its anti-
inflammatory effects in psoriasis
We then investigated whether the reliance on ZEB1 for the anti-
inflammatory effect of Metformin observed in the context of acute
inflammation also applies to psoriasis. imiquimod treatment resulted
in reduced Zeb1 expression in the ear sections of Zeb1WT mice (Sup-
plementary Fig. S5E), and it led to greater erythema and epidermal
thickening in the ears of Zeb1ΔM mice compared to Zeb1WT mice
(Fig. 5f, g). IMQ-treated Zeb1ΔM mice also exhibited greater systemic
inflammation than Zeb1WT mice as evidenced by the larger spleens in
the former (Supplementary Fig. S5F). Pre-treatment of mice with
Metformin prior to imiquimod resulted in a reduction of macroscopic
skin lesions, histological acanthosis, and macrophage infiltration in
Zeb1WT mice, while it had no effects in Zeb1ΔM mice (Fig. 5f–h). These
findings further support the dependence of Metformin’s anti-
inflammatory effects on the expression of ZEB1 in macrophages.

ZEB1 was found in scattered cells in the healthy skin but it
was nearly absent in psoriatic skin lesions (Supplementary
Fig. S5G). As reported, ZEB1 is upregulated in melanoma skin
lesions51 (Supplementary Fig. S5G). We identified ZEB1 in CD68+

macrophages in healthy skin that are negative for ZEB1 in the
psoriatic skin (Fig. 5i and Supplementary Fig. S5I). In addition, our
analysis of a published gene microarray (GSE14905)52 also
revealed the downregulation of ZEB1 in psoriatic skin lesions
(Supplementary Fig. S5H). ZEB1 was also expressed in CD68+

macrophages in the synovial membrane of PsA patients but it was
nearly absent in the synovium of osteoarthritis patients (Fig. 5i
and Supplementary Fig. S5I). We also found that in contrast to the
immunosuppressed PBMCs of septic patients at 72 h, the
monocyte-enriched PBMCs of PsA patients exhibited higher
mitochondrial content and ROS production compared to PBMCs
from healthy donors (Fig. 5j, k, and Supplementary Fig. S5J). As
in endotoxin-induced immunosuppression (LPS + LPS), ZEB1
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expression by macrophages is also necessary to restrict chronic
inflammation and Metformin was dependent on ZEB1 expression
for its anti-inflammatory role.

In summary, our findings suggest that ZEB1 expression in mac-
rophages is required for limiting both acute and chronic inflammation,
as well as for the anti-inflammatory effects of Metformin in both forms
of inflammation.

ZEB1 inhibits mitochondrial protein translation by restricting
amino acids transport
After showing that ZEB1 regulates the inflammatory and immunosup-
pressive responses of macrophages through inhibiting mitochondrial
translation, we sought to further investigate the underlying molecular
mechanism. Analysis of our RNAseq indicated that Zeb1ΔM macro-
phages expressed higher levels of gene signatures associated with
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mitochondrial tRNA aminoacylation and tRNA modification (Supple-
mentary Fig. S6A). The methylthiotransferase Cdk5rap1 catalyzes 2-
methyl-2-thio (ms2) modifications of several mt-tRNAs and its defi-
ciency hampers mitochondrial protein synthesis and OxPhos activity
and increases ROS production53. LPS treatment resulted in the down-
regulation of Cdk5rap1 expression in Zeb1WT macrophages but not in
Zeb1ΔM macrophages (Supplementary Fig. S6B). In contrast, ms2 tRNA
modifications were reduced in Zeb1ΔM macrophages after one dose of
LPS but increased after two doses of LPS (Supplementary Fig. S6C).
Given its opposing effects on the regulation of Cdk5rap1 expression
and ms2 tRNA modifications, we concluded that ZEB1 inhibits mito-
chondrial protein translation through mechanisms independent of
these processes.

Both cytoplasmic and mitochondrial protein translation, as well
as autophagy, are regulated by mTOR, which is activated by the
uptake and metabolism of amino acids54,55. Analysis of our RNAseq
revealed that when Zeb1WT macrophages were pre-treated with
Metformin (MET+ LPS) or exposed to a previous dose of LPS (LPS +
LPS), there was a decrease in the expression of GSEA annotations
associated with amino acid transport (Fig. 6a). Furthermore, Zeb1WT

macrophages in the LPS + LPS condition exhibited reduced levels of an
amino acid transport signature compared to Zeb1ΔM macrophages
(Supplementary Fig. S6D). The L-type bidirectional amino acid trans-
porter SLC7A8/LAT2 is required for the uptake of glutamine and
branched-chain amino acids (BCAA), which are critical for the activation
of mTORC1 signaling56,57. Treatment of Zeb1WT macrophages with Met-
formin + LPS and LPS + LPS led to a decrease in the mRNA and protein
levels of SLC7A8 compared to LPS treatment, whereas this effect was
not observed in Zeb1ΔM macrophages (Fig. 6b, c, Supplementary
Fig. S6E). In line with the upregulation of SLC7A8 during LPS, we
observed that Zeb1WT macrophages but not Zeb1ΔM macrophages dis-
played higher glucose and glutamine consumption specifically in the
LPS condition (Fig. 6d, e). We then aimed to explore the potential
alterations in intracellular levels and consumption of BCAAs as well as
glutamine and its derived amino acid glutamate in inflammatory mac-
rophages. We observed that, similar to glucose and glutamine, a single
dose of LPS resulted in increased levels of BCAAs in Zeb1WT macro-
phages, but not in Zeb1ΔM macrophages (Fig. 6f). Conversely, BCAAs
levels were comparable between Zeb1WT and Zeb1ΔM macrophages
treated with Metformin + LPS and LPS + LPS. Furthermore, we found a
reduction in the intracellular levels of glutamate in LPS-treated Zeb1ΔM

macrophages compared to their Zeb1WT counterparts. Of note, no sig-
nificant difference was observed in intracellular glutamine levels
between LPS-treated Zeb1ΔM and Zeb1WT macrophages, suggesting that
glutamine may have already been metabolized to glutamate at the
analyzed time point (Fig. 6g).

We hypothesized that if ZEB1 inhibits mitochondrial translation by
downregulating SLC7A8 expression, restricting glutamine availability
would alleviate this effect. To test this, we treated Zeb1WT and Zeb1ΔM

macrophages with LPS or LPS + LPS in the presence or absence of glu-
tamine. In the absence of glutamine, there was a decrease in MTG
staining in both genotypes and across all treatments. Consequently, the
decrease in mitochondrial content observed in Zeb1WT macrophages
treated with LPS + LPS compared to Zeb1ΔM macrophages, which was
observed in the presence of glutamine, was prevented in the glutamine-
free condition (Supplementary Fig. S6F). These results suggest that
ZEB1 plays a role in restricting amino acid consumption, which is
essential for mTORC1 activation and mitochondrial translation.

We also assessed mitochondrial DNA (mtDNA) copy number
(MDCN) in Zeb1WT and Zeb1ΔM macrophages under our different
experimental conditions and in the presence or absence of glutamine.
In the presence of glutamine and compared to a single dose of LPS,
pre-treatment with Metformin (Metformin + LPS) or treatment with
LPS + LPS reduced MDCN in Zeb1WT macrophages but not in Zeb1ΔM

macrophages (Fig. 6h). However, in the absence of glutamine, MDCN
was comparablebetween LPS-treated Zeb1WT and Zeb1ΔMmacrophages.
Additionally, the treatments of Metformin + LPS or LPS + LPS did not
alterMDCN in either Zeb1WT and Zeb1ΔMmacrophages compared to LPS
treatment. Taken together, the abovedata suggest that in the presence
of glutamine, treatmentwithMetformin or LPSbefore adding a second
dose of LPS (Metformin + LPS or LPS + LPS) results in a reduction in
mitochondrial content andMDCN in LPS-treated Zeb1WTmacrophages,
but not in Zeb1ΔM macrophages. Based on these findings, two conclu-
sions can be drawn: (1) MDCN in inflammation (LPS) is dependent on
the availability of glutamine, and (2) glutamine levels in immunosup-
pressed (LPS + LPS as well as Metformin + LPS) macrophages are
regulated by ZEB1 expression.

ZEB1 inhibitsmTORC1/p70S6K signaling in immunosuppression
mTORC1 serves as an energy sensor with pleiotropic functions,
including the regulation of nuclear DNA-encoded mitochondrial pro-
tein translation44. Activation of mTORC1 is primarily driven by growth
factors and nutrient availability, particularly amino acids56,57. Regula-
tion of protein synthesis by mTORC1 is mediated through its phos-
phorylation and activation of p70 ribosomal protein S6 kinase
(p70S6K, encoded by Rps6kb1)44. Given the inhibitory effect of Met-
formin on mTORC1 signaling58, we aimed to investigate whether the
mechanism by which ZEB1 regulates immunosuppression and med-
iates the anti-inflammatory effects of Metformin is through the
reduction of amino acid uptake and metabolism, leading to the
downregulation of mTORC1.

Compared to Zeb1WT and Zeb1ΔM macrophages treated with a sin-
gle dose of LPS,Metformin pre-treatment (MET + LPS) or a subsequent
dose of LPS (LPS + LPS) resulted in reduced P-p70S6K levels in Zeb1WT

macrophages, but not in Zeb1ΔM macrophages (Fig. 6i and Supple-
mentary Fig. S6G). By examining the levels of phosphorylated p70S6K
(P-p70S6K), IL6, and SLC7A8 in PBMCs from healthy controls, septic
patients at 0 h (immunogenic), and septic patients at 72 h

Fig. 4 | ZEB1 mediates Metformin’s immunosuppression-mimicking effect by
reducing mitochondrial content and ROS levels. a GSEA plots for “Superoxide
metabolic process” signature comparing macrophages from Zeb1WT and Zeb1ΔM

mice subjected to the indicated treatments.b Zeb1WT and Zeb1ΔMmicewere injected
i.p. with PBS, LPS, Metformin + LPS, or LPS + LPS and ROS production was assessed
by FACS for CH2-DCFDA staining in F4/80+ cells. A representative plot of 6–15mice
per genotype and condition in four independent experiments. CH2-DCFDA MFI in
macrophages (n = 7,3,13,15,12,13,4,5 mice). c As in (b), macrophages were assessed
for MTG staining (n = 7,7,13,13,9,10,6,7 mice). d As in (b), macrophages were
assessed for TMRM (n = 9,6,15,14,11,11,6,8 mice). e At the indicated time, human
CD14+ PBMCs from a healthy donor and septic patients were assessed forMTG and
TMRM staining. Representative FACS plots (n = 5 individuals per condition) and
MFI quantification. fA representative blot of at least four independent experiments
to assess MT-CO1 and P-p65 in human macrophages treated as indicated.
g Quantification of MT-CO1 (n = 5,4,5,5,5) and P-P65 expression relative to GAPDH

(n = 5,4,4,4,5) in all experiments for (f). h GSEA plot for “Positive regulation of
mitochondrial translation” annotation comparing macrophages from LPS-treated
Zeb1WT and Zeb1ΔM mice. i Mitochondrial translation in macrophages from Zeb1WT

and Zeb1ΔM mice either untreated or treated with LPS or LPS + LPS was assessed by
FACS for L-HPG with Alexa Fluor® 647 picolyl azide. Representative plots of n = 7
independent experiments. Quantification analysis of all experiments. j CH2-DCFDA
staining of macrophages from Zeb1WT and Zeb1ΔM mice treated with LPS or dox-
ycycline + LPS. The FACS plots shown are representative of a total of 4–5 mice per
genotype and condition assessed in two independent experiments. k Il6mRNA in
macrophages from Zeb1WT and Zeb1ΔM mice either untreated or treated with LPS or
doxycycline + LPS. Average of 5–6 mice for each genotype assessed in two inde-
pendent experiments (n = 4,5,5,5,6,7). Graph bars in Fig. 4 represent mean values
+/− SEMwith two-tailed unpairedMann–Whitney test. p ≤0.001 (***), p ≤0.01 (**) or
p ≤0.05 (*) levels, or non-significant (ns) for values of p >0.05. Raw data along p
values for statistical analyses are included in the Source Data file.
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(immunosuppressed), we observed decreased levels of all three in the
PBMCs of sepsis 72 h, indicating an immunosuppressive state (Fig. 6j
and Supplementary Fig. S6H and S6I). In contrast to the down-
regulationofMT-CO1 inPBMCs fromseptic patients at 72 h, the PBMCs

from PsA patients exhibited an upregulation of MT-CO1 (Supplemen-
tary Fig. S6H). Additionally, PBMCs from septic patients at 72 h showed
reduced mitochondrial respiratory capacity compared to healthy
donors (Supplementary Fig. S6J). Collectively, these results suggest
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that ZEB1 expression is required for immunosuppression and Metfor-
min’s inhibition of mTORC1.

ZEB1 expression in inflammatory PBMCs from septic and PsA
patients is associatedwithdifferential expression of glucose and
amino acid transporters
Next, we examined whether the expression of ZEB1 in PBMCs from
healthy controls, septic patients at 0 h and 72 h, and PsA patients

correlated with the expression of several markers in our sepsis and
psoriasis mouse models. In septic patients, the expression levels of
ZEB1 were higher in PBMCs at 72 h compared to PBMCs at 0 h. On the
other hand, in PBMCs from PsA patients, ZEB1 expression was lower
when compared to PBMCs from healthy donors (Fig. 6k). The PBMCs
from septic patients at 0 h exhibited higher expression of SQSTM1 and
reduced expression of IL4 compared to the PBMCs from the same
patients at 72 h (Fig. 6l). In contrast, and compared to PBMCs from
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healthy donors, the PBMCs from PsA patients showed lower expres-
sion of SQSTM1 and IL4 but higher of IL6 (Fig. 6l).

A reverse pattern of expression was observed for glucose trans-
porter SLC2A1 and amino acid transporter SLC7A8 between septic and
PsA patients. PBMCs from septic patients at 0 h exhibited lower levels
of SLC2A1 and higher levels of SLC7A8 compared to PBMCs from septic
patients at 72 h (Fig. 6l). Additionally, PBMCs from PsA patients
exhibited lower levels of SLC2A1 and higher levels of SLC7A8 compared
to PBMCs from healthy donors (Fig. 6l).

Psoriatic human skin exhibited upregulation of both MT-CO1 and
P-p65 compared to healthy donor skin (Supplementary Fig. S6K).
Consistent with these findings, analysis of the published array
GSE5738359 revealed a similar reverse pattern of expression for ZEB1,
SLC2A1, and SLC7A8 in the myeloid CD14+ PBMCs of healthy donors
and PsA patients (Supplementary Fig. S6L). Taken together, these
findings support a model where ZEB1 modulates the inflammatory
phenotype of human PBMCs in sepsis and psoriatic disease through
amino acid efflux-dependent regulation of mitochondrial translation.

Finally, we investigated the association of ZEB1 expression with
sepsis outcomes by analyzing a published array (GSE48080) of
patients with sepsis caused by community-acquired pneumonia60. The
PBMCs frompatients who eventually did not survive have higher levels
ofZEB1 andTNF, and lower levels of IL4 at the timeof diagnosis (day 0),
compared to PBMCs from survivor patients (Supplementary Fig. S6M).
Seven days after the diagnosis, the PBMCs from non-survivors still
have higher levels of ZEB1, but they exhibit the opposite pattern of TNF
and IL4 expression compared to day 0 (Supplementary Fig. S6N).
Accordingly, there is a positive correlation between ZEB1 and TNF
expression atday0, but a negative correlation at day7 (Supplementary
Fig. S6N). On the other hand, while there was no correlation between
ZEB1 and IL4 expression at day 0, there was a positive correlation
between the two genes at day 7 (Supplementary Fig. S6N).

Discussion
Dissecting the mechanisms that regulate the resolution of acute
inflammation, the induction of immunosuppression, or the progres-
sion to chronic inflammation is essential for designing therapeutic
approaches to modulate excessive inflammation or restore immune
competence. The present study found that ZEB1 plays a dual role in
macrophages, being required developing an inflammatory phenotype
but also to limit and resolve inflammation by promoting the transition
of macrophages to an immunosuppressive state (schematic in Fig. 7).
ZEB1 expression in macrophages was also required for the anti-
inflammatory and ROS-inhibiting effect of Metformin in both an
endotoxin-inducedmodel of acute inflammation aswell as in a chronic
inflammation model such as psoriasis. We showed that the repro-
gramming of both human and mouse macrophages from an inflam-
matory state to an immunosuppressive state is driven by autophagy

and a decrease in mitochondrial translation, which are dependent on
their expression of ZEB1. During the acute inflammatory response,
ZEB1 promotes glucose and amino acid consumption and upregulates
pro-inflammatory and glycolytic genes. Simultaneously, ZEB1 induces
autophagy to eliminate damaged mitochondria, and other organelles,
thereby preventing excessive inflammation that could lead to cell and
tissue damage or contribute to the development of chronic inflam-
mation. Conversely, in an immunosuppressed state, ZEB1 enhances
lactate production and the expression of anti-inflammatory genes,
while inhibiting amino acid uptake.

Inflammation is a protective response to infection, stress, and
injury4. However, when it becomes dysregulated, it can result in tissue
damage, systemic disease, and even death. On the other hand, immune
tolerance serves as a self-regulatory mechanism to safeguard the
organism against the detrimental effects of excessive inflammation.
Nevertheless, a prolonged immunoparalysis renders the organism
incapable of responding to subsequent antigenic challenges. Therefore,
the timing and extent of the inflammatory and immunosuppressive
responses must be tightly regulated. Here, we found that ZEB1, a reg-
ulator of cell plasticity in cancer stem cells, exhibits contrasting roles in
inflammation and immunosuppression. This duality makes ZEB1 a par-
ticularly suitable factor for regulating macrophage plasticity during
both the inflammatory response and its subsequent resolution. Beyond
macrophages, ZEB1 plays important functions in other immune cells; it
modulates early B cell differentiation and is critical for themaintenance
of memory CD8+ T cells (61,62, and reviewed in63).

Metformin has been tested in preclinical models of several
chronic inflammatory autoimmune diseases15. It plays pleiotropic roles
in immunometabolism, exerting these functions through multiple
mechanisms, including inhibiting ETC-CI, activating AMPK, and inhi-
biting the NRPL3 inflammasome11,16,17,21,22. Our results indicate that ZEB1
expression in macrophages is required for the in vivo anti-
inflammatory effects of Metformin in response to LPS and in a
mouse model of psoriasis. Analysis of our RNAseq of macrophages
from Zeb1WT and Zeb1ΔM mice treated with Metformin + LPS evidenced
that ZEB1-regulated DEGs include genes/pathways involved in anti-
oxidant response, mitochondrial function and amino acid transpor-
ters. mTORC1 acts as an energy sensor and plays key functions in cell
metabolism and proliferation being activated by growth factors and
amino acids (reviewed in64). In this study, it was found that ZEB1 inhi-
bits amino acid transport in response to a secondary inflammatory
stimulus, thereby reducing mTORC1 signaling and potentially med-
iating the known inhibitory effect of Metformin onmTORC1 signaling.
Interestingly, mTORC1 inhibits EMT and ZEB1 expression in cancer
cells65, suggesting the existence of a loop between mTORC1 and ZEB1,
which may regulate cell growth and inflammation.

We found that Metformin reduced mitochondrial content, ΔΨm,
and ROS production in LPS-treated Zeb1WT macrophages to the same

Fig. 6 | ZEB1 inhibits mitochondrial protein translation by restricting amino
acid transport. a GSEA plot “Amino acid transport” signature in Zeb1WT macro-
phages under the indicated treatments. b Slc7a8mRNA in macrophages from
Zeb1WT and Zeb1ΔM mice subjected to the indicated treatments. Average of 4–10
mice per genotype and condition in three independent experiments
(n = 8,8,7,8,4,5,7,5). c Representative blot of five independent experiments for
SLC7A8 and GAPDH in peritoneal macrophages under the indicated treatments.
Quantification of SLC7A8 relative to GAPDH (n = 5).dGlucose uptake by peritoneal
macrophages from Zeb1WT and Zeb1ΔM treated as indicated and assessed 4 h after
the last LPS dose (n = 5). e As in (d), but for glutamine uptake (n = 4). f As in (d), but
for intracellular BCAAs in cell lysates 4 h after the last LPS dose (n = 6). g As in (f),
but for intracellular glutamine (n = 7) and glutamate (n = 8) levels corrected by cell
protein levels. h Relative mtDNA copy number in macrophages from Zeb1WT and
Zeb1ΔM mice treated as indicated and cultured with (left panel) or without (right
panel) glutamine in the medium (n = 5). iWestern blots for p70S6K, P-P70S6K, and
GAPDH in Zeb1WT and Zeb1ΔM peritoneal macrophages treated as indicated. A

representative blot and quantification of P-p70s6k normalized to p70s6k (n = 4).
(j) Western blots for for P-p70s6k, P70S6K, IL6, SLC7A8, and GAPDH in PBMCs of
three healthy donors and three septic patients at 0 and 72 h. Representative blot of
two independent experiments, with 2-3 patients per condition. Quantification of
P-p70s6k protein levels normalized to p70s6k (n = 6), as well as IL6 (n = 7) and
SLC7A8 (n = 5) normalized to GAPDH. k ZEB1mRNA in PBMCs from septic patients
at 0 h (n = 11) and 72 h (n = 10), healthy donors (n = 10), and PsA patients (n = 8). l As
in (k), but for SQSTM1 in septic patients (n = 9,5) and Healthy/PsA (n = 6), IL4 in
septic patients (n = 12,10) and Healthy/PsA (n = 10,9), IL6 in septic patients (n = 8,4)
andHealthy/PsA (n = 4,7),SLC2A1 in septic patients (n = 11) andHealthy/PsA (n = 10),
and SLC7A8 in septic patients (n = 9,11) and Healthy/PsA (n = 8). Graph bars in Fig. 6
represent mean values +/− SEM with two-tailed unpaired Mann–Whitney test.
p ≤0.001 (***), p ≤0.01 (**) or p ≤0.05 (*) levels, or non-significant (ns) for values of
p >0.05. Raw data along p values for statistical analyses are included in the Source
Data file.
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levels as those observed in LPS + LPS macrophages. Although the
mechanism by which ZEB1 mediates the effect of Metformin to pro-
mote an immunosuppressive status in macrophages remains to be
elucidated, Metformin inhibits mTORC1, whose genetic and pharma-
cological ablation upregulates ZEB1 in cancer cells5,58,59,66. We found
that relative to LPS, treatment ofmousemacrophages with Metformin
+ LPS or LPS + LPS reduced the phosphorylation of p70S6K as in the
immunosuppressed PBMC of septic patients. ZEB1 suppressed
mTORC1 activation by inhibiting amino acid transport, which resulted
in reduced mitochondrial translation and ROS production, as well as
lower inflammatory cytokine production. Interestingly, we found that
the role of ZEB1 mediating the anti-inflammatory and ROS-inhibiting
effects of Metformin were independent of Metformin’s ability to
increase glucose uptake. Our results suggest that Metformin is
dependent on ZEB1 for the regulation of amino acid transport. How-
ever, we can not rule out that ZEB1 may also be involved in other
pathways contributing to the anti-inflammatory effects of Metformin,
such as autophagy or AMPK signaling.

In contrast to its pro-inflammatory effects in sepsis, ZEB1 had a
protective anti-inflammatory role in psoriasis. Its expression was
downregulated in the psoriatic disease macrophages. The anti-
inflammatory role of Metformin in the IMQ model also depended on

the expression of ZEB1. Inhibition of mitochondrial mRNA translation
by tetracycline family antibiotics inhibits LPS-induced production of
inflammatory cytokines bymacrophages and ameliorates lung and liver
damage in endotoxin-induced systemic inflammation11. Although the
mechanism by which the inhibition of mitochondrial translation ame-
liorates inflammation is not known, it is likely to involve alterations in
the mitochondrial electron transport chain and ROS production. It has
been reported that Metformin, by blocking mitochondrial complex I,
increases the levels of lactate,which in turnpromotes anti-inflammation
through lactylation of histones in anti-inflammatory genes.17,20. We
found here that lactate and the inhibition of mitochondrial translation
with doxycycline reverted ROS production and the inflammatory
effects of imiquimod. Therefore, we propose a model in which ZEB1
triggers and self-limits the inflammatory responses of macrophages by
modulating their metabolism. ZEB1 expression in macrophages
increases lactate levels, triggering a homeostatic response through
histone lactylation in anti-inflammatory and reparative genes. Addi-
tionally, both ZEB1 and metformin reduce macrophage amino acid
levels and consumption, thereby inhibiting mTORC1 activity, essential
for mitochondrial translation.

Overall, our results uncovered a mechanism regulating the
inflammatory and tolerogenic responses ofmacrophages and set ZEB1
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as a potential target in acute and chronic inflammation to prevent
hyperinflammation and immunoparalysis.

Methods
Human samples
The use of human samples in this study was approved by the local
Ethics Research Committee under protocols HCB/2017/0767,
HCB/2019/1012, HCB/2020/0100, had the informed consent of
patients and conformed with the principles of the Helsinki
Declaration. Skin samples from psoriatic and melanoma patients,
synovial membranes from psoriatic arthritis and osteoarthritis
patients, and peripheral blood from healthy donors, septic
patients, and patients with psoriatic arthritis were obtained as
detailed in Supplementary Methods.

Mouse models and isolation of mouse macrophages
The use of mice in this work followed the guidelines established by the
Animal Experimental Committee at the University of Barcelona School
of Medicine (Barcelona, Spain) and by the Generalitat de Catalonia that
reviewed and approved under references 396/18 and 133/19 and 1041,
respectively. The Zeb1fl/fl mouse (herein referred to as Zeb1WT) was
generated by CRISPR as detailed in Supplementary Methods. The
Zeb1WT mouse was then crossed with a mouse carrying the Cre recom-
binase selectively in myeloid cells under the control of the endogenous
lysozyme 2 (Lyz2, also referred as LysM) promoter/enhancer (official
name: B6.129P2-Lyz2tm1(cre)Ifo/J), (The Jackson Labs, Bar Harbor, ME, USA),
to generate the myeloid conditional Zeb1 knockout (Zeb1fl/fl/LysMCre,
referred in the manuscript as Zeb1ΔM) mice. The mice were housed in a
temperature-controlled barrier room maintained at 21-22 °C with a 12-
hour light/dark cycle. They were provided with standard rodent chow
(RM1-P, SDS, Dietex, Argenteuil, France) and had access to water ad
libitum. All mice were euthanized by cervical dislocation. The setting of
the LPS- and imiquimod-induced models of sepsis, and psoriasis,
respectively, as well as the isolation of macrophages, are detailed in the
Supplementary Information.

Determination of mRNA expression and tRNA modifications,
and RNA sequencing
mRNA expression and analyses of tRNA modifications were deter-
mined by quantitative real-time PCR (qRT-PCR) as described in Sup-
plementary Methods. RNA sequencing was conducted as described in
Supplementary Methods.

Determination of protein expression by FACS, Western blot,
and ELISA
Determination of cell surface and intracellular protein expression by
FACS and Western blot and of cytokines/chemokines by an enzyme-
linked immunosorbent assay or using a beads-based multiplex array
are detailed in Supplementary Methods.

Determination of lactate and amino acids
The intracellular levels of glutamine, glutamate and BCAAs and the
uptake of glucose and glutamine were assessed as detailed in Sup-
plementary Methods.

Assessment ofmitochondrial content, ROS andATPproduction,
mitochondrial membrane potential, lysosome/mitophagy,
mitochondrial protein translation, and mtDNA copy number
These parameters were assessed in vitro and/or in vivo as detailed in
Supplementary Methods.

Immunostaining and electron transmission microscopy
Immunostaining and morphological analysis of macrophages by
optical and electron transmission microscopy were conducted as in
Supplementary Methods.

Extracellular flux and high-resolution respirometry
Analyses of oxygen consumption and extracellular acidification were
assessed in a Seahorse XFe96 Extracellular Flux Analyzer. High-
resolution respirometry was carried out in an Oroboros Oxygraph-
2k. See Supplementary Methods for details.

Statistics and reproducibility
All replicates in this study are biologically independent human
samples, mice, and peritoneal macrophages. No prior sample size
calculation was performed and sample sizes in the experiments were
set based on our previous experience and similar studies in the lit-
erature. All experimental results were included in the figures,
encompassing all data points without any selection or exclusion.
Each experiment was independently repeated at least twice with
similar results. Blinding was not technically feasible in this study
because transgenic mice were cohoused, and therefore, they had to
be marked for identification. For all in vivo experiments, after being
genotyped, age- and sex-matched mice were distributed in roughly
equal numbers to the different treatments. To minimize cage effects,
mice of different genotypes and under different treatment condi-
tions were housed together in mixed cages. For in vitro experiments,
macrophages from age- and sex-matched mice of each genotype
were isolated and randomly assigned to either treatment or control
groups. The RNAseq was performed at an external facility and staff
were blinded to the genotype or treatment condition of the samples,
which were identified by a code. Most data collected and analyzed in
the study were quantitative in nature rather than qualitative in nat-
ure. Except for RNA-seq experiments, statistical analysis of the data
was conducted using Prism for Mac 9.3.1 (GraphPad Software, La
Jolla, California). Bar graphs throughout the manuscript represent
the mean with standard errors in which the statistical significance
was assessed with a non-parametric Mann-Whitney U test. Survival
curves in Kaplan Meier plots were compared by the Log-rank (Man-
tel-Cox) test. Where appropriate, relevant comparisons were labeled
as either significant at the p ≤0.001 (***), p ≤0.01 (**) or p ≤0.05 (*)
levels, or non-significant for values of p > 0.05, and with specified
numerical values for 0.05 < p < 0.075. All raw data along p values for
statistical analyses are included in the Source Data file.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq data have been uploaded to the Gene Expression Omni-
bus (GEO) database and assigned accession number GSE207328. All
relevant data are available in the Source data file, which is provided
with this article.
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