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ESTIMATION OF THE LIFETIME DISTRIBUTION FROM
FLUCTUATIONS IN BELLMAN-HARRIS PROCESSES

Jules Olayé!, Hala Bouzidi?, Andrey Aristov®*, Salomé Gutiérrez Ramos®*,

Charles Baroud®*, Vincent Bansaye!

ABSTRACT. The growth of a population is often modeled as branching process where each
individual at the end of its life is replaced by a certain number of offspring. An example
of these branching models is the Bellman-Harris process, where the lifetime of individuals
is assumed to be independent and identically distributed. Here, we are interested in the
estimation of the parameters of the Bellman-Harris model, motivated by the estimation of
cell division time. Lifetimes are distributed according a Gamma distribution and we follow
a population that starts from a small number of individuals by performing time-resolved
measurements of the population size. The exponential growth of the population size at
the beginning offers an easy estimation of the mean of the lifetime. Going farther and
describing lifetime variability is a challenging task however, due to the complexity of the
fluctuations of non-Markovian branching processes. Using fine and recent results on these
fluctuations [21], we describe two time-asymptotic regimes and explain how to estimate
the parameters. Then, we both consider simulations and biological data to validate and
discuss our method. The results described here provide a method to determine single-cell
parameters from time-resolved measurements of populations without the need to track
each individual or to know the details of the initial condition.

Keywords: Bellman-Harris process, asymptotic fluctuations, estimation, inverse problem, cell
division

1. INTRODUCTION

Branching processes are widely used for modeling populations where individuals may
reproduce or die, and evolve independently. The simplest Markovian branching process
is the Galton-Watson process. In continuous time, each individual lives during an expo-
nential time and is then replaced by a random number of offspring. This model and its
extensions have been used and applied in population dynamics and evolution [17, 19, 23,
26], epidemiology [8, 12], queuing systems like polling [29], nuclear physics [15] etc. The
exponential distribution of lifetimes corresponds to a memory less property and absence
of aging of individuals.

For many models and issues in life sciences, such a distribution is not relevant and does
not fit with data and observations. For instance, the time for cell division rather looks
like an unimodal distribution, more or less concentrated around its mean, see e.g. [11,
27, 28] and references therein. The variability of lifespan can be attributed to different
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sources. Various models have been considered to describe it, including a trait driving the
division (the time from birth, the size, the increment of size from birth) or taking into
account environmental variability, or individual variability, see e.g. [10, 14, 28]. Similarly,
in epidemiology, the time of infection for an individual is not considered exponentially
distributed [25]; rather, it is more accurately described by an unimodal time with a varying
transmission rate. Another limitation of exponential law is that the value of the mean
characterizes the full distribution and thus forces the variance of the distribution and the
pattern of the variability.

Diverse extensions of the Galton-Watson process in continuous time enable to go beyond
the exponential lifetimes and consider an age structure. In the Bellman-Harris process,
the individuals live during independent random times that follow a common but general
distribution. We are interested in inferring this distribution. In biology or ecology or
epidemiology, many data (experimental data or observations in wild life) consist of mea-
suring the total population size along time, with no access to the values of the lifespan
between two counts. However, up to our knowledge, the estimation of the parameters of
the lifetime distribution from such population-level monitoring has not attracted a lot of
attention so far.

Our work aims at proposing efficient method for estimation of the parameters of the
distribution of lifetimes from such data set. Going from the population sizes along a given
time sequence to the growth rate of the population is direct by looking at the line ob-
served from data plotted at the log scale. But going farther and obtaining the variance
and more generally the quantification of variability of the lifespan of individuals is much
more delicate in the non-exponential case. This is due to several reasons we are explaining
in this work. Roughly for now, fluctuations of the population size around its predicted
value can have different and subtle behaviors depending on the time distribution and the
time of observations.

Our motivation for this work and our first application is the estimation of the time for
cell division using microfluidics experiments. Indeed, single cell approaches have emerged
as an important new way to address biological questions, with many formats to produce
data that show heterogeneity of biological processes [30]. We are particularly interested in
experiments based on anchored droplets, where the contents of each microfluidic drop can
be followed in time [1]. These experiments allow to obtain many parallel realizations of the
growth of cell population starting from a small number of cells [10]. We want to exploit
such data to infer the variability of cell division time, using Bellman-Harris processes as
a simple statistical framework to model individual variability without heredity, or with
negligible heredity.

We choose here to focus on inference of the two parameters of Gamma lifetime distribu-
tion, with binary division. Indeed, Gamma distribution provides a convenient unimodal
two parameters family which allows to cover realistic lifetime distribution. It is also a rare
case among non-exponential laws which yields some explicit and useful computations. As
we will see, fluctuations have a complex behavior, which is a general phenomenon for
branching processes. It can be fully described here, thanks in particular to recent results
on fluctuations of Crump-Mode-Jagers processes [21]. This result can be seen as a start-
ing point for more complex explorations to link the fluctuations at the level of population
to the individual variability. In particular, in Section 6.3, we deal with extension of the



results to more general lifetimes and non-binary reproduction events.

Let us be more explicit now on the setting and the results. We consider two positive real
numbers k£ > 1,6 > 0. The process starts from one single individual and each individual
lives, independently, during a random time distributed as a Gamma distribution I'(k, ).
The density g of this law, denoted g for short, is defined on R by

t
7fk:—l -3

aralt) = 9(0) = e

where T'(z) = [;° s" ‘e *ds is the Gamma function. We denote by (V;);>o the number
of individuals at time ¢ and the observed quantity is the number of individuals (IVy,)i=1.
for a given sequence of times (t;);=1.,. Our objective is to determine the two unknown
values k, 0 as precisely as possible. It is equivalent to determine the mean p and variance

o2 of the lifetime. For a T'(k,0) law, they are explicitly given by
= ko, o? = k6.

Equivalently, we choose to infer the pair (i, 0/u) = (k#,1/vk) gathering the mean and
coefficient of variation. Classically, in such setting, a first information comes from the
observed Malthusian growth. Indeed, for Bellman-Harris processes under some general
conditions [20, Theorem 17.1 and 21.1],

(1) E(N;) ~ nie™, Ny ~ E(NY)W ~ nie*W as.,
t—00 t—o0 t—o00

where ny,a > 0 and W is a non-negative finite random variable. Besides, for I'(k,0)
lifetime, « is explicitly known in function of k,6. Plotting the number of individuals
observed at the log scale provides then the following first estimation
log( NV, 1 /.1
0g(Nt) <2E _ 1)

- — _
t t—)ooa 0

a.s..

With real data of biological growth, a “nice” line may indeed be observed during some
suitable time window, namely after the biological lag phase and before the cell number
approaches the carrying capacity of the droplet [10]. As such, this time window must avoid
the early times for which the biological processes are not yet stationary. It also stops at
large times when the independence and branching property fails due to competition.

The challenge is then to extract additional pertinent information from the data and
to capture the two parameters (k,0). We assume that we have many observations of
the process, i.e. many realizations of the Bellman-Harris process and the values of the
population size at different times. One may thus consider variance [27] of the number of
individuals. For Gamma distribution,

(2) lim Var(Ni)

t—o0 E[Nt]Q
where the function ¢ is explicit. This gives a theoretical way to conclude for estimation,
and we refer to Section 6.2 for details.

However, various limitations exist for such an approach in practical applications. In par-
ticular, the microfluidic data involve several sources of variability that are not accounted
for in this description [10]. First, the initial distribution of number of cells per droplet is
not generally known exactly. Instead, it is usually assumed that cells distribute according

= q(o/p),
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to a Poisson process, which leads to a distribution of number of cells initially. Second, as
already mentioned, the initial divisions of the bacteria may happen with a different rate
than the steady-state process, due to the cells adapting their biological mechanisms to the
new environment. Taken together, these new sources of randomness play a strong role on
the evolution of the cell number in the droplets, since they take place at the early stages
of the exponential process [27].

Indeed, Var(1V;) is very sensible to the initial number of individuals and the first steps of
the process, i.e. the first lifespans in Bellman Harris process. We are thus bound to forget
a first time period of the trajectories of the Bellman-Harris process. We need estimators
after this time, which are the most sensible as possible to the parameters, and in particular
to the variance o2 or the coefficient of variation o/u. We also want to exploit our data
set with successive observations as best as possible. Consequently, we need to use an
alternative quantity. Whatever the initial condition of Bellman-Harris, the ratio Nyys/N;
converges almost surely to exp(da) as ¢ tends to infinity. This leads us to consider the
asymptotic fluctuations

1) da
Rt = Nygs — € Ny,

where « is the Malthusian growth and has been estimated in the first step. Our issue is
now to relate the “observed” distribution of R? for large t to the parameters (k, §) we want
to determine. This link is delicate. One may expect that the order of magnitude of R? is
V/N; = O(exp(ta/2)). This regime corresponds to the classical Gaussian fluctuations in
central limit teorem and the fact that for large time, the age of individuals can be seen
as independent and picked according to the limiting age distribution. It indeed happens,
but only when 2 cos(27/k) < 27/F 4 1. In that case, we prove the following convergence
in law as t tends to infinity

R .
Er——
v Ny t—+00

where N is a Gaussian law and an expression of its variance o2 can be found in Section 2.
When 2 cos(27/k) > 27%/% + 1, the order of magnitude of R? is larger. Indeed, in that
case, the speed of convergence of the age profile among the population is too slow. This
convergence is quantified by the spectral gap o — A, i.e. the gap between the first and
second eigenvalue of the mean operator, see Section 2. Indeed, 2 cos(27/k) > 27k + 1 is
equivalent to A > «/2, so the speed of convergence o — A is smaller than the fluctuation
coefficient /2. The leading term in R? comes then from the convergence of the age
profile to its limiting distribution. The renormalized process has then asymptotically
deterministic oscillations along time. These oscillations are due to the lack of variability
in division times, implying too much synchronicity in the division times (see Figure 2).
These oscillations involve a non-Gaussian, finite and complex random variable My and the
time step 0:

(3) N(0,073),

R? P
(4) exp(M) — 2| Ms| cos(tt + arg(Msy)) t:m 0,
where
5) \ 2% cos (2?”) -1 o2, L 2% sin (27”)

6
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This classification in two regimes involving the spectral gap is known for multitype pro-
cesses from the works of Athreya [3, 4]. In our study, the key ingredient is the asymptotic
behavior of Y,? = E(N;,s|F:) — €% Ny, where (F;)s>o is the filtration of the process. For
Bellman-Harris processes, in the Gaussian regime, it has been obtained in [22]. We add
then the Gaussian contribution of X? = Ny 5 — E(N.y5|F;), which is at the same or-
der of magnitude and asymptotically independent. This yields the long time behavior of
R? = X? 4+ Y? and the expression of the variance of the limiting Gaussian law o2. For
the oscillating and non-Gaussian regime, we use recent and fine results of [21] to get the
asymptotic behavior of Y;°. The second contribution X7 still behaves with Gaussian fluc-

tuations of order y//V; but is now negligible.

We then exploit these results to infer the value of the parameters (k, #) from the obser-
vations of R?. The initial step is to discern which of the two regimes, (3) or (4), we find
ourselves. This can be achieved by quantifying the order of magnitude of R?. For this
step, one has to be careful to the time parameter J, since |Mj| vanishes for some values
of 9, see Section 3.1. The other difficulty comes from identifiability of the parameters
since in the Gaussian regime, the limiting variance o3 is not injective with respect to the
parameter k. We propose a procedure for the estimation which take into account these
issues. We evaluate our method by using simulations, respectively in Sections 3.2 and 3.3
for the Gaussian regime (3) and the oscillating regime or (4). We recover in any case the
parameters of the lifetime from the population size at given times and study the speed
of convergence. This shows the efficiency of our procedure in our setting. Finally, in
Section 4, we use our approach for inference on two data set. This allows to estimate the
heterogeneity for the cell division time from monitoring at the population level, which is
our original motivation for this work.

2. REGIMES OF ASYMPTOTIC FLUCTUATIONS

To present the different regimes of convergence of the fluctuations, we need to in-
troduce some notations. Recall that k£ € [1,00) and 0 € (0,00) are fixed and g(t) =
t"Lexp(—%) /(D (k)6*) is the density of the Gamma law. We restrict ourselves to the
Gamma distribution with & > 1, because the case where £ < 1 concerns distributions
whose standard deviation is greater than the mean, and is therefore not relevant to our
motivation. We introduce the cumulative distribution function GG, and the Laplace trans-
form Lg related to our distribution,

1

G(a)z/oag(S)dsa Eg(p)z/o wg(U)e"’”du:m,

for respectively @ > 0, and p € C such that Re(p) > —1/0. With an abuse of notation,
for all p € C\{—1/6} such that Re(p) < —1/6, we also denote Lg(p) = 1/(1 + pd)* the
analytic continuation of Lg. Finally, we introduce the stationary age distribution

e (1 —G(a))

pla) = Jo e (1 = G(u))du’

and refer to [5] for the details of the proof. The Bellman-Harris process is defined in-
ductively by starting from an initial number of individuals Ny, € N* and initial ages
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(Ai)i=1..n,- The individuals live during random times, which are independent and dis-
tributed as a Gamma law I'(k,0). At the end of their life, they are replaced by two
individuals with age 0. When we start from one single individual with age a € R, we
denote by E, and Var, the associated expectation and the associated variance. Unless
otherwise specified, we start from one single individual with age 0.

We now give the different regimes of approximations of the fluctuations. The result
holds for a Bellman-Harris process starting from one individual with age 0. Classical
arguments for branching processes enable the extension of the results to more general
initial conditions.

Theorem 1. Consider a Bellman-Harris N where the lifespan of individuals is distributed
as ¢ ~ T(k,0), with k > 1,6 > 0. The following statements hold.

i) If 2 cos (27”) <27F + 1, then for any 6 > 0,
Rf £ 2
TN S V(003

where

7t = [ Var(Nop(@da+ 20 [ Var(jO@)1q(a)
R+

Ry
+ 20 (& — C)l[cﬁoo[(x))e_amdx
and for any x > 0 the functions
iO(x) =B, [Ns] — e, and b (z) = E[N,y5] — eE[N,].
i1) If 2 cos (%’T) =27% + 1, then for any 6 > 0,

i? :£> N(O 0'52)
ViEN; t—+o0 ’ ’
where
a2 (tin)s _ ab|2
2 T «
Os = — 1 e — € .
07 k292 _of } |
iii) If 2cos (%) > 27k + 1, then for any § > 0,
i 2| Ms| cos [Tt 4 arg (M;)] =0
— T r
exp (At) ° SV T
where

M5 — (e(x\+i7’)5 . ea&) M,
and M is a complex random variable that does not depend on §.

This theorem shows that two different regimes may be observed, excluding the very
specific critical behavior. They depend on the value of k and correspond respectively to a
Gaussian regime, with the expected order of magnitude v/N;, and an oscillatory regime.
The threshold value k. between these two regimes is given by

(6) cos (i—”) - % (271 + 1) ,

and is approximately 57.24, as illustrated in Figure 1.
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Recalling that k& = 1/(o/u)?, the threshold k. is equivalent to a coefficient of variation
o/ of approximately 0.1322. The oscillating regime (Theorem 1 i7i)) then corresponds to
a small variability of the lifespan, making the convergence to the age profile slow, while a
large coefficient of variation helps for mixing and leads to the Gaussian regime (Theorem

1 4)). We illustrate this in Figure 2.
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We prove now Theorem 1 by splitting R? in two parts. At each time ¢, we can label the
individuals by ¢ = 1, ..., N; and we denote by Nt"’ s the number of offspring of individual ?
at time ¢ + 0. We introduce

R} = X} +Y/,
where
Ny
X)) = Nips — E(Npss| Fy) = Z (N} s —E(N{ 5|1 F))
i=1
(7) N
Y = E(Nyys|Fr) — € N =D (B(N{5|F) — ).
i=1
The result in [21] applied to a suitable functional would allow to deal directly with R?
but the decomposition R? = X? + Y} is interesting for itself. It yields two asymptotically
independent contributions, which provide a natural expression of the limiting variance.

2.1. Asymptotic behavior of X?. Let us study the asymptotic behavior of (X?)>¢ for
all § > 0. We first remark by (7) that for all t > 0 and J > 0, the quantity X? can be seen
as the sum of NV, variables that are centered and independent conditionally with respect to
F;. Thus, a slight adaptation of the central limit theorem allows to obtain the asymptotic
behavior of (X?);>0. To do so, we need the following upper bounds and regularity for the
moments of Ns.

Lemma 1. For any § > 0, the following statements hold.
1) SUDqe0,00) {Bal N3] + Ea [| N5 — Ea[Ns] P[]} < oo.

ii) The function a — E, [Ns] is continuous.

i) The function a — E, [NZ] is continuous.

Note that ) implies that the first moment and variance of Ns are bounded with respect
to the age a of the root at time 0, for any fixed time 6 > 0. This bound is natural : a
large age accelerates the first reproduction but in any case, we have then two individuals
with age 0.

Proof. Let us first prove i) and let a > 0. We consider a Bellman-Harris process (Ny)i>o
starting from one single individual with age a. Then, the first time of division is the
Gamma law with parameters (k, ) conditioned to be larger than a and its density is
gla+ x)/(1 — G(a)) for x > 0. Using an integral equation ([20, Theo. 15.1] or [16,
Eq. 7.1]), we obtain

1—-G(a+9) 0 gla+ )

8 p— _—— = _— .
(8) BN = 2Us(a) + o where Lia) /0 EolNs- 1L e
Moreover, using [20, Theorem 18.1]), we have

1 2 _
o S — g(a+ x) 1—-G(a+)9)

) B = [ B (W W) e 2O,

where (N § )>t20 and (N EQ))QO are two independent Bellman-Harris processes starting from
an age 0. Then, using the inequality (y+2)? < 2y?+222 for all y, 2 € R, and the increasing
of t — Eo[(N;)?], allows to conclude that

(10) E,[N5] < 4Eo[(N5)*] + 1.



Secondly, as E,[Ns] > 0 and Ns > 0 almost surely, we have
|Ns — Eo[Ns]]* < max (|Eq[Ns]|*, | Ns[?) < |[Ns|* + [Eq[Ns]|* almost surely.

In view of (10), we easily have that |E,[Ns]|® < (4Eq[(Ns)?] + 1)%. Proceeding as when we
obtain (10) allows to obtain that E, [|Ns|?] is bounded by a constant independent from a.
These two statements combined with (10) imply that ¢) is proved.

Now, for ii), as k > 1, one can easily see that ||g||oc < +00. Using (8) and the fact
that G is continuous, we only have to prove that a — I5(a) is continuous to obtain the
continuity of a — E,[N;]. It is easily shown by noticing that

|Eo[Ns—z]9(a + ) 1izepa| < |19]locBo[Ns]1iwep0.a]}
and that the right-hand side is integrable. This proves ii).

The proof of 7ii) is very similar. We use the integral equation (9), and then the following
domination

O @ )2
o | (32, + W) | oo+ ah11acom| < AallaBal 69 et

This completes the proof. O

With this lemma, we are able to obtain the asymptotic behavior of (X?);>o for all § > 0
by adapting the proof of the central limit theorem. Let us do this through the following
proposition.

Proposition 1. For any 6 > 0,

. Xf a.s. U?(ﬁSQ
oo 35) 72 (5.

where 0% 5 = [p+ Vary(Ns) p(a) da.

Proof. Let t > 0,6 > 0 and j € [1, N;]. We denote by Al the age of the individual j at
time t, i.e. the initial age of the process Nt{ s- Besides, we introduce the random variables

N —E[N? | F
t,6 [ t,5’ t] 0_2 VarA{(N(S),

J _
Zt,& - \/ﬁ ) t,j,0
t

and for all s €¢ R

2(r7] \2 2 92 2 9
j isZ] i 5 () j 5016 5 0156
Ajs(s) = €0 — (1 tisZls — ——5 |, Disls) = exp | - ZNZ —1- Q—NZ :

. ) o2
As E [Z]/5|F] = 0 and E [(Z]5)?|F] = xk2, we have for all s € R

2 2
S 0446

'E[eisztj,élf't] — exp (_ 2N,

)' — |B[A](5)|F] — Diy(s)]

< [E[A]5(s)|F]| + [Ds(s)].
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We use now the classical inequalities (see [6, Lemma 10.1.5, p.320], we adapt easily this
lemma for e V) forzr e R,y e Ry, n>1

) n : o \J n+1 oo\ n+1
em_z(”i) < |z| 3 efy_Z( ?'/) < || 3
i (n+1)! = I (n+1)!
to obtain for all s € R
2 2 4_4
isZ) 04,6 ‘3 6} S 045
\E[e b F] exp( W)' <E m] NS
5|3 . , sto} s
- ';E N7, — BN R 7) + St
6N/ ¢

Finally, in view of Lemma 1, we have for all s € R the following inequality

il 5207 ;.5 |53 3
E[e™" 00| F] — exp TN, < —5 sup {Eq [|Ns - Ea[N] %] }
t 6N2 a€0,00)

st ’
+ SN (aes[g}zo {E.[N}] }) .
Moreover, by branching property and (7), we also have
E [exp (z’s X0 ) ‘.7-}1 = ﬁ]E [exp (ist )R] -
\/Nt - t,0 t
Then, using the inequality | [[}_, z; — [Tj_, vl <220, |zj —y;l for p € N¥, (;)1<j<, and

(yj)1<j<p sequences of complex numbers such that for all j € [1,p] |z;],|y;| < 1, and then
using Equation (11), imply that almost surely

X0
E{exp(zsm) ‘.7'}1 ex p( 2NtZVaI"A st)‘

s*Vary (N;) ) '

(11)

(12)

E [exp (isZ] 5) | F:] — exp (

3 o 2
< |8‘ - osup {Eq [|[Ns —Eo[Ns]P]]} + = sup {Ed[Nj]} | -
6N2 a€[0,00) 8N, a€(0,00)

The right-hand side goes to 0 almost surely as t tends to infinity, using Lemma 1 and that
N; tends to infinity. In addition, all the statements of Lemma 1 imply that the function
x +— Var,(Njy) is bounded continuous. Then, by [5, Corollary 3] we have

2 M 2
S a.s. ST 9
_2Nt E VarAj (N(;) t—>—>+oo EO'X 5

The latter combined with (12) through a triangular inequality ends the proof. 0
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One can easily check that this proposition implies

)
Xy = N(O UX(;)

Nyt—r+o0

We keep the convergence of the process conditionally with respect to (F;):>o to be able to
combine the convergence of (X?);>o with the convergence of (Y;°)s>o.

2.2. Asymptotic behavior of Y?. Let us focus now on the asymptotic behavior of
(Y,9);50 for all § > 0. By Equation (7), we see that for all ¢ > 0, § > 0, similar to X7,
the random variable Y;° can be seen as the sum of IV, independent random variables. To
obtain the behavior of (Y,9)>0, we use the result in [21] which deals with more general
processes. Some preliminaries are required to use this result. Let us give these in the
following lemma.

Lemma 2. Let us suppose that k > 1, 0 > 0. Then for any d > 0, the following statements
hold.

i) The function hi(a) = E,[Ns] is continuously differentiable on (0,00), and there exists
Ch, > 0 such that for all a > 0

(13) Wi (a)] < Chy (" 1act + 1) .
it) There exists Cy, > 0 such that for hy(a) = (E, [Ns] — €*®) (1 — G(a)) (a0}, we have
Vhy(a) < Ch,.1ga>0p (1 + min(a, D 4 a),
where V f is defined for any function f by

x):sup{Z\f(xj)—f(l’jﬂH —oo<a:0<x1<...<acn§x,n€N}.
=1

iti) The function hs(a) = e=**((1 — G(a)) — (1 — G(a))?) (E, [Ns] — 6“6)2 is directly Rie-

mann integrable on [0, 00), i.e.

sup  f(y) < +oo, and Z{ sup f — inf f} —0.

n>0 yE(ne,(n+1)e] n>0 (ne,(n+1)e (ne,(n+1)€] e—0

Proof. Let us first prove i). By (8), as G is continuously differentiable, we only have
to prove that a — Is5(a) is continuously differentiable on (0,+00). As ¢'(y)—0 when
y—00, and ¢ is continuous on (0, +00), we have for all n > 0 that supy, ;) |¢'| < +oc.
The continuous differentiability of a +— Is(a) then follows from the following integrable
bound, for a € [n, +00),

|Eo[Ns—2]g'(a+2)1izepan| < sup 9" (y)|Eo[No]Lgzeqo. -

Y€E[n,+00)
Let us prove now (13). By (8), for all @ > 0
9, 01—-G(a+9)
Wa) =221 A S
@) =25 Il + 5o =G

L[ glatz) glatalgla)) — (1=CGla+d)gla) gla+9)
=2 [ ENe (1—G<a> =Gl ) TG 1-Cla)
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Then, using the fact that GG increases, we have for all a > 0

é /
+7) gla+z)g(a)
1, (a)| < 2Eo[N. / gla d
(14) il = 2 ( =G| 1=Gla+a)1-G@)) ™
L o) glatd
1—G(a) 1-G(a+9)
To continue, we need upper bounds for s — 7 _g(ngs) and s — sup,-g ‘{l_(sg(g . First, by
L’Hopital’s rule we have
. 9(a) _ g'(a) , 1
lim — 1Y —— lim (1 .
A TG T A ) T o tesle(a)) =
The latter combined with the fact that g and G are continuous yields
9(s)
15 Sup —————~ < +00.
(15) b 1— G(s)

Second, for all (z,a) € [0,d] x (0,400), we have by using triangular inequality, and the
fact that G increases

glatz)| |k—1glatz)  glat+a)
1-Gla)| |a+21-G(a) (1—-G(a))b
k—1g(a+x) 1 gla+x)
1, k— 1)1y, il IO A
_a+x1—G(1){<1}+(< ){>1}+9)1—G(a—|—a¢)
Using the fact that when & > 2 we have
gla+ ) (a+ )" (1+0)*
—1 <-—— 1 <1
ata U= TT(k)gR U = TT(g)er st
and when 1 < k < 2 we have
g(a+ ) ak—2
—1 < —1
atz OSH = D(g)ek st
we obtain
g'(a+z) k-1 k—2 | k-2
< 149 I,
1-=G(a)| — (1 =GQ))I'(k)o* (( +0)" " +a ) {a<1}

(16)
+ ((k — D11y + %) s;g]é) 1_9(—2)(5)

Then, plugging (15) and (16) in (14) yields (13).

Let us turn to the proof of ). The function hs(a) = (E, [Ns] — €*?) (1 — G(a)) 1{a>0}
is continuously differentiable on (0,400) by i), and with zero derivatives on (—o0,0).
Moreover, we easily have that |ha(07)—ha(0)| = h2(0), and by continuity |ha(0T)—ha(0)| =
0 (see Lemma 1 77)). Therefore, using the expression of the total variation for a piecewise
continuously differentiable function yields for all a € R

0 for a <0
17 Vha(a) =< ) ’
(17) 2(a) {\hg(O)\ + [ [hb(s)|ds,  for a > 0.

For all s > 0, we have using a triangular inequality, and then Lemmas 1 and 2
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|hy(s)] = [ (s)(1 = G(s)) — g(s) (Es [N5] — )|

< G (e 1) + gl (s0p B, () + 7).
y=

Plugging this in (17) yields ).
Finally, by Lemma 1 7), we easily obtain that there exists a constant K > 0 such that
for all a > 0,

hs(a) = e (1 — G(a)) — (1 — G(a))?) (B [Ng] — ) < Ke™o@.

By [2, Prop. 4.1.V, p.154], a — Ke ** is directly Riemann integrable as this is a non-
increasing Lebesgue integrable function. Then, hg is directly Riemann integrable by |2,
Prop. 4.1.1V, p.154], as it is a bounded continuous function (Lemma 1), dominated by
a— Ke . 0J

Thus, we have all the auxiliary statements we need to apply the result in [21]. We now
introduce some notations linked to this article. We use [21] and consider for allt > 0,6 > 0

. Jo ho(z)e P dx
Af:}/;ié_ Z e’ 2 5 prg d W(p)v
pEC\{~1/6}, Jo ™ e &
Lg(p)=3,Re(p)>§

where hy has been defined in Lemma 2, and W (p) is the limit almost surely and in L2
of the martingale (W;(p))i>0 defined in [21, Eq. 2.17]. We do not explicit the latter as
this requires introducing too many notations. For all § > 0, we can obtain the asymptotic
behavior of (A?)yo by using [21, Theorem 2.8]. This theorem gives the ergodic behavior
for (A?)¢>0, as the cost of a renormalization that is different according to the fact that
the set {p € C\{—1/0} : Lg(p) = 1/2,Re(p) = a/2} is empty or not. The second case
corresponds in fact to a critical case, when the spectral gap o — A = 5. Let us give the
asymptotic behavior of (A?);sq for all § > 0 in the following proposition.

Proposition 2. Let 6 > 0. Then there exists 03,5 such that

1 |W
tbefozt/2A;S (1,\/—W) t—:>+>oo N 0 UY(S < \/_>

where N'(0,0%5) is a centered Gaussian random variable with variance o35 independent

of W, B=2 [ ug(u)e *du, and
) {o if {p € C\{=1/6} : Lg(p) = 1/2, Relp) = f2} = 2,
1/2,

otherwise.

Proof. Let 6 > 0. Bellman-Harris processes are a special class of Crump-Mode-Jagers
processes where the reproduction happens only at the end of the life of each individual.
We can thus apply Theorem 2.8 in [21], which deals with Crump-Mode-Jagers processes
with random characteristic, by checking the assumptions of this result, namely (A1 — A3),
(A5 — A6) and (2.19) (the density of the intensity measure with respect to the Lebesgue
measure is immediate). In our case, the reproduction point process of the Crump-Mode-
Jagers process is £ = 25:1 ¢, and the random characteristic is

o(x) = (Eq [N5] — €*) 1jg (),
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where ¢ ~ I'(k,6).
As Lg(a) = § and — (Lg)' (o) = 0+°O ze *g(x)dr > 0, Assumption (A1) of [21] is
satisfied. Moreover, the reproduction law is reduced to binary division, so Assumptions

(A2) and (A3) of [21] are directly satisfied (see Remark 2.1 of [21]).

Noticing that for all a € R, e”**Var(p(a)) = hz(a)ls>o, and using Lemma 2 i7i) imply
that (A5) is satisfied.

Let t € R and € = 1. By Lemma 1 i), notice that for all z € R,

()] < <sup E, [Ny] + eaé) S,

s>0

Thus the family (|g0(x)|2)xe[t_evt+€] is bounded and (AG6) is satisfied.
Equation (2.19) in [21] is satisfied by using Lemma 2 77), and the fact that for all ¢ > 0

/ (14 min(z, )" ' +2) (7 + e *)dz < +oc.
0

In addition, for all p € C such that Re(p) # % we have

k6

(18) (L)' (p) = T po)t

£0

Then, every root of p — Lg(p) — % is a root of multiplicity 1. We have now checked the

assumptions of [21, Theorem 2.8] and get the convergence in law of t?e~*/2A?. Adding that
this convergence is stable by [21, Remark 2.13], and that W > 0 a.s. by [5, Theo. 2, p.172],

ends the proof of the convergence in law of the bivariate random variable.
O

The previous proposition shows that the asymptotic behavior of (Y,?);>o depends on the
set {p € C\{—1/0} : Lg(p) = 1/2}. In our case, with Gamma distribution of lifespan,
this set is explicit. Indeed, for all p € C such that p # —%, we have

1

(19) Lg(p) = 050

We can solve this equation and obtain

(20) {p e C\{~1/6} : Lg(p) = %} - {ﬂexp(%li) “le |[— m 41, EH‘ }

Recalling the expressions of o, A\, 7 from (5), we derive that when k > 2

S

a, \tit € {pe C\{—-1/0} : Lg(p) =1/2},
and when k € [1,2)

(21) {p e C\{=1/0} : Lg(p) = 1/2} = {a}.
We can now classify the convergence of (Y,?);> and explain the cases of Theorem 1.

Proposition 3. Let § > 0. The following result of convergence holds.
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i) If 2 cos (27”) <27F + 1, then
vy? £,
‘/Nt t—>+o00

N (O, 2040;5) ,

where

a?/’é / Var ((Em [Ns] — ea‘s) Liogi(z) + 2h® (x — C)1[<,+Oo[(a:)) e " dx.
Ry

0
RSN N (0,200% ),

ViEN; t—4o00

where ,
1 2k - 2
2 - (AiT)d _ ad
Tvs = 3y ST le e®|”.
iii) If 2cos (22) > 27t + 1, then
Y(S
o (V) — 2| Ms| cos [Tt + arg (Ms)] t—T—&}oo 0,

where
M; = (e()\+i'r)6 _ 6a5) M,
and M is complex random variable that does not depend on §.
Proof. We prove i). First, by (20), we notice that when k > 2
A =max {Re(p) : p e C\{—-1/0,a}, Lg(p) =1/2}.

Then, the latter and (21) imply that in the case 2cos (2) < 2~ % + 1, which is equivalent
to A < a/2, we have

(22 {peeri-umcolp) = o ret) = § | = (e

Second, following the proof of Proposition 2 allows to check the Assumptions of [21
Lemma 7.6] for the random characteristics ¢1(x) = Ly i(x) and pa(x) = Ez[Nj|ljo¢((2),
where ¢ ~ I'(k,6). This result ensures that there exists ¢ € (0, §) such that

+oo
e P*(1— G( ))dx
E [Nt—i—é] = Z f02 peg(z)d
pEC\{—1/6}, fo ze~Prg(x)dr
Lg(p)=3,Re(p)>5

ep(t+5) +0 (ect) :

and

E [Niys] =

ZE wm]
= Jo = e P "EL [Ns] (1 — G(x))da

0
pEC\(=1/0}, 2f0 ze Prg(x)dy
Lg(p)=3%,Re(p)>5

et + 0 (e”) )
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By identifying the coefficients of these two expansions, we get

+o00 +oo

(23) / E, [Ns]e (1 — G(z))dx = ea‘S/ e **(1 — G(x))dz,
0 0
and finally
+oo
(24) / ho(x)e”**dx = 0.
0

Combining this equation with (22) implies that for all £ > 0, 6 > 0,
(25) A=Y/

Combining now Equations (22) and (25), and Proposition 2, we get

—at/2 yi7-1/2vy8 £ L 2
e W Y, tioo \/BN(O,JK(;).

/N, W2 gmat/2 5 e

t—+o00

We also know that

where n; = ﬁ, see [20, Theo. 21.1, p.147]. Combining these two results of convergence
through Slutsky’s lemma allows to obtain the convergence. We mention that we can
also obtain this convergence by applying [22, Corollary 2], but this only works when the
parameter k of the Gamma distribution is an integer.

To know the value of 0% s When 2 cos (%’r) <27F + 1, we use the expression given in [21,
Theorem 2.14]. We are in the case where n = —1 (as p — Lg(p) — % has no roots such
that Re(p) = «/2). Then, if we consider ¢ ~ ['(k, 0), and if we denote for all y € R the

function K9 (y) = (E [Ny4s] — e E [N,])1j0,00((y), We have by [21, Theorem 2.14] that

7o = /Rvar(@("” ) + 20 (2 = )i ool () Je ™" du
(26)
B / Var ((E; [Ns] =€) Lngi(@) + 20O (@ = Olic.soei(x)) "

We prove now ii). As A = max{Re(p)|2.Lg(p) =1}, we have by the condition of the
statement and (20) that

{pecvuoyscot) = 5. et > 5 | = (e,
27 :

{,0 e C\{-1/0} : Lg(p) = %, Re(p) = 5} ={A\—ir, A +ir}.

We prove similarly to the previous point that (23) is satisfied, implying that for all ¢ > 0,
§ > 0, we have A? =Y. Then, by Proposition 2 ii),

-1 1
7571/267at/2 (,/W> Y;‘s é —5-/\/(07012/,5)‘

t—4o00

Using (1) and Slutsky’s lemma, we can switch from W to N, in this convergence and get
We now compute o3, 5 when 2 cos (2r) = 27% +1. It is direct that if we consider ¢ ~ ['(k,0)
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we have by the expression of the variance given in [21, Theorem 2.14] (we are in the case
where n = 0, as the roots of p — Lg(p) — & such that Re(p) = o/2 have a multiplicity 1)

2 Z V e — e —p¢
Oy s = ar e :
o 2p [ wemprg(x)da

peC\{-1/6},
Lg(p)=3%, Re(p)=5
As for a complex random variable Z and a constant ¢ € C we have Var(cZ) = El[|cZ|*] —
IE[cZ]|” = |¢|*Var(Z), and as {pe C\{-1/6}, 2.Lg(p) = 1, Re(p) = 2} = {\—iT, A\+it},

we obtain

03245 = Z
se{—1,1}
AsE [e¢] = Lg(a) = 1/2, as for the same reason E [e=*7)¢] = E [e- 7<) = 1/2,
and as v = 2), we have Var [e"*F7¢] = E [e72X] — |E [e- ()¢ ]|2 =1/2-1/4=1/4.
Plugging this in the above equation yields

2

A+isT)d ad
Var [ )\—HST)C] )

6( — €

2(\ +isT) [T e~ Fisn 2 g(2)da

2
+

()\+i‘r)6 _ eaé

20\ +i7) [, we- N 2g(z)dw

(A*iT)(S _ 6045

— T fo ~(A=ineg(x)dx

Using the fact that f0+°° xe_(ki”)l’ ( Ydz = —L'(g)(\ + i\), Equation (18), the fact that
1/[14+ (A +in)0]F = Lg(A£i1) = L, and finally the equality 2 cos (2%) = 27% + 1, we get

o2 =1 1
Yo Ty 4

2

1
o _ 1]l 2kexp (22%) [ Atin)s _ ad\|2 | | (A=) _ ab 2}
e LG IR e
_ 1 2% pAHIT)S _ €a5|2
2k% 2% 41 — 2+ cos (1)
_ L 21 ‘ (A+iT)8 6a5|2
2k2 9% _ 9%

We finally prove #ii). In this case,
A =max{Re(p) : p € C\{-1/0,a}, Lg(p) = 1/2} € (@/2, ).

Moreover, one can prove as in the first point that (23) and (24) are true. Then, we have
the following equality for all t > 0, 6 > 0

L SR (o Lt
exp (At) pEC\{—1/6}, 2f0 re rrg(x)dx
Lg(p)=3,Re(p)=A
(28) 5 : ha()e**d
— At + Z e(pf)\)t fR 2 6 Z
exp (At) SeC L), 2f0 ze=Prg(x)dx

Lg(p)=4 A>Re(p)>a/2
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As A > «a/2, by Proposition 2 (whatever the case) and Slutsky’s lemma we have
A9 c
=
exp (At) t—+oo

(29)
We also easily have that

(30) DR e

peC\(—1/6}, 25
Lg(p)=3,A>Re(p)>a/2

T
“Prdr a.s.

Tre p:c dI t—r—4o00

Combining (29) and (30) through Slutsky’s lemma yields

Y, Ji ho(x)e P dx c
31 t . elp=A)t_JR W =
( ) eXp ()‘t) Z 2 fO xe Prg d:L‘ ( ) t—s+o0

peC\{-1/6},
Lg(p)=3%,Re(p)=A
We know by (20) that {p € C\{-1/0} : Lg(p) = 3.Re(p) = A\} = {N—ir,\+iT}.
Proceeding as in the first point for (23), we can obtain that

—+00

+oo
/ E, [N(S] 6—()\:|:i7')z(1 . G(J}))dl’ _ 6(>\:|:i7')5/ e—()\:tiT)a:(l i G(ZL’))dZL’
0 0

_ e(AEiT)8 /+°° (1_ _(in)y ) o)y = p(AEiT)8
AT Jy 2\t iT)’

and more generally

A+iT)d ad
(32) /hg(x)e‘(’\“”xdx — & /hg( Je~(A=in)zdy.
R 2()\ + ZT) R

By (18), we also have that

k6
21+% exp (224) .
As W(A + i) and W (X —i7) are limits of conjugated martingales (see [21, Eq. 2.17] for
the expression of the martingale), we have that

(34) WA+ ir) = W0 — 7).

Plugging (32), (33) and (34) in (31) and using the equality z +Z = 2|z| cos(arg(z)) yields
+ 27

Fen(FD) ywingir). O

2]€2kexp(27r ) 1

+o00 +oo
(33) / ze” Mg (1)dy = / ze~O=mzg(x)de = —(Lg) (A\+iT) =
0 0

that the statement of the proposition is proved for M =

It remains now to combine Propositions 1 and 3 to obtain the asymptotic behavior of
(Rf)tZO for all § > 0.

2.3. Proof of Theorem 1.

Proof of i). Let § > 0,t > 0. As R? = X? +Y? and Y is F;—measurable, conditioning
with respect to J; yields

E [eisR?/m} —E []E [e'

t:| €iSYt§/m} .
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Then, using the triangular inequality and the fact that |exp(i.x)] = 1 for z € R and

0§ = 0%+ 0y.5, We get
e

+ 6_03(1582/2 ‘E [eisYt‘S/\/ﬁt] . 6—0?582/2‘ )

‘E [eist/\/ﬁt} o e—o§52/2

2 2
J"}] — e x5 /2

(35)

By Proposition 1 and the dominated convergence theorem, we have

[

| =0

t—>4o00
By Proposition 3 and the Levy’s theorem, we also have
‘E [eywﬂ _ e %s5%/2

— 0.
t— 400

Plugging these two results of convergence in (35) implies that 7) is proved. O

Proof of ii). By Proposition 1 and Slutsky’s lemma, X?/v/tN; converges to 0 in law and
thus in probability, as ¢ tends to infinity. By Proposition 3, Y,? /v/tN; converges in law to
a centered Gaussian variable with variance 204032/7 s5- Adding these two convergences with
Slutsky’s lemma ends the proof of 7). O

Proof of iii). In the case iii), A > a/2 and Proposition 1 ensures that X? exp (—At) con-
verges to 0 in law and thus in probability, as ¢ tends to infinity. Besides, Proposition 3 iii)
ensures that Y, exp (—\t) converges in probability to 2|M;| cos [tt + arg (Ms)]. Adding
these two limits yields the result. O

3. ESTIMATION OF THE PARAMETERS FROM SIMULATIONS

Let us use the results above on the asymptotic behavior of (R?);>o and propose an
efficient way to infer the parameters (k,#) of the lifespan. We assume that our data set
consists in the observation of ng.:, independent realizations of a Bellman-Harris with time
distribution I'(k, @) at fixed instants of measures. We may forget the first times, when
the population is small, since we rely on asymptotic analysis and are motivated by this
framework. We may also discuss on the role of the times and choose the relevant set of
times to exploit. The corresponding data set we use is then denoted by

(Nz(i) iy S Ia] € [[Lndata]])a

where A > 0, I € N*.

We also need a numerical approximation of ¢ introduced in Theorem 1 ¢). The lat-
ter depends on the parameters (k,0) of the lifetime distribution. Using the relation
a = (2% —1)/6, we can also say that o2 depends on the values of (k,a). We pre-
fer this viewpoint, as this is more relevant for our inference method. Thus, from now on,
o2 refers to the function

o3+ (k,a) € [1,k.) x RY > o5(k, ).

We denote (k, ) — 72(k, ) the approximation of o2. Let us explain how we compute
it when « is fixed. We consider a grid of parameters

Gp = {1+pl|l €0, [(ke —1)/p] = 1]},
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where p > 0. Then, for any k& € G,, we proceed by Monte Carlo simulations to approximate
all the expectations and variances that compose o2(k, ), except those in function h(®).
We refer to Section 6.1 to see how we approximate the latter. This gives us at the end
an approximation 73(k,«) of o3(k,«a) for all k € G,, that we extend to k > 1 using
interpolation techniques.

To verify that this method works, we plot in Figure 3 the evolution of Bes

N for different

sets of parameters, and see if the latter converges to a value close to 3. We observe that
this is the case. Thus, this approximation method seems good.

4
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Ry s

Figure 3. Comparison of 5(25 with the variance of ~ in different cases. We use

t
the grid of parameters Gy o9, and we take 6 as explained in Section 3.2.1. We
Ry s
with 2000 simulations of Bellman-Harris dynamics. To simplify the computation
ofﬁg, we do the approximation that ag does not depends on o (or equivalently ),

see Figure 7b and the end of Section 3.2.1.

also estimate the variance of using the empirical estimator of the variance

We now have everything we need to do the inference. We follow the following pipeline
to recover (k,0), and test it with simulations. In the rest of Section 3, the “number of
simulations” is the number of dynamics we have simulated to create our dataset, so cor-
responds to Ngata-
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Step 1 : estimation & of the Malthusian coefficient «. For all j € [1,nqa], we do a

linear regression of ¢ — log(Nt(j )) using our data set (Ni(i) : 4 < I), which gives us an
estimated value @), Then, we take

1 Ndata
o= § : al)
Ndata

=1

as an estimation of a.

The estimation of a we obtain is very precise, even with a small number of simulations,
as we see in Figure 4a where all the relative errors are below 1%. In addition, even
exponential quantities such as e®® closely approximate e®. Indeed, we plot in Figure 4b
the relative errors for the estimation of e, with § of the order we choose in pratice (we
refer to Sections 3.1.2 and 3.2.1), and we see that all the errors are below 1.5%.

14 —— (k,6) =(16.333,0.429) -e- (k,6) =(16.333,0.429) L~
(k,6) = (24.0,0.5) (k,6) = (24.0,0.5) e

—— (k,6) =(85.333,0.375) | —e- (k.6)=(85.333,0.375)

—— (k,6)=(120.333,0.158) —-e- (k,6)=(120.333,0.158) /./

—— (k,0)=(385.5,2.5) -e- (k,0)=(385.52.5) ’

9
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=
o

o
o
o
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Relative error (%)
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Number of simulations Coefficient step
(a) Relative error of the estimation of a versus (b) Relative error of the estimation of e®!°,
the number or simulations, for a number of with § = 1"1%(;)7 versus | € [1,20]. The
simulations in {501 |1 € [1,40]}. estimation was done using 100 simulations.

Figure 4. Illustration of the estimation of a and e® for different parameters.
Due to oscillations, see Figures 12a and 12b, the errors slightly increase when k
imcreases.

Step 2 : determination of the (Gaussian or oscillating) regime. We assume here that we
do not fall in the critical and need to determine from the data set if 2 cos (27 /k)— (27/*+1)
is positive or negative. For that purpose, we compare & with the growth of the empirical
variance of Ny 5 — e N,

2
o R 1 Ndata R 1 Ndata . R .
Var (Nos = ) = 2 3 (NS = i) = 2 50 (N - ) )
ata ata

where t = 1A, i < I. At this step, we need here to be careful in the choice of 6 = §; = n1A,
where n; € N*, see Section 3.1.

Step 3 : estimation (/k?, é\) of (k,0). Recall that o has been estimated by a. Depending

Y
A~ N

on the regime, the estimator (k,0) is different.
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a) In the Gaussian regime, we consider the following estimators

1 Ntimes

(36) k= argmin Var (N1y45 — ea5NTj) . and 0 = (21/E —-1)/a,

ke[l,kc|

U_6(k7 a)Q -

n .
times j=1

where Ngimes € [1, 1], and for all j € [1, ngimes], (Tj/A,(T; +6)/A) € [0,1]*. Here the
time step § = do = nyA, where ny € N*, needs also to be chosen carefully to ensure
uniqueness of the argmin. It will be different from (5/1\ , see Sections 3.1 and 3.2. R
b) In the oscillating regime, we first estimate A by A thanks to a linear regression : \ is
the slope of

1 — ~
t— 5 log <Var (Nt — eo“sth)> .

Then, we estimate (k, ) with

(//5, )=  argmin
(k,0)€ (ke,+oo[ xR
(2Vk—-1)/0=a

(2Y/% cos (2r/k) — 1) /6 — X‘ .

Let us now detail the main points of this procedure and give the results obtained by
simulations. We first explain how to choose d; > 0 for the determination of the regime in
Step 2. Then, we consider the Gaussian regime and explain how to choose d, and compare
in that case the estimated value to the theoretical one for simulations. We finally deal
with the oscillating regime. The score we use to measure the quality of the estimation is
the relative error, defined as

lestimated value — theoric value|

relative error = -
theoric value

3.1. Determination of the regime.

3.1.1. Why do we need to take care of the time step for the detection of the regime ¢ Our
approach relies on the study of

Ry = Npys — e Np = X0 + Y7,

Indeed, R can be estimated from data, and is related to the parameters of interest (k,6)
in a sensible way. This link has been studied in Section 2. We have shown that when
A > /2, X2 and Y} behave for large T as follows

Xrs ~ N(0, 0§75)\/n1WeTa/2, Y ~ 2| Mjs| cos [T + arg (M;)] e™.

The Gaussian part X7 then prevail compared to Y2 when T — oo, see Theorem 1. We
also recall that

Ms = f(6).M, with f(5) = |e(/\+z’T)5 B 6a5‘.

For applications, 7" may not be very large. If T'x (A —«/2) is positive but small, and M is
close to 0, the two contributions X$ and Y,2 may be comparable. In that case, it becomes
difficult to detect that A — /2 is positive and thus that we are in the oscillating regime.
That’s why the choice of the time step 0 matters, and we explain now how to avoid that
f(8) (and thus Mjs) is too small.
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3.1.2. Time step 01 and detection of the regime. Let us write 0 = d(c) = clog(2)/a, where
¢ > 0, and recall that

2t - 1 2% cos (%) - 1 24 sin (2)
= A= k > a/2 el W)
« 0 ’ I a/ s T 7
We search a value of ¢ so that
f(é(c)) — ’e(/\+’iT)C. log(2)/a __ e log(2)/a| — ’6(/\+2'T)c. log(2)/ac 20’

is not to close to 0. As we have

2% cos () — 1 2% sin (22 1
lim (A +47)d(c) = lim clog(2) (lk ) 1 H: ( i ) i
= c(log(2) + i27),
we obtain

klglolof(é(c)) = 2°/2 (1 — cos (2mc)).

By this expression and the fact that the oscillating regime corresponds to large values
of k, we see that the values of ¢ that seems interesting are those such that the cosines
term is minimal, i.e. equal to —1. This corresponds to cases where § = clog(2)/a, with
¢ —1/2 € N. At the opposite, the values of ¢ that should be avoided are those such that
the cosines term is maximal, i.e. equal to 1, when ¢ € N*. To illustrate this, let us plot in
Figure 5 the values of f(0) = [e?)9 — e®| versus §, in the case where (k,6) = (80.2,4).
We see in Figure 5 that the value of the modulus is very low when ¢ is a multiple of

T
--- Multiples of log(2)/a
|

A+T)6 _ gad
e (=]

|
0 10 20 30 40 50 60
Step time

Figure 5. Curve of | 7)0 — ¢ versus §, when (k,6) = (80.2,4). Red lines
represent multiples of log(2)/a.

log(2)/a. Then, choosing a step time that is a multiple of this value would imply bad
results on the estimation of the regime.

At the opposite, in Figure 5, the amplitude of the oscillations seems to be maximal
when § = [log(2)/a + log(2)/(2a), where [ € N. Then, it is better to take a time step
as closed as possible of these values when we detect the regime. By default, we take the
minimal step that satisfy this condition, that is

d; = argmin |Ai —log(2)/(2a)]| .
iA,ie]0,1]
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We take the minimal step because the error of the estimation of e*® increases when ¢
increase, as observed in Figure 4b.

3.1.3. The threshold for th/c; detection. To detect the regime, we compare the slope of the
linear regression of ¢ — Var (Nt — e Nt), which is 2/):, to @. Indeed, in the Gaussian
regime, ) does not estimate A, but a/2. In practice, we decide that we are in the Gaussian
regime if the difference of these two terms is less than 10% of a@. It is relevant in various
cases, see the results in Sections 3.2.2 and 3.3. A more systemic exploration of the set of
parameters or theoretical may be interesting and would allow to be more precise.

3.2. Inference in the Gaussian regime.

3.2.1. Identifiability : the choice of the time step oo for the estimation. We need to choose
the time step dy to achieve Step 3. Our estimator (36) involves a minimization, and the
problem is identifiable if there is a unique minimizer (argument of the minimum). This
depends on the choice of 4. Denoting & the estimator of «, the uniqueness of the minimizer
requires an injectivity property, for the function

ks oi(k,Q) = 0'2(’5(/{?, a) + 2(/)20'32/75(/{7, Q).
The function o2(., @) is not injective in general, as we see in Figure 6, where two different

values of k can have the same image by o3(.,@). This comes from the fact that 0% 5(., @)
and o3, 5(., @) have opposite monotonicity.

g
IS

=

)
[
o

=

o
o
)

o

w©
o
o

0.6

o
>

o
¥

Approximated value of the variances
Approximated value of the variances

o
°

0 10 20 30 40 50 0 10 20 30 40 50
Parameter k Parameter k

(a) For § =log(2)/(2a). (b) For 6 = 3log(2)/(4a).

Figure 6. o2(k,a) (black), Ugc,a(ka @) (blue) and 2620)2/75(14:, a) versus k, for a =1,
and for different time steps § such that o3(.,&@) is not injective. o% has been
approrimated using 5(25, computed with the grid of parameters Gy,p. The mesh
size is small, because the non-smoothness of the curves when k is large decreases
the readability of the figure with a larger mesh size. To approxrimate 03(75 and
032,75, we only keep the part of our approximation of Jg that corresponds to each
of these quantities.

In the oscillating regime, we saw in Section 3.1 that we can significantly reduce the
influence of (Y,?);> by choosing § = log(2)/a, see Figure 5. Thus, our conjecture is that
even in the Gaussian regime, choosing ¢ = log(2)/a would allow us to have injectivity
of 03(.,@), because the impact of o (., @) will be significantly reduced. To check this
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hypothesis, we plot in Figure 7 the evolution of o2(k, @) versus the parameter k for several
values of @. If the curves that we obtained are injective, then our conjecture is valid. We
see in Figure 7 that this is the case.
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0 10 20 30 40 50 60 0 10 20 30 40 50 60
Parameter k Parameter k

(a) o%(k,a) (black), ng(k,a) (blue) and (b) o2(k, Q) versus k for
200% s(k,a) (red) versus k, for @ = 1. a €[0.01,0.1,1,10,100]. The figure on the
’ right shows that o3 (k, Q) seems to be
independent of the value of Q.

Figure 7. oZ(k,Q) versus k for § = log(2)/@, for different values of a. To approz-
imate ag (and O'g( 5 and 032,5 that compose it), we use Eg. The grid of parameters

used to do the approzimation is Gy/qq.
Then, for our inference in the Gaussian regime, we are going to use

dy = argmin |Ai —log(2)/al.
i, i€[0,1]
When 4, is sufficiently closed to log(2)/a, as we have observed in Figure 7b that o(k, @)
seems independent of @, we use 3(k, 1) to approximate o(k, ). This allows us to save a
lot of time for the computation of our “approximator” (that can take several days if we
use a large mesh size), without compromising the quality of the results.

3.2.2. Quality of the estimation. Now that we know which time step we take, we study
the quality of the estimation. We denote in this paragraph (ky,60;) = (35,1), (k2,6;) =
(25.4,2), (ks3,03) = (14.5,3.4), and (ky4,04) = (44,1.5). As for all [ € [1,4] we have
k; < k., these parameters are such that we are in the Gaussian regime, see Figure 1. For
all [ € [1,5], we have simulated nga, = 2000 Bellman-Harris dynamics with lifetimes
distributed according to I'(k;,6;), up to 8000 cells. Then, for all [ € [1,5], we create a
dataset (Nl(i) 1 < I,j € [1,n4ata]), where I € N*, and denoting oy = (2% — 1)/6),,
A — log(2)

8oy
We use the pipeline explained at the beginning of Section 3 to retrieve (k;, ;) for all
i € [1,5], see Figure 9. Then, we obtain an estimation of the mean and coefficient of
variation of the distribution using the relation (4, %) = (k6,1/ Vk). For this inference,

we use 72(k,1) to approximate o(k, @), see end of Section 3.2.1. The latter has been
computed using a grid of parameters Gj/5. The results of the estimation are given in
Table 1. The scores that are the more relevant to consider are those for the estimation of
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,Z). We see that they are very good.
Hs Y Yy g

(k,0) theoric

(35,1)

(25.4,2)

(14.5,3.4)

(41,15)

(k,0) Param. infered
(k, 0) Relative error

(36.83,0.9504)
(5.237%, 4.960%)

(25.42,1.999)
(0.08081%, 0.04331%)

(14,57, 3.384)
(0.4893%, 0.4850%)

(41.71,1.582)
(5.208%, 5.436%)

(1, ) theoric

(35,0.1690)

(50.8,0.1984)

(49.3,0.2626)

(66,0.1508)

(1, %) infered

(1, 2) Relative error

(35.00, 0.1648)
(0.01732%, 2.520%)

(50.82,0.1983)
(0.03746)%, 0.4038%)

(49.30, 0.2620)
(0.001927%, 0.2438%)

(65.96, 0.1548)
(0.05514%, 2.710%)

Table 1. Results of the estimation in the Gaussian regime. The results are given
with 4 significant digits.

To do this estimation, we used 2000 simulations. For applications on real data, we rarely
have so many simulations. Let us check that the estimation still works even if we use fewer
simulations. We use the pipeline to estimate (u, %) for nqa € {500|1 € [1,40]}, and then
we plot the relative error of the estimation versus ngat. in Figure 8. We see that with
a small number of simulations, even if the score the relative error has increased, scores
are still correct considering the fact that we do not have a lot of simulations. Indeed, for
the estimation of i, even with a small number of simulations, all the relative errors are
below 1% as we see in Figure 8a. For the estimation of o/u, that corresponds to Figure

8b, quickly we are under 10% of relative error. Thus, the inference is satisfying for this
regime.

(k,6) = (35.0,1.0)
%= (k,6) = (25.4,2.0)
(k,6) = (145,3.4)
(k,6) = (44.0,1.5)

(k,6) = (35.0,1.0)
%= (k,6) = (25.4,2.0)
(k,6) = (145,3.4)
(k,6) = (44.0,1.5)

Relative error (%)

Relative error (%)

A ,[/ \
A\ VI T e A i
0ol 1 vﬁ\/\\\{/\/gmwj/\/xm/\/ ! \ N, S ’\”\/\/*’**‘/\4

0 250
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Number of simulations
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750 000 1250
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(a) For p. (b) For o/pu.

Figure 8. Relative error of the estimation versus the number of simulations for
the inference in the Gaussian regime.
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Figure 9. Illustration of the different steps for the inference with 2000 simulations,

for parameters (k1,61) = (35,1).
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3.3. Inference in the oscillating regime. Let us now consider the oscillating regime.
By Figure 1, we know that we are in this regime when k& > k.. Thus, we study examples
where this condition is satisfied. We run ng.i, = 2000 simulations of Bellman-Harris pro-
cesses with lifetimes distributed according to I'(k;, 0;), with [ € [1,4] and (kq,60,) = (70,1),
(ka,02) = (125,2), (k3,03) = (200.5,1), (k4,04) = (385.5,4). Then, we create a dataset
from these simulations. The simulations and the creation of the dataset are done in the
same way as in the Gaussian regime, see Section 3.2.2.

We use the pipeline described at the beginning of this section to recover the lifetime
parameters and then the mean and coefficient of variation of the distribution, see Figure 11.
The scores are displayed in Table 2. We see that the estimation of (y, %) is very good,
except in the case where (ky,604) = (385.5,2.5) for which the score is not as satisfying for
%. The reason is that when k is very high, the amplitude of the oscillations is very large.

Then, the linear regression done to obtain \ is less reliable, as illustrated in Figure 12d.
For our motivation, cases with such low variability in cells lifetime are unrealistic, so this
is not a significant issue.

Theoretical value of (k,0) (70,1) (125,2) (200.5, 3) (385.5,2.5)

(k,0) Param. inferred
(k,0) Relative error

(77.78,0.9017)
(11.11%, 9.835%)

(131.2,1.911)
(4.947%, 4.444%)

(206.4,2.931)
(2.940%, 2.315%)

(519.8,1.871)
(34.83%, 25.15%)

Theoretical values of (1, %)

(70,0.1195)

(250,0.08944)

(601.5,0.7062)

(963.8,0.05003)

(u, %) inferred
(1, 2) Relative error

(70.13,0.1134)
(0.1803%, 5.130%)

(250.7,0.08731)
(0.2833%, 2.385%)

(604.8,0.06961)
(0.5562%, 1.438%)

(972.7,0.04386)
(0.9251%, 13.88%)

Table 2. Results of the estimation in the osci