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ESTIMATION OF THE LIFETIME DISTRIBUTION FROM
FLUCTUATIONS IN BELLMAN-HARRIS PROCESSES

Jules Olayé1, Hala Bouzidi2, Andrey Aristov3,4, Salomé Gutiérrez Ramos3,4,
Charles Baroud3,4, Vincent Bansaye1

Abstract. The growth of a population is often modeled as branching process where each
individual at the end of its life is replaced by a certain number of offspring. An example
of these branching models is the Bellman-Harris process, where the lifetime of individuals
is assumed to be independent and identically distributed. Here, we are interested in the
estimation of the parameters of the Bellman-Harris model, motivated by the estimation of
cell division time. Lifetimes are distributed according a Gamma distribution and we follow
a population that starts from a small number of individuals by performing time-resolved
measurements of the population size. The exponential growth of the population size at
the beginning offers an easy estimation of the mean of the lifetime. Going farther and
describing lifetime variability is a challenging task however, due to the complexity of the
fluctuations of non-Markovian branching processes. Using fine and recent results on these
fluctuations [21], we describe two time-asymptotic regimes and explain how to estimate
the parameters. Then, we both consider simulations and biological data to validate and
discuss our method. The results described here provide a method to determine single-cell
parameters from time-resolved measurements of populations without the need to track
each individual or to know the details of the initial condition.

Keywords: Bellman-Harris process, asymptotic fluctuations, estimation, inverse problem, cell

division

1. Introduction

Branching processes are widely used for modeling populations where individuals may
reproduce or die, and evolve independently. The simplest Markovian branching process
is the Galton-Watson process. In continuous time, each individual lives during an expo-
nential time and is then replaced by a random number of offspring. This model and its
extensions have been used and applied in population dynamics and evolution [17, 19, 23,
26], epidemiology [8, 12], queuing systems like polling [29], nuclear physics [15] etc. The
exponential distribution of lifetimes corresponds to a memory less property and absence
of aging of individuals.

For many models and issues in life sciences, such a distribution is not relevant and does
not fit with data and observations. For instance, the time for cell division rather looks
like an unimodal distribution, more or less concentrated around its mean, see e.g. [11,
27, 28] and references therein. The variability of lifespan can be attributed to different
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sources. Various models have been considered to describe it, including a trait driving the
division (the time from birth, the size, the increment of size from birth) or taking into
account environmental variability, or individual variability, see e.g. [10, 14, 28]. Similarly,
in epidemiology, the time of infection for an individual is not considered exponentially
distributed [25]; rather, it is more accurately described by an unimodal time with a varying
transmission rate. Another limitation of exponential law is that the value of the mean
characterizes the full distribution and thus forces the variance of the distribution and the
pattern of the variability.

Diverse extensions of the Galton-Watson process in continuous time enable to go beyond
the exponential lifetimes and consider an age structure. In the Bellman-Harris process,
the individuals live during independent random times that follow a common but general
distribution. We are interested in inferring this distribution. In biology or ecology or
epidemiology, many data (experimental data or observations in wild life) consist of mea-
suring the total population size along time, with no access to the values of the lifespan
between two counts. However, up to our knowledge, the estimation of the parameters of
the lifetime distribution from such population-level monitoring has not attracted a lot of
attention so far.

Our work aims at proposing efficient method for estimation of the parameters of the
distribution of lifetimes from such data set. Going from the population sizes along a given
time sequence to the growth rate of the population is direct by looking at the line ob-
served from data plotted at the log scale. But going farther and obtaining the variance
and more generally the quantification of variability of the lifespan of individuals is much
more delicate in the non-exponential case. This is due to several reasons we are explaining
in this work. Roughly for now, fluctuations of the population size around its predicted
value can have different and subtle behaviors depending on the time distribution and the
time of observations.

Our motivation for this work and our first application is the estimation of the time for
cell division using microfluidics experiments. Indeed, single cell approaches have emerged
as an important new way to address biological questions, with many formats to produce
data that show heterogeneity of biological processes [30]. We are particularly interested in
experiments based on anchored droplets, where the contents of each microfluidic drop can
be followed in time [1]. These experiments allow to obtain many parallel realizations of the
growth of cell population starting from a small number of cells [10]. We want to exploit
such data to infer the variability of cell division time, using Bellman-Harris processes as
a simple statistical framework to model individual variability without heredity, or with
negligible heredity.

We choose here to focus on inference of the two parameters of Gamma lifetime distribu-
tion, with binary division. Indeed, Gamma distribution provides a convenient unimodal
two parameters family which allows to cover realistic lifetime distribution. It is also a rare
case among non-exponential laws which yields some explicit and useful computations. As
we will see, fluctuations have a complex behavior, which is a general phenomenon for
branching processes. It can be fully described here, thanks in particular to recent results
on fluctuations of Crump-Mode-Jagers processes [21]. This result can be seen as a start-
ing point for more complex explorations to link the fluctuations at the level of population
to the individual variability. In particular, in Section 6.3, we deal with extension of the
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results to more general lifetimes and non-binary reproduction events.

Let us be more explicit now on the setting and the results. We consider two positive real
numbers k ≥ 1, θ > 0. The process starts from one single individual and each individual
lives, independently, during a random time distributed as a Gamma distribution Γ(k, θ).
The density gk,θ of this law, denoted g for short, is defined on R+ by

gk,θ(t) = g(t) =
tk−1e−

t
θ

Γ(k)θk
,

where Γ(x) =
∫∞
0

sx−1e−sds is the Gamma function. We denote by (Nt)t≥0 the number
of individuals at time t and the observed quantity is the number of individuals (Nti)i=1...n

for a given sequence of times (ti)i=1...n. Our objective is to determine the two unknown
values k, θ as precisely as possible. It is equivalent to determine the mean µ and variance
σ2 of the lifetime. For a Γ(k, θ) law, they are explicitly given by

µ = kθ, σ2 = kθ2.

Equivalently, we choose to infer the pair (µ, σ/µ) = (kθ, 1/
√
k) gathering the mean and

coefficient of variation. Classically, in such setting, a first information comes from the
observed Malthusian growth. Indeed, for Bellman-Harris processes under some general
conditions [20, Theorem 17.1 and 21.1],

E(Nt) ∼
t→∞

n1e
αt, Nt ∼

t→∞
E(Nt)W ∼

t→∞
n1e

αtW a.s.,(1)

where n1, α > 0 and W is a non-negative finite random variable. Besides, for Γ(k, θ)
lifetime, α is explicitly known in function of k, θ. Plotting the number of individuals
observed at the log scale provides then the following first estimation

log(Nt)

t
−→
t→∞

α =
1

θ

(
2

1
k − 1

)
a.s..

With real data of biological growth, a “nice” line may indeed be observed during some
suitable time window, namely after the biological lag phase and before the cell number
approaches the carrying capacity of the droplet [10]. As such, this time window must avoid
the early times for which the biological processes are not yet stationary. It also stops at
large times when the independence and branching property fails due to competition.

The challenge is then to extract additional pertinent information from the data and
to capture the two parameters (k, θ). We assume that we have many observations of
the process, i.e. many realizations of the Bellman-Harris process and the values of the
population size at different times. One may thus consider variance [27] of the number of
individuals. For Gamma distribution,

(2) lim
t→∞

Var(Nt)

E[Nt]2
= q(σ/µ),

where the function q is explicit. This gives a theoretical way to conclude for estimation,
and we refer to Section 6.2 for details.

However, various limitations exist for such an approach in practical applications. In par-
ticular, the microfluidic data involve several sources of variability that are not accounted
for in this description [10]. First, the initial distribution of number of cells per droplet is
not generally known exactly. Instead, it is usually assumed that cells distribute according
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to a Poisson process, which leads to a distribution of number of cells initially. Second, as
already mentioned, the initial divisions of the bacteria may happen with a different rate
than the steady-state process, due to the cells adapting their biological mechanisms to the
new environment. Taken together, these new sources of randomness play a strong role on
the evolution of the cell number in the droplets, since they take place at the early stages
of the exponential process [27].

Indeed, Var(Nt) is very sensible to the initial number of individuals and the first steps of
the process, i.e. the first lifespans in Bellman Harris process. We are thus bound to forget
a first time period of the trajectories of the Bellman-Harris process. We need estimators
after this time, which are the most sensible as possible to the parameters, and in particular
to the variance σ2 or the coefficient of variation σ/µ. We also want to exploit our data
set with successive observations as best as possible. Consequently, we need to use an
alternative quantity. Whatever the initial condition of Bellman-Harris, the ratio Nt+δ/Nt

converges almost surely to exp(δα) as t tends to infinity. This leads us to consider the
asymptotic fluctuations

Rδ
t = Nt+δ − eδαNt,

where α is the Malthusian growth and has been estimated in the first step. Our issue is
now to relate the “observed” distribution of Rδ

t for large t to the parameters (k, θ) we want
to determine. This link is delicate. One may expect that the order of magnitude of Rδ

t is√
Nt = O(exp(tα/2)). This regime corresponds to the classical Gaussian fluctuations in

central limit teorem and the fact that for large time, the age of individuals can be seen
as independent and picked according to the limiting age distribution. It indeed happens,
but only when 2 cos(2π/k) < 2−1/k + 1. In that case, we prove the following convergence
in law as t tends to infinity

(3)
Rδ

t√
Nt

L
=⇒

t−→+∞
N (0, σ2

δ ),

where N is a Gaussian law and an expression of its variance σ2
δ can be found in Section 2.

When 2 cos(2π/k) > 2−1/k + 1, the order of magnitude of Rδ
t is larger. Indeed, in that

case, the speed of convergence of the age profile among the population is too slow. This
convergence is quantified by the spectral gap α − λ, i.e. the gap between the first and
second eigenvalue of the mean operator, see Section 2. Indeed, 2 cos(2π/k) > 2−1/k + 1 is
equivalent to λ > α/2, so the speed of convergence α − λ is smaller than the fluctuation
coefficient α/2. The leading term in Rδ

t comes then from the convergence of the age
profile to its limiting distribution. The renormalized process has then asymptotically
deterministic oscillations along time. These oscillations are due to the lack of variability
in division times, implying too much synchronicity in the division times (see Figure 2).
These oscillations involve a non-Gaussian, finite and complex random variable Mδ and the
time step δ:

(4)
Rδ

t

exp(λt)
− 2|Mδ| cos(τt+ arg(Mδ))

P−→
t−→+∞

0,

where

(5) λ =
2

1
k cos

(
2π
k

)
− 1

θ
> α/2, τ =

2
1
k sin

(
2π
k

)
θ

.
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This classification in two regimes involving the spectral gap is known for multitype pro-
cesses from the works of Athreya [3, 4]. In our study, the key ingredient is the asymptotic
behavior of Y δ

t = E(Nt+δ|Ft) − eδαNt, where (Ft)t≥0 is the filtration of the process. For
Bellman-Harris processes, in the Gaussian regime, it has been obtained in [22]. We add
then the Gaussian contribution of Xδ

t = Nt+δ − E(Nt+δ|Ft), which is at the same or-
der of magnitude and asymptotically independent. This yields the long time behavior of
Rδ

t = Xδ
t + Y δ

t and the expression of the variance of the limiting Gaussian law σ2
δ . For

the oscillating and non-Gaussian regime, we use recent and fine results of [21] to get the
asymptotic behavior of Y δ

t . The second contribution Xδ
t still behaves with Gaussian fluc-

tuations of order
√
Nt but is now negligible.

We then exploit these results to infer the value of the parameters (k, θ) from the obser-
vations of Rδ

t . The initial step is to discern which of the two regimes, (3) or (4), we find
ourselves. This can be achieved by quantifying the order of magnitude of Rδ

t . For this
step, one has to be careful to the time parameter δ, since |Mδ| vanishes for some values
of δ, see Section 3.1. The other difficulty comes from identifiability of the parameters
since in the Gaussian regime, the limiting variance σ2

δ is not injective with respect to the
parameter k. We propose a procedure for the estimation which take into account these
issues. We evaluate our method by using simulations, respectively in Sections 3.2 and 3.3
for the Gaussian regime (3) and the oscillating regime or (4). We recover in any case the
parameters of the lifetime from the population size at given times and study the speed
of convergence. This shows the efficiency of our procedure in our setting. Finally, in
Section 4, we use our approach for inference on two data set. This allows to estimate the
heterogeneity for the cell division time from monitoring at the population level, which is
our original motivation for this work.

2. Regimes of asymptotic fluctuations

To present the different regimes of convergence of the fluctuations, we need to in-
troduce some notations. Recall that k ∈ [1,∞) and θ ∈ (0,∞) are fixed and g(t) =
tk−1 exp(− t

θ
)/(Γ(k)θk) is the density of the Gamma law. We restrict ourselves to the

Gamma distribution with k ≥ 1, because the case where k < 1 concerns distributions
whose standard deviation is greater than the mean, and is therefore not relevant to our
motivation. We introduce the cumulative distribution function G, and the Laplace trans-
form Lg related to our distribution,

G(a) =

∫ a

0

g(s)ds, Lg(ρ) =
∫ +∞

0

g(u)e−ρudu =
1

(1 + pθ)k
,

for respectively a ≥ 0, and ρ ∈ C such that Re(ρ) > −1/θ. With an abuse of notation,
for all ρ ∈ C\{−1/θ} such that Re(ρ) ≤ −1/θ, we also denote Lg(ρ) = 1/(1 + pθ)k the
analytic continuation of Lg. Finally, we introduce the stationary age distribution

p(a) =
e−αa(1−G(a))∫∞

0
e−αu(1−G(u))du

,

and refer to [5] for the details of the proof. The Bellman-Harris process is defined in-
ductively by starting from an initial number of individuals N0 ∈ N∗ and initial ages
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(Ai)i=1,...N0 . The individuals live during random times, which are independent and dis-
tributed as a Gamma law Γ(k, θ). At the end of their life, they are replaced by two
individuals with age 0. When we start from one single individual with age a ∈ R+, we
denote by Ea and Vara the associated expectation and the associated variance. Unless
otherwise specified, we start from one single individual with age 0.

We now give the different regimes of approximations of the fluctuations. The result
holds for a Bellman-Harris process starting from one individual with age 0. Classical
arguments for branching processes enable the extension of the results to more general
initial conditions.

Theorem 1. Consider a Bellman-Harris N where the lifespan of individuals is distributed
as ζ ∼ Γ(k, θ), with k ≥ 1, θ > 0. The following statements hold.

i) If 2 cos
(
2π
k

)
< 2−

1
k + 1, then for any δ > 0,

Rδ
t√
Nt

L
=⇒

t−→+∞
N
(
0, σ2

δ

)
,

where

σ2
δ =

∫
R+

Vara(Nδ)p(a)da+ 2α

∫
R+

Var
(
j(δ)(x)1[0,ζ[(x)

+ 2h(δ)(x− ζ)1[ζ,+∞[(x)
)
e−αxdx

and for any x ≥ 0 the functions

j(δ)(x) = Ex [Nδ]− eαδ, and h(δ)(x) = E [Nx+δ]− eαδE [Nx] .

ii) If 2 cos
(
2π
k

)
= 2−

1
k + 1, then for any δ > 0,

Rδ
t√
tNt

L
=⇒

t−→+∞
N
(
0, σδ

2
)
,

where

σ2
δ =

α

k2

2
2
k

2
2
k − 2

1
k

∣∣e(λ+iτ)δ − eαδ
∣∣2 .

iii) If 2 cos
(
2π
k

)
> 2−

1
k + 1, then for any δ > 0,∣∣∣∣ Rδ

t

exp (λt)
− 2 |Mδ| cos [τt+ arg (Mδ)]

∣∣∣∣ P−→
t−→+∞

0,

where
Mδ =

(
e(λ+iτ)δ − eαδ

)
M,

and M is a complex random variable that does not depend on δ.

This theorem shows that two different regimes may be observed, excluding the very
specific critical behavior. They depend on the value of k and correspond respectively to a
Gaussian regime, with the expected order of magnitude

√
Nt, and an oscillatory regime.

The threshold value kc between these two regimes is given by

(6) cos

(
2π

kc

)
=

1

2

(
2−

1
kc + 1

)
,

and is approximately 57.24, as illustrated in Figure 1.
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Recalling that k = 1/(σ/µ)2, the threshold kc is equivalent to a coefficient of variation
σ/µ of approximately 0.1322. The oscillating regime (Theorem 1 iii)) then corresponds to
a small variability of the lifespan, making the convergence to the age profile slow, while a
large coefficient of variation helps for mixing and leads to the Gaussian regime (Theorem
1 i)). We illustrate this in Figure 2.

Figure 1. Curve of λ− α
2 versus the parameter k for θ = 1.

(a) Ten dynamics in the oscillatory
regime. This corresponds to the
parameters (k, θ) = (400, 0.05).

(b) Ten dynamics in the Gaussian
regime. This corresponds to the
parameters (k, θ) = (6.25, 3.38).

(c) Mean of the evolution of 500
Bellman-dynamics in both regime.

Done with the parameters given in (a)
and (b).

Figure 2. Illustration of the two regimes, for parameters with the same Malthu-
sian coefficient.
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We prove now Theorem 1 by splitting Rδ
t in two parts. At each time t, we can label the

individuals by i = 1, . . . , Nt and we denote by N i
t,δ the number of offspring of individual i

at time t+ δ. We introduce
Rδ

t = Xδ
t + Y δ

t ,

where

(7)

Xδ
t = Nt+δ − E(Nt+δ|Ft) =

Nt∑
i=1

(
N i

t,δ − E(N i
t,δ|Ft)

)
,

Y δ
t = E(Nt+δ|Ft)− eδαNt =

Nt∑
i=1

(
E(N i

t,δ|Ft)− eαδ
)
.

The result in [21] applied to a suitable functional would allow to deal directly with Rδ
t

but the decomposition Rδ
t = Xδ

t + Y δ
t is interesting for itself. It yields two asymptotically

independent contributions, which provide a natural expression of the limiting variance.

2.1. Asymptotic behavior of Xδ
t . Let us study the asymptotic behavior of (Xδ

t )t≥0 for
all δ > 0. We first remark by (7) that for all t ≥ 0 and δ > 0, the quantity Xδ

t can be seen
as the sum of Nt variables that are centered and independent conditionally with respect to
Ft. Thus, a slight adaptation of the central limit theorem allows to obtain the asymptotic
behavior of (Xδ

t )t≥0. To do so, we need the following upper bounds and regularity for the
moments of Nδ.

Lemma 1. For any δ > 0, the following statements hold.

i) supa∈[0,∞) {Ea[N
2
δ ] + Ea [|Nδ − Ea[Nδ]|3|]} < ∞.

ii) The function a 7→ Ea [Nδ] is continuous.
iii) The function a 7→ Ea [N

2
δ ] is continuous.

Note that i) implies that the first moment and variance of Nδ are bounded with respect
to the age a of the root at time 0, for any fixed time δ > 0. This bound is natural : a
large age accelerates the first reproduction but in any case, we have then two individuals
with age 0.

Proof. Let us first prove i) and let a ≥ 0. We consider a Bellman-Harris process (Nt)t≥0

starting from one single individual with age a. Then, the first time of division is the
Gamma law with parameters (k, θ) conditioned to be larger than a and its density is
g(a + x)/(1 − G(a)) for x ≥ 0. Using an integral equation ([20, Theo. 15.1] or [16,
Eq. 7.1]), we obtain

(8) Ea[Nδ] = 2Iδ(a) +
1−G(a+ δ)

1−G(a)
, where Iδ(a) =

∫ δ

0

E0[Nδ−x]
g(a+ x)

1−G(a)
dx.

Moreover, using [20, Theorem 18.1]), we have

(9) Ea[N
2
δ ] =

∫ δ

0

E
[(

N
(1)

δ−x +N
(2)

δ−x

)2] g(a+ x)

1−G(a)
dx+

1−G(a+ δ)

1−G(a)
,

where (N
(1)

t )t≥0 and (N
(2)

t )t≥0 are two independent Bellman-Harris processes starting from
an age 0. Then, using the inequality (y+z)2 ≤ 2y2+2z2 for all y, z ∈ R, and the increasing
of t 7→ E0[(Nt)

2], allows to conclude that

(10) Ea[N
2
δ ] ≤ 4E0[(Nδ)

2] + 1.
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Secondly, as Ea[Nδ] ≥ 0 and Nδ ≥ 0 almost surely, we have

|Nδ − Ea[Nδ]|3 ≤ max
(
|Ea[Nδ]|3, |Nδ|3

)
≤ |Nδ|3 + |Ea[Nδ]|3 almost surely.

In view of (10), we easily have that |Ea[Nδ]|3 ≤ (4E0[(Nδ)
2] + 1)

3
2 . Proceeding as when we

obtain (10) allows to obtain that Ea [|Nδ|3] is bounded by a constant independent from a.
These two statements combined with (10) imply that i) is proved.

Now, for ii), as k ≥ 1, one can easily see that ||g||∞ < +∞. Using (8) and the fact
that G is continuous, we only have to prove that a 7→ Iδ(a) is continuous to obtain the
continuity of a 7→ Ea[Nδ]. It is easily shown by noticing that∣∣E0[Nδ−x]g(a+ x)1{x∈[0,δ]}

∣∣ ≤ ||g||∞E0[Nδ]1{x∈[0,δ]},

and that the right-hand side is integrable. This proves ii).

The proof of iii) is very similar. We use the integral equation (9), and then the following
domination∣∣∣∣E [(N (1)

δ−x +N
(2)

δ−x

)2]
g(a+ x)1{x∈[0,δ]}

∣∣∣∣ ≤ 4||g||∞E0[(Nδ)
2]1{x∈[0,δ]}.

This completes the proof. □

With this lemma, we are able to obtain the asymptotic behavior of (Xδ
t )t≥0 for all δ > 0

by adapting the proof of the central limit theorem. Let us do this through the following
proposition.

Proposition 1. For any δ > 0,

E
[
exp

(
is

Xδ
t√
Nt

) ∣∣∣∣Ft

]
a.s.−→

t−→+∞
exp

(
−
σ2
X,δs

2

2

)
,

where σ2
X,δ =

∫
R+ Vara(Nδ) p(a) da.

Proof. Let t ≥ 0, δ > 0 and j ∈ J1, NtK. We denote by Aj
t the age of the individual j at

time t, i.e. the initial age of the process N j
t,δ. Besides, we introduce the random variables

Zj
t,δ =

N j
t,δ − E[N j

t,δ|Ft]√
Nt

, σ2
t,j,δ = VarAj

t
(Nδ),

and for all s ∈ R

∆j
t,δ(s) = eisZ

j
t,δ −

(
1 + isZj

t,δ −
s2(Zj

t,δ)
2

2

)
, Dj

t,δ(s) = exp

(
−
s2σ2

t,j,δ

2Nt

)
−
(
1−

s2σ2
t,j,δ

2Nt

)
.

As E
[
Zj

t,δ|Ft

]
= 0 and E

[
(Zj

t,δ)
2|Ft

]
=

σ2
t,j,δ

Nt
, we have for all s ∈ R∣∣∣∣E[eisZj

t,δ |Ft]− exp

(
−
s2σ2

t,j,δ

2Nt

)∣∣∣∣ = ∣∣E[∆j
t,δ(s)|Ft]−Dj

t,δ(s)
∣∣

≤ |E[∆j
t,δ(s)|Ft]|+ |Dj

t,δ(s)|.
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We use now the classical inequalities (see [6, Lemma 10.1.5, p.320], we adapt easily this
lemma for e−y) for x ∈ R, y ∈ R+, n ≥ 1∣∣∣∣∣eix −

n∑
j=0

(ix)j

j!

∣∣∣∣∣ ≤ |x|n+1

(n+ 1)!
,

∣∣∣∣∣e−y −
n∑

j=0

(−y)j

j!

∣∣∣∣∣ ≤ |y|n+1

(n+ 1)!
,

to obtain for all s ∈ R∣∣∣∣E[eisZj
t,δ |Ft]− exp

(
−
s2σ2

t,j,δ

2Nt

)∣∣∣∣ ≤ E

[∣∣sZj
t,δ

∣∣3
6

|Ft

]
+

s4σ4
t,j,δ

8N2
t

=
|s|3

6N
3
2
t

E
[
|N j

t,δ − E[N j
t,δ|Ft]|3|Ft

]
+

s4σ4
t,j,δ

8N2
t

.

Finally, in view of Lemma 1, we have for all s ∈ R the following inequality

(11)

∣∣∣∣E[eisZj
t,δ |Ft]− exp

(
−
s2σ2

t,j,δ

2Nt

)∣∣∣∣ ≤ |s|3

6N
3
2
t

sup
a∈[0,∞)

{
Ea

[
|Nδ − Ea[Nδ]|3|

]}
+

s4

8N2
t

(
sup

a∈[0,∞)

{
Ea[N

2
δ ]
})2

.

Moreover, by branching property and (7), we also have

E
[
exp

(
is

Xδ
t√
Nt

) ∣∣∣∣Ft

]
=

Nt∏
j=1

E
[
exp

(
isZj

t,δ

)
|Ft

]
.

Then, using the inequality |
∏p

j=1 xj −
∏p

j=1 yj| ≤
∑p

i=1 |xj − yj| for p ∈ N∗, (xj)1≤j≤p and

(yj)1≤j≤p sequences of complex numbers such that for all j ∈ J1, pK |xj|, |yj| ≤ 1, and then
using Equation (11), imply that almost surely

(12)

∣∣∣∣∣E
[
exp

(
is

Xδ
t√
Nt

) ∣∣∣∣Ft

]
− exp

(
− s2

2Nt

Nt∑
j=1

VarAj
(Nδ)

)∣∣∣∣∣
≤

Nt∑
j=1

∣∣∣∣E [exp (isZj
t,δ

)
|Ft

]
− exp

(
−
s2VarAj

(Nδ)

2Nt

)∣∣∣∣
≤ |s|3

6N
1
2
t

sup
a∈[0,∞)

{
Ea

[
|Nδ − Ea[Nδ]|3|

]}
+

s4

8Nt

(
sup

a∈[0,∞)

{
Ea[N

2
δ ]
})2

.

The right-hand side goes to 0 almost surely as t tends to infinity, using Lemma 1 and that
Nt tends to infinity. In addition, all the statements of Lemma 1 imply that the function
x 7→ Varx(Nδ) is bounded continuous. Then, by [5, Corollary 3] we have

s2

2Nt

Nt∑
j=1

VarAj
(Nδ)

a.s.−→
t−→+∞

s2

2
σ2
X,δ.

The latter combined with (12) through a triangular inequality ends the proof. □
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One can easily check that this proposition implies

Xδ
t√
Nt

=⇒
t−→+∞

N
(
0, σ2

X,δ

)
.

We keep the convergence of the process conditionally with respect to (Ft)t≥0 to be able to
combine the convergence of (Xδ

t )t≥0 with the convergence of (Y δ
t )t≥0.

2.2. Asymptotic behavior of Y δ
t . Let us focus now on the asymptotic behavior of

(Y δ
t )t≥0 for all δ > 0. By Equation (7), we see that for all t ≥ 0, δ > 0, similar to Xδ

t ,
the random variable Y δ

t can be seen as the sum of Nt independent random variables. To
obtain the behavior of (Y δ

t )t≥0, we use the result in [21] which deals with more general
processes. Some preliminaries are required to use this result. Let us give these in the
following lemma.

Lemma 2. Let us suppose that k ≥ 1, θ > 0. Then for any δ > 0, the following statements
hold.

i) The function h1(a) = Ea[Nδ] is continuously differentiable on (0,∞), and there exists
Ch1 > 0 such that for all a > 0

(13) |h′
1(a)| ≤ Ch1

(
ak−21a<1 + 1

)
.

ii) There exists Ch2 > 0 such that for h2(a) =
(
Ea [Nδ]− eαδ

)
(1−G(a)) 1{a≥0}, we have

Vh2(a) ≤ Ch2 .1{a≥0}
(
1 + min(a, 1)k−1 + a

)
,

where Vf is defined for any function f by

Vf(x) = sup

{
n∑

j=1

|f(xj)− f(xj−1)|
∣∣ −∞ < x0 < x1 < . . . < xn ≤ x, n ∈ N

}
.

iii) The function h3(a) = e−αa ((1−G(a))− (1−G(a))2)
(
Ea [Nδ]− eαδ

)2
is directly Rie-

mann integrable on [0,∞), i.e.∑
n≥0

sup
y∈(nϵ,(n+1)ϵ]

f(y) < +∞, and ϵ
∑
n≥0

{
sup

(nϵ,(n+1)ϵ]

f(y)− inf
(nϵ,(n+1)ϵ]

f
}
−→
ϵ−→0

0.

Proof. Let us first prove i). By (8), as G is continuously differentiable, we only have
to prove that a 7→ Iδ(a) is continuously differentiable on (0,+∞). As g′(y)−→0 when
y−→∞, and g′ is continuous on (0,+∞), we have for all η > 0 that sup[η,+∞) |g′| < +∞.
The continuous differentiability of a 7→ Iδ(a) then follows from the following integrable
bound, for a ∈ [η,+∞),∣∣E0[Nδ−x]g

′(a+ x)1{x∈[0,δ]}
∣∣ ≤ sup

y∈[η,+∞)

|g′(y)|E0[Nδ]1{x∈[0,δ]}.

Let us prove now (13). By (8), for all a > 0

h′
1(a) = 2

∂

∂a
Iδ(a) +

∂

∂a

1−G(a+ δ)

1−G(a)

= 2

∫ δ

0

E0[Nδ−x]

(
g′(a+ x)

1−G(a)
+

g(a+ x)g(a)

(1−G(a))2

)
dx+

(1−G(a+ δ))g(a)

(1−G(a))2
− g(a+ δ)

1−G(a)
.
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Then, using the fact that G increases, we have for all a > 0

(14)

|h′
1(a)| ≤ 2E0[Nδ]

∫ δ

0

(∣∣∣∣g′(a+ x)

1−G(a)

∣∣∣∣+ g(a+ x)g(a)

(1−G(a+ x))(1−G(a))

)
dx

+
g(a)

1−G(a)
+

g(a+ δ)

1−G(a+ δ)
.

To continue, we need upper bounds for s 7→ g(s)
1−G(s)

and s 7→ supx≥0

∣∣∣g′(s+x)
1−G(s)

∣∣∣. First, by

L’Hôpital’s rule we have

lim
a−→+∞

g(a)

1−G(a)
= − lim

a−→+∞

g′(a)

g(a)
= − lim

a−→+∞
(log(g(a)))′ =

1

θ
.

The latter combined with the fact that g and G are continuous yields

(15) sup
s≥0

g(s)

1−G(s)
< +∞.

Second, for all (x, a) ∈ [0, δ] × (0,+∞), we have by using triangular inequality, and the
fact that G increases∣∣∣∣g′(a+ x)

1−G(a)

∣∣∣∣ = ∣∣∣∣k − 1

a+ x

g(a+ x)

1−G(a)
− g(a+ x)

(1−G(a)) θ

∣∣∣∣
≤ k − 1

a+ x

g(a+ x)

1−G(1)
1{a≤1} +

(
(k − 1)1{a>1} +

1

θ

)
g(a+ x)

1−G(a+ x)
.

Using the fact that when k ≥ 2 we have

g(a+ x)

a+ x
1{a≤1} ≤

(a+ x)k−2

Γ(k)θk
1{a≤1} ≤

(1 + δ)k−2

Γ(k)θk
1{a≤1},

and when 1 ≤ k < 2 we have

g(a+ x)

a+ x
1{a≤1} ≤

ak−2

Γ(k)θk
1{a≤1},

we obtain

(16)

∣∣∣∣g′(a+ x)

1−G(a)

∣∣∣∣ ≤ k − 1

(1−G(1))Γ(k)θk
(
(1 + δ)k−2 + ak−2

)
1{a≤1}

+

(
(k − 1)1{a>1} +

1

θ

)
sup
s≥0

g(s)

1−G(s)
.

Then, plugging (15) and (16) in (14) yields (13).

Let us turn to the proof of ii). The function h2(a) =
(
Ea [Nδ]− eαδ

)
(1−G(a)) 1{a≥0}

is continuously differentiable on (0,+∞) by i), and with zero derivatives on (−∞, 0).
Moreover, we easily have that |h2(0

−)−h2(0)| = h2(0), and by continuity |h2(0
+)−h2(0)| =

0 (see Lemma 1 ii)). Therefore, using the expression of the total variation for a piecewise
continuously differentiable function yields for all a ∈ R

(17) Vh2(a) =

{
0, for a < 0,

|h2(0)|+
∫ a

0
|h′

2(s)| ds, for a ≥ 0.

For all s > 0, we have using a triangular inequality, and then Lemmas 1 and 2
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|h′
2(s)| =

∣∣h′
1(s)(1−G(s))− g(s)

(
Es [Nδ]− eαδ

)∣∣
≤ Ch1

(
sk−21s<1 + 1

)
+ ||g||∞

(
sup
y≥0

(Ey [Nδ]) + eαδ
)
.

Plugging this in (17) yields ii).
Finally, by Lemma 1 i), we easily obtain that there exists a constant K > 0 such that

for all a ≥ 0,

h3(a) = e−αa
(
(1−G(a))− (1−G(a))2

) (
Ea [Nδ]− eαδ

)2 ≤ Ke−αa.

By [2, Prop. 4.1.V, p.154], a 7→ Ke−αa is directly Riemann integrable as this is a non-
increasing Lebesgue integrable function. Then, h3 is directly Riemann integrable by [2,
Prop. 4.1.IV, p.154], as it is a bounded continuous function (Lemma 1), dominated by
a 7→ Ke−αa. □

Thus, we have all the auxiliary statements we need to apply the result in [21]. We now
introduce some notations linked to this article. We use [21] and consider for all t ≥ 0, δ > 0

∆δ
t = Y δ

t −
∑

ρ∈C\{−1/θ},
Lg(ρ)= 1

2
,Re(ρ)>α

2

eρ t
∫
R h2(x)e

−ρ xdx

2
∫ +∞
0

xe−ρxg(x)dx
W (ρ),

where h2 has been defined in Lemma 2, and W (ρ) is the limit almost surely and in L2

of the martingale (Wt(ρ))t≥0 defined in [21, Eq. 2.17]. We do not explicit the latter as
this requires introducing too many notations. For all δ > 0, we can obtain the asymptotic
behavior of (∆δ

t )t≥0 by using [21, Theorem 2.8]. This theorem gives the ergodic behavior
for (∆δ

t )t≥0, as the cost of a renormalization that is different according to the fact that
the set {ρ ∈ C\{−1/θ} : Lg(ρ) = 1/2,Re(ρ) = α/2} is empty or not. The second case
corresponds in fact to a critical case, when the spectral gap α − λ = α

2
. Let us give the

asymptotic behavior of (∆δ
t )t≥0 for all δ > 0 in the following proposition.

Proposition 2. Let δ > 0. Then there exists σ2
Y,δ such that

tbe−αt/2∆δ
t

(
1,

1√
W

)
L

=⇒
t−→+∞

N (0, σ2
Y,δ)

(√
W

β
,

1√
β

)
,

where N (0, σ2
Y,δ) is a centered Gaussian random variable with variance σ2

Y,δ independent

of W , β = 2
∫∞
0

ug(u)e−αudu, and

b =

{
0, if {ρ ∈ C\{−1/θ} : Lg(ρ) = 1/2,Re(ρ) = α/2} = ∅,

−1/2, otherwise.

Proof. Let δ > 0. Bellman-Harris processes are a special class of Crump-Mode-Jagers
processes where the reproduction happens only at the end of the life of each individual.
We can thus apply Theorem 2.8 in [21], which deals with Crump-Mode-Jagers processes
with random characteristic, by checking the assumptions of this result, namely (A1−A3),
(A5− A6) and (2.19) (the density of the intensity measure with respect to the Lebesgue
measure is immediate). In our case, the reproduction point process of the Crump-Mode-
Jagers process is ξ =

∑2
j=1 δζ , and the random characteristic is

φ(x) =
(
Ex [Nδ]− eαδ

)
1[0,ζ[(x),
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where ζ ∼ Γ(k, θ).

As Lg(α) = 1
2
and − (Lg)′ (α) =

∫ +∞
0

xe−αxg(x)dx > 0, Assumption (A1) of [21] is
satisfied. Moreover, the reproduction law is reduced to binary division, so Assumptions
(A2) and (A3) of [21] are directly satisfied (see Remark 2.1 of [21]).
Noticing that for all a ∈ R, e−αaVar(φ(a)) = h3(a)1a≥0, and using Lemma 2 iii) imply
that (A5) is satisfied.
Let t ∈ R and ϵ = 1. By Lemma 1 i), notice that for all x ∈ R,

|φ(x)| ≤
(
sup
s≥0

Es [Nδ] + eαδ
)

< +∞.

Thus the family (|φ(x)|2)x∈[t−ϵ,t+ϵ] is bounded and (A6) is satisfied.

Equation (2.19) in [21] is satisfied by using Lemma 2 ii), and the fact that for all c > 0∫ ∞

0

(
1 + min(x, 1)k−1 + x

)
(e−cx + e−αx)dx < +∞.

In addition, for all p ∈ C such that Re(p) ̸= 1
θ
we have

(18) (Lg)′(p) = − kθ

(1 + pθ)k+1
̸= 0.

Then, every root of p 7→ Lg(p) − 1
2
is a root of multiplicity 1. We have now checked the

assumptions of [21, Theorem 2.8] and get the convergence in law of tbe−αt/2∆δ
t . Adding that

this convergence is stable by [21, Remark 2.13], and thatW > 0 a.s. by [5, Theo. 2 , p.172],
ends the proof of the convergence in law of the bivariate random variable.

□

The previous proposition shows that the asymptotic behavior of (Y δ
t )t≥0 depends on the

set {ρ ∈ C\{−1/θ} : Lg(ρ) = 1/2}. In our case, with Gamma distribution of lifespan,
this set is explicit. Indeed, for all p ∈ C such that p ̸= −1

θ
, we have

(19) Lg(p) = 1

(1 + pθ)k
.

We can solve this equation and obtain

(20)

{
ρ ∈ C\{−1/θ} : Lg(ρ) = 1

2

}
=

{
2

1
k exp

(
2π l
k
i
)
− 1

θ
| l ∈

s
−
⌈
k

2

⌉
+ 1,

⌊
k

2

⌋{}
.

Recalling the expressions of α, λ, τ from (5), we derive that when k ≥ 2

α, λ± iτ ∈ {ρ ∈ C\{−1/θ} : Lg(ρ) = 1/2} ,
and when k ∈ [1, 2)

(21) {ρ ∈ C\{−1/θ} : Lg(ρ) = 1/2} = {α}.

We can now classify the convergence of (Y δ
t )t≥0 and explain the cases of Theorem 1.

Proposition 3. Let δ > 0. The following result of convergence holds.
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i) If 2 cos
(
2π
k

)
< 2−

1
k + 1, then

Y δ
t√
Nt

L
=⇒

t−→+∞
N
(
0, 2ασ2

Y,δ

)
,

where

σ2
Y,δ =

∫
R+

Var
((
Ex [Nδ]− eαδ

)
1[0,ζ[(x) + 2h(δ)(x− ζ)1[ζ,+∞[(x)

)
e−αxdx.

ii) If 2 cos
(
2π
k

)
= 2−

1
k + 1, then

Y δ
t√
tNt

L
=⇒

t−→+∞
N
(
0, 2ασ2

Y,δ

)
,

where

σ2
Y,δ =

1

2k2

2
2
k

2
2
k − 2

1
k

∣∣e(λ+iτ)δ − eαδ
∣∣2 .

iii) If 2 cos
(
2π
k

)
> 2−

1
k + 1, then∣∣∣∣ Y δ

t

exp (λt)
− 2 |Mδ| cos [τt+ arg (Mδ)]

∣∣∣∣ P−→
t−→+∞

0,

where

Mδ =
(
e(λ+iτ)δ − eαδ

)
M,

and M is complex random variable that does not depend on δ.

Proof. We prove i). First, by (20), we notice that when k ≥ 2

λ = max {Re(ρ) : ρ ∈ C\{−1/θ, α}, Lg(ρ) = 1/2} .

Then, the latter and (21) imply that in the case 2 cos
(
2π
k

)
< 2−

1
k + 1, which is equivalent

to λ < α/2, we have

(22)

{
ρ ∈ C\{−1/θ} : Lg(ρ) = 1

2
, Re(ρ) ≥ α

2

}
= {α}.

Second, following the proof of Proposition 2 allows to check the Assumptions of [21,
Lemma 7.6] for the random characteristics φ1(x) = 1[0,ζ[(x) and φ2(x) = Ex[Nδ]1[0,ζ[(x),
where ζ ∼ Γ(k, θ). This result ensures that there exists c ∈ (0, α

2
) such that

E [Nt+δ] =
∑

ρ∈C\{−1/θ},
Lg(ρ)= 1

2
,Re(ρ)≥α

2

∫ +∞
0

e−ρ x(1−G(x))dx

2
∫ +∞
0

xe−ρ xg(x)dx
eρ(t+δ) +O

(
ec t
)
,

and

E [Nt+δ] = E

[
Nt∑
j=1

E[N j
t,δ|Ft]

]

=
∑

ρ∈C\{−1/θ},
Lg(ρ)= 1

2
,Re(ρ)≥α

2

∫ +∞
0

e−ρ xEx [Nδ] (1−G(x))dx

2
∫ +∞
0

xe−ρ xg(x)dx
eρ t +O

(
ec t
)
.
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By identifying the coefficients of these two expansions, we get

(23)

∫ +∞

0

Ex [Nδ] e
−αx(1−G(x))dx = eαδ

∫ +∞

0

e−αx(1−G(x))dx,

and finally

(24)

∫ +∞

0

h2(x)e
−αxdx = 0.

Combining this equation with (22) implies that for all t ≥ 0, δ > 0,

(25) ∆δ
t = Y δ

t .

Combining now Equations (22) and (25), and Proposition 2, we get

e−αt/2W−1/2 Y δ
t

L
=⇒

t−→+∞

1√
β
N (0, σ2

Y,δ).

We also know that √
Nt W

−1/2 e−αt/2 a.s.−→
t−→+∞

√
n1,

where n1 = 1
2αβ

, see [20, Theo. 21.1, p.147]. Combining these two results of convergence

through Slutsky’s lemma allows to obtain the convergence. We mention that we can
also obtain this convergence by applying [22, Corollary 2], but this only works when the
parameter k of the Gamma distribution is an integer.
To know the value of σ2

Y,δ when 2 cos
(
2π
k

)
< 2−

1
k + 1, we use the expression given in [21,

Theorem 2.14]. We are in the case where n = −1 (as p 7→ Lg(p) − 1
2
has no roots such

that Re(p) = α/2). Then, if we consider ζ ∼ Γ(k, θ), and if we denote for all y ∈ R the
function h(δ)(y) = (E [Ny+δ]− eαδE [Ny])1[0,∞[(y), we have by [21, Theorem 2.14] that

(26)

σ2
Y,δ =

∫
R
Var(φ(x) + 2h(δ)(x− ζ)1[ζ,+∞[(x))e

−αxdx

=

∫
R+

Var
((
Ex [Nδ]− eαδ

)
1[0,ζ[(x) + 2h(δ)(x− ζ)1[ζ,+∞[(x)

)
e−αxdx.

We prove now ii). As λ = max {Re(ρ) | 2.Lg(ρ) = 1}, we have by the condition of the
statement and (20) that

(27)

{
ρ ∈ C\{−1/θ} : Lg(ρ) = 1

2
, Re(ρ) >

α

2

}
= {α},{

ρ ∈ C\{−1/θ} : Lg(ρ) = 1

2
, Re(ρ) =

α

2

}
= {λ− iτ, λ+ iτ} .

We prove similarly to the previous point that (23) is satisfied, implying that for all t ≥ 0,
δ > 0, we have ∆δ

t = Y δ
t . Then, by Proposition 2 ii),

t−1/2e−αt/2
(√

W
)−1

Y δ
t

L
=⇒

t−→+∞

1√
β
N (0, σ2

Y,δ).

Using (1) and Slutsky’s lemma, we can switch from W to Nt in this convergence and get
ii).

We now compute σ2
Y,δ when 2 cos

(
2π
k

)
= 2−

1
k +1. It is direct that if we consider ζ ∼ Γ(k, θ)
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we have by the expression of the variance given in [21, Theorem 2.14] (we are in the case
where n = 0, as the roots of p 7→ Lg(p)− 1

2
such that Re(p) = α/2 have a multiplicity 1)

σ2
Y,δ =

∑
ρ∈C\{−1/θ},

Lg(ρ)= 1
2
, Re(ρ)=α

2

Var

[(
eρδ − eαδ

2ρ
∫ +∞
0

xe−ρ xg(x)dx

)
e−ρ ζ

]
.

As for a complex random variable Z and a constant c ∈ C we have Var(cZ) = E[|cZ|2]−
|E[cZ]|2 = |c|2Var(Z), and as

{
ρ ∈ C\{−1/θ}, 2.Lg(ρ) = 1, Re(ρ) = α

2

}
= {λ−iτ, λ+iτ},

we obtain

σ2
Y,δ =

∑
s∈{−1,1}

∣∣∣∣∣ e(λ+isτ)δ − eαδ

2(λ+ isτ)
∫ +∞
0

xe−(λ+isτ)xg(x)dx

∣∣∣∣∣
2

Var
[
e−(λ+isτ)ζ

]
.

As E
[
e−αζ

]
= Lg(α) = 1/2, as for the same reason E

[
e−(λ+iτ)ζ

]
= E

[
e−(λ−iτ)ζ

]
= 1/2,

and as α = 2λ, we have Var
[
e−(λ±iτ)ζ

]
= E

[
e−2λζ

]
−
∣∣E [e−(λ±iτ)ζ

]∣∣2 = 1/2 − 1/4 = 1/4.
Plugging this in the above equation yields

σ2
Y,δ =

1

4

∣∣∣∣∣ e(λ+iτ)δ − eαδ

2(λ+ iτ)
∫ +∞
0

xe−(λ+iτ)xg(x)dx

∣∣∣∣∣
2

+
1

4

∣∣∣∣∣ e(λ−iτ)δ − eαδ

2(λ− iτ)
∫ +∞
0

xe−(λ−iτ)xg(x)dx

∣∣∣∣∣
2

.

Using the fact that
∫ +∞
0

xe−(λ±iτ)xg(x)dx = −L′(g)(λ± iλ), Equation (18), the fact that

1/[1 + (λ± iτ)θ]k = Lg(λ± iτ) = 1
2
, and finally the equality 2 cos

(
2π
k

)
= 2−

1
k + 1, we get

σ2
Y,δ =

1

4

∣∣∣∣∣1k 2
1
k exp

(
i2π
k

)
2

1
k exp

(
i2π
k

)
− 1

∣∣∣∣∣
2 [∣∣(e(λ+iτ)δ − eαδ

)∣∣2 + ∣∣e(λ−iτ)δ − eαδ
∣∣2]

=
1

2k2

2
2
k

2
2
k + 1− 2

1
k
+1 cos

(
2π
k

) ∣∣e(λ+iτ)δ − eαδ
∣∣2

=
1

2k2

2
2
k

2
2
k − 2

1
k

∣∣e(λ+iτ)δ − eαδ
∣∣2 .

We finally prove iii). In this case,

λ = max {Re(ρ) : ρ ∈ C\{−1/θ, α}, Lg(ρ) = 1/2} ∈ (α/2, α).

Moreover, one can prove as in the first point that (23) and (24) are true. Then, we have
the following equality for all t ≥ 0, δ > 0

(28)

Y δ
t

exp (λt)
−

∑
ρ∈C\{−1/θ},

Lg(ρ)= 1
2
,Re(ρ)=λ

e(ρ−λ)t

∫
R h2(x)e

−ρ xdx

2
∫ +∞
0

xe−ρxg(x)dx
W (ρ)

=
∆δ

t

exp (λt)
+

∑
ρ∈C\{−1/θ},

Lg(ρ)= 1
2
,λ>Re(ρ)>α/2

e(ρ−λ)t

∫
R h2(x)e

−ρ xdx

2
∫ +∞
0

xe−ρxg(x)dx
W (ρ).
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As λ > α/2, by Proposition 2 (whatever the case) and Slutsky’s lemma we have

(29)
∆δ

t

exp (λt)

L
=⇒

t−→+∞
0.

We also easily have that

(30)
∑

ρ∈C\{−1/θ},
Lg(ρ)= 1

2
,λ>Re(ρ)>α/2

e(ρ−λ)t

∫
R h2(x)e

−ρ xdx

2
∫ +∞
0

xe−ρxg(x)dx
W (ρ)

a.s.−→
t−→+∞

0.

Combining (29) and (30) through Slutsky’s lemma yields

(31)
Y δ
t

exp (λt)
−

∑
ρ∈C\{−1/θ},

Lg(ρ)= 1
2
,Re(ρ)=λ

e(ρ−λ)t

∫
R h2(x)e

−ρ xdx

2
∫ +∞
0

xe−ρxg(x)dx
W (ρ)

L
=⇒

t−→+∞
0.

We know by (20) that {ρ ∈ C\{−1/θ} : Lg(ρ) = 1
2
,Re(ρ) = λ} = {λ− iτ, λ+ iτ}.

Proceeding as in the first point for (23), we can obtain that∫ +∞

0

Ex [Nδ] e
−(λ±iτ)x(1−G(x))dx = e(λ±iτ)δ

∫ +∞

0

e−(λ±iτ)x(1−G(x))dx

=
e(λ±iτ)δ

λ± iτ

∫ +∞

0

(
1− e−(λ±iτ)y

)
g(y)dy =

e(λ±iτ)δ

2(λ± iτ)
,

and more generally

(32)

∫
R
h2(x)e

−(λ+iτ)xdx =
e(λ+iτ)δ − eαδ

2(λ+ iτ)
=

∫
R
h2(x)e−(λ−iτ)xdx.

By (18), we also have that

(33)

∫ +∞

0

xe−(λ+iτ)xg(x)dx =

∫ +∞

0

xe−(λ−iτ)xg(x)dx = −(Lg)′(λ+iτ) =
kθ

21+
1
k exp

(
2π
k
i
) .

As W (λ + iτ) and W (λ− iτ) are limits of conjugated martingales (see [21, Eq. 2.17] for
the expression of the martingale), we have that

(34) W (λ+ iτ) = W (λ− iτ).

Plugging (32), (33) and (34) in (31) and using the equality z + z = 2|z| cos(arg(z)) yields

that the statement of the proposition is proved for M = 1
2k

2
1
k exp( 2π

k
i)

2
1
k exp( 2π

k
i)−1

W (λ+ iτ). □

It remains now to combine Propositions 1 and 3 to obtain the asymptotic behavior of
(Rδ

t )t≥0 for all δ > 0.

2.3. Proof of Theorem 1.

Proof of i). Let δ > 0, t ≥ 0. As Rδ
t = Xδ

t + Y δ
t and Y δ

t is Ft−measurable, conditioning
with respect to Ft yields

E
[
eisR

δ
t /

√
Nt

]
= E

[
E
[
eisX

δ
t /

√
Nt

∣∣∣∣Ft

]
eisY

δ
t /

√
Nt

]
.
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Then, using the triangular inequality and the fact that | exp(i.x)| = 1 for x ∈ R and
σ2
δ = σ2

X,δ + σ2
Y,δ, we get

(35)

∣∣∣E [eisRδ
t /

√
Nt

]
− e−σ2

δs
2/2
∣∣∣ ≤ E

[∣∣∣∣E [eisXδ
t /

√
Nt

∣∣∣∣Ft

]
− e−σ2

X,δs
2/2

∣∣∣∣]
+ e−σ2

X,δs
2/2
∣∣∣E [eisY δ

t /
√
Nt

]
− e−σ2

Y,δs
2/2
∣∣∣ .

By Proposition 1 and the dominated convergence theorem, we have

E
[∣∣∣∣E [eisXδ

t /
√
Nt

∣∣∣∣Ft

]
− e−σ2

X,δs
2/2

∣∣∣∣] −→
t−→+∞

0.

By Proposition 3 and the Levy’s theorem, we also have∣∣∣E [eisY δ
t /

√
Nt

]
− e−σ2

Y,δs
2/2
∣∣∣ −→
t−→+∞

0.

Plugging these two results of convergence in (35) implies that i) is proved. □

Proof of ii). By Proposition 1 and Slutsky’s lemma, Xδ
t /
√
tNt converges to 0 in law and

thus in probability, as t tends to infinity. By Proposition 3, Y δ
t /

√
tNt converges in law to

a centered Gaussian variable with variance 2ασ2
Y,δ. Adding these two convergences with

Slutsky’s lemma ends the proof of ii). □

Proof of iii). In the case iii), λ > α/2 and Proposition 1 ensures that Xδ
t exp (−λt) con-

verges to 0 in law and thus in probability, as t tends to infinity. Besides, Proposition 3 iii)
ensures that Y δ

t exp (−λt) converges in probability to 2 |Mδ| cos [τt+ arg (Mδ)]. Adding
these two limits yields the result. □

3. Estimation of the parameters from simulations

Let us use the results above on the asymptotic behavior of (Rδ
t )t≥0 and propose an

efficient way to infer the parameters (k, θ) of the lifespan. We assume that our data set
consists in the observation of ndata independent realizations of a Bellman-Harris with time
distribution Γ(k, θ) at fixed instants of measures. We may forget the first times, when
the population is small, since we rely on asymptotic analysis and are motivated by this
framework. We may also discuss on the role of the times and choose the relevant set of
times to exploit. The corresponding data set we use is then denoted by

(N
(j)
i∆ : i ≤ I, j ∈ J1, ndataK),

where ∆ > 0, I ∈ N∗.
We also need a numerical approximation of σ2

δ introduced in Theorem 1 i). The lat-
ter depends on the parameters (k, θ) of the lifetime distribution. Using the relation
α = (21/k − 1)/θ, we can also say that σ2

δ depends on the values of (k, α). We pre-
fer this viewpoint, as this is more relevant for our inference method. Thus, from now on,
σ2
δ refers to the function

σ2
δ : (k, α) ∈ [1, kc)× R∗

+ 7→ σδ(k, α).

We denote (k, α) 7→ σ2
δ(k, α) the approximation of σ2

δ . Let us explain how we compute
it when α is fixed. We consider a grid of parameters

Gp = {1 + pl | l ∈ J0, ⌊(kc − 1)/p⌋ − 1K},
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where p > 0. Then, for any k ∈ Gp, we proceed by Monte Carlo simulations to approximate
all the expectations and variances that compose σ2

δ (k, α), except those in function h(δ).
We refer to Section 6.1 to see how we approximate the latter. This gives us at the end
an approximation σ2

δ(k, α) of σ2
δ (k, α) for all k ∈ Gp, that we extend to k ≥ 1 using

interpolation techniques.

To verify that this method works, we plot in Figure 3 the evolution of
Rt,δ√
Nt
, for different

sets of parameters, and see if the latter converges to a value close to σ2
δ . We observe that

this is the case. Thus, this approximation method seems good.

(a) (k, θ) = (18.75, 0.8). (b) (k, θ) = (28.9, 0.59).

(c) (k, θ) = (35, 1). (d) (k, θ) = (46.8, 2.1).

Figure 3. Comparison of σ2
δ with the variance of

Rt,δ√
Nt

in different cases. We use

the grid of parameters G1/20, and we take δ as explained in Section 3.2.1. We

also estimate the variance of
Rt,δ√
Nt

using the empirical estimator of the variance

with 2000 simulations of Bellman-Harris dynamics. To simplify the computation
of σ2

δ, we do the approximation that σ2
δ does not depends on α (or equivalently θ),

see Figure 7b and the end of Section 3.2.1.

We now have everything we need to do the inference. We follow the following pipeline
to recover (k, θ), and test it with simulations. In the rest of Section 3, the “number of
simulations” is the number of dynamics we have simulated to create our dataset, so cor-
responds to ndata.
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Step 1 : estimation α̂ of the Malthusian coefficient α. For all j ∈ J1, ndataK, we do a

linear regression of t 7→ log(N
(j)
t ) using our data set (N

(j)
i∆ : i ≤ I), which gives us an

estimated value α̂(j). Then, we take

α̂ =
1

ndata

ndata∑
i=1

α̂(j)

as an estimation of α.
The estimation of α we obtain is very precise, even with a small number of simulations,

as we see in Figure 4a where all the relative errors are below 1%. In addition, even
exponential quantities such as eα̂δ closely approximate eαδ. Indeed, we plot in Figure 4b
the relative errors for the estimation of eαδ, with δ of the order we choose in pratice (we
refer to Sections 3.1.2 and 3.2.1), and we see that all the errors are below 1.5%.

(a) Relative error of the estimation of α versus
the number or simulations, for a number of

simulations in {50l | l ∈ J1, 40K}.

(b) Relative error of the estimation of eαlδ,

with δ = log(2)
10α̂ , versus l ∈ J1, 20K. The

estimation was done using 100 simulations.

Figure 4. Illustration of the estimation of α and eαδ for different parameters.
Due to oscillations, see Figures 12a and 12b, the errors slightly increase when k
increases.

Step 2 : determination of the (Gaussian or oscillating) regime. We assume here that we
do not fall in the critical and need to determine from the data set if 2 cos (2π/k)−(2−1/k+1)
is positive or negative. For that purpose, we compare α̂ with the growth of the empirical
variance of Nt+δ − eα̂δNt

V̂ar
(
Nt+δ − eα̂δ1Nt

)
=

1

ndata

ndata∑
k=1

((
N

(k)
t+δ − eα̂δN

(k)
t

)
− 1

ndata

ndata∑
j=1

(
N

(j)
t+δ − eα̂δN

(j)
t

))2

,

where t = i∆, i < I. At this step, we need here to be careful in the choice of δ = δ1 = n1∆,
where n1 ∈ N∗, see Section 3.1.

Step 3 : estimation (k̂, θ̂) of (k, θ). Recall that α has been estimated by α̂. Depending

on the regime, the estimator (k̂, θ̂) is different.
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a) In the Gaussian regime, we consider the following estimators

(36) k̂ = argmin
k∈[1,kc[

∣∣∣∣∣σδ(k, α̂)
2 − 1

ntimes

ntimes∑
j=1

V̂ar
(
NTj+δ − eα̂δNTj

)∣∣∣∣∣ , and θ̂ = (21/k̂ − 1)/α̂,

where ntimes ∈ J1, IK, and for all j ∈ J1, ntimesK, (Tj/∆, (Tj + δ)/∆) ∈ J0, IK2. Here the
time step δ = δ2 = n2∆, where n2 ∈ N∗, needs also to be chosen carefully to ensure
uniqueness of the argmin. It will be different from δ1, see Sections 3.1 and 3.2.

b) In the oscillating regime, we first estimate λ by λ̂ thanks to a linear regression : λ̂ is
the slope of

t 7→ 1

2
log
(
V̂ar

(
Nt − eα̂δ1Nt

))
.

Then, we estimate (k, θ) with

(k̂, θ̂) = argmin
(k,θ)∈(kc,+∞[×R∗

+

(21/k−1)/θ=α̂

∣∣∣(21/k cos (2π/k)− 1)/θ − λ̂
∣∣∣ .

Let us now detail the main points of this procedure and give the results obtained by
simulations. We first explain how to choose δ1 > 0 for the determination of the regime in
Step 2. Then, we consider the Gaussian regime and explain how to choose δ2 and compare
in that case the estimated value to the theoretical one for simulations. We finally deal
with the oscillating regime. The score we use to measure the quality of the estimation is
the relative error, defined as

relative error =
|estimated value− theoric value|

theoric value
.

3.1. Determination of the regime.

3.1.1. Why do we need to take care of the time step for the detection of the regime ? Our
approach relies on the study of

Rδ
T = NT+δ − eδαNT = Xδ

T + Y δ
T .

Indeed, Rδ
T can be estimated from data, and is related to the parameters of interest (k, θ)

in a sensible way. This link has been studied in Section 2. We have shown that when
λ > α/2, Xδ

T and Y δ
T behave for large T as follows

XT,δ ≈ N (0, σ2
X,δ)
√

n1WeTα/2, Y δ
T ≈ 2 |Mδ| cos [τT + arg (Mδ)] e

Tλ.

The Gaussian part XT,δ then prevail compared to Y δ
T when T → ∞, see Theorem 1. We

also recall that

Mδ = f(δ).M, with f(δ) = |e(λ+iτ)δ − eαδ|.
For applications, T may not be very large. If T ×(λ−α/2) is positive but small, and Mδ is
close to 0, the two contributions Xδ

T and Y δ
T may be comparable. In that case, it becomes

difficult to detect that λ− α/2 is positive and thus that we are in the oscillating regime.
That’s why the choice of the time step δ matters, and we explain now how to avoid that
f(δ) (and thus Mδ) is too small.
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3.1.2. Time step δ1 and detection of the regime. Let us write δ = δ(c) = c log(2)/α, where
c > 0, and recall that

α =
2

1
k − 1

θ
, λ =

2
1
k cos

(
2π
k

)
− 1

θ
> α/2, τ =

2
1
k sin

(
2π
k

)
θ

.

We search a value of c so that

f(δ(c)) = |e(λ+iτ)c. log(2)/α − eαc. log(2)/α| = |e(λ+iτ)c. log(2)/α − 2c|
is not to close to 0. As we have

lim
k→∞

(λ+ iτ)δ(c) = lim
k→∞

c log(2)

(
2

1
k cos

(
2π
k

)
− 1

1
k

+ i
2

1
k sin

(
2π
k

)
1
k

)
1
k

2
1
k − 1

= c (log(2) + i2π) ,

we obtain
lim
k→∞

f(δ(c)) = 2c
√

2 (1− cos (2πc)).

By this expression and the fact that the oscillating regime corresponds to large values
of k, we see that the values of c that seems interesting are those such that the cosines
term is minimal, i.e. equal to −1. This corresponds to cases where δ = c log(2)/α, with
c− 1/2 ∈ N. At the opposite, the values of c that should be avoided are those such that
the cosines term is maximal, i.e. equal to 1, when c ∈ N∗. To illustrate this, let us plot in
Figure 5 the values of f(δ) = |e(λ+iτ)δ − eαδ| versus δ, in the case where (k, θ) = (80.2, 4).
We see in Figure 5 that the value of the modulus is very low when δ is a multiple of

Figure 5. Curve of |e(λ+iτ)δ − eαδ| versus δ, when (k, θ) = (80.2, 4). Red lines
represent multiples of log(2)/α.

log(2)/α. Then, choosing a step time that is a multiple of this value would imply bad
results on the estimation of the regime.

At the opposite, in Figure 5, the amplitude of the oscillations seems to be maximal
when δ = l log(2)/α + log(2)/(2α), where l ∈ N. Then, it is better to take a time step
as closed as possible of these values when we detect the regime. By default, we take the
minimal step that satisfy this condition, that is

δ1 = argmin
i∆, i∈J0,IK

|∆i− log(2)/(2α̂)| .
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We take the minimal step because the error of the estimation of eαδ increases when δ
increase, as observed in Figure 4b.

3.1.3. The threshold for the detection. To detect the regime, we compare the slope of the

linear regression of t 7→ V̂ar
(
Nt − eα̂δ1Nt

)
, which is 2λ̂, to α̂. Indeed, in the Gaussian

regime, λ̂ does not estimate λ, but α/2. In practice, we decide that we are in the Gaussian
regime if the difference of these two terms is less than 10% of α̂. It is relevant in various
cases, see the results in Sections 3.2.2 and 3.3. A more systemic exploration of the set of
parameters or theoretical may be interesting and would allow to be more precise.

3.2. Inference in the Gaussian regime.

3.2.1. Identifiability : the choice of the time step δ2 for the estimation. We need to choose
the time step δ2 to achieve Step 3. Our estimator (36) involves a minimization, and the
problem is identifiable if there is a unique minimizer (argument of the minimum). This
depends on the choice of δ. Denoting α̂ the estimator of α, the uniqueness of the minimizer
requires an injectivity property, for the function

k 7→ σ2
δ (k, α̂) = σ2

X,δ(k, α̂) + 2α̂σ2
Y,δ(k, α̂).

The function σ2
δ (., α̂) is not injective in general, as we see in Figure 6, where two different

values of k can have the same image by σ2
δ (., α̂). This comes from the fact that σ2

X,δ(., α̂)

and σ2
Y,δ(., α̂) have opposite monotonicity.

(a) For δ = log(2)/(2α̂). (b) For δ = 3 log(2)/(4α̂).

Figure 6. σ2
δ (k, α̂) (black), σ

2
X,δ(k, α̂) (blue) and 2α̂σ2

Y,δ(k, α̂) versus k, for α̂ = 1,

and for different time steps δ such that σ2
δ (., α̂) is not injective. σ2

δ has been
approximated using σ2

δ, computed with the grid of parameters G1/2. The mesh
size is small, because the non-smoothness of the curves when k is large decreases
the readability of the figure with a larger mesh size. To approximate σ2

X,δ and

σ2
Y,δ, we only keep the part of our approximation of σ2

δ that corresponds to each
of these quantities.

In the oscillating regime, we saw in Section 3.1 that we can significantly reduce the
influence of (Y δ

t )t≥0 by choosing δ = log(2)/α̂, see Figure 5. Thus, our conjecture is that
even in the Gaussian regime, choosing δ = log(2)/α̂ would allow us to have injectivity
of σ2

δ (., α̂), because the impact of σ2
Y,δ(., α̂) will be significantly reduced. To check this
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hypothesis, we plot in Figure 7 the evolution of σ2
δ (k, α̂) versus the parameter k for several

values of α̂. If the curves that we obtained are injective, then our conjecture is valid. We
see in Figure 7 that this is the case.

(a) σ2
δ (k, α̂) (black), σ

2
X,δ(k, α̂) (blue) and

2α̂σ2
Y,δ(k, α̂) (red) versus k, for α̂ = 1.

(b) σ2
δ (k, α̂) versus k for

α̂ ∈ [0.01, 0.1, 1, 10, 100]. The figure on the
right shows that σ2

δ (k, α̂) seems to be
independent of the value of α̂.

Figure 7. σ2
δ (k, α̂) versus k for δ = log(2)/α̂, for different values of α̂. To approx-

imate σ2
δ (and σ2

X,δ and σ2
Y,δ that compose it), we use σ2

δ. The grid of parameters
used to do the approximation is G1/10.

Then, for our inference in the Gaussian regime, we are going to use

δ2 = argmin
i∆, i∈J0,IK

|∆i− log(2)/α̂| .

When δ2 is sufficiently closed to log(2)/α̂, as we have observed in Figure 7b that σ(k, α̂)
seems independent of α̂, we use σ2

δ(k, 1) to approximate σ(k, α̂). This allows us to save a
lot of time for the computation of our “approximator” (that can take several days if we
use a large mesh size), without compromising the quality of the results.

3.2.2. Quality of the estimation. Now that we know which time step we take, we study
the quality of the estimation. We denote in this paragraph (k1, θ1) = (35, 1), (k2, θ2) =
(25.4, 2), (k3, θ3) = (14.5, 3.4), and (k4, θ4) = (44, 1.5). As for all l ∈ J1, 4K we have
kl < kc, these parameters are such that we are in the Gaussian regime, see Figure 1. For
all l ∈ J1, 5K, we have simulated ndata = 2000 Bellman-Harris dynamics with lifetimes
distributed according to Γ(kl, θl), up to 8000 cells. Then, for all l ∈ J1, 5K, we create a

dataset (N
(j)
l∆ : l ≤ I, j ∈ J1, ndataK), where I ∈ N∗, and denoting αl = (21/kl − 1)/θl,

∆ = log(2)
8αl

.

We use the pipeline explained at the beginning of Section 3 to retrieve (ki, θi) for all
i ∈ J1, 5K, see Figure 9. Then, we obtain an estimation of the mean and coefficient of

variation of the distribution using the relation (µ, σ
µ
) = (kθ, 1/

√
k). For this inference,

we use σ2
δ(k, 1) to approximate σ2

δ (k, α̂), see end of Section 3.2.1. The latter has been
computed using a grid of parameters G1/20. The results of the estimation are given in
Table 1. The scores that are the more relevant to consider are those for the estimation of
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(µ, σ
µ
). We see that they are very good.

(k, θ) theoric (35, 1) (25.4, 2) (14.5, 3.4) (44, 1.5)

(k, θ) Param. infered (36.83, 0.9504) (25.42, 1.999) (14.57, 3.384) (41.71, 1.582)

(k, θ) Relative error (5.237%, 4.960%) (0.08081%, 0.04331%) (0.4893%, 0.4850%) (5.208%, 5.436%)

(µ, σ
µ
) theoric (35, 0.1690) (50.8, 0.1984) (49.3, 0.2626) (66, 0.1508)

(µ, σ
µ
) infered (35.00, 0.1648) (50.82, 0.1983) (49.30, 0.2620) (65.96, 0.1548)

(µ, σ
µ
) Relative error (0.01732%, 2.520%) (0.03746)%, 0.4038%) (0.001927%, 0.2438%) (0.05514%, 2.710%)

.

Table 1. Results of the estimation in the Gaussian regime. The results are given
with 4 significant digits.

To do this estimation, we used 2000 simulations. For applications on real data, we rarely
have so many simulations. Let us check that the estimation still works even if we use fewer
simulations. We use the pipeline to estimate (µ, σ

µ
) for ndata ∈ {50l | l ∈ J1, 40K}, and then

we plot the relative error of the estimation versus ndata in Figure 8. We see that with
a small number of simulations, even if the score the relative error has increased, scores
are still correct considering the fact that we do not have a lot of simulations. Indeed, for
the estimation of µ, even with a small number of simulations, all the relative errors are
below 1% as we see in Figure 8a. For the estimation of σ/µ, that corresponds to Figure
8b, quickly we are under 10% of relative error. Thus, the inference is satisfying for this
regime.

(a) For µ. (b) For σ/µ.

Figure 8. Relative error of the estimation versus the number of simulations for
the inference in the Gaussian regime.
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(a) Number of individuals along
time.

(b) Number of individuals along
time, at the log-scale. The mean

of the coefficients of
determination of the linear

regressions done to obtain α̂ is
R2

mean = 0.9998.

(c) Fluctuations observed on
simulations.

(d) Variance of fluctuations, at
the log-scale. The coefficient of
determination of the linear

regression done to obtain 2λ̂ is
R2 = 0.9996.

(e) Histogram of the fluctuations
at the last observation time.

Figure 9. Illustration of the different steps for the inference with 2000 simulations,
for parameters (k1, θ1) = (35, 1).
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3.3. Inference in the oscillating regime. Let us now consider the oscillating regime.
By Figure 1, we know that we are in this regime when k > kc. Thus, we study examples
where this condition is satisfied. We run ndata = 2000 simulations of Bellman-Harris pro-
cesses with lifetimes distributed according to Γ(kl, θl), with l ∈ J1, 4K and (k1, θ1) = (70, 1),
(k2, θ2) = (125, 2), (k3, θ3) = (200.5, 1), (k4, θ4) = (385.5, 4). Then, we create a dataset
from these simulations. The simulations and the creation of the dataset are done in the
same way as in the Gaussian regime, see Section 3.2.2.

We use the pipeline described at the beginning of this section to recover the lifetime
parameters and then the mean and coefficient of variation of the distribution, see Figure 11.
The scores are displayed in Table 2. We see that the estimation of (µ, σ

µ
) is very good,

except in the case where (k4, θ4) = (385.5, 2.5) for which the score is not as satisfying for
σ
µ
. The reason is that when k is very high, the amplitude of the oscillations is very large.

Then, the linear regression done to obtain λ̂ is less reliable, as illustrated in Figure 12d.
For our motivation, cases with such low variability in cells lifetime are unrealistic, so this
is not a significant issue.

Theoretical value of (k, θ) (70, 1) (125, 2) (200.5, 3) (385.5, 2.5)
(k, θ) Param. inferred (77.78, 0.9017) (131.2, 1.911) (206.4, 2.931) (519.8, 1.871)
(k, θ) Relative error (11.11%, 9.835%) (4.947%, 4.444%) (2.940%, 2.315%) (34.83%, 25.15%)

Theoretical values of (µ, σ
µ
) (70, 0.1195) (250, 0.08944) (601.5, 0.7062) (963.8, 0.05093)

(µ, σ
µ
) inferred (70.13, 0.1134) (250.7, 0.08731) (604.8, 0.06961) (972.7, 0.04386)

(µ, σ
µ
) Relative error (0.1803%, 5.130%) (0.2833%, 2.385%) (0.5562%, 1.438%) (0.9251%, 13.88%)

Table 2. Results of the estimation in the oscillating regime. The results are given
with 4 significant digits.

To see the effect of the number of simulations, we plot the evolution of the relative
error for ndata ∈ {50l | l ∈ J1, 40K} in Figure 10. Again, the results are good except for
(k4, θ) = (385.5, 2.5). The number of simulations seems to have a little influence on the
relative error. Thus, the inference procedure seems very reliable for cases that motivate
our study, and less precise for unrealistic cases with oscillations of large amplitude.

(a) For µ. (b) For σ/µ.

Figure 10. Relative error of the estimation versus the number of simulations for
the inference in the oscillating regime.
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Estimation of the second eigenvalue based on the amplitude or on the frequency of the
oscillations rather than a linear regression could improve the results in cases with large
oscillations. As this is less relevant than a linear regression for the cases that motivate
our study, we have not developed this type of estimation for the moment.

(a) Number of individuals along time. (b) Number of individuals along time, at
the log-scale. The mean of the coefficients
of determination of the linear regressions

done to obtain α̂ is R2
mean = 0.9995.

(c) Fluctuations observed on simulations. (d) Variance of fluctuations, at the
log-scale. The coefficient of

determination of the linear regression

done to obtain λ̂ is R2 = 0.9926.

Figure 11. Illustration of the different steps for the inference with 2000 simula-
tions, for parameters (k1, θ1) = (70, 1).
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(a) Mean number of cells versus time,
(k1, θ1) = (70, 1). The mean of the coefficients of
determination of the linear regressions done to

obtain α̂ is R2
mean = 0.9995.

(b) Mean number of cells versus time,
(k4, θ4) = (385.5, 2.5). The mean of the coefficients
of determination of the linear regressions done to

obtain α̂ is R2
mean = 0.9920.

(c) Variance fluctuations versus time,
(k1, θ1) = (70, 1). The coefficient of determination

of the linear regression done to obtain λ̂ is
R2 = 0.9926.

(d) Variance fluctuations versus time,
(k4, θ4) = (385.5, 2.5). The coefficient of

determination of the linear regression done to

obtain λ̂ is R2 = 0.8613.

Figure 12. Comparison at the log-scale of the mean number of cells and variance
of fluctuations, with exponential curves whose coefficients are respectively α̂ and

2λ̂, for (k1, θ1) = (70, 1) and (k4, θ4) = (385.5, 2.5). Mean and variance are
computed using empirical estimators, with 2000 simulations.
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4. Estimation of parameters from data

Our original motivation for this work is the characterization of the variability of time
division using monitoring of population sizes. Let us apply our work to two data counting
dividing cells. All the quantities given below are given with 3 significant numbers.

4.1. First data set. The first dataset we use comes from [13]. It contains 13 realizations
of the growth of E. Coli bacteria, obtained with videomicroscopy, where the exact number
of cells is counted in each frame. Measurements start after 48 minutes, and are done every
15 minutes, see Figure 13a. Since the cells are grown in a very large recipient, we assume
that they do not compete for resources, which is why they remain in exponential phase
until the end of the measurements.

We suppose that the lifetime of these bacteria is distributed according to a Gamma
distribution. Our aim is to estimate the mean and the coefficient of variation of bacteria
lifetime with our method. First, we estimate the Malthusian coefficient and determine
in which regime we are. The estimation of α gives us α̂1 = 0.0262 minutes−1, see Fig-
ure 13b. As we have log(2)/(2.α̂1) = 13.3 minutes and that ∆ = 15 minutes, we use the
time step δ1 = 15 minutes to identify the regime. The result of the estimation of λ is

λ̂1 = 0.0188 minutes−1, see Figure 13d. Then, we have the oscillating regime because∣∣∣2λ̂1 − α̂1

∣∣∣
α̂1

= 44.1% > 10%.

We now estimate lifetime parameters. We use the estimator for the oscillating regime.
Here are the parameters we obtain

(k̂1, θ̂1) = argmin
(k,θ)∈[1,+∞[×R∗

+

(21/k−1)/θ=α̂1

∣∣∣(21/k cos (2π/k)− 1)/θ − λ̂1

∣∣∣ = (102, 0.260 minutes) .

The latter corresponds to the following mean and coefficient of variation(
µ̂1,

σ̂1

µ̂1

)
=

k̂1θ̂1,
1√
k̂1

 = (26.6 minutes, 9.893%) .

Although the coefficient of variation is a little low, the values estimated seem fairly credible.
Thus, the inference seems to have worked.

4.2. Second data set. The second dataset we use comes from experiments conducted
by the authors of the paper. Such data set is the original motivation for our study,
see in particular [1, 9]. It contains 496 realizations of the growth of bacteria E.Coli,
obtained by encapsulating the original sets within anchored microfluidic droplets, see
Figure 14a. The drops are then placed on the stage of a motorized microscope and scanned
at regular time intervals. Image analysis is then used to obtain the number of cells per
droplet, as explained in [24]. Here, the cells are grown in so-called MOPS minimal media,
which explains their slow growth compared with typical cells growing in rich LB culture
media [24]. The measurements are done every 30 minutes, then ∆ = 0.5 hours, and
the number of bacteria is represented by an “intensity of fluorescence” in this dataset.
It has been shown that there is a coefficient of proportionality between the intensity of



32

(a) Cells number at each time of
measurement.

(b) Cells number at each time of
measurement at the log-scale. The

mean of the coefficients of
determination of the linear regressions
done to obtain α̂1 is R2

mean = 0.986.

(c) Fluctuations Rt,δ1 at each time of
measurement.

(d) Variance of the fluctuations at
each time of measurement, at the

log-scale. The coefficient of
determination of the linear regression

done to obtain λ̂1 is R2 = 0.960.

Figure 13. Illustration of the different steps done to estimate the parameters of
cells lifetime for the dataset coming from [13].

fluorescence and the number of cells [9], although the value of this coefficient has not yet
been found.

As for the first set, we want to obtain the mean and the coefficient of variation of the
times between division of the bacteria thanks to our method. As we have a coefficient of
proportionality between the number of cells and the intensity of fluorescence, eigenvalues
remain the same in both setting. Thus, if we detect the oscillating regime, the inference
is possible. The first thing we do is to estimate the Malthusian coefficient, and identify in
which regime we are. We obtain thanks to linear regression that α̂2 = 0.450 hours−1, see
Figure 14b. As log(2)/(2α̂2) = 0.770 hours and that ∆ = 0.5 hours, we use δ1 = 1 hour
to determine the regime. It is not a problem that δ1 is not close to log(2)/(2α̂2). The
more important is to avoid to be too close to log(2)/α̂2, see Section 3.1.2, which is the

case here. Our estimation of the second eigenvalue is λ̂2 = 0.343 hours−1, see Figure 14d.

We detect again the oscillating regime, because the relative error between 2λ̂2 and α is
52.4%, which is strictly greater than 10%. Then, using the formula we have used for the
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previous dataset yields

(k̂2, θ̂2) = (120.1, 0.0129 hours),

which corresponds to the following mean and coefficient of variation(
µ̂2,

σ̂2

µ̂2

)
=

k̂2θ̂2,
1√
k̂2

 = (1.55 hours, 9.12%) .

The value of µ2 obtained in this case is much higher than the one for the first dataset,
in agreement with the slower growth rate observed in Figure 14. This is due to the
different nature of the cell culture media. The estimated coefficient of variation appears
to be fitting and relevant in this context. One can also see that we obtain a coefficient of
variation similar to the one obtained in the previous dataset. Consequently, our estimation
of variability also seems to work for this dataset.

(a) Cells number at each time of
measurement.

(b) Cells number at each time of
measurement, at the log-scale. The

mean of the coefficients of
determination of the linear regressions
done to obtain α̂2 is R2

mean = 0.926.

(c) Fluctuations Rt,δ1 at each time of
measurement.

(d) Variance of the fluctuations at
each time of measurement, at the

log-scale. The coefficient of
determination of the linear regression

done to obtain λ̂2 is R2 = 0.954.

Figure 14. Illustration of the different steps done to estimate the parameters of
cells lifetime for the dataset coming from our experiments.
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5. Discussion

In this work, we show how to obtain the parameters of the law of the lifespan of indi-
viduals using the total population sizes at given times. Our point of view is to exploit
the distribution of fluctuations from one observation time to the next one. We model the
population by a Bellman-Harris process and it does not include heredity. This provides
a natural and simple statistical framework with independent and identically distribution
lifespan. Despite this simplicity, the estimation of parameters of this distribution is subtle.
Indeed, two regimes exist for the asymptotic fluctuations of the process. Determining in
which regime we fall yields a first difficulty. It is worth noting that the critical value be-
tween the two regimes correspond to a coefficient variation of around 10%. This is realistic
for biological problems and for instance for microfluidic data which motivates this work.
This motivates a precise mathematical analysis. We propose a procedure to determine
the regime of fluctuations and tune the length of the time between observations. This
procedure has been confronted to simulations and real data. For simulations, our results
show that the estimation we propose gives an efficient approach. The comparison with
biological data also argues for its relevance. Indeed, applying our inference method on
two different datasets returns mean and coefficient of variation that are consistent with
our biological knowledge.

In many biological contexts (cell growth and cancer emergence, epidemics, invasive
species...), obtaining the mean individual behavior is rather direct from the growth rate
of the population size. Our study shows that determining the individual variability or
stochasticity from measures at the population level is difficult. It puts in light that the
choice of the times of observation is crucial. It also pledges for high sampling rate, and
measures at the individual levels rather than at the population level. This would require
us to generate lots of data using high magnification experiments. In contrast, by using
the current techniques, we are able to measure the parameters of the division rates with
a relatively low sampling time.

This work can be seen as first step for inverse problem and can pave the way for the
investigation of more sophisticated and realistic models. In particular, one may focus on
other distribution for the lifespan, even if it is less explicit than the Gamma law. For
instance, the distribution of time for cell division is sometimes best described by the a0-
shifted gamma distribution, see [27] and references therein. A more challenging issue
would be to take into account heredity. In particular, lots of attention has been paid to
the effect of the size and of the variation of size from the previous division (size and adder
model). This yields interesting perspectives. In particular, in this direction, robustness
study and sensitivity analysis would be relevant. In our pursuit of capturing the variability
in lifespan, we may also consider the initial individual differences through a mixed model.

At a more technical level, we expect to complement the results of Section 3 by more
quantitative bounds on the estimation of parameters. In particular, the fact that we first
estimate α and then use the value obtained for the estimation of the remaining parameter
of the lifespan has been tested and validated by simulations but could be more formally
investigated. Besides, we have used a threshold at 10% for the detection of the Gaussian
and oscillating regime from the data, based on empirical explorations. More generally, a
sensitivity analysis would be interesting to complement this study and help for potential
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applications. It will also be valuable to obtain theoretical assurances on the property we
have infered on σ2

δ when δ = ln(2)/α, as the injectivity of this function in the variable k,
or the fact that it does not depend on α.

6. Appendix and complements

6.1. Approximation of h(δ). Function h(δ) can not be approximated with Monte-Carlo
simulations because the error of the empirical estimator of h(δ) grows like eαt/2 when t

increases, in view of Theorem 1. In particular, if we denote ĥ(δ) the estimator obtained
with Monte-Carlo simulations, the function

x 7→ Var
(
(Ex [Nδ]− eαδ)1[0,ζ[(x) + 2ĥ(δ)(x− ζ)1[ζ,+∞[(x)

)
e−αx

is not integrable. Thus, to approximate h(δ), we proceed differently. We use the fact that
the function t 7→ E[Nt] can be approximated by the following

(37) E[Nt] =
1

2k

⌊ k
2⌋∑

l=−⌈ k
2⌉+1

2
1
k exp

(
2π l
k
i
)

2
1
k exp

(
2π l
k
i
)
− 1

exp

(
2

1
k exp

(
2π l
k
i
)
− 1

θ
t

)
,

and approximate h(δ) with t 7→ E[Nt+δ]− eαδE[Nt].
In this section, we explain why we can approximate t 7→ E[Nt] by the expression given

in (37). When k ∈ N∗, we show that the approximation is perfect. When k /∈ N∗, we
obtain theoretical guarantees for large values of t.

6.1.1. Approximation when k ∈ N∗. For all t ≥ 0, we denote m(t) = E[Nt] and G(t) =
1−G(t). Using the integral equation, we have

(38) m(t) = G(t) + 2

∫ t

0

m(t− s)g(s)ds = G(t) + 2

∫ t

0

m(s)g(t− s)ds.

Thus, taking the Laplace transform of m, we obtain that for all p ∈ C such that Re(p) > α

Lm(p) = LG(p) + 2Lg(p)Lm(p),

implying that

(39) Lm(p) =
LG(p)

1− 2Lg(p)
.

We already know the explicit value of Lg(p) by (19). In addition, with usual computa-

tions linked to the Laplace transform [18], we know that LG(p) = G(0)−Lg(p)
p

= 1−Lg(p)
p

.

Combining these, and do a partial fraction decomposition, we obtain for all p ∈ C such
that Re(p) > α

Lm(p) =
1

p

(1 + pθ)k − 1

(1 + pθ)k − 2
=

1

2k

⌊ k
2⌋∑

l=−⌈ k
2⌉+1

2
1
k exp

(
2π l
k
i
)

2
1
k exp

(
2π l
k
i
)
− 1

1

p− 2
1
k exp( 2π l

k
i)−1

θ

.

Now, with an analytic continuation and the fact that we know that for any b ∈ C the
inverse Laplace transform of p 7→ 1/(p− b) is t 7→ ebt, we obtain that for all t ≥ 0
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m(t) =
1

2k

⌊ k
2⌋∑

l=−⌈ k
2⌉+1

2
1
k exp

(
2π l
k
i
)

2
1
k exp

(
2π l
k
i
)
− 1

exp

(
2

1
k exp

(
2π l
k
i
)
− 1

θ
t

)
= E[Nt].

Thus, the formula given in (37) is the exact formula of the mean of the Bellman-Harris
process when k ∈ N∗.

6.1.2. Approximation when k /∈ N∗. When k /∈ N∗ (and k ≥ 1), we can not do the partial
fraction decomposition as done in the previous case. Nevertheless, (39) is still true. Thus,
if we denote f(t) = m(t)− 1, we have

Lf(p) = LG(p)

1− 2Lg(p)
− 1

p
=

1

p

1

(1 + pθ)k − 2
.

The latter decreases to 0 at a speed Im(p)−(k+1) when Re(p) is constant and Im(p) → ±∞.
In particular, as k ≥ 1, it is integrable along vertical lines. Moreover, as g and G are
continuous, in view of (38) and a domination, m and then f are continuous, so have local
bounded variations. Then, we can use the Mellin’s inverse formula [31, Theorem 3.3] to
obtain that for all η > α, t ≥ 0,

(40)

m(t) = 1 +
1

2iπ

∫ η+i∞

η−i∞
eptLf(p)dp

= 1 +
1

2iπ

∫ η+i∞

η−i∞
ept

1

p

1

(1 + pθ)k − 2
dp.

If we denote F (p, t) = ept 1
p

1
(1+pθ)k−2

, and ρm = max (Re(ρ) |Re(ρ) > −1/θ,L(g)(ρ) = 1/2),

using the residue theorem, one can also obtain that for all ϑ ∈ (−1/θ,min(ρm, 0)),

1

2iπ

∫ η+i∞

η−i∞
F (p, t)dp = Resp=0 (p 7→ F (p, t)) +

∑
ρ∈C

L(g)(ρ)=1/2
Re(ρ)>−1/θ

Resp=ρ (p 7→ F (p, t))

+

∫ ϑ−i∞

η−i∞
F (p, t)dp+

∫ ϑ+i∞

ϑ−i∞
F (p, t)dp+

∫ η+i∞

ϑ+i∞
F (p, t)dp,

which is equal, if we keep the position of each term, to
(41)

1

2iπ

∫ η+i∞

η−i∞
F (p, t)dp = −1 +

1

2k

∑
ρ∈C

L(g)(ρ)=1/2
Re(ρ)>−1/θ

2
1
k exp

(
2π l
k
i
)

2
1
k exp

(
2π l
k
i
)
− 1

exp

(
2

1
k exp

(
2π l
k
i
)
− 1

θ
t

)

+ 0 +

∫ ϑ+i∞

ϑ−i∞
F (p, t)dp+ 0.

Plugging (41) in (40), we finally have that
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(42)

m(t) =
1

2k

∑
ρ∈C

L(g)(ρ)=1/2
Re(ρ)>−1/θ

2
1
k exp

(
2π l
k
i
)

2
1
k exp

(
2π l
k
i
)
− 1

exp

(
2

1
k exp

(
2π l
k
i
)
− 1

θ
t

)
+O(eϑt)

= E[Nt] +O(eϑt).

Equation (42) gives a theoretical guarantee that E[Nt] approximate m(t) for large values

of t. As m(t) and E[Nt] grow like an exponential, and as their difference vanishes exponen-
tially, the “large values of t” come quickly. Moreover, as there are in (37) the eigenvalues
that compose t 7→ m(t) (values such that Lg = 1/2) with negative real part, we claim
that the rest O(eϑt) has a well-approximated part. Indeed, taking an other contour to
apply the residue theorem can be done to show that these terms partially compose the
rest (nevertheless, there is still a part of the order of e−

t
θ , so taking an other contour does

not change the upper-bound we have for the rest). Thus, our approximation of t 7→ m(t)
by t 7→ E[Nt] seems reliable.

As we see in Figure 3, the value we use to approximate h(δ) allows to obtain a very
good numerical approximation of σ2

δ . This observation, that we have in practice, seems to
support the fact that the approximation we use is relevant.

6.2. Variance of Nt for Gamma law and sensitivity. In view of [7, p.152 − 153],
there exists n1 > 0, n2 > 0 such that

E[Nt] ∼
t−→+∞

n1e
αt, and Var(Nt) ∼

t−→+∞
n2e

2αt,

and such that
n2

(n1)2
=

4L(g)(2α)− 1

1− 2L(g)(2α)
.

Using the expression of L(g) given in (19) to develop this ratio, and then using the fact
that k = (µ/σ)2, we obtain (2), where for all x ≥ 0

q(x) =
4
(
2x

2+1 − 1
)− 1

x2 − 1

1− 2 (2x2+1 − 1)
− 1

x2

.

Let α = 1. We show now that ϕ(σ/µ) = σ2
δ (1/(σ/µ)

2, α), with δ = log(2)/α, is more
sensible to the variation of σ/µ than the quantity q(σ/µ) for σ/µ ≤ 0.65. In Figure
15a, we first plot ϕ(σ/µ, α) versus σ/µ, using the approximator σ2

δ of σ2
δ . We observe

that the curve is almost linear, with a slope of 1.321 (this is obviously not the case, but
we will use this approximation). We have compared this value with the derivative of q
in Figure 15b, and we see that the slope is always larger than the derivative of q for
σ/µ ∈ [1/(57.2)1/2, 0.65] ≃ [0.1322, 0.65].
Then, in view of the mean value inequality and using the approximation that ϕ is linear,

we can conclude that for all (a, b) ∈ [1/(57.2)1/2, 0.65]

|q(b)− q(a)|
|b− a|

≤ max
x∈[a,b]

|q′(x)| ≤ 1.321 ≈ |ϕ(b, θ)− ϕ(a, θ)|
|b− a|

.
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(a) ϕ(σ/µ) versus σ/µ for
σ/µ ∈ [1/(57.2)1/2, 1/21/2].

The coefficient of determination of
the linear regression of ϕ versus the

coefficient of variation is
R2 = 0.9832.

(b) q′(σ/µ) versus σ/µ for
σ/µ ∈ [1/(57.2)1/2, 0.65] (red).

Comparison with the slope of ϕ(σ/µ, θ)
(blue).

Figure 15. Illustration that ϕ(σ/µ) is more sensible to the variation of σ/µ than
q(σ/µ). σ2

δ has been approximated by σ2
δ to plot these curves, using the grid of

parameters G1/20 to compute it

Thus, ϕ(σ/µ)2(σ/µ, θ) is more sensible to the variation of σ/µ that the quantity q(σ/µ),
when σ/µ ∈ [1/(57.2)1/2, 0.65]. This interval contains most of the biologically-relevant
coefficient of variations in the Gaussian regime. Then, σ2

δ seems more relevant to use than
q to obtain information on the variability of division times.
For coefficient of variations greater than 0.65, the coefficient of variation seems too

large compared to what is biologically true. If we ignore this, even if q is more sensible,
there is still difficulties to use q in practice, due to the fact that there are a lot of source of
randomness coming from the early stages of the experiment [27]. Our method of estimation
do not have these problems, that’s why we think it is still more relevant to use it rather
than q.

6.3. Extension of the asymptotic fluctuations to Bellman-Harris processes. The-
orem 1 can be extended to Bellman-Harris processes that satisfy the following assumptions:

(A) The reproduction law has a finite third and fourth moment, and the probability to
give no offspring is 0. In addition, the first moment of this law, that we denote m, is
strictly greater than 1.

(B) Lifetime distribution is given by a density g, that is bounded continuous on R+, and
continuously differentiable on (0,+∞). In addition, g′ is bounded on intervals of the
form [η,+∞), where η > 0.

(C) The following holds

sup
s≥0

∣∣∣∣ g(s)

1−G(s)

∣∣∣∣ < +∞.

(D) For all δ > 0, there exists C > 0, l > −2 such that (we denote G the cumulative
distribution linked to g) for all a > 0

sup
x∈[0,δ]

∣∣∣∣∣ ∂ g(a+x)
∂ a

(a, x)

1−G(a)

∣∣∣∣∣ ≤ C
(
al1a<1 + 1

)
.
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(E) For all λ ∈ C such that L(g)(λ) = 1/m, (L)′ (g)(λ) ̸= 0.

Indeed, conditions on the moments of the reproduction law, given by Assumption (A),
imply Lemma 1 (i) . Adding the boundedness and the continuity of g, given by (B), allow
to obtain Lemma 1 ii)− iii). Then, we get Proposition 1 from Lemma 1.

Now, using the fact that g′ is bounded on intervals of the form [η,+∞), where η > 0,
and the inequalities presented in (C) and (D), we obtain an analog to Lemma 2 i): h1

is continuously differentiable, and there exists Ch1 > 0 such that h1(a) ≤ Ch1(a
l + 1).

Now, as done for the gamma distribution, we obtain an equivalent to Lemma 2 ii) from
i): there exists Ch2 > 0 such that V h2(a) ≤ Ch21{a≥0}(1 + min(a, 1)l+1 + a). The proof of
Lemma 2 iii) does not change. We finally apply [21, Theorem 2.8], for which me need to
have m > 1, to obtain Propositions 2 and 3, and conclude the proof by similar steps as
those presented in the proof of Theorem 1.

We require to have a probability to give no offspring to 0, to be sure that we have
W > 0 a.s., and then that we can divide Rt,δ by W . This assumption can be relaxed by
considering events where the population survives. Assumption (E) can also be relaxed,
but the analytic expression presented in Theorem 1 ii) − iii) must be adapted, adding
polynomial terms. We refer to [21] for that.

6.4. The exponential case. The case of exponential lifetimes seems not relevant for
modeling many biological phenomenons such as the time between two divisions. In that
case, the memory less property allows to simplify the analysis. The behavior of the
fluctuations

Rδ
t = Nt+δ − eδαNt,

is simply obtained by a classical central limit theorem. Indeed,

Rδ
t =

Nt∑
i=1

(
N i

t,δ − eδα
)
,

and (N i
t,δ−eδα : 1 ≤ i ≤ Nt) are i.i.d. variables independent ofNt. Then, if we denote ν > 0

the parameter of the exponential law, as for all i ∈ 1 ≤ i ≤ Nt, Var
(
N i

t,δ

)
= e2νδ − eνδ, we

have
Rδ

t
L

=⇒
t−→+∞

N
(
0, e2νδ − eνδ

)
.

In particular, there is one single regime, the Gaussian one, with a simple interpretation of
the limiting variance.

As an exponential law is a gamma law with parameter k = 1, this result can also be
obtained with Theorem 1.
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investigations. Jules Olayé and Hala Bouzidi have realized a project during their Master 2,
which have given the first theoretical and numerical results of this paper. Andrey Aristov
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Lepoutre, Thomas Ouillon, and Shoko Saito. “Synchronisation and control of prolif-
eration in cycling cell population models with age structure”. In: Mathematics and
Computers in Simulation 96 (Feb. 2014), pp. 66–94. doi: 10.1016/j.matcom.2012.
03.005.

https://doi.org/10.1039/C6LC00968A
https://doi.org/10.1007/b97236
https://doi.org/10.1007/BF00538753
https://doi.org/10.1007/BF00539201
https://doi.org/10.1214/aop/1176996179
https://doi.org/10.1007/978-0-387-35434-7
https://doi.org/10.1007/978-3-642-65371-1
https://doi.org/10.1007/978-3-642-65371-1
https://doi.org/10.1016/0304-4149(94)00034-Q
https://doi.org/10.1016/0304-4149(94)00034-Q
https://doi.org/10.1098/rsif.2018.0935
https://doi.org/10.1016/j.matcom.2012.03.005
https://doi.org/10.1016/j.matcom.2012.03.005


REFERENCES 41

[12] Tom Britton and Etienne Pardoux. Stochastic Epidemic Models with Inference.
1st ed. Vol. 2255. Lecture Notes in Mathematics. 2019. doi: 10.1007/978-3-030-
30900-8.

[13] Jessica Coates, Bo Ryoung Park, Dai Le, Emrah Şimşek, Waqas Chaudhry, and
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