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Abstract

Particle-In-Cell (PIC) methods embedding Sparse grids have been recently introduced to
decrease the statistical noise inherent to PIC approximations. In Sparse-PIC methods, the
numerical noise is filtered out from the approximation thanks to a reconstruction of the grid
quantities on a hierarchy of coarse meshes. This procedure introduces a significant gain in the
precision of the numerical approximation with respect to the mean number of particles in a grid
cell, this parameter controlling the numerical noise, but, also a slight discrepancy of the method
precision with respect to the mesh resolution. In precedent studies, this issue is addressed by a
careful tuning of the sparse grids composing the grid hierarchy, to define a trade-off between the
gain in the numerical noise and the loss in the grid resolution. The present work is dedicated to
improving the precision of Sparse-PIC methods with respect to the mesh resolution and, contrary
the precedent achievements, without deriorating the gains with respect to the statistical noise.

1 Introduction

Particle-In-Cell (PIC) methods have been popular for plasma physics simulations since the early
interest for the discretization of kinetic plasma models [1, 18, 5]. These numerical methods stand
out due to their Eulerian-Lagrangian nature, the distribution function accounting for the plasma
properties being sampled by a set of numerical particles while Maxwell’s equations governing the
changes in the electromagnetic field are discretized by Finite Differences (or Finite Elements) on
a mesh. These two sets of equations are coupled, first by means of the source terms of the field
equations, namely the charge and current densities defined by the moments of the distribution func-
tion and, second, through the electric forces defining the acceleration experienced by the particles.
The properties of the numerical particles are therefore projected onto the mesh making possible the
computation of the field on the mesh. It is interpolated onto the particle position to integrate the
particles trajectories discretizing by this means the evolution of the distribution function.

Compared to Eulerian discretizations, PIC methods offer a significant gain in computational
efficiency. Indeed, the distribution function is a function of the phase space which may be three-
dimensional for the spacial variable and also three-dimensional for the kinetic velocity, yielding a
problem with six dimensions plus time. In PIC methods, the Lagrangian discretization of the kinetic
equation offers a linear complexity with respect to the dimensionality of the problem, which shall be
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compared to the exponential complexity of Eulerian discretizations. On top of that, PIC methods
are quite simple to implement, eventually the analogy between the numerical particles and the real
ones permits easy insights into the physics described by the system.

Nonetheless, the sampling of the distribution function by a limited number of particles introduces
a statistical noise on the quantities deposited onto the grid for the computations of the field. The
precision of the approximation of the distribution function moments may be analyzed thanks to a
decomposition of the error between the continuous quantity and the statistical estimator, issued from
the particle sampling, into two components. The first one is the grid based error. It characterizes the
precision with which a moment of the distribution function is approximated by the most probable
value of the statistical estimator. This component of the error is controlled by the mesh size of the
grid as well as the smoothness of the approximated quantity. The second part of the error is the
variance of the statistical estimator. This component of the error decreases slowly with the number
of numerical particles, precisely with the square rout of the mean number of particles per grid cell.
This very low convergence rate explains why, in most computations, the statistical noise is the most
detrimental component of the error, the increase in the number of particles being necessarily massive
to obtain a meaningful improvement in the numerical noise.

Huge efforts have been devoted to the development of noise reduction strategies for PIC methods.
The δf [9, 23] and micro-macro methods operate a decomposition of the distribution function into
a Maxwellian part complemented with a correction. The parameters of the Maxwellian are evolved
thanks two a fluid like system, while the remaining correction is discretized thanks to particles.
The gain here are significant when the distribution function remains a moderate perturbation of
a Maxwellian. Other approaches are conceived like a post-processing of the procedure defining
distribution function moments onto the mesh and the interpolated field onto the particles position
by means of quadratic or Fourier ou wavelets [14] filtering.

The Sparse-PIC methods enters this class of noise reduction strategies insofar as the projection
of the distribution moments as well as the interpolation of the field are modified to provide a better
control of the numerical noise. This method has been introduced first by Ricketson et al. [21, 20].
It relies on a substitution of the Cartesian mesh with a hierarchy of sparse grids referred to as
component grids. The combination technique provides the definition of an interpolant reconstructed
from the data deposited onto each of the component grids. Both the component grids populating the
grid hierarchy and the coefficients involved in the combination procedure are selected to cancel the
approximation errors originating from the grids with the coarsest resolutions, yielding a recombined
interpolant with a grid based error only marginally deteriorated compared to that of the moment
projected onto the Cartesian grid classically operated in regular PIC methods. The main advantage
of Sparse-PIC methods comes from the fact that the component grids are very sparse, composed of an
extremely reduced number of anisotropic cells with a coarse resolution at least in one direction. This
characteristic increases the number of mean particles contains in the cells of each of this component
grids which entails a damping of the numerical noise [6]. Sparse-PIC methods have been applied
to the classical benchmarks of kinetic plasma physics (e.g. the simulation of the Landau damping
and diocotron instability) then conclusively extended to the simulations of low temperature (and
collisional) plasma discharge as well as drift instabilities in Hall plasma thrusters [13, 12, 11]. Then
semi-implicit formulation of the method [17] have been investigated, as well as the efficiency of the
method for three-dimensional computations on either shared memory CPU [7] or GPU [8]. These
last developments have demonstrated the interesting property of the method with respect to the
noise control and outline that, for specific applications, the deterioration of the grid based error
may be detrimental to the quality of the approximation. So far, this issue has been addressed by
means of the so-called truncated [21, 20] and offset [6] technics. They boils down mainly to tuning
the choice of the component grids populating the sparse grid hierarchy in order to balance the gains
in the statistical noise mitigation and the loss related to the grid based error. In other words,
the improvements obtained on the grid based error comes necessarily with a deterioration of the
statistical noise damping.

The aim of the present work is to address this same issue but through the introduction of
high-order Spars-PIC methods. The existing Sparse-PIC methods are limited to second order dis-
cretizations, while the methods introduced herein offer fourth to sixth order space discretizations.
The precision of these high-order Sparse-PIC methods is analyzed and proved to bring gains on the
grid based error without deteriorating the noise damping.

The paper is organized into three sections. Sec. 2 is devoted to the introduction of the continuous
model at hand for the present work, namely the Vlasov-Poisson system. The principles of Particle-
In-Cell methods are then briefly exposed before introducing the Sparse-PIC methods together with
the so-called ”Offset” technic introduced to mitigate the deterioration of the grid based error. An
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overview of the error estimates for all these methods in proposed to highlights the strengths and
the weaknesses of each of them. Sec. 3 is devoted to the development and analysis of high-order
Sparse-PIC methods. Estimates for the grid based error as well as the numerical noise are derived
highlighting that, provided the solution is smooth enough, the gird based error may be improved
without ay deterioration of the statistical noise compared to second Sparse-PIC methods. Numerical
investigations are conducted within Sec. 4 outlining the improvements brought by the high-order
space discretization.

2 PIC and Sparse-PIC methods for Plasma Simulation

2.1 The Vlasov-Poisson Model

Cold plasma simulations find their anchor in the Vlasov-Poisson equations, which provide an essential
tool for unraveling the collective dynamics of charged particles in a collision-less environment. The
set of equations writes

∂tfs + v · ∇xfs +
qs
ms

(E+ v ×B) · ∇vfs = 0 (1a)

where fs(x,v, t) is the distribution function attached to the electrons (s = e) of the ions (s = i)
of charge qs and mass ms. These functions depend on the space variable x ∈ Ωx ⊂ Rdx and the
velocity v ∈ Ωv ⊂ Rdv , dx + dv being the dimension of the phase space Ωx × Ωv, and t ∈ R+ the
time. In the following we use d = dx for ease of notation.

In the present work, the magnetic field, denoted B, is assumed to be time independent, the
electric field E being therefore electrostatic, deriving from a potential ϕ solution to the Poisson
equation:

−∆ϕ =
ρ

ϵ0
, E = −∇ϕ . (1b)

The source term of the Poisson equation (1b) is the ratio of the charge density ρ and ϵ0 the vacuum
permittivity. The charge density is defined thanks to the moment of the distribution functions

ρ(x, t) =
∑
s

qs

∫
Ωv

fs(x,v, t)dv (1c)

To simplify the framework, the ions will generally be considered motion-less in the next sections,
the only evolution of the electrons being accounted for by the system. Accordingly, the subscript s
will be dropped from the notations, the distribution function f being related to electrons. The time
dependence of the quantity will also be omitted to simplify the notations.

2.2 The PIC method

The idea that ties the Particle-In-Cell method is to merge two discretization methods: an Eulerian
discretization of the field equations coupled to a Lagrangian of the kinetic equations. The Poisson
equation will be discretized by Finite Difference on a Cartesian grid, denoted Ωhn

, hn is the mesh
step assumed to uniform in any direction. Assuming a periodic domain, the grid nodes are defined
as

xj = j · hn , j ∈ Ihn
:=

d⊗
i=1

J0, 2n − 1K , hn = 2−n . (2)

In these definitions, Ihn
is a set of multi-indices j and xj = (xj1,...,jd), ji ∈ J0, 2n − 1K, for 1 ≤ i ≤ d

are the coordinate vectors of the grid nodes.
Denoting Q the total charge related to one specie, the charge density defined by Eq. (1c) may

be recast into

ρ(x) = Q
∫∫

Ωv×Ωx

δ(ξ − x)f(ξ,v)dvdξ . (3)

An approximation of this quantity is obtained by substituting the Dirac distribution by a shape
function Whn

related to the mesh size. For d-dimensional problem, Whn
is constructed as a tensor
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product of a one-dimension function:

Whn
(x) =

d⊗
i=1

Whn
(xi) , whn

(xi) = h−1
n W (h−1

n xi) . (4a)

The most popular choice of function for W , referred to as the ”Cloud In Cell” function in the PIC
literature, is denoted W 2 within this document. This is a piece-wise linear function defined as

W 2(x) =

{
1− |x| if |x| ≤ 1

0 otherwise.
(4b)

This yields the following approximation of the charge density

ρhn
(x) = Q

∫∫
Ωv×Ωx

Whn
(ξ − x)f(ξ,v)dvdξ . (5)

This integral is statistically sampled, following a Monte Carlo approximation (see [6, 22] for further
developments), to obtain the statistical estimator of the density

ρ̂hn
(x) = Q 1

N

N∑
p=1

Whn
(x− xp) , (6)

where N is the number of random variables used to sample the integral, assimilated to the numerical
particle positions xp, 1 ≤ p ≤ N . To define a discretization of the Vlasov equation, the position and
the velocity of the numerical particles (xp(t),vp(t)) obey the Newton laws

d

dt
xp(t) = vp(t) ,

d

dt
vp(t) =

q

m
E (xp(t)) , 1 ≤ p ≤ N . (7)

The different nature of the discretizations applied to either the field or the Vlasov equation calls
for the introduction of an interpolation operator in order to define the electric field at the particles
position. This yields the following definition.

Definition 2.1 Let Whn;j be the shape functions centered on the grid nodes xj and Vhn
the space

spanned by the functions (Whn;j)j∈Ihn

Whn;j(x) := Whn
(xj − x) , Vhn

:= span
j∈Ihn

(Whn;j) , (8)

the interpolant of the electric field is denoted IVhn
(Ehn) with

IVhn
(Ehn

)(x) :=
∑
j∈Ihn

EjWhn;j (9)

where Ehn
= (Ej)j∈Ihn

are the values of the electric field at the grid nodes.

Denoting ∆hn ∇hn , a classical leap-frog time discretization of the particle equations yields the
four consecutive steps of the regular PIC method sketched by Alg. 1.
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1. Charge accumulation onto the nodes xj, j ∈ Ihn
of the grid Ωhn

using the statistical
estimator defined by Eq. (6)

2. Field computation:the finite differenced approximation of the electric field writes, for j ∈ Ihn

− (∆hn
ϕ)j = ρ̂khn

(xj) , Ek
hn

(xj) = − (∇hn
ϕ) (xj) . (10)

3. Field Interpolation: Evaluate the electric field at the particles positions IVhn
(Ek

hn
)(xk

p)
using the interpolant defined by Eq. (9).

4. Integrate particles trajectories: For p = 1, . . . , N , k the time iteration,

vk+1/2
p = vk−1/2

p +∆tIVhn
(Ek

hn
)(xk

p) ,

xk+1
p = xk

p +∆tvk+1/2
p .

(11)

Algorithm 1: Overview of the time step of a PIC method.

2.3 Sparse-PIC methods

2.3.1 Overview of the Sparse-PIC approximation

The idea behind Sparse methods is to focus on a collection of under-refined sub-grids in one direction
instead of considering a single Cartesian grid; subsequently recombining them while canceling out
errors in a telescopic manner. A detailed overview of Sparse methodology could be found in [16,
2, 10, 3]. The presentations of the Sparse-PIC method requires the introduction of specific tools to
Sparse grids. This is the purpose of the next definitions.

First an order relation on the multi-indices is introduced. We introduce the multi-index partial
order:

Definition 2.2 (Norm and oder relation on multi-indices) Let k = (k1, . . . , kd) and l = (l1, . . . , ld)
be two d-dimensional multi-indices, the following order relations and norm are defined

k ≤ l ⇐⇒ ki ≤ li ,∀i ∈ {1, . . . d}
k < l ⇐⇒ k ≤ l and ∃i ∈ {1, . . . , d} | ki < li .

(12)

The 1-norm of a multi index l is

∥l∥1 =

d∑
i=1

li (13)

The component grids as well as the sparse grids may now be introduced.

Definition 2.3 (Component grid) A d-dimensional component grid (or sub-grid) of level i is an
anisotropic grid parameterized by a d-dimensional index l ∈ Ln,i where

Ln,i := {l ∈ Nd | ∥l∥1 = n+ d− 1− i, l ≥ 1}, ; (14a)

it is denoted Ωhl
and defined by the set of nodes

Ωhl
:= {jhl | j ∈ Ihl

} ⊂ Ω, Ihl
:= J0, h−1

l1
K × . . .× J0, h−1

ld
K ⊂ Nd, (14b)

where
hl := (hl1 , . . . , hld) = 2−l , jhl := (j1hl1 , . . . , jdhld) . (14c)

The parameter hl is referred to as the grid discretization.

Definition 2.4 (Sparse grid) A d-dimensional sparse grid is defined as a hierarchy of component
grids with resolution levels i ranging from 0 to (d−1). It is parameterized by the set of multi-indices

Ln :=
⋃

i∈[0,d−1]

Ln,i . (14d)
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The Cartesian grid Ωhn implemented in regular PIC methods together with the node index set Ihn

correspond to a sub-grid of level n = n · 1d yielding

Ωhn := {jhn | j ∈ Ihn} ⊂ Ω, Ihn := J0, h−1
n − 1Kd ⊂ Nd

As mentioned previously, the essence of the Sparse-PIC methods is to substitute this Cartesian grid
by sparse grid composed of a hierarchy of component-grids. It is therefore mandatory to extend the
definition of the statistical estimator of the charge density onto a component grid and the interpolant
of the electric field computed on a component grid.

Similarly to the regular PIC framework, the shape functions related to a component grid are
constructed by tensor products of one-dimensional functions scaled with different grid steps along
any dimension. This yields the definition

Whl
(x) :=

d⊗
i=1

Whli
(xi); Whli

(xi) = h−1
li

W (h−1
li

xi) . (15a)

Accordingly, the following estimator of the charge density projected onto a component grid Ωhl
is

constructed:

ρ̂hl
(x) = Q 1

N

N∑
p=1

Whl
(x− xp) . (15b)

The interpolated electric field carried out on a sub-grid Ωhl
is defined similarly

IVhl
(Ehl

) =
∑
j∈Ihl

EjWhl
(xj − x) , Ehl

= (Ej)j∈Ihl
(15c)

The sparse-grid interpolants, related to the whole hierarchy of component grids, is constructed by
combination of the interpolant issued from each component grid. To harvest a telescopic cancellation
of the approximation errors, the recombined quantity are defined as follows [15, 6].

Definition 2.5 (Sparse grid surrogates) The recombined electric field and particle density for
the sparse grid parameterized by Ln = ∪i∈[0,d−1]Ln,i, Ln,i being the set of component grids with a
resolution level Ln,i as defined by Eq. (14a), are denoted Ec

hn
and ρ̂chn

and defined by

Ec
hn

(x) :=
∑
l∈Ln

clIVhl
(Ehl

)(x) , ρ̂chn
(x) :=

∑
l∈Ln

clIVhl
(ρ̂hl

)(x) , (16a)

the combination coefficients being, for any sub-grid Ωhl
of level i (l ∈ Ln,i),

cl := (−1)i
(d− 1)!

i!(d− 1− i)!
. (16b)

The steps of the Sparse-PIC method are very similar to that of the regular PIC methods, except
that they are repeated on any of the component grids, for the charge density projection as well as
electric field computation, then gathered (or recombined) on all the component grid to define the
sparse grid interpolant used for the evaluation of the electric field at the particles position. This is
outlined in Alg. 2.

1. Charge accumulation onto the nodes xj, j ∈ Ihl
of the grid Ωhl

using the statistical
estimator defined by Eq. (15b).

2. Field computation on any component grid Ωhl
, l ∈ Ln to obtain Ehl

the finite difference
approximation of the electric field.

3. Field Interpolation: Evaluate the recombined grid electric field at the particles positions

Ec,k
hn

(xk
p) using the sparse grid interpolant defined by Eqs. (16).

4. Integrate particles trajectories using the local recombined electric field.

Algorithm 2: Overview of the time step of a Sparse-PIC method.
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2.3.2 The Offset Sparse-PIC method

Sparse methods may be equipped with an additional pair of parameters to tune the grid selection em-
bedded into the hierarchy defining the sparse grid surrogates [6]. To this end, the pair of parameters
(τ0, τ1) is introduced with

(τ0, τ1) ∈ J1 , nK × Jd− 1 , (d− 1)τ0K (17a)

where τ0 is aimed at governing the minimum resolution level offered by the component grids. The
second parameter, τ1, is introduced to set the maximal resolution of the component grids. The
definition of the resolution level i may now be written as

Ln,i(τ
0, τ1) := {l ∈ Nd | ∥l∥1 = n+ τ1 − i, l ≥ τ0} (18)

Remark 2.6 The definition of resolution level Ln,i provided by Eq. (14a) is recovered setting (τ0, τ1) =
(1, d − 1), Ln,i = Ln,i(1, d − 1), while the Cartesian grid implemented in regular PIC methods cor-
responds to the choice (τ0, τ1) = (n, n).

The offset addition to Sparse-PIC methods only alters the grid selection: all the steps defined in
Alg. 2 are performed in the same manner but for a different set of grids.

Two parameters are instrumental to analyse the influence of the offset technique on the poperties
of the Sparse-PIC methods:

n1 = n− 2τ0 +
τ1

d− 1
, n2 = n+ τ1 − (d− 1) . (19)

First, the modified definition of the resolution levels entails a reduces number of component grid
defining the sparse grid hierarchy of the offset method O(log(hn1)) (compared to O(log(hn)) for the
non ofseted Sparse-PIC method) with n1 ≤ n. Second, the embedding of component grids with an
increased resolution (sub-grids Ωhl

with large ∥l∥1) implies n2 ≥ n.

2.4 Error estimates

The PIC methods, by their hybrid nature, encompass aspects derived from both the Lagrangian
and Eulerian worlds. To characterize the error incurred by the discretization, it is beneficial to
decompose it into a component specific to the Monte Carlo method and a component including the
grid dependencies.

Definition 2.7 Denoting E(ρ̂) the expected value of a statistical estimator of the density, the local
error between the density and this estimator may be recast into two components:

ρ̂(x)− ρ(x) = Bias(ρ̂(x)) + V(ρ̂(x)) , (20a)

with
Bias(ρ̂(x)) = ρ(x)− E (ρ̂(x)) , V(ρ̂(x)) = ρ̂(x)− E (ρ̂(x)) . (20b)

The bias of the estimator denoted Bias(ρ̂)(x) measures how close to the continuous density the
most probable value of the statistical estimator is. This part of the approximation error depends
on the mesh discretization as well as the smoothness of the solution (see Tab 1). It is therefore
referred to as ”grid based” error. The second error component, namely V(ρ̂), is a centered random
variable. It provides a measure of the particle sample dispersion, around the most probable value of
the estimator. It is referred to as numerical noise or statistical error and estimated by means of the
variance of V(ρ̂(x)) defined as

V(V(ρ̂) = E
(
V(ρ̂)2

)
−
(
E(V(ρ̂))

)2
(20c)

The error estimates related to the regular PIC method, the Sparse-PIC method and the Offset
Sparse-PIC methods are gathered in tab 1, we refer to [6] and the reference herein for their derivation.
These estimates characterise the bias and the numerical noise of the statistical estimator of the either
the density and the electic field, the sparse surrogates being considered for the the Sparse-PIC
approximations.
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∥Bias(ρ̂hn
)∥∞ / ∥Bias(ρ̂chn

)∥∞ V(V(ρ̂hn
))

1
2 / V(V(ρ̂chn

))
1
2

PIC h2
n(
∑d

i=1 ∂
2
i ρ) (Nhd

n)
− 1

2 ∥ρ∥∞
S-P h2

n |log hn|d−1 ∥∥∂2
1 . . . ∂

2
dρ
∥∥
∞ (Nhn)

− 1
2 | log hn|d−1∥ρ∥∞

OS-P h2
n2
| log hn1

|d−1∥∂2
1 . . . ∂

2
dρ∥∞ (Nhn2

)−
1
2 | log hn1

|d−1∥ρ∥∞
∥Bias(Ehn)∥∞ / ∥Bias(Ec

hn
)∥∞ V(V(Ehn))

1
2 / V(V(Ec

hn
))

1
2

PIC h2
n

∑d
i=1(∥∇∂2

1∂
2
i ρ∥∞ +

∥∥∂4
i E
∥∥
∞) (Nhd

n)
− 1

2 ∥∇ρ∥∞
S-P h2

n |log hn|d−1 ∥∥∂4
1 . . . ∂

4
dE
∥∥
∞ (Nhn)

− 1
2 | log hn|d−1∥∇ρ∥∞

OS-P h2
n2
| log hn1

|d−1∥∂4
1 . . . ∂

4
dE∥∞ (Nhn2

)−
1
2 | log hn1

|d−1∥∇ρ∥∞

Table 1: Comparison of the dominant terms of the error estimates for the charge density ρ̂ and
electric field E issued from the PIC, Sparse-PIC (S-P) and Offset Sparse-PIC (OS-P) methods. This
error estimates are related to second order space accurate methods and characterize the recombined
sparse grid surrogates for sparse grid approximations, the parameters (n1, n2) of the offset method
being defined by Eq. (19)

Regarding the grid based error of the different methods, it is roughler proportional to the square
of the mesh size h2

n which is line with the space second order accuracy claimed for these methods. A
more subtel analysis shows that, for Sparse-PIC methods, the dominant temr in the grid based error
is multiplied by a factor log(hn)

d−1 which is an estimation of the total number of component grids
populating the sparse grid hierarchy. This outlines the advantage of the offset Sparse-PIC methods.
For this class of methods this term is indeed reduced to log(hn1)

d−1 where n1 is defined by eq. (19)
with n1 ≤ n. This improvement on the grid based error is consolidated by the improved resolution
of the componnent grids related to n2 ≥ n. To conclude the analysis of the bias, it is important to
note that this component of the error is dependent of higher order derivatives of the solution for
Sparse-PIC methods compared to the regular PIC methods, which in the end is detrimental to the
precision.

The picture is quite different for the statiscal noise carried by the approximations issued from
these methods. First, the statistical noise of the regular PIC methods is not solely contingent
on the total particle count N but rather on the average particle per cell, more specically on its
square root (Nhd

n)
1/2. This outlines that iproving the mesh resolution improves the grid based error

but increases the numerical noise, in particular for problems with high dimensionality. Whereas
increasing the particle count mitigates the statistical precision without compromising the grid ac-
curacy. This asymmetry, coupled with the slow square root dependence, frequently results in a
numerical noise dominating the total error. The improvements of Sparse-PIC methods regarding
the control of the statistical noise is clearly outlined here, the term (Nhd

n)
1/2 being substituted

by (Nhn)
−1/2| log(hn)|d−1 which is weakly dependent of the dimensionality of the problem. The

gains are all the more effective than the dimensionality of the problem is high. These estimates also
highlights that the gains obtained of the grid based error of the offset method are detrimental to
the statiscal noise.

These conclusions call for the exploration of opportunities for improving the grid error without
reverting on the progress made in mitigating the numerical noise. This is the aim of the high-high-
orderorder Sparse-PIC methods introduced in the next section.

3 High-order sparse-PIC methods

3.1 Definitions of high-order shape and basis functions

The sparse-PIC methods stand to benefit from grid error improvements, as this is where they
currently fall short compared to the standard methods. Our aim here is to maintain the noise
reduction enhancements while independently increasing grid error. The idea is that we reach 2nd

order grid-discretization dependence only by parity. By removing the lock of the second order
moment i.e. nullify it, we could reach a 4th order convergence. More precisely, to advance to higher
orders, a theorem known as the moments condition informs us that we must nullify as much moments
as the order we want to reach for our shape function. Delve into detailed developments by consulting
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[4] equation (7.2.5). Consequently, we will construct functions designed to satisfy this requirement.
For building high-order method, we will need high-order approximation function, in particular we
might consider the W p ones, for p = 2, 4, 6, details about computation could be found in [19].

W 2(x) =

{
1− |x| if |x| ≤ 1

0 otherwise.
(21)

W 4(x) =


1
2 |x|

3 − |x|2 − 1
2 |x|+ 1 if |x| ≤ 1

− 1
6 |x|

3 + |x|2 − 11
6 |x|+ 1 if 1 ≤ |x| ≤ 2

0 otherwise.

(22)

W 6(x) =


1
4 |x|

5 − 1
8 |x|

4 + 3
8 |x|

3 − 5
4 |x|

2 + 1
3 |x| −

1
12 if |x| ≤ 1

1
24 |x|

5 − 1
8 |x|

4 + 25
24 |x|

3 − 5
8 |x|

2 − 13
12 |x|+

1
24 if 1 ≤ |x| ≤ 2

− 1
720 |x|

5 + 1
16 |x|

4 − 17
48 |x|

3 + 5
16 |x|

2 − 137
60 |x|+ 1

120 if 2 ≤ |x| ≤ 3

0 otherwise.

(23)

These functions verify the crucial following properties:

• Partition of unity:

∀x ∈ Ωx,
∑
j∈Ihl

W p((x− jhl)h
−1
l ) = 1. (24)

• Parity:
∀x ∈ Ωx, W p(x) = W p(−x). (25)

• Unit mean: ∫
Ωx

W p(x)dx = 1. (26)

Sometimes we have to compute derivatives of the basis function but these functions are only
continuous. Beside the main problem of sparse grid are the heterogeneous case with high gradient
so reaching higher smooth degree of smoothness could be an alternative. We can choose B-Spline
but we don’t want to loose the accuracy we won before, so we build a high-order high-regularity
function. We choose a second degree of smoothness and a fourth order accuracy for the following
V 4
2 function:

V 4
2 (x) =


1
6 |x|

5 − 1
3 |x|

4 + 5
4 |x|

3 − 5
4 |x|

2 + 8
10 if |x| ≤ 1

1
24 |x|

5 − 3
8 |x|

4 + 25
24 |x|

3 − 5
8 |x|

2 − 5
4 |x|+

13
10 if 1 ≤ |x| ≤ 2

− 1
120 |x|

5 + 1
8 |x|

4 − 17
24 |x|

3 + 15
8 |x|2 − 9

4 |x|+
9
10 if 2 ≤ |x| ≤ 3

0 otherwise.

(27)

3.2 Error estimates : main results

In this section, we introduce the main results of this paper concerning the sparse-PIC methods with
the high-order low-regularity shape and basis functions W p, where p = 2, 4, 6 denote the order of
these functions. We introduce the following functional spaces:

Cα(Ωx) :=
{
u : Ωx → R | Dβu ∈ C(Ωx), ∀∥β∥1 ≤ α

}
, (28)

Xα(Ωx) :=
{
u : Ωx → R | Dβu ∈ C(Ωx), ∀∥β∥∞ ≤ α

}
, (29)

where C(Ω) denotes the space of continuous functions on Ωx.

Theorem 3.1 (Electric field) The local errors between the sparse grid reconstructions and the
solutions are recast into a grid-based error and a particle sampling error:

Ec
hn

−E = Bias(Ec
hn

) + V(Ec
hn

). (30)

Assuming enough smoothness on the solution, i.e. E ∈ Xp+2(Ω), ρ ∈ Xp+2(Ω) ∩ Cp+3(Ω), the

9



following bounds for the grid-based and particle sampling errors hold true:∥∥Bias(Ec
hn

)
∥∥
∞ ≤ KEh

p
n| log hn|d−1 +O

(
hp
n| log hn|d−2

)
, (31)

∥V(V(Ec
hn

))
1
2 ∥∞ ≤ DE(Nhn)

− 1
2 | log hn|d−1 +O

((
| log hn|d−1

Nhn

) 1
2

)
. (32)

where KE, DE are constants, provided in the appendix, depending on the dimension d and the deriva-
tives of ρ,E.

Theorem 3.2 (Charge density) The local errors between the sparse grid reconstructions and the
solutions are recast into a grid-based error and a particle sampling error:

ρ̂chn
− ρ = Bias(ρ̂chn

) + V(ρ̂chn
), (33)

Assuming enough smoothness on the solution, i.e. ρ ∈ Xp(Ω), the following bounds for the grid-based
and particle sampling errors hold true:

∥Bias(ρ̂chn
)∥∞ ≤ Kρh

p
n| log hn|d−1 +O

(
hp
n| log hn|d−2

)
, (34)∥∥∥V (V(ρ̂chn

)
) 1

2

∥∥∥
∞

≤ Dρ(Nhn)
− 1

2 | log hn|
d−1
2 +O

(
| log hn|d−1N− 1

2

)
, (35)

where Kρ, Dρ are constants, provided in the appendix, depending on the dimension d and the deriva-
tives of ρ.

By comparing the results obtained in this study with those presented in [6], it becomes evident
that the statistical noise remains consistent for sparse-PIC methods employing functions of order 2,
4 or 6. This outcome is crucial, as it ensures that increasing the order enhances grid accuracy while
leaving particle sampling error unaffected.

Corollary 3.3 (particle sampling error comparison) Let Pc ∈ N being an integer representing
the mean number of particles per cell, and considering a total number of particles N defined by the
following equations for the sparse-PIC and standard PIC schemes:

Nstd = Pch
−d
n , Nsparse = Pc

(∑
l∈L

|cl|hl1 ...hld

)−1

. (36)

Then the particle sampling error of the reconstructed charge density with sparse-PIC scheme is
comparable to the one of the standard PIC methods:

V (V(ρ̂hn
))

1
2 =

(
DstdQρ

Pc

) 1
2

, V
(
V(ρ̂chn

)
) 1

2 ≤
(
DsgQρ

Pc

) 1
2

, (37)

where Dstd and Dsg are constants that depends only on the dimension.

3.2.1 Proofs of the main results

Theorem 3.1 extends the result of Proposition 3.8 in [6] to encompass high-order shape and basis
functions denoted as W p. The proof for the particle sampling error in Theorem 3.1 result aligns with
that presented in [6], and we direct the reader to that work for a comprehensive understanding. To
establish the grid-based error result, we introduce specific notations and Lemmas in the following.

Definition 3.4 Let us introduce the notation {i1, ..., im} ∈ I := {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}},
for 0 ≤ m ≤ d which stand for:

{i1, ..., im} :=


∅ if m = 0,
{1} or {2} or {3} if m = 1,
{1, 2} or {2, 3} or {1, 3} if m = 2,
{1, 2, 3} if m = 3.

(38)
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The quantities (function ,domain, operator, etc.) associated with this notation correspond either
to continuous ones (m = 0), semi-discrete ones (m = 1, m = 2) or discrete ones (m = 3). For
example, the Laplacian is defined by:

∆
(i1,...,im)
hl

u =
∑

k∈{i1,...,im}

∆hlk
u+

∑
k∈{1,...,d}

k/∈{i1,...,im}

∂2
ku, (39)

for u a function defined on the hyperplane:

Ω
(i1,...,im)
hl

:= {x ∈ Ω | xik ∈ {jhlik
| 0 ≤ j ≤ h−1

lik
}, 1 ≤ k ≤ m}, Ω∅

hl
:= Ω. (40)

∆hlk
u is the discrete one dimensional pth order Laplacian operator defined by finite differences.

Lemma 3.5 (Projection error) Let f(·, v) ∈ Xp(Ω), then the grid-based error and the particle
sampling errors verify the local errors:

Bias(ρ̂hl
)(x) =

d∑
m=1

∑
{i1,...,im}
⊂{1,...,d}

bi1,...,im(x;hli1
, ..., hlim

)hp
li1

...hp
lim

(41)

V(V(ρ̂hl
)(x))

1
2 =

(
Cd

partQρ(x)

Nhl1 ...hld

) 1
2

+O
(
N− 1

2

)
, (42)

where

bi1,...,im(x;hli1
, ..., hlim

) = Cm
bias∂

p
i1
...∂p

im
ρ(x) +O

(
h2
li1

, ..., h2
lim

)
, (43)

Cbias =


1

12
for p = 2,

5687

5760
for p = 4,

, Cpart =


2

3
for p = 2,

733

945
for p = 4,

(44)

Lemma 3.6 (Truncation error of semi-discrete laplacian and gradient) Let u ∈ Cp+2(Ω
(i1,...,im)
hl

),

where {i1, ..., im} ∈ I, 0 ≤ m ≤ d− 1, then:(
∆hl

−∆
(i1,...,im)
hl

)
u(x) =

∑
k∈{1,...,d}

k/∈{i1,...,im}

τk(x;hlk)h
p
lk
, (45)

(
∇hl

−∇(i1,...,im)
hl

)
u(x) =

(
sk(x;hlk)h

p
lk

)
k∈{1,...,d}

k/∈{i1,...,im}
(46)

with

∥τk(·;hlk)∥∞ ≤ Clap∥∂p+2
k u∥∞, ∥sk(·;hlk)∥∞ ≤ Cgrad∥∂p+1

k u∥∞ (47)

Clap =


1

12
for p = 2,

1

90
for p = 4.

, Cgrad =


1

3
for p = 2,

2

5
for p = 4.

(48)

Lemma 3.7 (Maximum principle) Let u ∈ C2
(
Ω

(i1,...,im)
hl

)
, w ∈ C0

(
Ω

(i1,...,im)
hl

)
, where {i1, ..., im} ∈

I and 0 ≤ m ≤ 2, verifying the semi-discrete problem:

(∆hl
)(i1,...,im)u = w, u|∂Ω = 0, (49)

then the following majoration holds:

∥u∥∞ ≤ Cmax∥w∥∞, i.e.

∥∥∥∥(∆(i1,...,im)
hl

)−1
∥∥∥∥
∞

≤ Cmax, Cmax =
1

8
. (50)
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Lemma 3.8 (Semi-discrete interpolation error on Vhl
) Let u ∈ Xp

(
Ω

(i1,...,im)
hl

)
, where {i1, ..., im} ∈

I and 0 ≤ m ≤ d− 1, then the local error at x ∈ Ω
(i1,...,im)
hl

of the interpolation onto Vhl
is:

IVhl
u(x)− u(x) = (51)

d−m∑
k=1

∑
{r1,...,rk}⊂{1,...,d}

s.t. {r1,...,rk}∩{i1,...,im}=∅

di1,...,im;r1,...,rk(x;hli1
, ..., hlim

;hlr1
, ..., hlrk

)hp
lr1

...hp
lrk

,

where

∥di1,...,im;r1,...,rk(·;hli1
, ..., hlim

;hlr1
, ..., hlrk

)∥∞ ≤ Ck
int∥∂p

r1 ...∂
p
rk
u∥∞, (52)

Cint =

{
4

27
for p = 2,

0.237 for p = 4.
(53)

Lemma 3.9 (Combination) Let u be a function and uhl
∈ Vhl

be an approximation of u such that
the following pointwise error expansion holds:

uhl
(x)− u(x) =

d∑
m=1

∑
{i1,...,im}
⊂{1,...,d}

ci1,...,im(·;hli1
, ..., hlim

)hp
li1

...hp
lim

, (54)

where the ci1,...,im(·;hli1
, ..., hlim

) are bounded functions by a constant κ, then the combination ver-
ifies:

∥uc
hn

− u∥∞ ≤ Ccombκh
p
n| log hn|d−1 +O

(
hp
n| log hn|d−2

)
, (55)

Ccomb =


5

4
for d = 2,

65

32
for d = 3.

(56)

Proof of Lemmas 3.5, 3.6, 3.7, 3.8, 3.9. The proofs of the Lemmas are detailed in the appendix.
Proof of Theorem 3.1. First the local error is recast into:

IVhl
Ehl

−E = IVhl
(Ehl

−E) + IVhl
E−E. (57)

In the following the dependance on the grid discretization of the coefficients of the form bi1,...,im(·;hli1
, ..., hlim

)
is omitted for simplicity of notation. Applying Lemma 3.6 in the continuous case (m = 0) and in-
troducing the estimator of the density from Lemma 3.5, one gets:

∆hl
Φ+ ρ̂hl

=

3∑
i=1

(bi + τi)h
p
li
+

3∑
i,j=1
i̸=j

bi,jh
p
li
hp
lj
+ b1,2,3h

p
l1
hp
l2
hp
l3
+ V(ρ̂hl

). (58)

Let us introduce the semi-discrete problems for wi ∈ Ω
(i)
hl
, wi,j ∈ Ω

(i,j)
hl

, with i, j ∈ {1, 2, 3}, i ̸= j:

− (∆hl
)
(i)

wi = bi + τi, − (∆hl
)
(i,j)

wi,j = bi,j . (59)
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It follows:

∆hl

(
Φ+

3∑
i=1

wih
p
li
+

3∑
i,j=1
i ̸=j

wi,jh
p
li
hp
lj

)
+ ρ̂hl

=

3∑
i=1

(
∆hl

−∆
(i)
hl

)
wih

p
li

+

3∑
i,j=1
i ̸=j

(
∆hl

−∆
(i,j)
hl

)
wi,jh

p
li
hp
lj
+ b1,2,3h

p
l1
hp
l2
hp
l3
+ V(ρ̂hl

)

=

3∑
i,j=1
i ̸=j

w̃i,jh
p
li
hp
lj
+ (w̃1,2,3 + b1,2,3)h

p
l1
hp
l2
hp
l3
+ V(ρ̂hl

),

where Lemma 3.6 has been applied twice and thanks to Lemma 3.7:

∥w̃i,j∥∞ ≤ Cmax

(
CbiasClap∥∂p

i ∂
p+2
j ρ∥∞ + C2

lap∥∂
p+2
i ∂p+2

j Φ∥∞
)
, (60)

∥w̃1,2,3∥∞ ≤ CmaxC
2
biasClap

∑
i,j,k

∥∂p+2
i ∂p

j ∂
p
kρ∥∞. (61)

We introduce the following semi-discrete problems for γi,j ∈ Ω
(i,j)
hl

, with i, j ∈ {1, 2, 3}, i ̸= j:

− (∆hl
)
(i,j)

γi,j = w̃i,j , (62)

so that it holds:

∆hl

(
Φ+

3∑
i=1

wih
p
li
+

3∑
i,j=1
i̸=j

(wi,j + γi,j)h
p
li
hp
lj

)
+ ρ̂hl

=

3∑
i,j=1
i̸=j

(
∆hl

−∆
(i,j)
hl

)
γi,jh

p
li
hp
lj

+ (w̃1,2,3 + b1,2,3)h
p
l1
hp
l2
hp
l3
+ V(ρ̂hl

)

= w1,2,3h
p
l1
hp
l2
hp
l3
+ V(ρ̂hl

),

where Lemma 3.6 has been applied again and:

∥w1,2,3∥∞ ≤ C3
bias∥∂

p
1∂

p
2∂

p
3ρ∥∞ + ∥w̃1,2,3∥∞ + 6C2

maxC
3
lap∥∂

p+2
1 ∂p+2

2 ∂p+2
3 Φ∥∞

+ C2
maxCbiasC

2
lap

∑
i,j,k

∥∂p
i ∂

p+2
j ∂p+2

k ρ∥∞.

Applying the operators (∆hl
)−1, ∇hl

, ∇(i)
hl
, ∇(i,j)

hl
which commute, and owing to Lemma 3.6 for the

gradient, one gets:

∇hl
Φ−∇hl

Φhl
=

3∑
i=1

zih
p
li
+

3∑
i,j=1
i ̸=j

zi,jh
p
li
hp
lj
+ z1,2,3h

p
l1
hp
l2
hp
l3
+ Ẑhl

, (63)

with zi,zi,j , z1,2,3 and Ẑhl
depending (in a way that shall be explicited later) on the derivatives of

ρ and Φ. Lemma 3.6 for the gradient gives us:

∇Φ−∇hl
Φ =

(
sih

p
li

)
i=1,2,3

, ∥si∥∞ ≤ Cgrad∥∂p+1
i Φ∥∞, i = 1, 2, 3, (64)

so that adding equations (63) and (64):

Ehl
−E =

3∑
i=1

z̃ih
p
li
+

3∑
i,j=1
i̸=j

zi,jh
p
li
hp
lj
+ z1,2,3h

p
l1
hp
l2
hp
l3
+ Ẑhl

, (65)
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with:

∥z̃i∥∞ ≤ Cmax

(
Cbias∥∂p

i ∇ρ∥∞ + Clap∥∂p+2
i E∥∞

)
+max(∥s1∥∞, ∥s2∥∞, ∥s3∥∞),

∥zi,j∥∞ ≤ Cmax

(
C2

bias∥∂
p
i ∂

p
j∇ρ∥∞ + ∥∇w̃i,j∥∞ + Cgrad

(
Cbias∥∂p

i ∂
p+1
j ∇ρ∥∞ + Clap(∥∂p+2

i ∂p+1
j E∥∞

))
,

∥z1,2,3∥∞ ≤ Cmax

(
∥∇w1,2,3∥∞ + Cgrad

(
C2

bias

∑
i,j,k

∥∂p
i ∂

p
j ∂

p+1
k ∇ρ∥∞

+ Cmax

(
CbiasClap

∑
i,j,k

∥∂p
i ∂

p+1
j ∂p+2

k E∥∞ + C2
lap

∑
i,j,k

∥∂p+2
i ∂p+2

j ∂p+1
k E∥∞

)))
∥Ẑhl

∥∞ ≤ Cmax∥∇V(ρ̂hl
)∥∞

Applying Lemma 3.8:

IVhl
E−E =

3∑
i=1

dih
p
li
+

3∑
i,j=1
i ̸=j

di,jh
p
li
hp
lj
+ d1,2,3h

p
l1
hp
l2
hp
l3
, (66)

IVhl
(Ehl

−E) = Ehl
−E+ f1,2,3h

p
l1
hp
l3
hp
l3

(67)

with:

∥di∥∞ ≤ Cint∥∂p
i E∥∞, ∥di,j∥∞ ≤ C2

int∥∂
p
i ∂

p
jE∥∞, ∥d1,2,3∥∞ ≤ C3

int∥∂
p
1∂

p
2∂

p
3E∥∞,

∥f1,2,3∥∞ ≤ C2
int

∑
i,j,k

∥∂p
i ∂

p
j z̃k∥∞ + Cint

∑
i,j,k

∥∂p
i zj,k∥∞.

Eventually, summing equations (66) and (67), one gets:

IVhl
Ehl

−E =

3∑
i=1

eih
p
li
+

3∑
i,j=1
i̸=j

ei,jh
p
li
hp
lj
+ e1,2,3h

p
l1
hp
l2
hp
l3
+ Ẑhl

, (68)

with:

∥ei∥∞ ≤ ∥di∥∞ + ∥z̃i∥∞, ∥ei,j∥∞ ≤ ∥di,j∥∞ + ∥zi,j∥∞, (69)

∥e1,2,3∥∞ ≤ ∥d1,2,3∥∞ + ∥z1,2,3∥∞ + ∥f1,2,3∥∞, (70)

and eventually using the Lemma 3.9 we obtain the result for the grid-based error. 2
The detailed proof of the Theorem 3.2 can be found in the appendix.

4 Numerical investigations

4.1 Setup and Notations

Let Pcell (or Pc) denote the mean number of particle per cell, then the total number of particle pet
cell is defined by equation (36). n denotes the size of the Cartesian hn grid we consider, for Sparse
method, this is where the quantity are recombined. In this section, we will refer for PIC method as
”Standard-PIC” or ”st”. Specifying the use of Wm as base function gives us Standard-PIC(m) or
”stWm”. All Sparse-PIC methods using Wm will be noted ”Sparse-PIC(m)” or ”sgWm” (for sparse-
grid). We will add an extra ”o”k with k the degree of offset we use. For example: Sparse-PIC(2)o2
or sgW2o2 is the Sparse-PIC method which use W 2 as base function with 2 levels of offsets. For all
simulation, we choose periodic limits that adapt well to the different length of support for the basic
functions we will use. Our domain is the square [0, L]2; L will be express referring to the Debye

length λD =
√

ϵ0TekB

neq2e
. where kB is the Boltzman constant. Te, ne, qe are respectively the electron

Temperature, the electron density and the electron charge.
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4.2 Verifaction of 4th order accuracy

Our main goal is to create a 4th order sparse-PIC algorithm. For this purpose, the first simulation we
conduct aim to reproduce numerically the 4th order convergence described before. So we perform 1D
unitary test on each step of our algorithm and compare them to the 2nd order accurate Sparse-PIC
method. In particular we want to focus on the step involving the shape function W 4 i.e. projection
and interpolation, because they are results not as well establish as Finite-Difference. For this section
we use as many particles as we could in order to remove or reduce at best the statistic noise: we
throw around 1010 particles in the following process. We will see further that there are good reason
to think that for low discretization grid, that’s more than enough, but the same argument leads us
to believe that for the biggest mesh, more is needed.

Figure 1 is the result after testing the projection phase. For a range of grid, we plot the L2-
norm of the difference on the grid point between projection on the grid of 1010 particles drawn
according to a distribution f and the accurate initial distribution f . The f distribution we choose is
f(x) = 1+ .2cos(2πx) which is always positive and periodic in [0;1]; to avoid boundary effect on our
error we use periodic bound. This could be see as a 1D Landau damping simulation and the particles
are homogeneously spread which reduce the noise. This is helpful because we can equate the total
error to the grid error. As we reach the 4th asymptotic convergence, we ascertain that there are a
sufficient number of particles to render statistical noise negligible. This holds true for the second-
order curve as well, as it carries a larger grid error and is, therefore, less affected by statistical noise;
this curve does not perform better than the asymptotic curve. Hence, it is reasonable to believe
that the asymptotic curve is also numerical, and that we have achieved it.

For the last point, we improve the statistic by considering 10 clusters of 1010 particles and
gathering all of them together to reduce the prevailing random error.

Figure 2 is the same process apply to the interpolation phase. We initiate our particles on
random points of our domain, then see the difference between the exact density and the computed
one by interpolation of the grid points. Because we have exact value on grid point, we don’t have
annoying noise to take account of. So there is no problem to see a 4th convergence even a 6th order
convergence for large value of n i.e. for very tiny grid. As a result, see that the range of considered
size of grid or discretion is wider than before. And for each size the numerical result match the
theoretical maximum convergence.

4.3 Landau Damping

Landau Damping, a highly studied phenomenon, serves as a classic model for cases involving con-
tinuous and homogeneous particle distributions. Sparse-PIC methods have already demonstrated
their effectiveness in addressing Landau Damping. One could view this test as an enhanced sanity
check, but with a more practical perspective.

The initial data in Landau Damping is a perturbation in a Maxwellian equilibrium state of the
distribution thus we consider the following distribution:

fe(x,v) =
1

2π

d∏
i=1

(
1 + αi cos

(
βi2πx

L

))
e

−||v||22
2

with the dimension d = 2; the amplitude α = (.20, .20) and period β = (10, 10). Because of the high
perturbation, we will call this ”Strong Landau Damping”. One can see that the considered period
gives rise to 10 spike in each direction. The domain length L is L = 160λD and will be approximated
by a 128 by 128 mesh ; we count 1282 cell in the Standard PIC method and 2560 in the Sparse one.
Each cell will carry on average 2000 particles. Finally we choose a time-step ∆t = .05 and an end
time t = 10 i.e. 200 time loops.

In Figure 3 we have represented the error in the electric field in a base-10 logarithmic scale
for Sparse/Standard-PIC methods with W 2/W 4 shape function. We observe the classical damping
characteristic of this phenomenon. However, due to its strength, we do not discern linear effects.
Furthermore, two key elements are noticeable. First, there is a decrease in peak amplitude between
the Standard and the Sparse PIC methods, which is indicative of the scattering effect, leading to
a reduction in the noise typically expected from Sparse methods [?]. Second, there is a phase shift
between the second and fourth-order methods. We attribute this to a better approximation when
approaching zero, which slows down the 2nd-order methods but not the 4th.

In Figures 4a, 4b, 4c, 4d, we chose to focus on a specific moment to observe the various density
simulations. This moment correspond to few time-step before the second peak in Figure 3. We
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Figure 1: Validation of the 4th order Projection:
L2-error of the Projection of cosine distribution
approximated with total 1011 particles on an in-
creasing 2n-points grid.
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Figure 2: Validation of high order Interpolation:
L2-Error comparison for sinusoidal function.
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Figure 4: Strong Landau Damping: Detail of contour curve for the density computed with various
methods

compare Standard PIC method to Sparse-PIC method, using W 2 then W 4 shape functions for both
methods. We retrieve the point we saw before but with a different angle. In Figures 4a and 4c, the
achieved maxima are lower than those in Figures 4c and 4d, coinciding with the phase shift we saw
earlier. Finally, a marked reduction in noise can be observed between Figures 4a and 4b, compared
to Figures 4c and 4d, which exhibit a much smoother profile. This highlights the effectiveness of
all the Sparse methods for this type of simulation. Using high order shape function maintain these
good proprieties.

4.4 Diocotron instability

The Diocotron Instability is a challenging benchmark for Sparse methods, and we specifically selected
it for this reason, aiming to outline the improvements brought about by the W 4 shape functions.
We will also consider the embedding of high order methods with offset-Sparse PIC-method.

To represent this effect, we consider the following initial fluid particle distribution,

fe(x,v) =
γe

−
(∥x−L

2 ∥2
−L

4 )
2

2(0.03L)2

0.03L(2π)2
e

−∥v∥22
2

where ∥x∥22 =
∑d

i=1 x
2
i .γ is chosen to match the unit mean propriety of the distribution fe. This

time, an external magnetic field is added to the model, and is considered linear along the Z-axis,
for our 2-dimension model, that mean B = 15 is constant on the X-Y plan, furthermore it is strong
enough to dominate the electron dynamic.

Our domain length is L = 2π
0.3λD. This domain will be approximated by a 256× 256 mesh ; we

count 2562 = 65 536 cells in the Standard PIC method and 5 888 cells i.e. 11 times less for the
Sparse one. Each cell will carry on average 200 particles unlike the Landau Damping, this data
should be regarded as a statistic and not as an observed mean behavior because most of the cell are
empty. Finally we choose a time-step ∆t = .075 and an end time t = 75 i.e. 1000 time steps.

Figure 5a serves as the reference solution against which numerical approximation will be com-
pared. It exhibits numerous useful features warranting closer examination: density vertices with
internal motion, filaments between them, and central symmetry.
The subsequent figures are all derived from the same simulation moment, parameterized under iden-
tical conditions. We will vary the shape functions and offset levels. Figure 5b corresponds to the
Sparse-PIC(2) method, which represents the poorest performance and deviates significantly from
the reference. Evident are the distinctive artifacts of the Sparse formalism, which reconstructs the
solution along grid lines. The rotation differs as a consequence of the reconstruction, impeding
proper simulation alignment. Filaments are poorly represented and symmetry is broken. Figure 5c,
employing the Sparse-PIC(4) method, ameliorates the reconstruction issues along grid lines, aligning
the formation better with the reference, although significant discrepancies persist, including inter-
rupted filaments and coarse vertices.
Figure 5d combinesW6 shape function and 2 levels of offset, demonstrating substantial improvement.
While it doesn’t match the reference perfectly, positive comparisons include enhanced representa-
tion of details like filaments and internal density vertices motion. Figure 5e, utilizing the V 4

2 shape
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(a) Reference Solution: n =
9, P cell = 8000

(b) Sparse-PIC(2) Method, n =
8, P cell = 200

(c) Sparse-PIC(4) Method, n =
8, P cell = 200

(d) Sparse-PIC(6)o2 Method, n =
8, P cell = 200

(e) Sparse-PIC V 4
2 Method, n =

8, P cell = 200
(f) Sparse-PIC V 4

4 Method, n =
8, P cell = 200

Figure 5: Comparison of 6 methods in Diochotron Instability at time t = 15

function, yields relatively poor results, offering inadequate approximations despite substantial com-
putational efforts. Figure 5f employs the V 4

4 shape function, and it is evident that this choice of a
smoother function induces significant diffusion, adversely affecting method precision, especially in
this particular case. It could even be argued that it performs less favorably than V 4

2 .
In Figure 6, we compare a range of Sparse-PIC methods with different order and different levels

of offset. We use a reference model which is a Standard-PIC method computed on a larger grid with
more particles per cell than the considered methods, then we compute the normalized L1 error of
the difference. We can see that Sparse-PIC(2) is worse that any other method, that’s because the
approximation is so bad that it reduce speed of rotation, conducing to an increasing difference whit
the reference model. All the other methods get more accurate rotating speed, but with time most
of them fail to capture the very thin detail of the Diochotron Instability conducing to an increasing
error. If we improve accuracy order or offset level, we reduce the error. An interesting thing to see
is that when we increase the order of a method, we ”win” one level of offset. Multiple example can
be found in 6: Sparse-PIC(4) method is doing better than Sparse-PIC(2)o1 and Sparse-PIC(4)o1 is
really close to Sparse-PIC(2)o2.

In Figure 7, we focus on increasing the offset for Sparse-PIC(6) starting without any. We can
see that high order method are still being improved by boosting offset technique. We can deduce 2
things: First, there is still room for more improvement. Second, the offset technique works better
with higher order accurate method.

5 Conclusions

In this article, we introduce high-order shape and basis functions to enhance sparse-PIC methods.
A comprehensive numerical analysis of the sparse quantities inherent in high-order schemes has
been presented. This analysis has led to two significant outcomes. Firstly, by elevating the order
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Figure 6: Normalized Error of various method for
the Diochotron Instability, n = 8, P cell = 200
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Figure 7: Improving offset on an high order
method for the Diochotron Instability, n =
8, P cell = 200

of accuracy of the schemes, we substantially alleviate the grid-based component of the error. This
component is known to experience deterioration in complex configurations, thereby being identified
as a primary drawback of sparse-PIC methods. Secondly, the particle sampling error of the high-
order schemes remains equivalent to that of second-order schemes, ensuring that the introduction of
higher-order functions does not compromise noise damping. Consequently, as demonstrated through
numerical evidence, the high-order methods achieve improvements at a low cost, as the number of
particles does not need to be increased, contrary to the offset method. Additionally, the benefits
of high-order functions can be seamlessly integrated with offset methods to achieve more significant
gains.
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Appendix

A Explicitation of constants

We provide here the constants KE , DE ,Kρ, Dρ appearing in the Theorems 3.1 and 3.2. For d = 3,
the constants for the electric field are:

KE = K1∥∂p
1∂

p
2∂

p
3E∥∞ +K2∥∂p+2

1 ∂p+2
2 ∂p+2

3 E∥∞ +K3∥∂p
1∂

p
2∂

p
3∇ρ∥∞ +

∑
i̸=j ̸=k

[
K4∥∂p+1

i ∂p+2
j ∂p+2

k E∥∞

+K5∥∂p
i ∂

p+1
j ∂p+2

k E∥∞ +K6∥∂p
i ∂

p+2
j ∂p+2

k ∇ρ∥∞ +K7∥∂p
i ∂

p+2
j ∂p+2

k E∥∞ +K8∥∂p
i ∂

p
j ∂

p+2
k ∇ρ∥∞

+K9∥∂p
i ∂

p
j ∂

p+2
k E∥∞ +K10∥∂p

i ∂
p
j ∂

p+1
k ∇ρ∥∞

]
+K11 max

i ̸=j ̸=k
∥∂p

i ∂
p
j ∂

p+1
k Φ∥∞,

DE = D1(Q∥∇ρ∥∞)
1
2 ,

where:

K1 = CcombC
3
int, K2 = 6CcombC

2
maxC

3
lap, K3 = Ccomb(CmaxC

3
bias + 3CmaxC

2
intCbias + 3CmaxCintC

2
bias),

K4 = CcombC
2
maxC

2
lapCgrad, K5 = CcombCmaxCgradCintClap

K6 = CcombC
2
maxCbiasC

2
lap, K7 = CcombCmaxCintC

2
lap,

K8 = Ccomb(C
2
maxC

2
biasClap + C2

maxCbiasCintClap), K9 = CcombC
2
intCmaxClap,

K10 = Ccomb(CmaxCgradC
2
bias + CmaxCgradCbiasCint), K11 = CcombC

2
intCgrad,

D1 = (CcombCmaxC
3
part)

1
2 .

For d = 3, the constants for the charge density are:

Kρ = K1∥∂p
1∂

p
2∂

p
3ρ∥∞, K1 = Ccomb(C

3
bias + 3C2

biasCint + 3CbiasC
2
int + C3

int),

Dρ = D1(Q∥ρ∥∞)
1
2 , D1 =

(
36(21 + 4 log(2))

log(2)2

) 1
2

.

For d = 2, the constants for the electric field are:

KE = K1∥∂p
1∂

p
2E∥∞ +K2∥∂p+2

1 ∂p+2
2 E∥∞ +K3∥∂p

1∂
p
2∇ρ∥∞ +

∑
i ̸=j

[
K4∥∂p+1

i ∂p+2
j E∥∞

+K5∥∂p
i ∂

p+2
j E∥∞ +K6∥∂p

i ∂
p+2
j ∇ρ∥∞ +K7∥∂p

i ∂
p+1
j ∇ρ∥∞

]
+K8 max

i ̸=j
∥∂p

i ∂
p+1
j Φ∥∞,

DE = D1(Q∥∇ρ∥∞)
1
2 ,

where:

K1 = CcombC
2
int, K2 = 2CcombC

2
maxC

2
lap, K3 = Ccomb(CmaxC

2
bias + 2CmaxCintCbias),

K4 = CcombCmaxClapCgrad, K5 = CcombCmaxCintClap, K6 = CcombCmaxCbiasClap,

K7 = CcombCmaxCgradCbias, K8 = CcombCintCgrad, D1 = (CcombCmaxC
2
part)

1
2 .

For d = 2, the constants for the charge density are:

Kρ = K1∥∂p
1∂

p
2ρ∥∞, K1 = Ccomb(C

2
bias + 2CbiasC

2
int + C2

int),

Dρ = D1(Q∥ρ∥∞)
1
2 , D1 =

4

log(2)
.

B Proofs of Lemmas 3.5, 3.6, 3.7, 3.8, 3.9.

The Lemmas are proved for the order p = 4. Results with p = 2 can be found in [6].

Proof of Lemma 3.5. Let us consider the one-dimensional case which can be extended to the d-
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dimensional case by tensor product of the shape functions.

E(ρ̂hl
(x)) = Q

∫∫
[−h−1

l ,h−1
l ]×Ωv

W (y)f(x+ yhl, v)dv, (71)

=
∑
α≤4

hα
l

(∫ 2

−2

W (y)yαdy

)(
Q
∫
Ωv

∂αf(x, v)

α!
dv

)
+ o
(
h4
l

)
, (72)

where the change of variable y = h−1
l (ξ−x) and a Taylor expansion up to order 4 have been applied.

The terms with odd exponent α vanish thanks to symmetry of the shape functions W , as well as
the second order term owing to:∫ 2

−2

W (y)y2dy = 2

[∫ 1

0

W (y)y2dy +

∫ 2

1

W (y)y2dy

]
= 2

[
11

120
− 11

120

]
= 0. (73)

Eventually, we obtain the grid-based error result owing to the following relation:∫ 2

−2

W (y)y4dy = 2

[∫ 1

0

W (y)y4dy +

∫ 2

1

W (y)y4dy

]
= 2

[
61

1680
+

13229

1120

]
=

5687

240
. (74)

As for the particle sampling error, the result is obtained by the equation (95) from the proof outlined
in Lemma C.3 with k = l. 2

Proof of Lemma 3.6. For all k ∈ {1, ..., d} such that k /∈ {i1, ..., im}, since u ∈ C6(Ω
(i1,...,im)
hl

) , Taylor
expansions in dimension k give the relations: ∀j ∈ Ihl

,

∆hlk
u(jhl) =

16(u((j+ ek)hl) + u((j− ek)hl))− (u((j+ 2ek)hl) + u((j− 2ek)hl))− 30u(jhl)

12h2
lk

= ∂2
ku(jhl)−

1

90
∂6
ku(jhl)h

4
lk
+O

(
h5
)
.

We obtain the result by summing upon the dimensions k. The same holds for each dimension of the
gradient operator:

∇hlk
u(jhl) =

8(u((j+ ek)hl) + u((j− ek)hl))− (u((j+ 2ek)hl) + u((j− 2ek)hl))

12hlk

= ∂ku(jhl) +
2

5
∂5
ku(jhl)h

4
lk
+O

(
h5
)
. 2

Proof of Lemma 3.7. The proof is provided in [6].

Proof of Lemma 3.8. Let x ∈ Ω
(i1,...,im)
hl

, the following holds true owing to the partition of unit
property of the basis functions:

IVhl
f(x)− f(x) =

∑
j∈Ihl

(f(jhl)− f(x))Whl,j(x) (75)

Let us introduce the notation (yl1,j1 , . . . , yld,jd) ∈ Rd defined by:

jhl − x = (yl1,j1 , . . . , yld,jd)h1, ylk,jk =

{
jk − xk

hlk

if k /∈ {i1, . . . , im},
0 else.

Because of the support of the basis functions:

|Whl,j(x)| = 0 ⇔ max(|yl1,j1 |, . . . , |yld,jd |) ≥ p/2,

and the sum in equation (75) falls down to fifty four terms verifying max(|yl1,j1 |, . . . , |yld,jd |) <
p/2. Let k ∈ J1, . . . , d − mK and r1, . . . , rk such that {r1, . . . , rk} ⊂ {1, . . . , d} and {r1, . . . , rk} ∩
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{i1, . . . , im} = ∅, then a Taylor expansion of f in dimensions r1, . . . , rk gives the relation:

f(jhl) =
∑
α∈Nk

|α|∞≤p

∂α1
r1 . . . ∂αk

rk
f(x)

α!
yα1

lr1 ,jr1
. . . yαk

lrk ,jrk
hα1

lr1
. . . hαk

lrk
+O(hp+1

lr1
, . . . , hp+1

lrk
).

because of the parity of basis functions, all the odd exponent vanishes. The exponent with value 2
also vanishes because of the cancellation of the qth order moments for q ∈ {2k|1 ≤ k < p/2} from
the basis function construction:∑
j∈Ihl

yα1

lr1 ,jr1
. . . yαk

lrk ,jrk
Whl,j = 0 if ∃i ∈ {1, . . . , k} s.t. αi odd. or αi = q∀q ∈ {2k|1 ≤ k < p/2}

The first result follows with:

di1,...,im;r1,...,rk = p−k∂p
r1 . . . ∂

p
rk
f
∑
j∈Ihl

yplr1 ,jr1
. . . yplrk ,jrk

Whl,j +O(hp
lr1

, . . . , hp
lrk

),

where the sum can be recast into:∑
j∈Ihl

yplr1 ,jr1
. . . yplrk ,jrk

Whl,j =yplr1 ,jr1
. . . yplrk ,jrk
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. . . (p/2− 1− ylrk ,jrk )
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p(ylrk−1

,jrk−1
)W p(p/2− 1− ylrk ,jrk )

+ . . .

+ yplr1 ,jr1
. . . (ylrk ,jrk − p/2)pW p(ylr1 ,jr1 ) . . .W

p(ylrk−1
,jrk−1

)W p(ylrk ,jrk − p/2)
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p . . . (p/2− ylrk ,jrk )

pW p(p/2− ylr1 ,jr1 ) . . .W
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For p = 4 we can compute boundary for the previous function and the following estimation holds:∣∣∣∣∣∣
∑
j∈Ihl

y2lr1 ,jr1 . . . y
2
lrk ,jrk

Whl,j

∣∣∣∣∣∣ ≤ (2.(0.089) + 2.(0.381))k ≤ 4k(0.237)k

which gives the results.

Proof of Lemma 3.9. The proof for p = 4, 6 is the same as the one for p = 2 which can be found in
[15].

C Proof of Theorem 3.2

C.1 Definitions and Lemmas

Regarding the particle sampling error estimate, our result is novel, offering a more precise bound
compared to the one presented in [6]. The Theorem is proved for the order p = 4 and dimension
d = 3. To establish this result, we introduce specific notations and Lemmas.

Definition C.1 Let k, l ∈ N3, 0 ≤ r ≤ s ≤ 2, we introduce the notations:

kr,s = (kr, ..., ks) ∈ Ns−r+1, (k, l)r,s = (kr, ..., ks, lr, ..., ls) ∈ (Ns−r+1)2, (76)

|k|r,s1 =

s∑
i=r

|ki|, (77)

and the index set:

Irn := J1, nKr. (78)
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By introducing the spaces:

Fr
n := {(k, l) ∈ Irn × Irn | km = lm, m ∈ J1, ..., rK} , (79)

Gr
n := {(k, l) ∈ Irn × Irn | km < lm, m ∈ J1, ..., rK} , (80)

Hr
n := {(k, l) ∈ Irn × Irn | km > lm, m ∈ J1, ..., rK} , (81)

the following decomposition of the index sets holds:

I2n × I2n =
⋃

0≤r≤s≤2

Fr
n ×Gs−r

n ×H2−s
n , (82)

By definition, it follows some equalities between the cardinal of the subspaces |Irn| = |Fr
n| = O(nr),

|Gr
n| = |Hr

n| = O
(
n2r
)
.

Definition C.2 Let us introduce the notation for the interpolation in two variables of Ω, i.e. for a
function f ∈ Ω2:

IVhk
,Vhl

f(x,y) =
∑
i∈Ihk

∑
j∈Ihl

f(ihk, jhl)Whk;iWhl;j. (83)

Lemma C.3 Let k, l ∈ Ln, then

Q
hkhl

IVhk
,Vhl

E(Whk
(x−X)Whl

(y−X)) ≤ ∥ρ∥∞
hk̃

+O
(
h̃l

)
(84)

where k̃, l̃ ∈ N3 such that k̃m = min(km, lm), l̃m = max(km, lm), m = 1, 2, 3.

Lemma C.4 Let k, l ∈ N3 and

M(k, l) =
1

hk̃1

· 1

hk̃2

· 1

hk̃3

, (85)

where k̃m = min(km, lm), m = 1, 2, 3, then the following bound holds true:∑
(k,l)∈(Ln)2

M(k, l) ≤ 9
∑

(k,l)∈(Ln,0)2

M(k, l). (86)

Lemma C.5 Let α ∈ N∗, β ∈ J0, ..., 2K, m > 0 then

∑
(k,l)∈In×In,

k<l

hl−k(l − k)β = n(−1)β
(

2−x

1− 2−x

)(β) ∣∣∣
x=1

+O(1) , (87)

∑
(k,l)∈In×In,

k<l

hα
l−k =

n

1− 2−α
+O(1) , (88)

∑
(k,l)∈In×In,

l≤k−m

hk−l = 2nhm +O(1) . (89)

C.2 Proofs of Lemmas C.3, C.4, C.5

Proof of Lemma C.3. Let us consider the one-dimensional case which can be extended to the d-
dimensional case by tensor product of the shape functions and let us also assume that l ≥ k without
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loss of generality, then owing to the symmetry of the basis functions, it holds:

QE
( 1

hkhl
Whk

(ihk −X)Whl
(jhl −X)

)
= Q

∫∫
Ωx×Ωv

1

hkhl
W

(
ξ − ihk

hk

)
W

(
ξ − jhl

hl

)
f(ξ, v, t)dξdv

= Q
∫∫
Ωx×Ωv

1

hk
W (xhl−k + jhl−k − i)W (x) f(jhl + xhl, v, t)dxdv

=
ρ(jhl)

hk

∫ 1
hl

− 1
hl

W (xhl−k + jhl−k − i)W (x) dx+O(hl) ,

where the change of variable x = h−1
l (ξ − jhl) and a Taylor expansion in f have been applied. The

integral
∫ 2

−2
W (x)W (xhl−k + jhl−k − i)dx is different from 0 for i, j such that:

jhl−k − i = −2− hl−k,−2,−2 + hl−k, ...,−hl−k, 0, hl−k, ..., 2− hl−k, 2, 2 + hl−k. (90)

By considering and computing all the different cases, one can see that the integral is maximum for
jhl−k − i = 0. In that case, the integral falls down, by symmetry, to:∫ 2

−2

W (x)W (xhl−k + jhl−k − i)dx = 2
(∫ 1

0

W (x)W (xhl−k + jhl−k − i)dx (91)

+

∫ 2

1

W (x)W (xhl−k + jhl−k − i)dx
)
, (92)

and ∫ 1

0

W (x)W (xhl−k + jhl−k − i)dx =
13

24
− 11

120
hl−k − 11

120
h2
l−k +

23

840
h3
l−k, (93)∫ 2

1

W (x)W (xhl−k + jhl−k − i)dx = − 1

24
+

121

1080
hl−k − 11

120
h2
l−k +

59

2520
h3
l−k. (94)

Therefore, we have

QE
( 1

hkhl
Whk

(ihk −X)Whl
(jhl −X)

)
=

ρ(jhl)

hk

(
1 +

11

270
hl−k − 44

120
h2
l−k +

32

315
h3
l−k

)
+O(hl) ≤

∥ρ∥∞
hk

+O(hl) , (95)

since the maximum on [0, 1] of the function P (x) = 1 + 11
270x− 44

120x
2 + 32

315x
3 is obtained for x = 0.

Eventually, using the partition of unit property of the basis function:

Q
hkhl

IVhk
,Vhl

E(Whk
(x−X)Whl

(y −X)) ≤ ∥ρ∥∞
hk

+O(hl) . 2

Proof of Lemma C.4. Let us recall that:

Ln :=
⋃

i∈J0,2K

Ln,i, Ln,i := {l ∈ N3 | |l|1 = n+ 2− i, l ≥ 1}, (96)

and let i ∈ {0, 1}, so that we have:

∀l ∈ Ln,i+1, ∃̃l ∈ Ln,i and ∃j̃ ∈ {1, 2, 3} s.t. l̃j = lj , j ̸= j̃ and l̃j̃ > lj̃ . (97)
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It follows that M(k, l) ≤ M(k, l̃) for any k ∈ Ln and thus:

∑
(k,l)∈(Ln)2

M(k, l) =

2∑
i=0

2∑
j=0

∑
k∈Ln,i

∑
l∈Ln,j

M(k, l)

=
∑

(k,l)∈(Ln,0)2

M(k, l) +
∑

k∈Ln,0

∑
l∈Ln,1

M(k, l)
∑

k∈Ln,1

∑
l∈Ln,1

M(k, l) + ...

≤
∑

(k,l)∈(Ln,0)2

M(k, l) +
∑

k∈Ln,0

∑
l∈Ln,0

M(k, l)
∑

k∈Ln,1

∑
l∈Ln,0

M(k, l) + ...

≤ ... ≤ 9
∑

(k,l)∈(Ln,0)2

M(k, l). 2

Proof of Lemma C.5. Let β ∈ J0, ..., d− 1K, then:

∑
(k,l)∈In×In,

k<l

hl−k(l − k)β =

n∑
l=1

l−1∑
k=1

kβ2−k =

n∑
l=1

(−1)β
(

2−x

1− 2−x

(
1− 2−(l−1)x

))(β) ∣∣∣
x=1

=

n∑
l=1

(−1)β

(
β∑

m=0

(
β

m

)(
2−x

1− 2−x

)(β−m) (
1− 2−(l−1)x

)(m)
)∣∣∣

x=1

=

n∑
l=1

(−1)β

((
2−x

1− 2−x

)(β) (
1− 2−(l−1)x

)

+

β∑
m=1

(
β

m

)(
2−x

1− 2−x

)(β−m)

(−1)m+1(l − 1)m2−(l−1)x

)∣∣∣
x=1

=

n∑
l=1

(
(−1)β

((
2−x

1− 2−x

)(β)
)∣∣∣

x=1
+O

(
2−l
))

= n(−1)β
(

2−x

1− 2−x

)(β) ∣∣∣
x=1

+O(1) .

Let α ∈ J1, ..., d− 1K, then:

∑
(k,l)∈In×In,

k<l

hα
l−k =

n∑
l=1

2−αl
l−1∑
k=1

2αk =

n∑
l=1

2−αl 2α

2α − 1
(2α(l−1) − 1)

=
n

2α − 1
− 1− 2αn

(2α − 1)(1− 2−α)
.

Let m > 0, then:

∑
(k,l)∈In×In,

l≤k−m

hk−l =

n∑
k=1

2−k
k−m∑
l=1

2l = 2nhm − (1− 2−n). 2

Proof of Theorem 3.2. The outcome concerning grid-based errors is achieved through the straightfor-
ward application of the projection (3.5), interpolation (3.8), and recombination (3.9) Lemmas. For
the particle sampling error, by linearity, the following bound for the variance of the reconstructed
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charge density holds true:

V
(
V(ρ̂chn

)
)
= V

(
ρ̂chn

− E(ρ̂chn
)
)

(98)

= V

(∑
l∈Ln

clIVhl
ρ̂hl

−
∑
l∈Ln

clIVhl
E(ρ̂hl

)

)
(99)

= V

(∑
l∈Ln

clIVhl
V(ρ̂hl

)

)
(100)

≤
∑

(k,l)∈(Ln)2

|ck||cl|
∣∣∣Cov(IVhk

V(ρ̂hk
), IVhl

V(ρ̂hl
))
∣∣∣ . (101)

First, let us have a look at the covariance of the pairs (k and l) of component grids:

Cov(IVhk
V(ρ̂hk

), IVhl
V(ρ̂hl

)) = E(IVhk
V(ρ̂hk

)IVhl
V(ρ̂hl

))− E(IVhk
V(ρ̂hk

))E(IVhl
V(ρ̂hl

))

= E(IVhk
V(ρ̂hk

)IVhl
V(ρ̂hl

))− IVhk
E(V(ρ̂hk

))IVhl
E(V(ρ̂hl

)).

= E(IVhk
V(ρ̂hk

)IVhl
V(ρ̂hl

)),

since the random variables V(ρ̂hl
) and V(ρ̂hk

) are centered. By linearity of the expected value, it
follows:

Cov(IVhk
V(ρ̂hk

), IVhl
V(ρ̂hl

)) = IVhk
,Vhl

E(V(ρ̂hk
)V(ρ̂hl

))

= IVhk
,Vhl

(E(ρ̂hk
ρ̂hl

)− E(ρ̂hk
)E(ρ̂hl

)) .

We have:

E(ρ̂hk
ρ̂hl

) =
Q2

N2

1

hkhl

N∑
p,q=1

E (Whk
(x−Xp)Whl

(y−Xq))

=
Q2

N2

1

hkhl

( N∑
p=1

E (Whk
(x−Xp)Whl

(y−Xp)) +

N∑
p,q=1
p ̸=q

E (Whk
(x−Xp))E (Whl

(y−Xq))
)

=
Q2

N2

1

hkhl

(
NE (Whk

(x−X)Whl
(y−X)) +N(N − 1)E (Whk

(x−X))E (Whl
(y−X))

)
,

since the random variables Xp are i.i.d and by independency of the random variables Xp and Xq

when p ̸= q, and:

E(ρ̂hk
)E(ρ̂hl

) =
Q2

hkhl
E (Whk

(x−X))E (Whl
(y−X))

From these expressions, one gets:

Cov(IVhk
V(ρ̂hk

), IVhl
V(ρ̂hl

)) =
Q2

N

1

hkhl
IVhk

,Vhl
E(Whk

(x−X)Whl
(y−X)) +O

(
1

N

)
,

where we use the result:

h−1
k E(Whk

(x−X)) = O(1) . (102)

Note that the first term scales as O
(
(hlhkN)−1

)
and is dominant in comparison to the negligible

term (in O
(
N−1

)
). On the other hand, according to Lemmas C.3 and C.4, the sum of the component
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grid pairs of covariance is bound by the sum on the more refined grids:

V
(
V(ρ̂chn

)
)
≤ 9max

l∈Ln

|cl|2
∑

(k,l)∈(N∗)6,
|k|1=n+2,
|l|1=n+2,

( ∣∣∣Cov(IVhk
V(ρ̂hk

), IVhl
V(ρ̂hl

))
∣∣∣+O

(
1

N

))

≤ 36
∑

(k,l)∈I2n×I2n

∣∣∣Cov(IVhk⋆
V(ρ̂hk⋆ ), IVhl⋆

V(ρ̂hl⋆
))
∣∣∣ ,

where the negligible term has been omitted and:

k⋆ := (k, n+ 2− |k|1), l⋆ := (l, n+ 2− |l|1). (103)

The conditions on the l1-norms of the grid levels reduce the degrees of freedom from 6 to 4. Let
us now consider all different configurations of component grid pairs, i.e. if km = lm or km < lm or
km > lm, for m = 1, ..., d− 1. The sum can be recast into:∑

(k,l)∈I2n×I2n

∣∣∣Cov(IVhk⋆
V(ρ̂hk⋆ ), IVhl⋆

V(ρ̂hl⋆
))
∣∣∣

=
∑

0≤r≤s≤2

(
r

2

)(
s− r

2

) ∑
(k,l)∈Fr

n×
Gs−r

n ×H2−s
n

∣∣∣Cov(IVhk⋆
V(ρ̂hk⋆ ), IVhl⋆

V(ρ̂hl⋆
))
∣∣∣ .

Let 0 ≤ r ≤ s ≤ 2 be integers, and let us consider the innermost sum of the last expression. The
r first components are such that km = lm, m = 1, ..., r. Then, the s − r following are such that
km < lm, m = r+1, ..., s and finally the last 2−s components are such that km > lm, m = s+1, ..., 2.
Two cases are to distinguish, either if k⋆3 > l⋆3 or k⋆3 ≤ l⋆3:

I) If k⋆3 > l⋆3: then |k|1 < |l|1 and s > r. It gives us three possible configurations separated into two
cases:

I.i) If s = 2: then r = 0 or r = 1 and according to equation (84) of Lemma ??, one gets the
following bound: ∑

(k,l)∈Fr
n×

G2−r
n

∣∣∣Cov(IVhk⋆
V(ρ̂hk⋆ ), IVhl⋆

V(ρ̂hl⋆
))
∣∣∣

≤ Q∥ρ∥∞
N

∑
(k,l)∈Fr

n×
G2−r

n

[ 1

hk1
hk2

1

hl⋆3

+O
(
hn+2h|l−k|1

) ]

≤ Q∥ρ∥∞
Nhn+2

∑
(k,l)∈

Fr
n×G2−r

n

[
h|l−k|1 +O

(
hn+2h|l−k|1

) ]

≤


4n2Q∥ρ∥∞

Nhn+2
+O

(
n2

N

)
if r = 0,

2n2Q∥ρ∥∞
Nhn+2

+O

(
n2

N

)
if r = 1,

where equation (88) of Lemma C.5 has been used for the last expression.

I.ii) If s = 1: then r = 0 and again according to equation (84) of Lemma C.3, the following bound
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holds true: ∑
(k,l)∈
G1

n×H1
n

∣∣∣Cov(IVhk⋆
V(ρ̂hk⋆ ), IVhl⋆

V(ρ̂hl⋆
))
∣∣∣

≤ Q∥ρ∥∞
N

∑
(k,l)∈
G1

n×H1
n

[ 1

hk1hl2

1

hl⋆3

+O
(
hn+2h|l−k|1,11

) ]

≤ Q∥ρ∥∞
Nhn+2

∑
(k1,l1)∈G1

n

[(
h|l−k|1,11

+O
(
hn+2h|l−k|1,11

))( ∑
(k2,l2)∈H1

n,

|k|1,21 ≤|l|1,21

1
)]

.

In addition, for k, l ∈ N2 such that k1 < l1, the following bound is verified:∑
(k2,l2)∈H1

n,

|k|1,21 ≤|l|1,21

1 ≤
∑
l2∈I1n

k2∈Kl2,l2+|l−k|1,11 K

1 = n|l− k|1,11 .

Then, according to equation (87) of Lemma C.5, the previous expression is bounded by:∑
(k,l)∈
G1

n×H1
n

∣∣∣Cov(IVhk⋆
V(ρ̂hk⋆ ), IVhl⋆

V(ρ̂hl⋆
))
∣∣∣

≤ nQ∥ρ∥∞
Nhn+2

∑
(k1,l1)∈G1

n

[
h|l−k|1,11

|l− k|1,11 +O
(
hn+2h|l−k|1,11

|l− k|1,11

) ]
≤ −n2Q∥ρ∥∞

Nhn+2

d

dx

(
2−x

1− 2−x

)
|x=1

+O

(
n2

N

)
≤ 2 log(2)n2Q∥ρ∥∞

Nhn+2
+O

(
n2

N

)
II) If k⋆3 ≤ l⋆3: then |l|1 ≤ |k|1 and two cases are to consider:

II.i) If s < 2: then, according to equation (84) of Lemma C.3, one gets the following bound:∑
(k,l)∈Fr

n×
Gs−r

n ×H2−s
n

∣∣∣Cov(IVhk⋆
V(ρ̂hk⋆ ), IVhl⋆

V(ρ̂hl⋆
))
∣∣∣

≤ Q∥ρ∥∞
N

∑
(k,l)∈Fr

n×
Gs−r

n ×H2−s
n

1

hk1 ...hkr

1

hkr+1 ...hks

1

hls+1 ...hl2

1

hk⋆
d

+O
(
hn+2h|k−l|s+1,2

1

)

≤ Q∥ρ∥∞
Nhn+2

∑
(k,l)1,s

∈Fr
n×Gs−r

n

∑
(k,l)s+1,2∈H2−s

n ,

|l|1,21 ≤|k|1,21

h|k−l|s+1,2
1

.

In addition, for k, l ∈ N2 such that km = lm, m = 1, ..., r and km < lm, m = r + 1, ..., s, the
following bound is verified, according to Lemma C.5, equation (89):

∑
(k,l)s+1,2∈H2−s

n ,

|l|1,21 ≤|k|1,21

h|k−l|s+1,2
1

≤
∑

ks+1,2∈I2−s
n

(ls+1,2)i∈J1,(ks+1,2)i− 1
2−s |l−k|r+1,s

1 K

h|k−l|s+1,2
1

=

(
2nh |l−k|r+1,s

1
2−s

)2−s

= (2n)2−sh|l−k|r+1,s
1

,
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so that using the Lemma C.5, equation (88) and Card(Fr
0) = nr one gets the following bound:∑

(k,l)∈Fr
n×

Gs−r
n ×H2−s

n

∣∣∣Cov(IVhk⋆
V(ρ̂hk⋆ ), IVhl⋆

V(ρ̂hl⋆
))
∣∣∣

≤ 22−sn
2−sQ∥ρ∥∞
Nhn+2

∑
(k,l)1,s

∈Fr
n×Gs−r

n

h|l−k|r+1,s
1

≤ 22−r n
2−rQ∥ρ∥∞
Nhn+2

∑
(k,l)1,r

∈Fr
n

1

≤ 22−r n
2Q∥ρ∥∞
Nhn+2

,

II.ii) If s = 2: then necessarily k = l, i.e. r = 2, and since Card(Fr
0) = nr, one gets the following

bound:∑
(k,l)∈F2

n

∣∣∣Cov(IVhk⋆
V(ρ̂hk⋆ ), IVhl⋆

V(ρ̂hl⋆
))
∣∣∣ ≤ Q∥ρ∥∞

N

∑
(k,l)∈F2

n

[ 1

hk1
hk2

hk⋆
3

+O
(
hk1hk2h

⋆
k3

) ]
≤ n2Q∥ρ∥∞

Nhn+2
+O

(
n2

N

)
Finally, combining all the different cases, the following bound is found:

V
(
V(ρ̂chn

)
)
≤ 36

∑
(k,l)∈(N∗)6,
|k|1=n+2,
|l|1=n+2,

[ ∣∣∣Cov(IVhk
V(ρ̂hk

), IVhl
V(ρ̂hl

))
∣∣∣+O

(
1

N

)]

≤ 36(21 + 4 log(2))
n2Q∥ρ∥∞

Nhn
+O

(
n4

N

)
,
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