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Interferometric Lensless Imaging:
Rank-one Projections of Image Frequencies with Speckle Illuminations

Olivier Leblanc∗, Mathias Hofer†, Siddharth Sivankutty‡, Hervé Rigneault†, and Laurent Jacques∗

Abstract—Lensless illumination single-pixel imaging with a multi-
core fiber (MCF) is a computational imaging technique that enables
potential endoscopic observations of biological samples at cellular
scale. In this work, we show that this technique is tantamount to
collecting multiple symmetric rank-one projections (SROP) of an
interferometric matrix—a matrix encoding the spectral content of
the sample image. In this model, each SROP is induced by the
complex sketching vector shaping the incident light wavefront with
a spatial light modulator (SLM), while the projected interferometric
matrix collects up to O(Q2) image frequencies for a Q-core MCF.
While this scheme subsumes previous sensing modalities, such
as raster scanning (RS) imaging with beamformed illumination,
we demonstrate that collecting the measurements of M random
SLM configurations—and thus acquiring M SROPs—allows us
to estimate an image of interest if M and Q scale log-linearly
with the image sparsity level This demonstration is achieved both
theoretically, with a specific restricted isometry analysis of the
sensing scheme, and with extensive Monte Carlo experiments. On
a practical side, we perform a single calibration of the sensing
system robust to certain deviations to the theoretical model and
independent of the sketching vectors used during the imaging phase.
Experimental results made on an actual MCF system demonstrate
the effectiveness of this imaging procedure on a benchmark image.

Keywords—lensless imaging, rank-one projections, interferomet-
ric matrix, inverse problem, computational imaging, single-pixel

I. INTRODUCTION

The advent of Computational Imaging (CI) can be traced
back to the work of Ables [1] and Dicke [2] on coded aperture
for x-ray and gamma ray imagers. Since then, an ever-growing
number of solutions have been devised to relax the constraints
imposed by more traditional optical architectures (when these
exist). Cheaper, lighter, and enabling larger imaging field-of-
view (FOV), Lensless Imaging (LI), a subfield of CI, is con-
venient for medical applications such as microscopy [3] and
in vivo imaging [4] where the extreme miniaturization of the
imaging probe (with a diameter ≤ 200 µm) offers a minimally
invasive route to image at depths unreachable in microscopy [5].
More recently, intensive research effort emerged for Lensless
Endoscopy (LE) using multimode [6–8] or MultiCore Fibers
(MCF) [9,10], paving the way for deep biological tissues [11]
and brain imaging.

In CI applications, a mathematical model describes the obser-
vations as a function of the object to be imaged. Two efficiency
requirements are considered; (i) the model, while physically
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reliable, must be computationally efficient to speed up the recon-
struction algorithms; (ii) the acquisition method must minimize
the number of observations (also called sample complexity)
needed to accurately estimate the object. In single-pixel MCF-LI,
Speckle Imaging (SI) consists in randomly shaping the wavefront
of the light input to the cores entering the MCF to illuminate
the entire object with a randomly distributed intensity. The
fraction of the light re-emitted (either at other wavelengths by
fluorescence or by simple reflection) is integrated in a single-
pixel sensor, playing the role of a complete projection of the
speckle on the object. Compared to Raster Scanning (RS) the
object with a translating focused (beamformed) spot [9], SI
reduces the overall sample complexity needed to estimate a
reliable image [12].

In this work, we improve the MCF-LI sensing model jointly
on its reliability, computation and calibration. We achieve this
by introducing light propagation physics in the forward model of
MCF imaging, while keeping the low sample complexity enabled
by SI. Inserting the physics yields a sensing model similar to
radio-inteferometry applications [13], where the interferences of
the light emitted by the cores composing the MCF give specific
access to the Fourier content of the object to be imaged. The
sample complexity of the underlying model is analyzed both
theoretically and experimentally.

A. Related works

In 2008, Duarte et al. introduced single-pixel imaging [14,15],
a subfield of lensless imaging (LI) where each collected obser-
vation is equivalent to randomly modulating an image before
integrating its intensity. They demonstrated that reliable image
estimation is possible at low sampling rates compared to image
resolution by using compressive sensing. More recently, this
principle has been integrated into the use of an MCF for both
remote illumination and image collection. This technique allows
for both deep and large FOV imaging [9,12,16]. Subsequent
works have shown that de-structured speckle-based illumina-
tions can replace structured or beamformed illuminations effec-
tively [12,17].

MCF-LI bears similarities with quadratic measurement models
such as phase retrieval (PR) [18,19] whose sensing is often recast
as SROPs of the lifted matrix xx∗ of the (vectorized) image
x. Theoretical guarantees on the recovery of low-complexity
matrices (e.g., sparse, circulant, low-rank) from random ROPs
have been extensively studied in the last decade [20–22]. Our
sensing model computes SROPs of an interferometric matrix
built from spatial frequencies of the image. This shares similar-
ities with random partial Fourier sensing in CS theory [23,24].
Specifically, the spatial frequencies in this matrix correspond
to the difference of the MCF cores locations. This arises in
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radio-interferometric astronomy applications where, as induced
by the van Cittert-Zernike theorem, the signal correlation of two
antennas gives the Fourier content on a frequency vector (or
visibility) related to the baseline vector of the antenna pair [13].
One may recognize in [25, Sec. 4.1.] the RS mode described
in Sec. II-B. However, in these works, the presence of an
interferometric matrix (see e.g., [25, Eq. (15)]) is often implicit,
since, conversely to our scheme, no linear combinations of these
visibilities are computed.

The 8-step phase-shifting interferometry [26] calibration tech-
nique (see Sec. V-B) is used in, e.g., astronomical imaging [27],
and microscopy [28]). The estimated complex wavefields im-
plicitly encode transmission matrix of the MCF (see [29])
and also embed some unpredictable imperfections in the MCF
configuration. Compared to previous work [12] where each
speckle generated by a random SLM configuration had to be
a priori recorded, this calibration is made only once before any
acquisition.

B. Contributions

We provide several contributions to the modeling, understand-
ing and efficiency of MCF-LI imaging.
[C1] We incorporate the physics of wave propagation in the
sensing model of MCF-LI in Sec. II, showing that it involves
applying symmetric rank-one projections, or SROP1, controlled
by the SLM, to an interferometric matrix encoding the spectral
content of the image.
[C2] Following the methods of CS theory, we provide recovery
guarantees for estimating both the interferometric matrix and
the discrete image of the observed object in Secs. III and IV;
in particular, we extend previous results from [20] showing that,
up to a debiasing, the sensing operator satisfies a variant of the
restricted isometry property expressed with an ℓ1-norm in the
measurement domain, the RIPℓ2/ℓ1 . This RIP allows us to prove
the optimality of estimating a sparse image with a variant of the
basis pursuit denoise program, BPDNℓ1 .
[C3] We propose a calibration phase that addresses sensing
imperfections in a real setup in Sec. V. This calibration requires a
fixed number of observations; it preserves a SROP sensing model
and enables the modeling of any further SLM configurations.

Contribution C1 highlights the interferometric behavior of the
MCF device, allowing the prediction of speckles in the sample
plane Z based on randomly chosen core complex amplitudes.
This moves the previous assumption that the speckle pixels
were i.i.d. random coefficients of a projection matrix in [12],
to the truly independent random draw of these core complex
amplitudes. Contribution C2 utilizes this randomness to prove
stable and robust image recovery with high probability under
conditions. Provided the components of the SROP complex
sketching vectors have unit modulus (but random phases), we
propose a debiasing trick that does not require doubling the num-
ber of measurements (compared to [20])—a definite advantage
when recording experimental measurements—but that prevents
sensing the sample’s mean. Hopefully, the recovery program

1The ROP terminology was introduced when [21] extended phase retrieval
applications [20,30] to the recovery of a low—(but not necessarily one)—rank
matrix via rank-one projections.

BPDNℓ1 recovers that mean for sparse images. Contribution C3
involves a single calibration step that enhances the quality of
speckle prediction from the SLM configuration (reaching 97%
of normalized cross-correlation), implicitly registers the cores
locations and imaging depth, and corrects system imperfections
excepted intercore interferences.

Notations and conventions: Light symbols denote scalars (or
scalar functions), and bold symbols refer to vectors and matrices
(e.g., η ∈ R, g ∈ L2(R), f ∈ RN , G ∈ CN×N ). We write i =√
−1; the identity operator (or n× n matrix) is Id (resp. Idn);

the set of Q×Q Hermitian matrices in CQ×Q is denoted by HQ;
the set of index components is [M ] := {1, . . . ,M}; {sq}Qq=1 is
the set {s1, . . . , sQ}, and (aq)

Q
q=1 the vector (a1, . . . , aQ)⊤. The

notations ·⊤, ·∗, tr, ⟨·, ·⟩, correspond to the transpose, conjuguate
transpose, trace, and inner product. The p-norm (or ℓp-norm)
is ∥x∥p := (

∑n
i=1 |xi|p)1/p for x ∈ Cn and p ⩾ 1, with

∥ · ∥ = ∥ · ∥2, and ∥x∥∞ := maxi |xi|. Given A ∈ Cn×n,
a ∈ Cn and S ⊂ [n], the matrix AS is made of the columns of A
indexed in S, the operator diag(A) ∈ Cn extracts the diagonal of
A, diag(a) ∈ Cn×n is the diagonal matrix such that diag(a)ii =
ai, Ad = diag(diag(A)) zeros out all off-diagonal entries of
A, and ∥A∥ and ∥A∥∗ are the operator and nuclear norms
of A, respectively. The direct and inverse continuous Fourier
transforms in d dimensions (with d ∈ {1, 2}) are defined by
ĝ(χ) := F [g](χ) :=

∫
Rd g(s)e

−i2πχ⊤sds, with g : Rd → Cd,
χ ∈ Rd, and g[s] = F−1[ĝ](s) =

∫
Rd ĝ(χ)e

i2πχ⊤sdχ, with the
scalar product χ⊤s reducing to ks in one dimension.

II. MCF LENSLESS IMAGING

We here develop the sensing model associated with an MCF
lensless imager (MCF-LI). As illustrated in Fig. 1(top), an MCF-
LI consists of four main parts: a wavefront shaper (SLM), optics,
an MCF and a single photo-detector. The SLM shapes the phase
of the light that is injected into the cores. The optics include
mirrors and lenses used to focus the light into the center of each
core, hence preventing multimodal effects.

As explained below, under a common far-field assumption,
MCF-LI can be described as a two-component sensing system
applying SROP of a specific interferometric matrix. We show
how this model subsumes previous descriptions of the MCF-LI,
and end this section highlighting that the SROP and interfero-
metric nature of the model hold beyond the far-field assumptions.

A. Sensing model description

An MCF with diameter D contains Q fiber cores with the same
diameter d < D (see Fig. 1(c)). Our goal is to observe an object
(or sample) which, for simplicity, is planar and defined in a plane
Z . This plane is parallel to the plane Z0 containing the distal
end of the MCF, and at distance z from it. For convenience, we
assume that the origins of Z0 and Z are aligned, i.e., they only
differ by a translation in the plane normal direction. In Z0, the
Q cores locations are encoded in the set Ω := {pq}Qq=1 ⊂ R2.

As illustrated in Fig. 1 (and detailed in Sec. V-A and [9]), in
MCF-LI the laser light wavefront entering the MCF is shaped
with a spatial light modulator (SLM) so that both the light
intensity and phase can be individually adjusted for each core
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Fig. 1: (a) Working principle of MCF-LI with cores arranged in Fermat’s golden
spiral when the SLM is programmed in raster scanning mode. (b) Fourier
sampling V corresponding to the core arrangement in (a). (c) Interferometric
LI and its link with SROP of the interferometric matrix.

at the MCF distal end. Mathematically, assuming a perfectly
calibrated system, this amounts to setting the Q complex ampli-
tudes α = (α1, . . . , αQ)

⊤ ∈ CQ, coined sketching vector, of the
electromagnetic field at each fiber core pq with q ∈ [Q].

Under the far-field approximation, that is if z ≫ D2/λ with λ
the laser wavelength, the illumination intensity S(x;α) produced
by the MCF on a point x ∈ R2 of the plane Z reads [12]

S(x;α) ≈ w(x)
∣∣∑Q

q=1 αqe
i2π
λz p⊤

q x
∣∣2, w(x) :=

|Ê0(
x
λz )|

(λz)2 . (1)

The window w(x), which relates to the output wavefield E0 of
one single core in plane Z0, is a smooth vignetting function
defining the imaging field-of-view. Assuming E0 shaped as a
Gaussian kernel of width d, the FOV width scales like λz

d .
The sensing model of MCF-LI is established by the following

key element: in its endoscope configuration, the sample is
observed from the light it re-emits (by fluorescence) from its
illumination by S, and for each configuration of S a single
pixel detector measures the fraction of that light that propagates
backward in the MCF (see Fig. 1(a)). Therefore, given the sample
fluorophore density map f(x), assuming a short time exposure
and low intensity illumination, fluorescence theory tells us that
the number of collected photons y ∈ R+ follows a Poisson
distribution P(ȳ) with average intensity [12]

ȳ = c ⟨S(·,α), f⟩ = c
∫
R2 S(x;α)f(x) dx (2)

= c
∑Q
j,k=1 α

∗
jαk

∫
R2 e

i2π
λz (pk−pj)

⊤x f◦(x) dx,

where 0 < c < 1 represents the fraction of light collected by
the pixel detector, and f◦ := wf is the vignetted image, i.e., the
restriction of f to the domain of the vignetting w.

Therefore, assuming c = 1 for simplicity, if one collects
observations y = (y1, . . . , yM )⊤, such that ym = y(f ;αm,Ω)
with distinct vectors αm (m ∈ [M ]), we can compactly write

ȳm = α∗
m IΩ[f

◦]αm =
〈
αmα∗

m,IΩ[f
◦]
〉
F
, (3)

where ⟨A,B⟩F = trA∗B is the matrix (Frobenius) scalar
product between two matrices A and B. This amounts to
collecting M sketches of the Hermitian interferometric matrix
IΩ[f

◦] ∈ HQ, with entries defined by

(IΩ[g])jk := ĝ[
pj−pk

λz ] =
∫
R2 e

i2π
λz (pk−pj)

⊤xg(x)dx, (4)

for any function g : R2 → R. Under a high photon counting
regime, and gathering all possible noise sources in a single
additive, zero-mean noise n, the measurement model reads

y = A ◦ IΩ[f
◦] + n, (5)

where the sketching operator A defines M SROP [20,21] of any
Hermitian matrix H with

A(H) := (⟨αmα∗
m,H⟩F)

M
m=1. (6)

From (5), MCF-LI corresponds to an interferometric system
that is linear in f◦. Eq. (4) and (6) show that it is indeed
tantamount to first sampling the 2-D Fourier transform of f◦ over
frequencies selected in the difference multiset2, or visibilities,

V := 1
λz (Ω− Ω) = {νjk :=

pj−pk

λz }Qj,k=1, (7)

i.e., (IΩ[f
◦])jk = F [f◦](νjk), and next performing M SROP of

IΩ[f
◦] with the rank-one matrices αmα∗

m as determined by A.
Interestingly, the model (5) shows that we cannot access

more information about f◦ than what is encoded in the fre-
quencies of V . Moreover, this sensing reminds the model of
radio-interferometry by aperture synthesis [13]—each fiber core
plays somehow the role of a radio telescope and each entry
of (IΩ[f

◦])jk probing the frequency content of f◦ on the
visibility3 νjk.

Assuming we collect enough M SROP observations, we can
potentially estimate the interferometric matrix IΩ[f

◦], which in
turn allows us to estimate f◦ if V (with |V| ⩽ Q(Q − 1)/2) is
dense enough. Actually, the Fermat’s golden spiral distribution Ω
of the cores depicted in Fig. 1(a)—initially studied for its beam
forming performances in MCF-LI by raster scanning [9] (see
below)—displays good properties, as shown in Fig. 1(b). For
this arrangement, conversely to regular lattice configurations, all
(off-diagonal) visibilities are unique, i.e., |V| = Q(Q− 1)/2.

B. Connection to known MCF-LI modes

The MCF-LI model subsumes the Raster Scanning (RS) and
the speckle illumination (SI) modes introduced in [9,12].

a) Raster scanning mode: In the RS mode, the light
wavefront is shaped (or beamformed) with the SLM to focus the
illumination pattern on the sample plane, while galvanometric
mirrors translate the focused beam by phase shifting, hence
ensuring the final imaging of the sample by raster scanning the
sample and collecting light at each beamed position. A beam-
formed illumination is equivalent to set α = 1 = (1, . . . , 1)⊤ in
(1).
In this case, the illumination intensity S corresponds to

S(x;1) ≈ w(x)
∣∣∑Q

q=1 e
i2π
λz p⊤

q x
∣∣2 = w(x)

∣∣F [ϕΩ(
x
λz )]

∣∣2, (8)

2The elements of a multiset are not necessarily unique.
3The word “visibility” being actually borrowed from this context.
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where ϕΩ is the array factor of the core arrangement Ω, with, for
any finite set S ⊂ R2, ϕS(p) :=

∑
p′∈S δ(p − p′). Expanding

(8), we also note that |F [ϕΩ(
x
λz )]

∣∣2 = F [ϕV ](x).
Arranging the core locations as a discretized Fermat’s spiral

was shown to focus the beam intensity on a narrow spot whose
width scales like λz

D [9]. This is induced by the constructive inter-
ferences in (8) around x ≈ 0—other locations being associated
with almost destructive interferences.

The two galvanometric mirrors adapt the light optical path of
the beam according to a tilt vector θ ∈ R2 [12], i.e., α is set to
γθ :=

(
exp(− i2π

λz θ
⊤pq)

)Q
q=1

and (1) provides

S(x;γθ) ≈ w(x)Tθφ(x), Tθφ(x) := φ(x− θ),

i.e., φ := F [ϕV ](x) is translated by θ. We can also write, from
the symmetry of φ,

ȳθ = ⟨S(·,γθ), f⟩ = ⟨Tθφ, f◦⟩ = (φ ∗ f◦)(θ), (9)

with ∗ the 2-D convolution. Therefore, by defining a raster
scanning path Θ ⊂ R2 for θ sequentially visiting all positions
in a given 2-D domain within a certain resolution, we see that
by collecting all RS observations we image a blurred version
(by φ) of f◦ over Θ. The RS mode is thus characterized by the
sketching vectors α ∈ {γθ : θ ∈ Θ}.

Moreover, by considering the model (3) and the multiset V0 :=
{νjk : j, k ∈ [Q], j ̸= k} that removes the Q occurrences of the
zero frequency from V , for θ = 0,

ȳ0 = 1⊤IΩ[f
◦]1 =

∑
ν∈V f̂◦[ν] = Qf̂◦[0] +

∑
ν∈V0

f̂◦[ν].

This shows that ȳ0 probes the content of f◦ around the origin
if the multiset V0 is dense enough over the support of f̂◦ with
distinct frequencies; in this case y0−Qf̂◦[0] =

∑
ν∈V0

f̂◦[ν] ≈
cf◦(0), for some c > 0. In this context, the narrowness of the
focus relates to the density of V0. Moreover, (3) and (4) provide

ȳθ = γ∗
θIΩ[f

◦]γθ = 1⊤IΩ[T−θf
◦]1

for any tilt θ, meeting the convolution interpretation in (9).
Despite its conceptual simplicity, the RS mode has a few

drawbacks [12]: (i) it requires as many illuminations as the
target image resolution; (ii) due to limited MCF diameter and
the chosen core arrangement, the related convolution kernel φ is
actually spatially varying, which limits the validity of (9).

b) Speckle Illumination mode: In the SI mode, the sample f
is illuminated with random light patterns called speckles. These
are generated with random core complex amplitudes α. Con-
versely to the RS mode, by recording all speckles illuminations
at calibration, SI does not require to know the MCF transfer
matrix.

One can interpret SI as a compressive imaging system [31–
33]. By considering that both f and each illumination intensity
S(x;α) are discretized and vectorized as f ∈ RN and s ∈ RN ,
respectively, and gathering in a matrix S := (s1, . . . , sM ) ∈
RN×M the M discretized speckles obtained from the sketching
vectors {αm}Mm=1, the model (5) becomes

ȳm = s⊤mf , m ∈ [M ], or ȳ = S⊤f ∈ RM+ . (10)

If M is adjusted to the sparsity level of f (with M < N ), the

recovery of f from y becomes a classical compressive sensing
(CS) problem with the sensing matrix S.

To characterize the properties of the sensing model (10) in
this CS framework, the authors in [12] propose to first to center
(or debiase) this model by computing yc = y − ya1M with
the measurement average ya := 1

M

∑M
j=1 yj (we reinterpret this

operation in Sec. IV-B). This provides, from (10), the model

yc =
√
MΦS̄f + nc, (11)

with a centered noise nc := n − ( 1
M

∑M
j=1 nj)1M ,

√
MΦ :=

DS⊤S̄−1 and the debiasing matrix D := (IdM − 1
M 1M1⊤

M ),
S̄ := diag(s̄) ∈ RN×N , and s̄ := Eαs. The map S̄f relates to
the discretization of the vignetted image f◦ defined above.

The debiasing above allowed the authors of [12] to hypoth-
esize that Φ satisfies the Restricted Isometry Property (RIP),
a crucial property in the classical CS problem [31] ensuring
the success of recovery procedures such as the basis pursuit
denoise program (see Sec. IV). SI both improves the quality
of the reconstructed images and reduces the acquisition time
compared to RS. However, the RIP of the related sensing matrix
which relies on specific random speckle configurations has not
been established, keeping the sample complexity unknown for
stable and robust image recovery Moreover, in SI mode, we
must prerecord M—object free—illumination speckles to build
Φ, before observing the sample in the imaging plane with the
same speckles.

C. Generalized MCF-LI sensing

We can extend the MCF-LI model (3) beyond the far-field
and identical core diameter assumptions by replacing the inter-
ferometric matrix IΩ[f

◦] with a more general matrix function
G[f ].

Given the wavefield Eq(x) of the q-th core of the MCF in the
plane Z , the illumination reads

S(x;α) :=
∣∣∑Q

q=1 αqEq(x)
∣∣2, (12)

and similar developments to Sec. II-A provide

ȳm = α∗
mG[f ]αm =

〈
αmα∗

m,G[f ]
〉
F

(13)

where we defined, for any function h : R2 → R, the Hermitian
matrix G[h] ∈ HQ with entries

Gjk[h] :=
∫
R2 E

∗
j (x)Ek(x)h(x)dx. (14)

By recording a spatial discretization of the fields {Eq(x)}Qq=1,
we can thus estimate the forward model (14)—and thus H[h] :=
(α∗

mG[h]αm)Mm=1—for any function h, as imposed to solve the
inverse problem (13) with practical algorithms. While slower
than the computation of IΩ[f◦] (e.g., with a FFT boosting) and
its M SROP, estimating H directly integrates many deviations
to the interferometric model, with a calibration limited to the
observation of O(Q) discretized spatial intensities aimed to yield
{Eq(x)}Qq=1. We detail in Sec. V-B how to practically achieve
this calibration.
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III. INTERFEROMETRIC MATRIX RECONSTRUCTION

In the far-field assumption, MCF-LI can thus only access the
image frequencies encoded in IΩ[f

◦], as observed through the
sensing model model (3). We consider below both deterministic
and random SROP constructions to reconstuct the matrix. We
show that the minimal number of SROP ensuring reconstruction
depends on prior structural assumptions on IΩ[f

◦].

A. Nyquist reconstruction

We first show that O(Q2) deterministic sketching vectors
suffice to reconstruct any interferometric matrix IΩ[f

◦] in a
noiseless scenario, i.e., a sample complexity upper bound to any
further compressive measurements of this matrix.

Proposition 1. There exists a set of M = Q(Q−1)+1 sketching
vectors {αm}Mm=1 ∈ CQ such that any Hermitian matrix I ∈
HQ with constant diagonal entries can be reconstructed from
the M sketches ym = α∗

mIαm.

Proof. Given the 2-sparse sketching vectors αγ(q, r) := eq +
γer, with q, r ∈ [Q], |γ| = 1 and the s-th canonical vector es,
we have hγ [q, r] := α∗

γ(q, r)Iαγ(q, r) = Iq,q + Ir,r + γIq,r +
γ∗Ir,q = 2

Q trI + 2ℜ{γIq,r}. Therefore,

h1[q, r] + ih−i [q, r] = 2Iq,r + 2
Q (1 + i) trI. (15)

From the Q(Q− 1) sketching vectors {αγ(q, r) : 1 < q < r ⩽
Q, γ ∈ {1,−i}} ⊂ CQ, the value 2ℜ{H} = H +H∗ computed
from the sum H =

∑
1<q<r⩽Q(h1[q, r] + ih−i [q, r]) respects

ℜ{H} =
∑
q ̸=r Iq,r + (Q− 1) trI = 1⊤I1+ (Q− 2) trI.

Using the additional unit sketching vector 1 thus recovers trI—
and all constant diagonal entries of the Hermitian matrix I—
from ℜ{H}, and (15) provides all its off-diagonal entries. Over-
all I is thus recovered from 1 +Q(Q− 1) measurements.

B. Compressive reconstruction

Recovering IΩ in less than O(Q2) SROP is possible if this
matrix, and thus f , respects specific low-complexity models.
First, I0 := IΩ[f

◦] is Hermitian. Moreover, if f◦ is non-
negative, this matrix is positive semi-definite since from (4), for
any v ∈ CQ,

v∗I0v =
∫
R2 f

◦(x)
∑
j,k v

∗
j vke

i2π
λz (pk−pj)

⊤xdx

=
∫
R2 f

◦(x)|v∗ρ(x)|2dx ⩾ 0,
(16)

where ρ = (ρ1, . . . , ρQ) ∈ CQ with ρj(x) := e−
i2π
λz p⊤

j x.
Second, if f◦ is composed of a few Dirac spikes, i.e., if

f◦(x) =
∑K
i=1 uiδ(x − xi) for K coefficients and locations

{(ui,xi)}Ki=1, the interferometric matrix has rank-K since (4)
reduces to the sum of K rank-one matrices, i.e.,

IΩ[f
◦] =

∑K
i=1 ui ρ(xi)ρ

∗(xi). (17)

Under this structural assumption, or if I0 is well approximated
by a rank-K matrix (I0)K , we can recover I0 with high
probability provided the sketching vectors {αm}Mm=1, and thus

A, are random, i.e., their entries are i.i.d. from a centered sub-
Gaussian distribution [20, Thm 1]. In particular, with

M ⩾ M0 = O(KQ), (18)

and probability exceeding 1 − exp(−cM), any matrix I0 ob-
served through the model y = A(I0) + η, with bounded noise
∥η∥1 ⩽ ε, can be estimated from

Ĩ ∈ argmin
I

∥I∥∗ s.t. I ≽ 0, ∥y −A(I)∥1 ⩽ ε.

This solution is instance optimal, i.e., for some C,D > 0,

∥Ĩ − I0∥F ⩽ C ∥I0−(I0)K∥∗√
K

+D ε
M . (19)

The sample complexity in (18) is, however, not optimal since
for a K-sparse f◦, I0 depends only on O(K) parameters in (17).
While [20] provides similar results with reduced sample com-
plexity provided I0 is, e.g., sparse or circulant, these models are
not applicable here and we show in Sec. IV that a smaller sample
complexity is achievable under certain simplifying assumptions.

IV. IMAGE RECONSTRUCTION

Let us consider a more general compressive sensing frame-
work for MCF-LI directly targeting image estimation within
an analysis combining the two sensing components of (3). As
proved in Sec. IV-C, from simplifying assumptions made on
both f◦ and the sensing scenario (see Sec. IV-A), this method
achieved reduced sample complexities compared to the approach
in Sec. III-B, which are also confirmed numerically in Sec. IV-D.

A. Working assumptions

We first assume a bounded field of view in MCF-LI.

Assumption A.1 (Bounded FOV). The support of the vi-
gnetting window w(x) in (1) is contained in a domain D :=
[−L/2, L/2]× [−L/2, L/2] with L := cλz

d , for c > 0 depending
on the (spectrum of the) output wavefield E0 in (1), and w = 0
on the frontier of D.

Therefore, supposing f bounded, we have supp f◦ ⊂ D and
f◦ = 0 over the frontier of D.

We also need to discretize f◦ by assuming it bandlimited.

Assumption A.2 (Bounded and bandlimited image). The image
f is bounded, and f◦ is bandlimited with bandlimit W

2 , with
W := N1

L and N1 ∈ N, i.e., F [f◦](χ) = 0 for all χ with
∥χ∥∞ ⩾ W

2 .

As will be clear below, this assumption enables the compu-
tation of the interferometric matrix IΩ[f

◦] from the discrete
Fourier transform of the following discretization of f◦.

From (A.1) and (A.2) the function f◦ can be identified with
a vector f ∈ RN of N = N2

1 components. Up to a pixel
rearrangement, each component fj of f is related to one specific
pixel of f◦ taken in the N -point grid

GN := L
N1

{(s1, s2)}
N1
2 −1

s1,s2=−N1
2

⊂ D.

The discrete Fourier transform (DFT) f̂ of f is then computed
from the 2-D DFT matrix F ∈ CN×N , i.e., f̂ = Ff ∈
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CN , F := F1⊗F1, with (F1)kl = e−
i2π
N1

kl/
√
N1, k, l ∈ [N1],

and the Kronecker product ⊗. Each component of f̂ is related
to a 2-D frequency of

ĜN := W
N1

{χ1, χ2}
N1
2 −1

χ1,χ2=−N1
2

⊂ [−W
2 , W2 ]× [−W

2 , W2 ].

We need now to simplify our selection of the visibilities.

Assumption A.3 (Distinct on-grid non-zero visibilities). All non-
zero visibilities in V0 = V \ {0} belong to the regular grid
ĜN , i.e., V0 ⊂ ĜN , and are unique, which means that |V0| =
Q(Q− 1).

Together, assumptions A.1 and A.2 show that IΩ[f
◦] can be

computed from Ff ; for each visibility νjk ∈ V , there is an index
l̄ = l(j, k) ∈ [N ] such that (IΩ[f

◦])j,k = ϖ (Ff)l̄, where ϖ :=
L2
√
N

can be found from the continuous interpolation formula of
the Shannon-Nyquist sampling theorem.

Moreover, from A.3, l̄(j, k) is unique for all j ̸= k (i.e., νj,k ∈
V0), and since (IΩ[f

◦])j,j = ϖ(Ff)0 (i.e., l̄(j, j) = 0) for all
j ∈ [Q], we get the equivalence

IΩ[f
◦] = ϖ T (Ff), (20)

where the operator T is such that, for all j, k ∈ [Q] and u ∈ CN ,
(T (u))jk equals u0 if j = k, and ul̄(j,k) otherwise.

Consequently, if f◦ has zero mean, (Ff)0 = 0 and
1
ϖ2 ∥IΩ[f

◦]∥2F = ∥RV0
Ff∥2, (21)

with RS = Id⊤
S the restriction operator defined for any S ⊂

[N ], and V0 = { l̄(j, k) : j, k ∈ [Q], j ̸= k} ⊂ [N ] the index
set of Ff related to the off-diagonal entries of IΩ[f

◦] (with
|V0| = |V0| from A.3).

As a prior for our image reconstruction procedure, we next
suppose that f is sparse in the canonical basis.

Assumption A.4 (Sparsity). The discrete image f is K-sparse
(in the canonical basis): f ∈ ΣK := {v : ∥v∥0 ⩽ K}.

While restrictive, our experiments in Sec. V show that other
sparsity priors are compatible with our sensing scheme, e.g., the
TV norm, postponing to a future work a theoretical justification
of such possible extensions.

The next assumption is guided by compressive sensing theory.
It ensures that the set of non-zero visibilities V0 captures enough
information about any sparse image f .

Assumption A.5 (RIPℓ2/ℓ2 for visibility sampling). Given a
sparsity level K, a distortion δ > 0, and provided

|V0| = Q(Q− 1) ⩾ δ−2K plog(N,K, δ), (22)

for some polynomials plog(N,K, 1/δ) of logN , logK and
log 1/δ, the matrix Φ :=

√
NRV0

F respects the (ℓ2/ℓ2)-
restricted isometry, or RIPℓ2/ℓ2(ΣK , δ), i.e.,

(1− δ)∥v∥2 ⩽ 1
|V0|∥Φv∥22 ⩽ (1 + δ)∥v∥2, ∀v ∈ ΣK .

While we do not prove that the visibility set V0 defined by
the Fermat’s spiral core arrangement Ω in MCF-LI verifies A.5,
we invoke existing results characterizing compressive sensing
with partial Fourier sampling—as established for instance in

the context of tomographic and radio interferometric applica-
tions [13,32]—to prove the existence of a visibility set respect-
ing A.5. For example, from [24, Thm 12.31], if Q(Q − 1) ⩾
Cδ−2K log4(N) (for some constant C > 0) and the set of
Q(Q−1) visibilities V0 are picked uniformly at random in [N ],
then Φ respects the RIPℓ2/ℓ2(ΣK , δ) with probability exceeding
1−N− log3N .

We specify now the distribution of the sketching vectors α.

Assumption A.6 (Random sketches with unit modules). The
sketching vectors {αm}Mm=1 involved in (5) have components
i.i.d. as the random variable α ∈ C, with Eα = 0 and |α| = 1.

The sketching vectors are thus sub-Gaussian, since the sub-
Gaussian norm ∥αq∥ψ2

= ∥|αq|∥ψ2
= 1 is bounded (see [34, Sec

5.2.3]). While motivated by the MCF-LI application where the
SLM mainly acts on the phase of the core complex amplitudes,
this assumption enables a debiasing trick, described in Sec. IV-B,
which simplifies the theoretical analysis detailed in Sec. IV-C

B. Debiased sensing model

As made clear in Sec. IV-C, the estimation of f requires
a debiasing of the MCF-LI measurements imposed by the
properties of the SROP operator A in (3). We follow a debiasing
inspired by [12] (and allowed by A.6), with a reduced number
of measurements compared to the method proposed in [20].

From (5), we define the debiased measurements

ycm := ym − 1
M

∑M
j=1 yj = ⟨Ac

m,I⟩F + nc
m, (23)

with the centered and the average matrices Ac
m = αmα∗

m−Aa

and Aa = 1
M

∑M
j=1 αjα

∗
j , respectively, I := IΩ[f

◦], and noise
nc
m := nm − 1

M

∑M
j=1 nj with E|nc

m|2 = (1− 1
M )E|nm|2.

Introducing the debiased sensing operator

Ac : J ∈ HQ 7→
(
⟨Ac

m,J ⟩
)M
m=1

∈ RM , (24)

which respects Ac(J ) = Ac(J h) with the hollow matrix
J h := J −J d (i.e., diag(J h) = 0) since each Ac

m is hollow
from A.6, we can compactly write

yc = (yc1, . . . , y
c
M )⊤ = Ac(Ih) + nc. (25)

The debiasing model thus senses, through Ih, the off-diagonal
elements of IΩ[f

◦]. We will show below that the combination
of Ac with the interferometric sensing respects a variant of the
RIP property, thus enabling image reconstruction guarantees.

C. Reconstruction analysis

We show now that we can estimate a sparse image f from its
sensing (25). From A.1-A.6, it be recast as

yc = B(f) + nc, (26)

where, from the equivalence (20), the sensing operator B reads

B : v ∈ RN 7→ ϖAc
(
T (Fv)

)
∈ RM+ . (27)

We propose to estimate f by solving the basis pursuit denoise
program with an ℓ1-norm fidelity (or BPDNℓ1 ), i.e.,

f̃ = argminv∈RN ∥v∥1 s.t. ∥yc −B(v)∥1 ⩽ ϵ, (BPDNℓ1 )
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Fig. 2: Phase transition diagrams showing M SROP of a Q⇥Q interferometric matrix for a K-sparse object f . One considers a uniformly random 1-D core arrangement
and SROP using circularly-symmetric unit-norm random {↵m}M

m=1. Each pixel is constructed with 80 reconstruction trials solving (35) where we consider success if
SNR� 40dB. The probability of success ranges from black (0%) to white (100%). Dashed red lines link the transition frontiers to the samples complexities provided
in Sec. IV-A and Sec. IV-C. In (c), the line only coincides with low values of V due to multiplicity effects.

Fig. 3: Transition curves obtained with |V| = 240, ensuring widespread Fourier
sampling. The success rate is computed from 100 reconstruction trials. The
transition abscissa shifts to the right for an increasing number K of spikes in
f , indicating more SROP are necessary to reconstruct the inteferometric matrix.

as it includes an equality constraint yc = B(f) [26, Prop. 3.2].
In the sparse and noiseless sensing scenario set above, we thus
expect from (31) in Prop. 2 that f̃ = f if B is RIP`2/`1 , i.e., if
both M and Q(Q � 1) sufficiently exceeds K from Prop. 3.

In Fig. 2 and Fig. 3, the success rates—i.e., the percentage
of trials where the reconstruction SNR exceeded 40 dB—were
computed for S set to 80 and 100 trials per value of (K, Q, M),
respectively, and for range of (K, Q, M) specified in the axes.
Since A.3 was partially verified, we tested these rates in function
of the averaged value of |V| 6 Q(Q � 1) (which had a std 6
0.08N ) over the S trials instead of Q(Q � 1). We observe in
Fig. 2(b) that high reconstruction success is reached as soon as
M > CK, with C ' 11, in accordance with (33) in Prop. 3 (up to
log factors). Fig. 2(c) highlights that the Fourier sampling |V| (and
thus Q) must increase with K. At small value of Q, we reach high
reconstruction success if |V| ⇡ Q(Q � 1) > C 0K, with C 0 ' 10,
in agreement with (33) (up to log factors). However, as Q rises that
linear trend is biased since the multiplicities in V increases, i.e.,
Q(Q�1)�|V| > 0 increases. As expected from (33), the transition
diagram in Fig. 2(d) shows that at a fixed K = 4, both M and
|V| must reach a threshold value to trigger high reconstruction
success. In Fig. 3, which displays several transition curves of the
success rate vs. M for different values of K at |V| = 240, the
failure-success transition is shifted towards an increasing number
of SROPs when K increases.

V. EXPERIMENTAL MCF-LI

We have experimentally tested our approach on proof-of-
concept imaging system set in a transmission mode so as to limit
both light power loss and Poisson noise [17] on the measurements.
We describe below the key aspects of this setup, its specific SLM-
to-speckle calibration, before providing examples of reconstructed
images.

A. Setup

In the setup explained in Fig. 4, a continuous wave laser
operating at � = 1053nm, (YLM-1, IPG Photonics) is expanded
and impinges upon a Spatial Light Modulator (SLM X10468-07,
Hammamatsu) used to code the incident wavefront to the MCF.
The MCF is made of Q = 110 cores arranged in Fermat’s golden
spiral, each exhibiting a single mode at the laser wavelength [45].
The MCF exhibits an inter-core coupling term less than 20
dB [17]. Unlike multimode fibers with stronger core coupling, the
focused or speckle patterns generated by an MCF are resilient to
thermal and mechanical external perturbations, except for a global
shift.

The SLM consists of a 800 ⇥ 600 grid of liquid-crystal phase
modulators that control the phase of reflected light. As shown
in Fig. 5(left), by mapping specific pixel groups (segments) on
the SLM to individual cores of the fiber, an orthogonal basis of
input modes is created to modulate the light entering each core.
After calibrating the SLM’s phase response, any phase pattern in
the range of [0-2⇡] can be conveniently represented as an 8-bit
grayscale image. The phase pattern on each segment q comprises
three terms (i) a blazed grating ensures to shift the modulated
light to the first-order of the SLM, preventing unmodulated beam
from entering the fibers, (ii) a convex lens and a series of
telescopes produce a focused spot array aligned with the fiber
cores, achieving single-modal behavior with a demagnification
factor of 64; and (iii) a constant phase-offset for each segment
which controls the relative phases between the segments.

The light coming from the SLM is focused into the MCF
proximal end by Obj1 (20⇥/0.75NA, Nikon), then re-expanded
on the distal end side with Obj2 (20⇥/0.45NA, Olympus). To
ensure the validity of the scalar model described in Sec. II-A,
a linear polarizer is placed after the fiber end to eliminate any
polarization effects. To satisfy the far-field approximation, the
object is positioned at the front-focal plane of a lens while the
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(a)

Fig. 2: (a) Transition curves obtained with |V| = 240, ensuring widespread Fourier sampling. The success rate is computed from 100 trials. The transition abscissa
shifts to the right for an increasing number K of spikes in f , indicating more SROP are necessary to reconstruct the inteferometric matrix. (b-d) Phase transition
diagrams showing M SROP of a Q×Q interferometric matrix for a K-sparse object f (with |V| = 240 in (b), M = 122 in (c), and K = 4 in (d)). One considers
a uniformly random 1-D core arrangement and SROP using circularly-symmetric unit-norm random {αm}Mm=1. Each pixel is constructed with 80 reconstruction
trials solving (34) where we consider success if SNR≥ 40dB. The probability of success ranges from black (0%) to white (100%). Dashed red lines link the
transition frontiers to the samples complexities provided in Sec. IV-A and Sec. IV-C. In (c), the line only coincides with low values of V due to multiplicity effects.

The specific ℓ1-norm fidelity of this program is motivated by
the properties of the SROP operator Ac, and this imposes us to
set ϵ ⩾ ∥nc∥1 to reach feasibility. We indeed show below that
B, through its dependence on Ac, respects a variant of the RIP,
the RIPℓ2/ℓ1(ΣK ,mK ,MK): given a sparsity level K, and two
constants 0 < mK < MK , this property imposes

mK∥v∥ ⩽ 1
M ∥B(v)∥1 ⩽ MK∥v∥, ∀v ∈ ΣK . (28)

Under this condition, the error ∥f− f̃∥ is bounded, i.e., instance
optimal [24]. This is shown in the following proposition (inspired
by [20, Lemma 2] and proved Appendix A).

Proposition 2 (ℓ2/ℓ1 instance optimality of BPDNℓ1 ). Given K,
if there exists an integer K ′ > 2K such that, for k ∈ {K ′,K +
K ′}, the operator B has the RIPℓ2/ℓ1(Σk,mk,Mk) for constants
0 < mk < Mk < ∞, and if

1√
2
mK+K′ −MK′

√
K√
K′ ⩾ γ > 0, (29)

then, for all f sensed through y = B(f) + nc with bounded
noise ∥nc∥1 ⩽ ϵ, the estimate f̃ provided by BPDNℓ1 satisfies

∥f − f̃∥ ⩽ C0
∥f−fK∥1√

K′ +D0
ϵ
M , (30)

for two values C0 = O(MK′/γ) and D0 = O(1/γ).

Notice that (29) is satisfied if

K ′ > 8
(

MK′
mK+K′

)2

K, (31)

in which case γ = 1
2
√
2
mK+K′ , and, from App. A, C0 = 2(

√
2+

1)(MK′/mK+K′) + 2 and D0 = 4(
√
2 + 1)/mK+K′ .

Interestingly, if both M and Q(Q− 1) sufficiently exceed K,
the operator B respects the RIPℓ2/ℓ1 with high probability.

Proposition 3 (RIPℓ2/ℓ1 for B). Assume that assumptions A.1-
A.6 hold, with A.5 set to sparsity level K0 > 0 and distortion
δ = 1/2 over the set ΣK0

. For some values C, c, cα > 0 only
depending on the distribution of α, if

M ⩾ CK0 ln(
12eN
K0

), Q(Q− 1) ⩾ 4K0 plog(N,K0, δ), (32)

then, with probability exceeding 1−C exp(−cM), the operator
B respects the RIPℓ2/ℓ1(ΣK0

,mK0
,MK0

) with

mK0
> ϖcα

3
√
2

√
|V0|√
N

, and MK0
< 8ϖ

3

√
|V0|√
N

. (33)

In this proposition, proved in Appendix B, the constants
in (33) have not been optimized and may not be tight, e.g., they
do not depend on K0.

Combining these last two propositions and using the (non-
optimal) bounds (33) that are independent of K0, since
8(MK′/mK+K′)2 < 1024

c2α
, (31) holds if K ′ > 1024K/c2α.

Therefore, provided B satisfies the RIPℓ2/ℓ1(ΣK0
,mK0

,MK0
)

for K0 ∈ {K,K +K ′}, the instance optimality (30) holds with

C0 < 16(
√
2+2)
cα

= O(1), D0 = O
( √

N

ϖ
√

|V0|

)
= O

(
N
L2Q

)
.

While the constraint on K ′ imposes a high lower bound on M
when the sample complexity (32) is set to K0 = (K + K ′) >
(1024/c2α + 1)K—as necessary to reach the RIP w.h.p.—the
impact of the sparsity error ∥f − fK∥ in (30) is, however,
attenuated by 1/

√
K ′ < cα/(32

√
K).

For a fixed FOV L2, we also observe a meaningful amplifica-
tion of the noise error by D0 when the sampling grid GN is too
large compared to Q: if the number of pixels N is too small, A.2
may not be verified, since the image bandwidth lower bounds
N ; if N is too large the noise error in (30) is vacuous.

D. Phase transition diagrams

We now compare our recovery guarantees with empirical
reconstructions obtained on extensive Monte Carlo simulations
with S trials and varying parameters K, Q and M .

To save computations, we adopt a simplified setting where (26)
is adapted to the sensing of 1-D zero mean sparse vectors in
RN=256, without any vignetting, i.e., f◦ = f , and 1-D MCF
core locations. At each simulation trial with fixed (K,Q,M), we
verified A.1–A.4 by picking the 1-D cores locations {pq}Qq=1 ⊂
R uniformly at random without replacement in

[−N
2 , N2

]
, and M

sketching vectors {αm}Mm=1 i.i.d. as α ∈ CQ with αk ∼i.i.d.=
eiU([0,2π[), k ∈ [Q]. A zero average vector f ∈ RN=256 was
randomly generated with a K sparse support picked uniformly at
random in [N ], its K non-zero components obtained with K i.i.d.
Gaussian values N (0, 1) to which we subtracted their average.
The interferometric matrix was computed from (20) (with L =
λ = z = 1) using the 1-D FFT matrix F1. We noted that A.3 was
only partially verified; at larger Q (and certainly at Q(Q− 1) >
N ), non-zero visibilities in the gridded frequency domain ĜN
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can be represented multiple times on low frequencies (i.e., the
pdf of the visibilities is essentially triangular if the frequencies
are uniform).

To reconstruct f , we solved the Lasso program 4 [35],

f̃ = argmin
v

1
2∥yc −B(v)∥2 s.t. ∥v∥1 ⩽ τ (34)

with τ = ∥f∥1 set to the actual ℓ1-norm of the discrete object.
Eq. (34) is equivalent to BPDNℓ1 in a noiseless setting (i.e.,
ϵ = 0) as it includes an equality constraint yc = B(f) [24, Prop.
3.2]. In the sparse and noiseless sensing scenario set above, we
thus expect from (30) in Prop. 2 that f̃ = f if B is RIPℓ2/ℓ1 , i.e.,
if both M and Q(Q− 1) sufficiently exceeds K from Prop. 3.

In Fig. 2 and Fig. 2(a), the success rates—i.e., the percentage
of trials where the reconstruction SNR exceeded 40 dB—were
computed for S set to 80 and 100 trials per value of (K,Q,M),
respectively, and for a range of (K,Q,M) specified in the
axes. Since A.3 was partially verified, we tested these rates
in function of the averaged value of |V| ⩽ Q(Q − 1) (which
had a std ⩽ 0.08N ) over the S trials instead of Q(Q − 1).
We observe in Fig. 2(b) that high reconstruction success is
reached as soon as M ⩾ CK, with C ≃ 11, in accordance
with (32) in Prop. 3 (up to log factors). Fig. 2(c) highlights that
the Fourier sampling |V| (and thus Q) must increase with K.
At small value of Q, we reach high reconstruction success if
|V| ≈ Q(Q− 1) ⩾ C ′K, with C ′ ≃ 10, in agreement with (32)
(up to log factors). However, as Q rises that linear trend is biased
since the multiplicities in V increases, i.e., Q(Q− 1)− |V| ⩾ 0
increases. As expected from (32), the transition diagram in
Fig. 2(d) shows that at a fixed K = 4, both M and |V| must
reach a threshold value to trigger high reconstruction success. In
Fig. 2(a), which displays several transition curves of the success
rate vs. M for different values of K at |V| = 240, the failure-
success transition is shifted towards an increasing number of
SROPs when K increases.

V. EXPERIMENTAL MCF-LI

We have tested our approach on proof-of-concept imaging
system set in a transmission mode so as to limit both light power
loss and Poisson noise [16] on the measurements. We describe
below the key aspects of this setup, its specific SLM-to-speckle
calibration, before providing examples of reconstructed images.

A. Setup

In the setup explained in Fig. 3, a continuous wave laser
operating at λ = 1053nm, (YLM-1, IPG Photonics) is expanded
and impinges upon a Spatial Light Modulator (SLM X10468-07,
Hammamatsu) used to code the incident wavefront to the MCF.
The MCF is made of Q = 110 cores arranged in Fermat’s golden
spiral, each exhibiting a single mode at the laser wavelength [12].
The MCF exhibits an inter-core coupling term less than 20
dB [16]. Unlike multimode fibers with stronger core coupling,
the focused or speckle patterns generated by an MCF are resilient
to thermal and mechanical external perturbations.

The SLM consists of a 800× 600 grid of liquid-crystal phase
modulators that control the phase of reflected light. As shown

4We used SPGL1 [35] (Python module: https://github.com/drrelyea/spgl1).

in Fig. 3(a), by mapping specific pixel groups (segments) on
the SLM to individual cores of the fiber, an orthogonal basis
of input modes is created to modulate the light entering each
core. After calibrating the SLM’s phase response, any phase
pattern in the range of [0-2π] can be conveniently represented
as an 8-bit grayscale image. The phase pattern on each segment
q comprises three terms (i) a blazed grating ensures to shift
the modulated light to the first-order of the SLM, preventing
unmodulated beam from entering the fibers, (ii) a convex lens
and a series of telescopes produce a focused spot array aligned
with the fiber cores, achieving single-modal behavior with a
demagnification factor of 64; and (iii) a constant phase-offset
for each segment which controls the relative phases between the
segments.

The light coming from the SLM is focused into the MCF
proximal end by Obj1 (20×/0.75NA, Nikon), then re-expanded
on the distal end side with Obj2 (20×/0.45NA, Olympus). To
ensure the validity of the scalar model described in Sec. II-A,
a linear polarizer is placed after the fiber end to eliminate any
polarization effects. To satisfy the far-field approximation, the
object is positioned at the front-focal plane of a lens while the
fiber’s distal end is placed at the back-focal plane of the same
lens [36]. In our setup, the fiber is positioned at the focal plane
of Objective lens (Obj2), and lenses L1 and L2 (75 and 100mm,
respectively) are used to re-image the conjugate focal plane to
a more accessible location on the optical bench (see Fig. 3).
The object can be positioned within ±3.5mm tolerance, easily
achieved with standard positioning equipment.

The conjugate focal plane is re-imaged onto a 1 920× 1 200
CMOS camera (BFLY-U3-23S6M-C, FLIR) which aids in the
calibration and positioning of the system desribed in Sec. V-B.
The same CMOS camera is also used for emulating single-
pixel detection by summing up the pixels of the image. Each
measurement has an integration time of 19.2ms, and Optical
Density (OD) filters are applied to match the light intensity to
the camera’s dynamic range for improved accuracy. Working in
transmission mode, we image a negative 1951 USAF test target
mask, contoured in Fig. 3(b). The sample image f is thus binary.

B. Calibration and generalized sensing model

Our MCF-LI setup contains optical system imperfections that
are difficult to model. For instance, regarding the hypotheses
stated in Sec. II-A, (i) the interferometric matrix should be
estimated on a set of continuous, off-grid, visibilities, (ii) the
imaging depth z is a priori unknown and the fiber core diameters
are not constant, and (iii) the linear polarizer (see Sec. V-A)
induces spatially variable, but deterministic, attenuation of the
sketching vector component.

Rather than correcting all these deviations one by one, we
adopt the generalized MCF-LI sensing introduced in Sec. II-C
in (13). This requires us to properly calibrate the system and
to determine for each core q ∈ [Q] the complex wavefields
Eq in the object plane Z from intensity-only measurements.
We thus follow a standard 8-step phase-shifting interferometry
technique [26]. We first fix a reference core, arbitrarily indexed
at q = 0, and we program the SLM to activate only that core
and another core q, for 1 ⩽ q ⩽ Q. We then record in the

https://github.com/drrelyea/spgl1
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Fig. 3: (a) SLM configuration (800×600 pixels) with lenslet hexagonal arrays dedicated to each core. Blaze gratings applied to each microlens deflect the ray beams
towards the MCF proximal end while the 0th beam is reflected out of the optical path. (b) Speckle generated from α = (eiθq )Qq=1 with θq ∼i.i.d. U [0, 2π]. The
part of the speckle reaching the camera is within the white contour lines representing the studied object f . (c) Schematic of the optical setup. Cutoff λc = 600nm,
SLM=Spatial Light Modulator, MCF=Multi-Core Fiber, LP=Linear Polarizer, f=object to be imaged, OD=Optical Density (neutral density filters).

CMOS camera the 8 fringe patterns Iq0(x;ϕk) induced by the
light interference for 8 different phase steps ϕk = 2πk

8 (k ∈ [8])
of the reference core, as well as the intensity I00(x; 0) = r20(x)
obtained from activating only the reference core. Mathematically,
given the polar representation rq(x)e

iφq(x) of each complex
wavefields,

Iq0(x;ϕk) =
∣∣r0(x)eiφ0(x)+ϕk + rq(x)e

iφq(x)
∣∣2

= Isq(x) + I iq(x) cos
(
φq0(x) + ϕk

)
,

where Isq := r20 + r2q , I iq := 2r0rq and φq0 := φq − φ0.
We can then recover rq(x) and φq0(x) in each x by first
applying a 8-length DFT on Iq0(x;ϕk) along the phase steps,
and next dividing the last (7-th) DFT coefficient 4I iq(x)e

iφq0(x)

by 8r0(x) = 8
√

I00(x), which gives

Ẽq(x) = rq(x)e
i(φq(x)−φ0(x)) = Eq(x)e

−iφ0(x). (35)

From fields estimated in (35) for all q ∈ [Q], we can reproduce
any speckle S(x;α) generated from a sketching vector α ∈ CQ
using (12) since this equation is independent of e−iφ0(x).

While the model (13) extends beyond the farfield
assumption—it only relies on accurate estimation of the
wavefields—the optical constraints followed in Sec. V-A to
reach the farfield model are necessary. They allow these fields
to not strongly deviate from pure complex exponentials, which
preserves the validity of the FOV and sampling assumptions
A.1 and A.2 in the sensing model.

In particular, applying the debiasing procedure explained in
Sec. IV-B, we get the debiased observation model

yc = B(f) + nc, (36)

where B(f) is now associated with the generalized interfero-
metric matrix G defined in (14). In other words, we abuse the
notations of (26) and consider a sensing operator B : h 7→
B(h) := Ac(G[h]) applied to a non-vignetted continuous image
h. Regarding the computation of B, we leverage the calibration
to compute an estimate B̃(h) := Ac(G̃[h]) from a sampling
h ∈ RN2≃N×N of h, assuming that the proximity to the far-field
assumption ensures that B(h) ≈ B̃(h). For each measurement
m ∈ [M ], we in fact compute zm = ⟨S̃(·;αm),h⟩, with
S̃(·;αm) computed from the estimated fields in (35), before
to debiase all measurements from (23), i.e., (B̃(h))m = zcm.
Therefore, the matrix G̃ is never explicitly estimated.

C. Results

We now present examples of reconstructed sample images
obtained with the considered optical setup described in Sec. V-A,
and the calibration and the sensing model from Sec. V-B.

For these experiments, our reconstruction scheme differs from
the one followed in Sec. IV. First, as explained in Sec. V-B, the
sensing model considers a sampling of the un-vignetted sample
image f , with a sensing operator computed in the pixel domain.
Second, instead of the ℓ1-prior, we decided to estimate this image
by promoting a small total variation (TV) norm, as it is more
adapted to the cartoon-shape model of the USAF targets. Third,
the non-smooth data fidelity term of BPDNℓ1 is replaced by
a smooth square ℓ2-norm to ease the iterative computation of
the associated convex optimization. We thus solve the following
optimization scheme:

f̃ = argmin
f

1
2M ∥yc − B̂(f)∥22 + ρ∥f∥TV s.t. f ⩾ 0, (37)

with ρ = O(105) set empirically. As the vignetting limits the im-
age quality on the frontier of the FOV, we decided to measure the
quality of the estimated images with the SNR achieved between
the vignetted ground truth wf and the vignetted reconstruction
w⊙f̃ , i.e., SNR(f̃ ,f) = 20 log10(∥w ⊙ f∥2/∥w ⊙ (f − f̃)∥2)
with the estimated vignetting w := Q−1

∑Q
q=1 |Ẽq|2.

Experimental reconstruction analyses are provided in Fig. 4 for
images of N = 256 × 256 pixels. In accordance with A.6, the
phase of the Q components of the sketch vectors were uniformly
drawn i.i.d. in [0, 2π] with the 8-bit resolution allowed by the
SLM. This configuration maximizes the intensity of light injected
in the cores. We tested two values for Q, Q = 110, when all
the MCF cores are used, and Q = 55, by downsampling the
Fermat’s spiral by a factor 2. In Fig. 4(a), we tested the quality
of the reconstruction for M ∈ [49, 20 000]. Transitions similar
to those in Fig. 2(a) occur for a small number of observations
and a plateau is reached around M = 5000, representing a
compression factor of M/N = 7.6%. The highest SNR reached
with Q = 110 cores is better than with Q = 55 cores, as
higher image frequencies are captured with the denser core
configuration. This effect can also be viewed in Fig. 4(c-d,f-g).
Compared to the reconstruction obtained in Fig. 4(e) with the RS
mode modeled in Sec. II-B, the TV norm penalty reduces the
blur of the reconstructed object. The low SNR values attained
in Fig. 4 are due to the comparison of the reconstructed images
with an imperfect “ground truth” which is also an estimation of
the sample f using white light illumination.
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Fig. 4: Experimental reconstruction on N = 256× 256 images. (a) SNR(wf̃ ,wf) vs. number of observations M for Q = 55 (blue) and Q = 110 (red) cores.
Solid lines represent the average, and light areas show ±1σ positions from 5 trials. (b) Ground truth f obtained by illuminating the USAF target with white light
passing through the MCF (c-d) Reconstruction using M = {49, 2 ·104} with Q = 55 cores (e) Rec. in RS mode (see Sec. II-B) (f-g) Same as (c-d) with Q = 110
cores. (b-g) are zoomed-in versions of the camera plane seen in Fig. 3(b).

VI. CONCLUSION AND PERSPECTIVES

In this paper, we extended the modeling of MCF-LI with
speckle illumination by including the physics of light propa-
gation. This new model highlights that the sensing of a 2-D
refractive index map of interest is limited both by the number of
applied illuminations and the number (and arrangement) of cores
at the distal end of the MCF. We provided recovery guarantees
and observed the derived sample complexities in both numerical
and experimental conditions.

Generalizing our recovery guarantees in Sec. IV to general
sparsifying bases Ψ ̸= Id is challenging. In certain bases such
as Haar wavelet basis Ψ which includes the constant vector
(say on the 1-st column of Ψ), the RIPℓ2/ℓ2 in (A.5), and
thus the RIPℓ1/ℓ2 of B in Prop. 3, cannot hold anymore for
Φ =

√
NRV̄0

FΨ; since V̄0 excludes the DC frequency, taking
v = λe1+ek ∈ Σ2 with a sufficiently large value λ breaks (A.5).
A future research could remove this limitation by particularizing
the proofs to sparse signals with zero mean, i.e., belonging to
Σ0
K := {v ∈ ΣK :

∑
j(Ψv)j = 0}.

Another limitation of our approach lies in the distinct visibility
Assumption A.3. By construction, the density of the visibilities—
as achieved by a difference set—cannot be uniform. As shown
in Fig. 1(b), this is also true for the golden Fermat’s spiral
arrangement. Therefore, when Q grows on a fixed frequency
resolution, close visibilities are hardly distinguishable. A more
promising sensing model could integrate a variable density
sampling (VDS) of the image spectral domain [37,38]. In the
same time, this could also allow for more general sparsifying
basis by accounting for their variable local coherence with the
Fourier basis. However, combining this aspect inside the ROP
model is an open question.

Future works about MCF-LI include experimental proof of
concept in reflective/endoscopic conditions, extension of the
model to vector diffraction theory, and imaging of 3-D maps
with generalized ROP models.
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APPENDIX A
PROOF OF PROPOSITION 2.

The proof of this proposition is inspired by the one of [20,
Lemma 2], itself inspired by [39]. This lemma was developed in
the context of sparse matrix recovery from SROP measurements
using a variant of BPDN regularized by the trace of the matrix
estimate. While certain elements of our proof are similar to the
one of that lemma, its adaptation to the context of sparse signal
recovery from BPDNℓ1 (with a ℓ1 fidelity) is not direct, which
justifies the following compact derivations.

Let us first write f̃ = f + h with the true image f , and
some residual h ∈ RN . We define the support T0 = suppfK
containing the indices of the K strongest entries of f . Next,
recursively for 1 ⩽ i ⩽ ⌈(N −K)/K ′⌉, we define the supports
Ti := supp

(
hT c

:i

)
K′ of length at most K ′ containing the indices

of the K ′ strongest entries of hT c
:i

, with T:i :=
⋃i−1
j=0 Ti, and

T c:i = [N ] \ T:i.
We first observe that, by construction, for all j ∈ Ti+1

with i ⩾ 1, |hj | ⩽ 1
K′

∑
l∈Ti

|hl| = 1
K′ ∥hTi∥1 so that

∥hTi+1∥2 ⩽ 1
K′ ∥hTi∥21. This shows that∑

i⩾2 ∥hTi∥ ⩽ 1√
K′

∑
i⩾1 ∥hTi∥1 = 1√

K′ ∥hT c
0
∥1. (38)

By optimality of f̃ in BPDNℓ1 and using twice the triangular
inequality, we have

∥f∥1 ⩾ ∥f̃∥1 = ∥f + h∥1 ⩾ ∥fT0
+ h∥1 − ∥fT c

0
∥1

⩾ ∥fT0
∥1 + ∥hT c

0
∥1 − ∥hT0

∥1 − ∥fT c
0
∥1,



11

so that

∥hT c
0
∥1 ⩽ 2∥fT c

0
∥1 + ∥hT0∥1 ⩽ 2∥fT c

0
∥1 +

√
K∥hT0∥. (39)

Therefore, combining (39) and (38) we get∑
i⩾2 ∥hTi∥ ≤ 2

∥fTc
0
∥1√

K′ +
√
K√
K′ ∥hT0∥, (40)

By linearity of B and since both f and f̃ are feasible vectors
of the BPDNℓ1 constraint, we note that since h = f − f̃

∥B(h)∥1 ⩽ ∥B(f)− y∥1 + ∥B(f̃)− y∥1 ⩽ 2ϵ.

Therefore, if B has the RIPℓ2/ℓ1(Σk,mk,Mk) for k ∈ {K ′,K+
K ′}, we can develop the following inequalities

2ϵ
M ⩾ 1

M ∥B(h)∥1 ⩾ 1
M ∥B(hT:1)∥1 − 1

M ∥B(hT c
:1
)∥1

⩾ mK+K′∥hT:1∥ − 1
M

∑
i⩾2 ∥B(hTi)∥1

⩾ 1√
2
mK+K′(∥hT0∥+ ∥hT1∥)− 1

M

∑
i⩾2 ∥B(hTi)∥1

⩾ 1√
2
mK+K′(∥hT0

∥+ ∥hT1
∥)−MK′

∑
i⩾2 ∥hTi

∥

⩾ 1√
2
mK+K′(∥hT0∥+ ∥hT1∥)−MK′

∥fTc
0
∥1+

√
K∥hT0

∥
√
K′ ,

where we used several times the triangular inequality, the fact
that |Ti| = K ′ for i ⩾ 1, and (40) in the last inequality. The
passage from the second to the third line is due to ∥hT:1

∥2 =
∥hT0

∥2 + ∥hT1
∥2 ⩾ (∥hT0

∥+ ∥hT1
∥)2/2.

Therefore, rearranging the terms, and since ∥fT c
0
∥1 = ∥f −

fK∥1, we get

2ϵ
M +MK′

∥f−fK∥1√
K′

⩾ ( 1√
2
mK+K′ −MK′

√
K√
K′ )∥hT0

∥+ mK+K′√
2

∥hT1
∥

⩾ ( 1√
2
mK+K′ −MK′

√
K√
K′ )(∥hT0∥+ ∥hT1∥). (41)

Finally, if 1√
2
mK+K′ −MK′

√
K√
K

′ ⩾ γ > 0 and K ′ > 2K, then

∥f − f̃∥ = ∥h∥ ⩽ ∥hT0
∥+ ∥hT1

∥+∑
i⩾2 ∥hTi

∥

⩽
(40)

∥hT0
∥+ ∥hT1

∥+ 2
∥fTc

0
∥1√

K′ +
√
K√
K′ ∥hT0

∥

⩽
√
2+1√
2

(∥hT0
∥+ ∥hT1

∥) + 2
∥fTc

0
∥1√

K′

⩽
(41)

√
2+1√
2

1
γ

(
2ϵ
M +MK′

∥f−fK∥1√
K′

)
+ 2

∥fTc
0
∥1√

K′ .

This thus proves the instance optimality (30) by taking

C0 =
√
2+1√
2

1
γMK′ + 2, and D0 = 2

√
2+1√
2

1
γ .

APPENDIX B
PROOF OF PROPOSITION 3

We will need the following lemmata to prove Proposition 3.
We first need to prove that ∥Ac(I)∥1, with Ac defined in (24)
concentrates around its mean. This slightly extends [20, Prop. 1]
where the authors rather proved that the debiased operator A′—
such that, for any matrix I and an even number of measurements
M = 2M ′, A′(I)i := A(I)2i+1 − A(I)2i for i ∈ [M ′]—
respects the RIPℓ2/ℓ1 . This debiasing is introduced to ensure that
EA′(I) = 0. We show that this is also true for Ac.

We first show some useful facts about A and Ac.

Lemma 4 (Mean and anisotropy of the SROP operator). Given
an Hermitian matrix I ∈ HQ, a zero-mean complex random
variable α with Eα2 = 0, and bounded second and fourth
moments E|α|2 = µ2, and E|α|4 = µ4, and a set of random
vectors {αm}Mm=1 ⊂ CM with components i.i.d. as αmq ∼ α
(for m ∈ [M ], q ∈ [Q]), the SROP operator A associated with
{αm}Mm=1 is such that

EAm(I) = E⟨αmα∗
m,I⟩ = µ2 trI, ∀m ∈ [M ] (42)

1
MEA∗A(I) = µ2

2 I + (µ4 − 2µ2
2)Id + µ2

2(trI) Id, (43)

where the operator A∗ is the adjoint5 of A with

A∗ : z ∈ RM 7→ A∗(z) :=
∑M
m=1 zmαmα∗

m ∈ HQ,

and the matrix Id := diag(diag(I)) zeroes all but the diagonal
entries of I . Therefore, if I,J ∈ HQ with I hollow, then

EAc(J ) = 0, EA(I) = 0, and 1
MEA∗A(I) = µ2

2 I.

Proof. Eq. (42) is an immediate consequence of Eαmα∗
m =

µ2 Id. Regarding (43), we first note that EA∗AI =
E
∑M
m=1(α

∗
mIαm)αmα∗

m = ME(α∗Iα)αα∗, and for q, r ∈
[Q], [E(α∗Iα)αα∗]qr =

∑Q
j,k=1 Ij,kE(α∗

jαkαqα
∗
r).

If q = r, then E(α∗
jαkαqα

∗
r) = E(α∗

jαk|αq|2) is zero if j ̸= k,
µ2
2 if j = k ̸= q, and µ4 if j = k = q. Therefore,

[E(α∗Iα)αα∗]qq =
∑Q
j=1 Ij,jE(|αj |2|αq|2)

= µ2
2 tr(I) + (µ4 − µ2

2)Iqq.
If q ̸= r, then E(α∗

jαkαqα
∗
r) is non-zero only if j = q and k = r

(since Eα2 = 0 and E|α|2 = µ2), in which case it is equal to
µ2
2. Consequently, [E(α∗Iα)αα∗]qr = µ2

2Iq,r. Gathering these
identities, we finally find (43).

The next lemma (adapted from [20, App. A]) relates the expec-
tation of ∥A(I)∥1 to the Frobenius norm of hollow matrices I;
a useful fact for studying below the concentration of ∥A(I)∥1.

Lemma 5 (Controlling the expected SROP ℓ1-norm). In the
context of Lemma 4, if the random variable α has unit second
moment (µ2 = 1) and bounded sub-Gaussian norm ∥α∥ψ2

⩽ κ
(with κ ⩾ 1), then, for any hollow matrix I ∈ HQ, the random
variable ξ := α∗Iα is sub-exponential with norm ∥ξ∥ψ1 ⩽ κ2,
and there exists a value 0 < cα < 1, only depending on the
distribution of α, such that

cα∥I∥F ⩽ 1
ME∥A(I)∥1 = E|ξ| ⩽ ∥I∥F . (44)

Proof. The proof is an easy adaptation of [20, App. A] to the
random variable ξ = ⟨αα∗,I⟩F = α∗Iα, for I hollow.
The constant c1 (Eq. 50) in that work is here set to 1 since
(E|α∗Iα|)2 ⩽ E|α∗Iα|2 = 1

ME∥A(I)∥22 = ∥I∥2F .

The following lemma leverages the result above to characterize
the concentration of 1

M ∥A(I)∥1.

Lemma 6 (Concentration of SROP in the ℓ1-norm). In the
context of Lemmata 4 and 5, given a hollow matrix I ∈ HQ,
there exists a value 0 < cα < 1, only depending on the

5By definition, the adjoint satisfies ⟨AM ,v⟩RN = ⟨M ,A∗v⟩CQ×Q .
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distribution of α, such that, for t ⩾ 0, with a failure probability
smaller than 2 exp(−cM min(t2, t)),

(cα − 2tκ2)∥I∥F ⩽ 1
M ∥A(I)∥1 ⩽ (1 + 2tκ2)∥I∥F . (45)

Proof. We can assume ∥I∥F = 1 by homogeneity of (45).
Defining the random variables ξm := α∗

mIαm and ξ̃m :=
|ξm|−E|ξm| for m ∈ [M ], Lemma 5 shows that each ξm is sub-
exponential with ∥ξm∥ψ1 ⩽ κ2. Moreover, using the triangular
inequality and E|ξm| ⩽ ∥ξm∥ψ1 (from [34, Def. 5.13]), we
get ∥ξ̃m∥ψ1

⩽ ∥ξm∥ψ1
+ E|ξm| ⩽ 2κ2, showing the sub-

exponentiality of each ξ̃m for m ∈ [M ].
Therefore, given t ⩾ 0, using [34, Cor. 5.17], we get, with a

failure probability lower than 2 exp(−cM min( t2

4κ4 ,
t

2κ2 )),

−t ⩽ 1
M

∑M
m=1 ξ̃m = 1

M ∥A(I)∥1 − 1
ME∥A(I)∥1 ⩽ t

for some c > 0. The result follows by applying (44) to lower and
upper bound 1

ME∥A(I)∥1, followed by a rescaling in t.

Despite the non-independence of the centered matrices Ac
m

defining the components of Ac, we can show the concentration
of Ac(J ) in the ℓ1-norm by noting that, if A.6 holds, Ac

m(J ) =
Ac
m(J h) = Am(J h) − ⟨Aa,J h⟩, applying Lemma 6 on the

ℓ1-norm of the first term, and noting the second concentrates
around 0.

Lemma 7 (Concentration of centered SROP in the ℓ1-norm).
In the context of Lemmata 4 and 5 and supposing A.6 holds,
given a matrix J ∈ HQ and J h = J − J d, there exists a
value 0 < cα < 1, only depending on the distribution of α,
such that, for t ⩾ 0, with a failure probability smaller than
2 exp(−cM min(t2, t)),

(cα−3tκ2)∥J h∥F ⩽ 1
M ∥Ac(J )∥1 ⩽ (1+3tκ2)∥J h∥F . (46)

Proof. Given J ∈ HQ and its hollow part J h = J −J d, the
operator Ac is defined componentwise by Ac

m(J ) = Am(J )−
⟨Aa,J ⟩ = ⟨αmα∗

m − Aa,J ⟩, with Aa = 1
M

∑M
j=1 αjα

∗
j .

Moreover, from A.6, Ac
m(J ) = Ac

m(J h) since both matrices
αmα∗

m and Aa have unit diagonal entries. Therefore, by trian-
gular inequality∣∣ 1

M ∥Ac(J )∥1 − 1
M ∥A(J h)∥1

∣∣ ⩽ |⟨Aa,J h⟩|. (47)

Given the i.i.d. random variables ξj = α∗
jJ hαj , we get

⟨Aa,J h⟩ = 1
M

∑M
j=1 ξj , with Eξj = 0 from the hollowness

of J h. According to Lemma 5, each ξj is sub-exponential with
∥ξj∥ψ1

⩽ κ2. Therefore, using again [34, Cor. 5.17], we have,
with a failure probability lower than 2 exp(−cM min( t

2

κ4 ,
t
κ2 )),

−t ⩽ ⟨ 1
M

∑M
j=1 αjα

∗
j ,J h⟩ ⩽ t,

for some c > 0. The result follows from a union bound on
the failure of this event and the event (45) in Lemma 6, both
inequalities and (47) justifying (46).

As a simple corollary of the previous lemma, we can now
establish the concentration of B(f) := ϖAc

(
T (Ff)

)
∈ RM+ in

the ℓ1-norm for an arbitrary K-sparse vector f ∈ ΣK .

Corollary 1 (Concentration of B in the ℓ1-norm). In the context
of Lemma 7, suppose that A.1- A.6 are respected, with A.5 set

with sparsity level K0 > 0 and distortion δ = 1/2. Given f ∈
ΣK0

, and the operator B defined in (27) from the M SROP
measurements and the |V0| = Q(Q − 1) non-zero visibilities
with

Q(Q− 1) ⩾ 4K0 plog(N,K0, δ),

we have, with a failure probability smaller than 2 exp(−c′M)
(for some c′ > 0 depending only on the distribution of α),

ϖcα
2
√
2

√
|V0|√
N

∥f∥ ⩽ 1
M ∥B(f)∥1 ⩽ 2ϖ

√
|V0|√
N

∥f∥.

Proof. Given f ∈ ΣK0
and J = T (Ff) ∈ HQ, let us assume

that (46) holds on this matrix with t = cα/(6κ
2) < 1/6, an

event with probability of failure smaller than 2 exp(−c′M) with
c′ > 0 depending only on cα and κ, i.e., on the distribution of α.
We first note that ∥J h∥F = ∥RV0

Ff∥ from (21). Second,

1
2∥f∥2 ⩽ N

|V0|∥RV0
Ff∥2 ⩽ 3

2∥f∥2. (48)

since from A.5 the matrix Φ :=
√
NRV0

F respects the
RIPℓ2/ℓ2(ΣK0

, δ = 1/2) as soon as |V0| = Q(Q − 1) ⩾
4K0 plog(N,K0, δ). Therefore, since B(f) = ϖAc(J ) =
ϖAc(J h), combining (46) and (48) gives

1
M ∥B(f)∥1 ⩾ (cα − 3tκ2)ϖ∥J h∥F

= 1
2cαϖ∥RV0

Ff∥ ⩾ ϖcα
2
√
2

√
|V0|√
N

∥f∥.

Similarly, using
√

3
2 (1 + 3tκ2) < ( 32 )

3/2 < 2, we get

1
M ∥B(f)∥1 ⩽

√
3
2 (1 + 3tκ2)ϖ

√V0√
N

∥f∥ < 2ϖ

√
|V0|√
N

∥f∥.

We are now ready to prove Proposition 3. We will follow the
standard proof strategy developed in [40]. By homogeneity of
the RIPℓ2/ℓ1 in (28), we restrict the proof to unit vectors f of
ΣK0 , i.e., f ∈ Σ∗

K0
:= ΣK0 ∩ SN−1

2 .
Given a radius 0 < λ < 1, let Gλ ⊂ Σ∗

K0
be a λ covering

of Σ∗
K0

, i.e., for all f ∈ Σ∗
K0

, there exists a f ′ ∈ Gλ, with
suppf ′ = suppf , such that ∥f − f ′∥ ⩽ λ. Such a covering
exists and its cardinality is smaller than

(
N
K0

)
(1 + 2

λ )
K0 ⩽

( 3eNK0λ
)K0 [40].

Invoking Cor. 1, we can apply the union bound to all points
of the covering so that

∀f ′ ∈ Gλ, ϖcα
2
√
2

√
|V0|√
N

⩽ 1
M ∥B(f ′)∥1 ⩽ 2ϖ

√
|V0|√
N

, (49)

holds with failure probability smaller than

2( 3eNK0λ
)K0 exp(−c′M) ⩽ 2 exp(K0 ln(

3eN
K0λ

)− c′M).

Therefore, there exists a constant C > 0 such that, if M ⩾
CK0 ln(

3eN
K0λ

), then (49) holds with probability exceeding 1 −
2 exp(−c′′M), for some c′′ > 0.

Let us assume that this event holds. Then, for any f ∈ ΣK0
,

1
M ∥B(f)∥1 ⩽ 1

M ∥B(f ′)∥1 + 1
M ∥B(f − f ′)∥1

⩽ 2ϖ

√
|V0|√
N

+ 1
M ∥B( f−f ′

∥f−f ′∥ )∥1∥f − f ′∥

⩽ 2ϖ

√
|V0|√
N

+ 1
M ∥B(r)∥1λ,
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with the unit vector r := f−f ′

∥f−f ′∥ . However, this vector r is itself
K0-sparse since f and f ′ share the same support. Therefore,
applying recursively the same argument on the last term above,
and using the fact that ∥B(w)∥1 is bounded for any unit vector

w, we get 1
M ∥B(r)∥1λ ⩽ 2ϖ

√
|V0|√
N

∑
j⩾1 λ

j = 2 λ
1−λϖ

√
|V0|√
N

.

Consequently, since we also have
1
M ∥B(f)∥1 ⩾ 1

M ∥B(f ′)∥1 − 1
M ∥B(f − f ′)∥1

⩾ ϖcα
2
√
2

√
|V0|√
N

− 1
M ∥B(r)∥1λ,

we conclude that

ϖcα
2
√
2
( 1−2λ

1−λ )

√
|V0|√
N

⩽ 1
M ∥B(f)∥1 ⩽ 2ϖ 1

1−λ

√
|V0|√
N

,

Picking λ = 1/4 finally shows that, under the con-
ditions and probability described above, B respects the

RIPℓ2/ℓ1(ΣK0
,mK0

,MK0
) with mK0

> ϖcα
3
√
2

√
|V0|√
N

, and MK0
<

8ϖ
3

√
|V0|√
N

.
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