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Disparity based stereo image retrieval through univariate and bivariate models

The widespread use of stereovision in various application fields has led to the constitution of very huge stereo image databases. Therefore, the design of effective content based image retrieval system devoted to stereo pairs becomes an issue of importance. To this end, we propose in this paper two retrieval methods which combine the visual contents of the stereo images with their corresponding disparity information. After modeling the distribution of their associated wavelet coefficients by the generalized Gaussian statistical model, the resulting distribution parameters are selected as salient features. While the two views are processed separately through a univariate modeling in the first method, the second one exploits the correlation between the views by resorting to a bivariate modeling. Experimental results show the benefits which can be drawn from the proposed retrieval approaches.

Introduction

Recent developments of stereoscopic display technologies have accelerated the usage of Stereo Images (SI) in various application fields such as 3DTV, telepresence in videoconferences and stereo geographical information systems. Stereoscopic image display offers a simple way of presenting the depth information in a real world scene. Indeed, the disparity information which corresponds to the displacement that exists between the corresponding pixels of the left and right images, allows to provide the 3D-depth information of the scene. As a result, very huge stereoscopic image databases are continuously generated. For example, a single view of a scene acquired by the IKONOS satellite corresponds to 360 MB every 3 or 4 days. Hence, there is a strong need for both managing and storing these large amounts of stereo data [START_REF] Yoon | JPSearch: New international standard providing interoperable framework for image search and sharing[END_REF].

Conventional Content-Based Image retrieval (CBIR) systems allow a convenient and efficient data access by organizing images based only on their visual contents [START_REF] Smeulders | Content-based image retrieval at the end of the early years[END_REF]. On the other hand, in order to reduce the memory requirements, images are saved in a compressed format. In this respect, Wavelet Transforms (WT) have been found to be an efficient tool to provide very compact representations of still images and, they have been adopted in most of the recent image compression algorithms [START_REF] Taubman | JPEG2000: Image Compression Fundamentals, Standards and Practice[END_REF]. Therefore, it seems interesting to design a CBIR system operating in the WT domain. Thus, the objective will consist in defining relevant signatures from the resulting wavelet coefficients. For this purpose, different wavelet-based image retrieval approaches have been proposed [START_REF] Kobayakawa | Robust texture image retrieval using hierarchical correlations of wavelet coefficients[END_REF][START_REF] Skulsujirapat | Development of digital image retrieval technique using autocorrelogram and wavelet based texture[END_REF][START_REF] Wang | Texture analysis and retrieval using fractal signature and B-spline wavelet transform with second order derivative[END_REF][START_REF] Moghaddam | Wavelet correlogram: a new approach for image indexing and retrieval[END_REF]. For instance, in [START_REF] Skulsujirapat | Development of digital image retrieval technique using autocorrelogram and wavelet based texture[END_REF], the energy of the subbands are combined with the color autocorrelogram. In [START_REF] Wang | Texture analysis and retrieval using fractal signature and B-spline wavelet transform with second order derivative[END_REF], the authors use a B-spline wavelet transform and fractal signature. In [START_REF] Agarwal | Content based image retrieval using discrete wavelet transform and edge histogram descriptor[END_REF], an edge histogram descriptor is computed to gather the information of dominant edge orientations. Besides, another method, called wavelet correlogram, based on a fusion of multiresolution image decomposition and color correlation histogram has been introduced in [START_REF] Moghaddam | Wavelet correlogram: a new approach for image indexing and retrieval[END_REF]. However, it can be pointed out that most popular techniques resort to a statistical modeling of the distribution of the wavelet coefficients [START_REF] Do | Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance[END_REF][START_REF] Sakji-Nsibi | Indexing of multichannelimages in the wavelet transform domain[END_REF][START_REF] Sakji-Nsibi | Copula-based statistical models for multicomponent image retrieval in the wavelet tranform domain[END_REF]. To this end, several models such as the generalized Gaussian distribution [START_REF] Do | Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance[END_REF], the Gamma distribution [START_REF] Mathiassen | Texture similarity measure using Kullback-Leibler divergence between gamma distributions[END_REF][START_REF] Choy | Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval[END_REF], and the Weibull one [START_REF] Kwitt | Lightweight probabilistic texture retrieval[END_REF] have been used. It is worth pointing out that the effectiveness of these techniques have been studied in the case of mono-view images, including still and multicomponent images and video sequences [START_REF] Kiranyaz | Content-based management of multimedia databases[END_REF]. However, to the best of our knowledge, there is only one research work developed in the context of SI [START_REF] Feng | Generic framework for content-based stereo image/video retrieval[END_REF]. More precisely, the reported method consists of two steps: a conventional CBIR system is applied to only one view (for example the left one). Then, the obtained results are refined by comparing the histograms of the estimated disparity maps. However, such retrieval method presents a drawback as the visual contents of the right image are not directly exploited.

To alleviate this shortcoming, we investigate in this paper different techniques to improve the efficiency of a content-based stereo images retrieval system. Our major contribution is to exploit the dependencies between the two views thanks to the disparity information. More precisely, in order to extract relevant features allowing an accurate SI retrieval, we propose to use simultaneously the visual contents of the left and right images as well as their related disparity fields. To this end, two retrieval strategies are addressed. In the first one, the subbands of the left view, the right one and, the disparity map are modeled by a generalized Gaussian distribution [START_REF] Chaker | Exploiting disparity information for stereo image retrieval[END_REF]. The resulting distribution parameters, considered as features of the SI pair, are combined at the retrieval stage. While the two views are modeled independently by using a univariate statistical model in the first strategy, the second one aims to exploit the high statistical dependencies between the two views. After defining the appropriate vectors of wavelet coefficients, extracted from the right and left (or compensated left) subbands at the same scale and orientation, we propose to resort to a bivariate modeling in order to capture the cross-view dependencies. At this level, it is important to note that the joint modeling of multivalued wavelet coefficients has already been investigated in different applications involving only mono-view images such as denoising [START_REF] Portilla | Imagedenoising using scale mixtures of Gaussians in the wavelet domain[END_REF][START_REF] Benazza-Benyahia | Building robust wavelet estimators for multicomponent images using Stein's principle[END_REF][START_REF] Scheunders | Wavelet denoising of multicomponentimages using Gaussian scale mixture models and a noise-free image aspriors[END_REF] or retrieval of still and multicomponent images [START_REF] Sakji-Nsibi | Copula-based statistical models for multicomponent image retrieval in the wavelet tranform domain[END_REF][START_REF] Kwitt | Efficient texture image retrieval using copulas in a Bayesian framework[END_REF][START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination[END_REF][START_REF] Lasmar | Multivariate statistical modeling for texture analysis using wavelet transforms[END_REF], but there is no reported work related to the context of SI.

The remainder of this paper is organized as follows. In Section 2, we first give a brief description of conventional CBIR operating in the WT domain.

Then, the straightforward extension of this system to the context of SI is discussed. In Sections 3 and 4, we describe the proposed disparity-based SI retrieval approaches based on univarite and bivariate statistical modeling, respectively. Finally, the performance of the proposed approaches is illustrated in Section 5 and some conclusions are drawn in Section 6.

Conventional wavelet-based CBIR system

Wavelet-based representation

The Lifting Scheme (LS) is a flexible tool for computing the discrete WT [START_REF] Sweldens | The lifting scheme: A custom-design construction of biorthogonal wavelets[END_REF]. LS was found to be a very effective structure for encoding still and stereo images [START_REF] Kaaniche | Vector lifting schemes for stereo image coding[END_REF], and it has been retained in the JPEG2000 image compression standard [START_REF] Taubman | JPEG2000: Image Compression Fundamentals, Standards and Practice[END_REF]. A generic LS is performed in three steps namely split, predict and update. At the first step, the input 1D signal a j (k) is divided into two subsets composed respectively of even a j (2k) and odd samples a j (2k + 1).

Then, thanks to the local correlation, the samples of one subset (say the odd ones) are predicted from the neighboring even samples. Thus, the prediction error, referred to as detail signal, is computed as follows:

d j+1 (k) = a j (2k + 1) -p ⊤ j a j (k) (1) 
where p j is the prediction weighting vector and a j (k) is a reference vector containing some even samples used in the predict step. Finally, the update step produces the approximation signal a j+1 (k) by smoothing the even samples using the detail coefficients:

a j+1 (k) = a j (2k) + u ⊤ j d j+1 (k) (2) 
where u j is the update weighting vector and d j+1 (k) is a reference vector containing the detail coefficients used in the update step. Note that, the compactness ability of a lifting scheme is related to the choice of the prediction and update weights. The extension of this 1D structure to 2D signals is straightforward: the lifting steps are generally performed along the lines then the columns (or inversely) of the image in a separable manner leading to an approximation subband and three detail subbands oriented horizontally, vertically and diagonally. This procedure is again repeated on the approximation sub-images, over J resolution levels, leading to (3J + 1) subbands.

Feature extraction and similarity measure

In this subsection, we only focus on mono-view images. The key step in a wavelet-based CBIR system consists of extracting salient features from the wavelet coefficients of the images. As aforementioned, a statistical framework could be adopted to model the wavelet coefficients of the different subbands.

For instance, the Generalized Gaussian (GG) distribution has been extensively used [START_REF] Antonini | Image coding using wavelet transform[END_REF]. Thus, in a given subband j, the wavelet coefficients are modeled by a GG distribution whose probability density function (pdf) is defined by:

∀ξ ∈ R f j (ξ) = β j 2α j Γ(1/β j ) e -(|ξ|/α j ) β j (3)
where Γ(z) ∫ +∞ 0 t z-1 e -t dt represents the Gamma function, α j and β j are respectively the scale and shape parameters. The latter two parameters can be estimated by using the Maximum Likelihood technique [START_REF] Do | Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance[END_REF]. Following the modeling step, the feature vector of each image of the database is composed of the distribution parameters of all the detail subbands (α j , β j ) 1≤j≤3J .

Finally, for the different subbands j with j ∈ {1, . . . , 3J}, an appropriate metric should be defined in order to measure the similarity between the pdf f db j of an image in the database I db and the pdf f q j of the query image I q . Very often, the Kullback-Leibler Divergence (KLD) is retained [START_REF] Do | Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance[END_REF][START_REF] Lasmar | Multivariate statistical modeling for texture analysis using wavelet transforms[END_REF][START_REF] Yuan | Texture image retrieval based on a Gaussian mixture model and similarity measure using a Kullback divergence[END_REF][START_REF] Nafornita | Kullback-Leibler distance between complex generalized Gaussian distributions[END_REF].

In the case of the GG distribution, the KLD, denoted by D GG , is expressed as:

D GG (α db j , β db j ∥ α q j , β q j ) △ = log ( β db j α q j Γ(1/β q j ) β q j α db j Γ(1/β db j ) ) - 1 β db j + ( α db j α q j ) β q j Γ((β q j + 1)/β db j ) Γ(1/β db j ) (4) 
where (α db j , β db j ) and (α q j , β q j ) represent the distribution parameters of f db j and f q j , respectively. Thus, the resulting similarity measure D GG between the two images I db and I q is deduced as follows:

D GG (I db , I q ) = 3J ∑ j=1 D GG (α db j , β db j ∥ α q j , β q j ).
(5)

A straightforward extension to SI

Let us now proceed to the retrieval problem in the case of database composed of stereo images. A straightforward solution consists in separately applying the aforementioned conventional CBIR system to each view. More precisely, the retrieval procedure aims at comparing the left and right images of the query stereo pair (I (l,q) , I (r,q) ) to those of the database (I (l,db) , I (r,db) ).

Thus, after extracting their corresponding feature vectors (α

(l,q) j , β (l,q) j ) 1≤j≤3J , (α (r,q) j , β (r,q) j ) 1≤j≤3J , (α (l,db) j , β (l,db) j ) 1≤j≤3J and (α (r,db) j , β (r,db) j 
) 1≤j≤3J , the simi-

larity criterion D (r,l)
GG can be simply obtained by computing the KL divergences defined on the right and left images: ,db) , I (r,q) ) + D GG (I (l,db) , I (l,q) ).

D (r,l) GG = D GG (I (r
(6)

Proposed disparity-based retrieval approaches through univariate model

Motivation

The aforementioned intuitive strategy for indexing a SI pair is not so efficient since only the left and right images are used during the comparison process. Indeed, an important feature of the stereoscopic system, which corresponds to the estimated disparity map, has not been taken into account.

This kind of information is inversely proportional to the depth of the objects in the scene [START_REF] Dhond | Structure from stereo-a review[END_REF] and, hence, it is expected to provide salient features. From this point of view, a more efficient retrieval method could be designed by incorporating the disparity information in the feature vector. In what follows, and before describing our disparity-based retrieval approaches, we present the disparity estimation issue.

Disparity estimation

The principle of the disparity estimation is to find for a given pixel in the right image the best corresponding one in the left image. When the stereo images are rectified, the disparity field is limited to a horizontal component that will be denoted by u. Several methods have been proposed to solve the stereo matching problem [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF][START_REF] Kosov | Accurate real-time disparity estimation with variational methods[END_REF]. For instance, global methods have been extensively employed. They consist in minimizing a global energy function over the entire image based on some specific algorithms, such as the graph-cuts [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF] and variational methods [START_REF] Kosov | Accurate real-time disparity estimation with variational methods[END_REF]. While most of the existing methods operate in the spatial domain, some wavelet-based disparity estimation methods have been recently attracted much attention thanks to the hierarchical and scale-space localization properties of the wavelets [START_REF] Chan | Multiscale image disparity estimation using the quaternion wavelet transform[END_REF][START_REF] Bhatti | Depth estimation using multi-wavelet analysis based stereo vision approach[END_REF].

With the ultimate goal of generating a dense and smooth disparity map while preserving the depth discontinuities, we have resorted to the estimation method presented recently in [START_REF] Miled | A convex optimization approach for depth estimation under illumination variation[END_REF] to compute the disparity maps of stereo image database. We should note that, among the developed disparity estimation techniques, it is important to employ an efficient method that guarantees the smoothness property of the produced disparity map. Indeed, such property allows us to interpret this map as an image, and therefore can undergo a wavelet decomposition in order to be efficiently exploited in the retrieval process of the stereo images.

Disparity-based retrieval strategies

Once the disparity maps are available, two approaches could be considered in order to exploit the disparity information.

In the first one, the disparity is implicitly taken into account by computing the compensated left image in the wavelet domain I 

I (c) j (x, y) = I (l) j (x + u j (x, y), y) (7)
where the disparity u j is obtained by sampling and dividing by 2 j the initial disparity field u:

u j (x, y) = 1 2 j u(2 j x, 2 j y). (8) 
Then, the GG distribution parameters of the different detail subbands of the right image (α (c) j ) 1≤j≤3J are extracted. Finally, the retrieval procedure for a given query stereo pair (I (l,q) , I (r,q) ) aims at finding the best stereo pairs (I (l,db) , I (r,db) ) that minimize the KL divergences, D (r,c) GG , defined on the right image and the compensated left one:

D (r,c) GG = D GG (I (r,db) , I (r,q) ) + D GG (I (c,db) , I (c,q) ) ( 9 
)
where I (c,q) and I (c,db) represent respectively the compensated left images of the query and candidate stereo pairs.

Unlike the first approach, the second one aims to exploit explicitly the disparity information by extracting a relevant signature from the disparity map and, combining it with the features defined previously on the SI pair. To this end, since a smooth disparity map is produced while preserving the depth discontinuities, we propose to apply a wavelet transform to the estimated disparity field. After performing an intensive experiments on a large data set of the estimated disparity maps, we have noticed that their wavelet coefficients can also be successfully modeled by a GG distribution. Indeed, to objectively assess the appropriateness of the GG model, we have applied the Kolmogorov-Smirnov (KS) goodness-of-fit test [START_REF] Massey | The Kolmogorov-Smirnov test for goodness of fit[END_REF][START_REF] Justel | A multivariate Kolmogorov-Smirnov test of goodness of fit[END_REF]. Note that the KS test is based on comparing the cumulative distribution functions. As an example, by taking three disparity maps and considering their horizontal detail coefficients, Fig. 1 shows the histograms of these coefficients (in blue) and the fitted GG distributions (in red) as well as their resulting KS measures.

By performing this test on all the disparity maps of the data set, the average of the KS values is equal to 0.1 which is very small. This confirms that the GG distribution is well-suited for modeling the disparity maps.

Based on these observations, we select the distribution parameters of all the resulting detail subbands (α

(u) j , β (u)
j ) 1≤j≤3J to characterize the disparity map u. Therefore, at the retrieval step, the candidate stereo pairs of the database (I (r,db) , I (l,db) ) that are similar to the query one (I (r,q) , I (l,q) ) are determined by comparing the right and left images as well as their associated disparity maps u (db) and u (q) . More precisely, we propose to define the similarity measure as follows:

D (r,l,u) GG = a • D GG (I (r,db) , I (r,q) ) + b • D GG (I (l,db) , I (l,q) ) + c • D GG (u (db) , u (q) ) = ∑ 3J j=1 ( a • D GG (α (r,db) j , β (r,db) j ∥ α (r,q) j , β (r,q) j ) +b • D GG (α (l,db) j , β (l,db) j ∥ α (l,q) j , β (l,q) j ) +c • D GG (α (u,db) j , β (u,db) j ∥ α (u,q) j , β (u,q) j ) ) (10) 
where a, b and c are three positive weights.

To conclude this part, we should note that this first category of SI retrieval approaches are based on univariate model since, up to now, the right and left images are modeled separately without taking into account the cross-view dependencies.

Proposed disparity-based retrieval approaches through bivariate model

Strategy

In the previous section, the SI retrieval techniques have been developed

through univariate statistical approach by modeling the right image independently of the left one. Since the left and right views correspond to the same scene, and so have similar contents, the wavelet coefficients of both images could present strong statistical dependencies. For example, such dependencies between the two images have already been successfully exploited for SI compression purposes [START_REF] Kaaniche | Vector lifting schemes for stereo image coding[END_REF][START_REF] Woo | Stereo image compression based on disparity field segmentation[END_REF]. Therefore, a suitable statistical model should be employed to capture the dependencies across the wavelet coefficients of the left and right images.

Bivariate generalized Gaussian model

First, we should recall that recent works on color image retrieval [START_REF] Sakji-Nsibi | Copula-based statistical models for multicomponent image retrieval in the wavelet tranform domain[END_REF][START_REF] Kwitt | Efficient texture image retrieval using copulas in a Bayesian framework[END_REF][START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination[END_REF][START_REF] Lasmar | Multivariate statistical modeling for texture analysis using wavelet transforms[END_REF] have shown that the distribution of the wavelet coefficients could be modeled by some specific multivariate models. The latter outperform the conventional univariate approach in terms of accuracy since they account for both the spatial and the cross-channel dependencies. Motivated by these reasons, we propose in this work to resort to a bivariate model to further exploit the dependencies between the wavelet coefficients of the left and right images. Generally, the choice of the appropriate model should fulfill the following constraints:

• The retained model should reflect accurately the sparsity of the wavelet coefficients of each view and also the cross-view dependencies.

• The model structure should enable a straightforward estimation of the parameters from the coefficients in each subband.

• The bivariate model should allow an easy computation of a meaningful similarity measure. For example, knowing that the KLD has been widely used in mono-view image retrieval [START_REF] Do | Wavelet-based texture retrieval using generalized gaussian density and Kullback-Leibler distance[END_REF][START_REF] Lasmar | Multivariate statistical modeling for texture analysis using wavelet transforms[END_REF][START_REF] Yuan | Texture image retrieval based on a Gaussian mixture model and similarity measure using a Kullback divergence[END_REF][START_REF] Nafornita | Kullback-Leibler distance between complex generalized Gaussian distributions[END_REF], it would be interesting to select a bivariate model from which a closed form expression of the KLD could be derived in order to facilitate the retrieval stage by avoiding Monte-Carlo estimation procedures.

Based on the previous points, we find that using the well-known Bivariate Generalized Gaussian (BGG) distribution could be an appropriate way for characterizing the dependencies between the wavelet coefficients of the left and right images.

To introduce this model, let us denote by w j the bivariate vector composed of the wavelet coefficients of two correlated components, for each subband j.

We assume that the set of coefficient vectors w j in each subband constitutes an independent identical distributed sample of a random vector W j . Under the hypothesis of a zero-mean vector, the generic expression of the probability density function f W j of the BGG distribution is given by:

∀w ∈ R 2 , f W j (w; β j , Σ j ) = 2 πΓ(1 + 1 β j )2 1+ 1 β j | Σ j | -1/2 exp ( - 1 2 (w T Σ -1 j w) β j
) .

(

) 11 
where β j > 0 denotes the shape parameter and, Σ j is a symmetric positivedefinite matrix of size 2 × 2 (the scaling matrix). Note that these parameters can be estimated using the moment method [START_REF] Gómez | A survey on continuous elliptical vector distributions[END_REF] or the maximum likelihood criterion [START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination[END_REF].

In order to validate the appropriateness of the BGG model, we have conducted the multivariate Kolmogorov-Smirnov (KS) test [START_REF] Justel | A multivariate Kolmogorov-Smirnov test of goodness of fit[END_REF] on the stereo images database. Indeed, by taking the horizontal detail subbands of the left and right images of four stereo pairs, Fig. 2 illustrates the empirical bivariate histograms (in blue) fitted with the BGG distribution (in red), and provides their associated KS measures. By repeating the same test on the whole set of stereo images in the database, an average KS value of about 0.09 is obtained. These results corroborate also that stereo wavelet subbands can be well modeled by a BGG distribution.

It is important to note that a closed form expression of the KLD is available for such BGG model. Indeed, for two BGG distributions with parameters (β q j , Σ q j ) and (β db j , Σ db j ), the KLD is given by [START_REF] Verdoolaege | Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination[END_REF][START_REF] Verdoolaege | Waveletbased colour texture retrieval using the Kullback-Leibler divergence between bivariate generalized Gaussian models[END_REF]: where µ 1 and µ 2 are the inverse of the eigenvalues of (Σ db j ) -1 Σ q j and 2 F 1 represents the Gauss hypergeometric function [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF].

D BGG (β db j , Σ db j ∥β q j , Σ q j ) = ln   Γ ( 1 β q j ) Γ ( 1 β db j )2 ( 1 β q j -1 β db j ) ( |Σ q j | |Σ db j | )1 2 β db j β q j   - 1 β db j +    2 ( β q j β db j -1 ) Γ ( β q j +1 β db j ) Γ ( 1 β db j ) × ( µ 1 + µ 2 2 
) β q j × 2 F 1 ( 1 -β q j 2 , -β q j 2 ; 1; ( µ 1 -µ 2 µ 1 + µ 2 ) 2 )] (12) 

An improved disparity-based retrieval strategies

Now, we will describe three retrieval strategies based on the selected BGG distribution.

Intuitively, in the first one, the bivariate vector, defined by w

(r,l) j = ( w (r) j , w (l) j ) ⊤
is composed of the wavelet coefficients in the right and left images for each subband j. Let us denote by

( Σ (r,l) j , β (r,l) j )
the distribution parameters of vector w (r,l) j . Thus, in the indexing step, the comparison between the stereo pair in the database, characterized by its feature vector

( β (r,l,db) j , Σ (r,l,db) j ) 1≤j≤3J
and the query one parameterized by the feature

( β (r,l,q) j , Σ (r,l,q) j ) 1≤j≤3J
is achieved by computing the global KLD:

D (r,l) BGG = 3J ∑ j=1 D BGG (β (r,l,db) j , Σ (r,l,db) j ∥ β (r,l,q) j , Σ (r,l,q) j ). ( 13 
)
Since the highly similar pixels of the left and right images are located at different spatial positions identified by the disparity information, it would be more interesting to focus on the right image I (r) and the compensated left one I (c) by using their wavelet coefficients to build the bivariate vector

w (r,c) j = ( w (r) j , w (c) j
) ⊤ , for each subband j. Thus, in this second retrieval strategy, the feature vectors deduced from the right and compensated left images of the query stereo data

( β (r,c,q) j , Σ (r,c,q) j ) 1≤j≤3J
will be compared to those of the database stereo pair

( β (r,c,db) j , Σ (r,c,db) j ) 1≤j≤3J
by computing the following measure:

D (r,c) BGG = 3J ∑ j=1 D BGG (β (r,c,db) j , Σ (r,c,db) j ∥ β (r,c,q) j , Σ (r,c,q) j ). ( 14 
)
Although it is clear that stereo images contain nearly similar contents since they correspond to the same scene, there are some areas in one image that are absent in the other one, referred to as occluded areas. This occlusion effect is well known in stereovision problems and is due to the different viewpoints of the cameras and the presence of discontinuities in the scene. Generally, increasing the dependencies between the two components of the bivariate vector leads to an efficient retrieval procedure. For this reason, we propose 

) ⊤ . After estimating their associated model parameters and building the feature vectors for the query stereo pair

( β (r ocl ,c ocl ,q) j , Σ (r ocl ,c ocl ,q) j ) 1≤j≤3J
and the candidate one

( β (r ocl ,c ocl ,db) j , Σ (r ocl ,c ocl ,db) j ) 1≤j≤3J
, the global KLD is therefore obtained:

D (r ocl ,c ocl ) BGG = 3J ∑ j=1 D BGG (β (r ocl ,c ocl ,db) j , Σ (r ocl ,c ocl ,db) j ∥ β (r ocl ,c ocl ,q) j , Σ (r ocl ,c ocl ,q) j ). (15) 
Finally, as it was performed with disparity-based retrieval approaches through univariate model, these three strategies should further incorporate the disparity information into their feature vector. In other words, in addition to the BGG distribution parameters of the right and left (or compensated left) images, it would be interesting to consider also the GG distribution parameters of the disparity maps u (db) and u (q) respectively associated to the database and query SI. Consequently, during the comparison process between a query and a candidate stereo pair, we should add the measure D GG (u (db) , u (q) ) to each of the KL divergences given by Eq. ( 13), ( 14) and (15).

Experimental results

Experimental setup

Since there are no SI databases publicly available to evaluate the performance of SI retrieval methods, we have built a database which can be downloaded from1 . This database is composed of real SI pairs of size 248 × 248 taken from various sources. The images correspond to a variety of contents including natural scenes2 ,3 and4 , man-made objects available at the Middlebury stereo vision website 5 , and SPOT5 scenes. According to their texture, these stereo images have been divided into 17 classes, with 40 pairs per class, such as wooded area, tree, bushes, mountains, urban area. Note that SI of the same class are taken from the same scene. An example of some right images of different classes in the database is shown in Fig. 3.

As explained in Section 3.2, the method developed in [START_REF] Miled | A convex optimization approach for depth estimation under illumination variation[END_REF] has been used to generate the disparity maps. The retrieval performance is evaluated in terms of precision P R = R r R and recall RC = R r R t , where R r is the number of output pairs considered as relevant, R t is the total number of relevant pairs in the database and R denotes the number of returned pairs. A retrieved pair is considered as relevant if it belongs to the same category of the query pair.

Note that the query images are taken from the database. In order to show the benefits of using the disparity map in a SI retrieval system, two rounds of experiments are performed. The first one aims at il-lustrating the behavior of the univariate modeling-based retrieval approaches described in Section 3. The objective of the second one is to validate the interest of the bivariate modeling presented in Section 4. In what follows, we describe and discuss these experimental tests.

Univariate modeling-based retrieval approaches

In this part, we are interested in evaluating the methods related to the univariate model. The first one corresponds to the straightforward approach, presented in Subsection 2.3, where the GG distribution parameters of only the right and left images are compared. This method will be designated by GG-RL. The second one takes into account the disparity information in an implicit manner by computing features of the right view and the disparity compensated left view. This method will be denoted by GG-RDCL. The third one, designated by GG-RL-GG-D, is the second version of the proposed univariate model-based method where a new feature vector is defined by incorporating simultaneously the visual contents of the left and right images as well as the disparity information. We have also tested for comparison the recent state-of-the-art approach [START_REF] Feng | Generic framework for content-based stereo image/video retrieval[END_REF]. Recall that its basic idea consists in using the disparity to refine the results provided by a conventional CBIR system.

More precisely, the MPEG-7 edge histogram descriptor is employed for the left images and the diffusion distance is used to measure the similarity between the histograms of the disparity maps during the refinement step. Hereafter, this method will be designated by State-of-the-art [START_REF] Feng | Generic framework for content-based stereo image/video retrieval[END_REF]. Moreover, since the developed approaches operate in the wavelet transform domain, we have also proposed to apply the state-of-the-art method in the same domain. It is important to note here that designing a CBIR system operating in the wavelet domain may constitute an interesting feature in practice in the sense that the decoding procedure at the retrieval step becomes unnecessary when the images are saved in a compressed format. To this end, the first step consists of comparing the feature vector of the query left image (α (l,q) j , β (l,q) j ) 1≤j≤3J to the database left images (α (l,db) j , β (l,db) j ) 1≤j≤3J using the KLD as a similarity measure. Then, the disparity features (α

(u,db) j , β (u,db) j
) 1≤j≤3J are used in the re-ranking step which is applied to the first 10% of the returned images and the retrieval results are re-ordered. In what follows, this modified version of the state-of-the-art method, applied in the WT domain, will be designated by Mod-state-of-the-art-WT.

Fig. 4 provides the precision-recall plots of the various approaches. It indicates that using implicitly the disparity map by comparing the right image and the disparity compensated left one of the stereo pair outperforms the straightforward approach. Moreover, thanks to the second version of the proposed method where the disparity information is explicitly added to the feature vector, we achieve further improvements. Our approach becomes more performant than the other methods, and achieves a gain of about 1-12% in precision compared to the state-of-the-art method [START_REF] Feng | Generic framework for content-based stereo image/video retrieval[END_REF].

We should note here that different tests have been carried out to study the impact of the weights assigned to the disparity map and to both images on the retrieval performance of the GG-RL-GG-D approach. Since the left and right images correspond to the same scene and present very similar contents, we assume that the weights associated to these views are identical (i.e. a = b). worse results. More generally, we conclude that weighting alike the features of the left, right and disparity images, by taking a value of c around 1 3 , allows to achieve good retrieval performance.

Therefore, these results corroborate that disparity gives additional cues for SI retrieval when it is combined with the visual contents of the two views.

Bivariate modeling-based retrieval approaches

The second series of experiments is dedicated to the study of the effect of using a bivariate statistical model to capture the dependencies between the wavelet coefficients of a stereo pair and, to the illustration of the benefits of incorporating simultaneously the disparity features and the visual ones computed through the bivariate model. To this end, we have also conducted the three following experiments related to the three retrieval strategies discussed in Subsection 4.3.

The first one, where the bivariate vector is constructed from the wavelet coefficients of the right and left images, is designated by BGG-RL. The second one, where the bivariate vector is defined by using the wavelet coefficients of the right image and the disparity compensated left one, is denoted by BGG-RDCL-1. The third approach, corresponding to the improved version of the previous one by taking into account the occlusion effect, is denoted by BGG-RDCL-2. By further adding the GG distribution parameters of the disparity map during the indexing step, these three methods will be respectively designated by BGG-RL-GG-D, BGG-RDCL-GG-D-1 and BGG-RDCL-GG-D-2. 

Conclusion

In this paper, we have addressed the problem of indexing and retrieval of stereo images in the wavelet-transform domain. Our first contribution consists in employing dense disparity maps either implicitly or explicitly during the feature extraction step. The parameters of the generalized Gaussian distribution that model the detail subbands of each view are combined with those of the disparity map to build a salient feature of the stereo pair content. Our second contribution aims at resorting to an appropriate bivariate model that accounts for the cross-view dependencies. Experimental results indicate the good performance of the bivariate approaches. In future work, it would be interesting to study the effect of quantizing the stereo images at different qualities as performed in [START_REF] Chaker | An efficient retrieval strategy for wavelet-based quantized images[END_REF].
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ing into account the occlusion effect allows us to achieve the best retrieval performance.

Finally, we focus on comparing the performance of the proposed retrieval approaches based on bivariate and univariate models. It can be seen from Fig. 7 that the joint modeling of wavelet subbands BGG-RDCL-GG-D-1 achieves better retrieval performance compared to the univariate model-based approach. Further improvements are achieved when the bivariate model-based approach deals with the occlusion effect. Thus, compared to the state-of-theart method [START_REF] Feng | Generic framework for content-based stereo image/video retrieval[END_REF], the resulting gain reaches 15% in terms of precision-recall.

All these results confirm the effectiveness of incorporating the disparity information for stereo image retrieval purpose.
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