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Instantaneous Frequency and Amplitude Estimation
in Multi-Component Signals Using an EM-based

Algorithm
Quentin Legros, Dominique Fourer, Sylvain Meignen and Marcelo A. Colominas

Abstract—This paper addresses the problem of estimating the
instantaneous frequency (IF) and amplitude of the modes com-
posing a non-stationary multi-component signal in the presence
of noise. A novel observation model for the signal spectrogram
is developed within a Bayesian framework to handle intricate
configurations involving noise or overlapping components. The
model parameters are estimated using a stochastic variant of
the Expectation-Maximization algorithm, bypassing the computa-
tionally expensive joint parameter estimation from the posterior
distribution. We then design an algorithm for instantaneous
amplitude and frequency estimation that accounts for overlap
and amplitude variations of the components. To assess the
performance of the proposed method, we conduct experiments
on both real-world and simulated signals, involving separated or
crossing modes. The benefits of our method in terms of efficiency
compared with several state-of-the art techniques appear to be
significant in that latter case, but also when the amplitude of the
components are varying across time.

Index Terms—ridge extraction, time-frequency, Bayesian esti-
mation, Expectation-Maximization algorithm, Monte Carlo sam-
pling.

I. INTRODUCTION

D ISENTANGLING natural or synthesized signals in a
reliable and fast way is often necessary for a wide range

of applications, including biomedicine [1], audio [2], seismic
[3] or radar [4]. For that purpose, a common model for
representing such signals, referred to as non-stationary Multi-
component Signal (MCS), is a superimposition of Amplitude-
and Frequency-Modulated (AM-FM) components (or modes).
For the last decade, numerous methods have been developed to
extract the modes of a MCS, which is of paramount importance
to understand the signal content.

One can mention the Empirical Mode Decomposition
(EMD) [5], [6] and the Singular Spectrum Analysis (SSA)
[7] which belong to data-driven approaches designed to esti-
mate the modes directly from the observed waveform. Other
techniques consist in projecting the signal onto the Time-
Frequency (TF) plane using a linear transform such as the
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Short-Time Fourier Transform (STFT) or the Continuous
Wavelet Transform (CWT) [8], revealing TF curves (also
called ridges) associated with modes, which correspond to
estimates of the components Instantaneous Frequency (IF).
These techniques combine a Time-Frequency Representation
(TFR) with a ridge detection method, based for instance on
Bayesian inference [9], to disentangle the components. Hence,
the data extracted from the ridges (i.e. TF coordinates, STFT
magnitude and phase, chirp rate, etc.) provide with valuable
inputs for a variety of applications, such as source separation
[10], signal disentangling [11] or to enhance the readability of
the signal in the presence of noise [9], [12].

A wide range of methods are designed to deal explicitly
with the presence of spurious noise [13], [14]. These methods
highlight the importance of regularization in ridge detection in
that context [13], [15]. In [16] for instance, a Total Variation
(TV) regularization is applied to the signal synchrosqueezing
transform [17] to estimate the modes IF. A Pseudo-Bayesian
(PB) framework is introduced in [9], where the IF of each
mode is sequentially estimated at each time instant using
alternative divergences and a regularization term based on a
simple prior model.

Nonetheless, these methods are not designed to perform In-
stantaneous Amplitude (IA) estimation, and their performance
is limited when the modes overlap in the TF plane. While
existing methods tackle this problem, as in [18] where the
signal is projected onto a three-dimensional time-frequency-
chirp-rate space to disentangle its modes, most of them are
computationally expensive.

The present work aims to bridge this gap by introducing
a novel observation model in a Bayesian framework, based
on the analysis of the MCS spectrogram. Our mixture model
introduced in Section II, is parameterized by the IA and
IF of the modes, and accounts for the possible presence
of noise. The prior distributions assigned to each model
parameter are presented in Section III, before formulating the
estimation strategy in Section IV, where the model parameters
are estimated using an Expectation-Maximization (EM)-based
algorithm [19], [20] to avoid their computationally heavy
estimation from the joint posterior. Our algorithm is designed
for the use of Markovian prior models at a low computational
cost. A sequential Maximum a Posteriori (MAP) algorithm is
formulated to perform the estimation of overlapping modes at
each iteration of the EM algorithm, significantly reducing the
computational complexity of the method. Finally, the perfor-
mance of the proposed algorithm is evaluated in Section V,
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through a comparison with several state-of-the-art methods
applied to both synthetic and real-world signals. The main
contributions of the paper can be summarized as follows:
• A novel observation model to infer both the IA and IF

of the modes of a MCS from its spectrogram using an
EM-based algorithm.

• A stochastic approach designed to keep a reasonable
computational cost for the method.

• An estimation strategy adapted to MCS with overlapping
modes.

II. OBSERVATION MODEL

A. Time-Frequency Analysis

Let x be a signal made of K superimposed AM-FM
components expressed, ∀n ∈ Z, as:

x(n) =

K∑
k=1

xk(n), with xk(n) = αk(n)ej2πφk(n), (1)

where αk(n) and φk(n) are, respectively, the time-varying
amplitude and phase of the k-th component at time n. The
STFT of signal x, using a real-valued analysis window θ, is
defined as:

F θx (n,m) :=
∑
l∈Z

x(l)θ(l − n)e−j
2πm(l−n)

M , (2)

at each time instant n ∈ J0, N − 1K and each frequency bin
m ∈ J0,M − 1K. The spectrogram is then defined as a matrix
S =

{
|F θx (n,m)|2

}
n,m

where each column at time index n is
denoted by sn = [sn,0, . . . , sn,M−1]>. Now, we assume that x
is a sum of pure harmonics with constant IF and IA, namely:

x(n) =

K∑
k=1

Ake
2jπηkn, (3)

with IF dφk
dn (n) = ηk ∈ [0, 1[, and IA αk(n) = Ak. It follows

from Eq. (2) that:

F θx (n,m) =

K∑
k=1

Ake
2jπηkn

∑
l∈Z

θ(l)e−2jπ(
m
M−ηk)l

≈
K∑
k=1

Ake
2jπηknFθ(

m

M
− ηk),

(4)

where Fθ is the Fourier transform of θ in L1(R). Assuming the
modes to be sufficiently far apart with respect to the essential
support of Fθ, it follows:

|F θx (n,m)|2 ≈
K∑
k=1

A2
k

(
Fθ

(m
M
− ηk

))2
, (5)

which does not depend on n. Further, assuming that both IF
and IA vary over time, Eq. (5) can be generalized into:

|F θx (n,m)|2 ≈
K∑
k=1

α2
k(n)

(
Fθ(

m

M
− dφk

dn
(n))

)2

, (6)

on which our observation model is based.

B. Likelihood

We consider the following observation model built from
Eq. (6):

p(sn,m|wn,mn) =

K∑
k=1

wn,kg(m−mn,k) +

1−
K∑
k=1

wn,k

M

(7)

where g(m) =
(
Fθ(

m
M )

‖Fθ‖2

)2
, with ‖.‖2 the L2-norm, and mn,k

M

an approximation of dφk
dn (n), such that mn,k ∈ J0,M − 1K

is the k-th ridge position at time n. Considering a Gaussian
analysis window θ(n) = 1√

2πL
e−

n2

2L2 , with L the time-spread

parameter [11], we obtain g(m) = 2
√
πL
M e−( 2πmL

M )
2

that is
used in the remainder of this work.

Moreover, the weights wn,k are constrained to belong to
[0, 1] such that

∑
k wn,k ≤ 1. In what follows, we set wn =

[wn,1, . . . , wn,K ]>, mn = [mn,1, . . . ,mn,K ]>, and the vector
[m0,k, . . . ,mN−1,k] is called the k-th ridge in the sequel.

The observation model in Eq. (7) describes the probability
distribution of each single element sn,m in column sn, for
any time n. As can be seen from Eq. (7),

∑
k wn,k = 1 in

the absence of noise, reducing the model to a mixture of K
Gaussian functions. Conversely, Eq. (7) reduces to a uniform
distribution in pure noise situations since

∑
k wn,k = 0.

Despite the estimation of the number of components K is
out of the scope of this paper, we assume it to be known in
the remainder of this paper and refer to [21], [22] for further
analysis.

The model in Eq. (7) is tightly related to how well the
spectrogram can be approximated by Eq. (5). Such an approx-
imation is proved to be valid only when both the frequency
modulations of the components and the IA variations are small
[23]. This can be circumvented by enforcing smoothness of the
IF estimates, through the use of prior models as discussed in
the next section.

For further developments, we set W = {wn}N−1n=0 and
M = {mn}N−1n=0 , which are the model parameters we seek
to estimate. Assuming independence between each TF point
conditioned on the value of (wn,mn), we express the joint
likelihood function as:

p(S|W ,M) =
∏
n

∏
m

p(sn,m|wn,mn).

=
∏
n

p(sn|wn,mn).
(8)

III. PRIOR MODELS

In order to complete the Bayesian model, prior distributions
are assigned to the model parameters to account for the
available a priori information [24]. A weak uniform prior
model is assigned to the mixture weights W to deal with the
lack of prior information. In the next section, we introduce the
two prior models we consider for M .

A. Total Variation Prior

In the presence of a strong level of noise, constructing
smooth ridges can be accomplished by enforcing spatial
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smoothness between successive IF estimates, for instance
by constraining the derivative of the estimates [13]. In our
Bayesian framework, a way to constrain such derivatives is to
consider the following TV Markov Random Field (MRF) prior
model for M which is known to preserve sharp transitions
[25], [26]

p(M |ε) ∝ exp

[
−ε

K∑
k=1

∥∥∆1m.,k

∥∥
1

]
, (9)

with ∆1· denoting the first order finite difference, m.,k the
k-th row of M , i.e. the k-th ridge position, ‖.‖1 the L1-
norm, and the prior weight ε a user-defined hyperparameter.
Also, using a TV prior enables the estimates to make sharp
transitions when the ridges are split, as can be observed in
Fig. 1 where we apply our IF estimation method described in
the following section.
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Fig. 1. Spectrograms of a signal made of two portions of noisy sinusoidal
waves, resulting in a SNR of 10 dB (left) and -5 dB (right). The blue curve
corresponds to the IF estimation performed using the method described in
Section IV using the TV prior model with ε = 10−1.

B. Laplacian Prior

Another possible choice for the prior of M is to constrain
the mean curvature of the estimated ridge using a MRF Lapla-
cian prior model [27], [28] by setting an L2-norm penalization,
namely to define:

p(M |λ) ∝ exp

[
−λ

2

K∑
k=1

∣∣∣∣∆2m.,k

∣∣∣∣2
2

]
, (10)

which is a log-concave and differentiable operator controlling
the smoothness of the estimation, in which ∆2· denotes the
second order finite difference and λ a user-defined hyperpa-
rameter.

IV. ESTIMATION STRATEGY

TABLE I
SUMMARY OF THE PARAMETERS.

Notations
S Signal spectrogram
W Observed model parameter (mixture weights)
M Latent model parameter (IF)
ε, λ Prior hyperparameters

For the sake of clarity, we omit in the sequel the hyper-
parameters ε and λ related to the prior models. Using the

Bayes rule, the joint posterior distribution of (W ,M) can be
expressed as:

p(W ,M |S) ∝ p(S|W ,M)p(M)p(W ). (11)

Thus, we present in Table. I a reminder of the Bayesian
model parameters.

A. Expectation-Maximization Based Algorithm

Jointly estimating (W ,M) is a challenging task due to the
latent parameter M making the function in Eq. (8) multimodal
when K > 1. EM-based algorithms [19], [29] are particularly
adapted to address this problem, and the shape of the model in
Eq. (7) is well suited for such methods. Therefore, we propose
to marginalize over the latent parameter M to estimate W as:

ŴMMAP = argmax
W

∑
M

p(W ,M |S) = argmax
W

p(W |S).

(12)
The EM algorithm is a two-steps iterative algorithm that

computes a MAP estimate. More precisely, given W (i) the
current estimate of W at iteration i, the E-step consists of
computing:

Q(W |W (i)) = EM |W (i),S [log(p(W ,M |S))]

= EM |W (i),S [log(
∏
n

p(wn,mn|sn))]

=
∑
n

EM |W (i),S [log(p(wn,mn|sn))],

(13)

followed by the M-step which finds the parameters maximiz-
ing Q(W |W (i)):

W (i+1) = argmax
W

Q(W |W (i)). (14)

Nonetheless, the expectation in Eq. (13) is intractable due
to the Markovian nature of the prior model. To deal with this
issue, a classical approach consists in resorting to Stochas-
tic Expectation-Maximization (SEM) algorithms [19], [20].
Nevertheless, the multimodality of the conditional distribution
p(M |W (i),S), as well as the overlapping of components
would imply long simulation steps to get an accurate ap-
proximation of p(M |W (i),S). Therefore we adopt instead
a strategy similar to [30] as detailed in the next section.

B. Stochastic Approach to Approximate p(M |W (i),S)

In order to replace p(M |W (i),S) used in Eq. (13) by an
approximating distribution such that the expectation becomes
tractable, we compute an approximation p̃(M |M̄) of p(M),
by generating an auxiliary random sample M̄ through Markov
chain Monte Carlo (MCMC) simulations such that

p̃(M |M̄) =

N−1∏
n=0

p(mn|m̄\n), (15)

where m̄\n is the matrix M̄ whose n-th row has been
removed. The approximating prior can then be used to
compute an approximation of the conditional distribution
p(M |W (i),S) using Bayes rule as:
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p̃(M |W (i),S) =
p(S|W (i),M)p̃(M |M̄)

p(S)
. (16)

The approximation of p(M) is performed using a 2-step
Gibbs sampler. At each iteration, we hot-start the Gibbs
sampler using the current estimate of M (discussed in Section
IV-D) to avoid the required long burn-in period due to random
initialization of the Gibbs sampler. Since we are sampling from
the prior, each iteration of the Gibbs sampling increases the
importance of the prior regularization. Hence, a single iteration
of the Gibbs sampling is performed at each iteration of the
algorithm (discussed in Section V-E). If not stated otherwise,
we set the prior weight of our method to ε = λ = 10−2.

While this approach is similar to the classical SEM [19],
[20], here we sample from p(M) instead of p(M |W (i),S) to
compute an approximating distribution p̃(M |W (i),S). This
choice is motivated by the necessity to reduce the computa-
tional cost of the M-step (discussed in the next section). To do
so, we propose to estimate M from p(M |W (i),S) at each it-
eration of the algorithm. To ensure a reasonable computational
complexity of the method, a designed method (discussed in the
next section) is preferred to MCMC simulations.

C. EM-based Algorithm

Using the approximation of p(M |W (i),S) at step i, we
compute the MAP estimate of M , denoted by M (i+1). The
whole algorithm can then be significantly fastened using this
current estimate, since the M-step reduces to:

W (i+1) = argmax
W

Q(W |W (i))

≈ argmax
W

log
(
p(W ,M (i+1)|S)

)
≈ argmax

W
log
(
p(S|W ,M (i+1))

)
+ C,

(17)

where C = log
(
p(M)p(W )

p(S)

)
is a constant since a uniform

prior model is assigned to W . From Eq. (7), the likeli-
hood is log-concave with respect to W which ensures that
Q(W |W (i)) is also concave, allowing for the use of time-
wise convex optimization approaches to solve the M-step in
Eq. (14), and thus to perform an estimation of W .

The M-step is solved using the Newton-Raphson algorithm
[19], whose computational complexity only depends on the
number K of components. While the convergence of the
algorithm is fast (less than 5-10 iterations), the estimates
oscillate around the Marginal Maximum a Posteriori (MMAP)
estimator of W instead of converging to it, due to the
stochastic nature of the method. The oscillations being small
in practice, we empirically stop iterating after Niter = 20
iterations.

A summary of the proposed EM algorithm is available in
Algo. 1 which uses Algo. 2 (discussed in Section IV-D) for
estimating M at each iteration.

ALGORITHM 1

EM-based estimation of M and W

1: Input: S, ε or λ, number of EM iterations Niter

2: Initialization: Set W (0)

3: for i = 0, . . . , Niter − 1 do
4: Compute p(S|W ,M), using Eq. (7)
5: Sample M̄ ∼ p(M)
6: Compute p̃(M |W (i),S), using Eq. (16)
7: Estimate M (i+1), using Algo. 2
8: Compute W (i+1), using Eq. (17).
9: end for

10: Output: M̂ = M (Niter) and Ŵ = W (Niter)

ALGORITHM 2

Estimation of M (i+1)

1: Input: K, p̃(M |W (i),S)

2: Initialization: Set vr ← 3
⌈√

M/(πL)
⌉

+ 1, and v ← 4vr
3: for k = 1, . . .K do
4: Compute m

(i+1)
n,k the MAP estimate from p̃(M |W (i),S)

5: for l = n− 1, . . . , 0 do
6: Compute m(i+1)

l,k the MAP estimate at time l in frequency
range [ml+1,k − v,ml+1,k + v] from p̃(M |W (i),S)

7: end for
8: for l = n+ 1, . . . , N − 1 do
9: Compute m

(i+1)
l,k the MAP estimate at time l in frequency

range [ml−1,k − v,ml−1,k + v] from p̃(M |W (i),S)
10: end for
11: Update p̃(M |W (i),S) by setting to zero-value a

neighborhood of size [−vr, vr] around the k-th estimated
ridge.

12: end for
13: Output: M (i+1)

D. IF Estimation

As previously discussed, the multimodal nature of
p̃(M |W (i),S) challenges the parameters estimation. Thus,
we estimate the ridges associated with the different modes
one at a time, as explained in Algo. 2. In that algorithm, a
local IF point estimate is computed through MAP estimation.
Sequential MAP estimations are then obtained by moving
backward in time. In order to constrain the estimates to
correspond to the same ridge, the current MAP estimate is
restricted to belong to an interval of radius v centered around
the previous estimate. The same procedure is then iterated
forward in time using the same starting point.

In the presence of multiple components, the approximate
distribution p̃(M |W (i),S) needs to be updated after the
estimation of each ridge (see line 11 in Algo. 2) to avoid
estimating it several times. Similarly to [16], p̃(M |W (i),S)
is set to zero in a frequency neighborhood of radius vr around
each estimated ridge. The procedure is then repeated until K
ridges are estimated.

While both v and vr could be defined as arbitrary user-
defined hyperparameters, some assumptions have to be made
to automatize ridge estimation. Setting vr to three standard
deviations (three-sigma rule of thumb) of the data distribution
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σd =
√
M/(πL) leads to proper discard when dealing with

purely harmonic modes, therefore we set vr = d3σde. Setting
the value of v is a challenging task, as it requires finding
a balance between two conflicting aspects. First, successive
IF estimates have to be close to each other, suggesting the
use of a small value for v to prevent sudden changes in the
estimated ridge. Nonetheless, v needs to be greater than vr
since overlapping modes result in the creation of gaps in the
region of overlap once one of the associated ridges has been
estimated. In order to handle such situations, we set v = 4vr,
which enables the algorithm to jump over a removed region
of overlap.

E. Amplitude Estimation

In this section, we propose an amplitude estimation process,
performed after the computation of M̂ and Ŵ in Algo. 1.
Indeed, the relation between wn,k, αk(n) and the analysis
window θ can be expressed as:

wn,k =
α2
k(n)‖Fθ‖22

K∑
k=1

α2
k(n)‖Fθ‖22 +Mbn

, (18)

with ||Fθ||22 = M
2L
√
π

(for θ Gaussian) and bn the average
noise amplitude at time n. Nonetheless, the amplitude cannot
be directly estimated from Eq. (18) due to the shape of the
denominator. Setting s̄n =

∑M−1
m=0 sn,m, it can be seen from

Eq. (7) that:

Esn|an,mn,bn [s̄n] =

K∑
k=1

α2
k(n)‖Fθ‖22 +Mbn, (19)

so the denominator in Eq. (18) can thus be approximated
by the expected values of s̄n. From Eq. (18) and (19), it
directly follows that α2

k(n) =
wn,kE[s̄n]

‖Fθ‖22
. This statement allows

to perform amplitude estimation as α2
k(n) =

wn,ks̄n
‖Fθ‖22

, by
assuming s̄n to be a good approximation of E[s̄n]. However,
the performance of the resulting estimator depends both on
the quality of the approximation s̄n of E[s̄n], and on that of
Ŵ . The final amplitude estimate thus reads:

α̂k(n) =

√
ŵn,ks̄n
‖Fθ‖22

. (20)

F. Post-Processing

While the iterative procedure outlined in Section IV-D
enables sequential IF estimation, the discarding step (see line
11 in Algo. 2) can be troublesome when components overlap
in the TF plane. Indeed, by setting to zero the posterior values
already assigned to a ridge, it becomes difficult to properly
perform estimation of other ridges in the regions of overlap.
In such a case, we would expect the estimation process to
link distant local maxima in p̃(M |W (i),S) belonging to the
same ridge, even if it is split during the discard step. Such an
objective is challenging and would require complex estimation
strategy, involving a significant increase in the computational
cost. For this reason, we propose an additional step to get
rid of this limitation. Once M̂ is computed, we detect the

regions of overlap. This is done by looking at the absolute
difference between the positions of the ridges, assuming that
the components overlap below a given threshold which is
defined as three standard deviations of g (three-sigma rule of
thumb). We then interpolate the remaining pieces (those that
are far enough apart) using polynomial interpolation. While
other types of interpolation such as spline interpolation could
be used here, a thorough study of the different interpolation
strategies is out of the scope of this paper. The advantage
of this interpolation step can be observed in Fig. 2 where
we compare the estimation performed with (left) and without
(right) this step on a MCS made of two overlapping compo-
nents. Note that both estimations have been achieved using
EM method with a Laplacian prior (λ = 10−2).
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Fig. 2. Top: spectrograms of a MCS made of two overlapping linear chirps;
bottom: spectrogram of a pure tone overlapping a FM chirp. Estimations
performed using EM method (straight lines) with a Laplacian prior with a
SNR = 10 dB (additive white Gaussian noise).

From Fig. 2 (right column), it can be observed that the sec-
ond estimated ridge significantly oscillates around the crossing
point, since the posterior probability does not provide any
information in this region. On the left column of Fig. 2, the
two IFs are well estimated.

V. RESULTS

In this section, we first assess the IF estimation performance
of EM approach on MCSs either made of separated or crossing
modes, in the presence of an additive white Gaussian noise1.
Then, we study in detail the estimation of the amplitude. A
section is dedicated to the computational complexity of the
proposed EM approach, while its performance is evaluated on
two real-world signals, a bat echolocation call and a speech
signal.

1Matlab codes are freely available for the sake of reproducible research at:
https://github.com/QuentinLEGROS/TSP2023.

https://github.com/QuentinLEGROS/TSP2023
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A. Synthetic Data - Without Component Overlap

Here, we consider a MCS, made of a linear chirp and a FM
component, whose spectrogram is depicted in Fig. 3. We now
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Fig. 3. Spectrogram of the analyzed multicomponent signal.

evaluate EM approach in terms of IF estimation performance
by means of M and compare it with the following approaches.

1) Pseudo-Bayesian (PB) method [9]: The PB method
sequentially estimates the position of the ridges at a time
instant by computing a pseudo-posterior distribution based on
a parametric divergence, and uses these positions to perform
ridge detection at the following time instant. This method
depends on two hyperparameters: the variance of the Gaussian
random walk used to bound the IF derivative of the estimated
modes, and the divergence parameter. The latter is denoted
by β (resp. α), with values in range [0, 1], if the β− (resp.
α−) divergence is used to perform the estimation. To set the
parameter values close to 0 improves the robustness of the
estimation to the detriment of its accuracy at low noise levels.
In all the experiments, we empirically set the variance of the
Gaussian random walk to 2, which was shown to provide the
best results.

2) Ridge Detector (RD) algorithm [13]: The RD algorithm
aims at estimating the position of the ridges in the TF plane
in the presence of strong noise. The method first estimates
the ridge portions that are informative enough, before gath-
ering them when they correspond to the same mode. The
main parameters of the method are the frequency clearing
window avoiding sequential estimations of the same ridge,
and λs (resp. βs) which constrains the first (resp. second) IF
derivative. Moreover, we set λs = 0.2 and βs = 0.4 as it
provides with the best performance on the synthetic signals
with low varying frequency used in our evaluations.

3) Carmona method [16], [31], [32]: This technique esti-
mates the ridges position associated with the modes of a MCS
in the TF plane by solving an optimization problem. More
precisely, a cost function, involving a data term and a least-
square constraint on the IF derivative with respect to time,
is minimized to perform IF estimation. The method depends
on three parameters: λb which controls the smoothness of
the estimates (set to λb = 10−2 as suggested by the authors
and which empirically provides the best results), the clearing
window size parameter, again corresponding to the parameter
vr introduced in Section IV-D, and a so-called jump parameter
controlling the maximum interval between two successive
points on a ridge. Unless stated otherwise, the experiments

presented in this section are performed using the same settings
as in [16].

The estimation performance is measured using the relative

mean squared error RMSE = 1
NM2

K∑
k=1

N−1∑
n=0

(m̄n,k − m̂n,k)
2,

where m̄n,k (resp. m̂n,k) is the actual (resp. estimated) nor-
malized IF of the k-th component at the n-th time instant,
projected onto the discrete frequency grid. As the EM method
produces estimations on the spectrogram grid, it cannot be
directly compared with methods like RD [13] that yield real-
valued estimates. In the remainder of this paper, we thus
project the estimates obtained with all the tested methods onto
the closest TF bin along the frequency axis. It is worth noting
that this does not penalize methods that provide real-valued
estimates, as the ground truth IF is also quantized. In all the
experiments performed on synthetic data, the term noise refers
to complex additive white Gaussian noise.

The RMSEs obtained with the different tested methods are
displayed in Fig. 4 for a varying SNR. It can be observed that
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Fig. 4. RMSE of the normalized IF (averaged over 100 realizations of the
noise) estimated from the MCS displayed in Fig. 3 obtained with the different
competing methods for a varying SNR.

all the approaches behave similarly in terms of RMSE, except
the PB methods that are outperformed at high SNR. Such a
worse behavior is due to the hyperparameters choice, which
improves the robustness of the PB method to the detriment of
its efficiency at low noise levels [9], [33]. While RD performs
slightly better than the other methods, EM using either prior
models exhibits very similar performance. The next section is
dedicated to the study of crossing modes scenarios.

B. Overlapping Components

Here, we evaluate the performance of the EM approach in
estimating a MCS with overlapping modes in the TF plane.
For comparison, we exclude the RD algorithm proposed in
[13] since it explicitly assumes that the modes are separated
in the TF plane.

A more relevant technique to study overlapping compo-
nents is the so-called time-frequency-chirp-rate method [18],
denoted by 3DRD in the sequel. This method first computes
a three dimensional time-frequency and chirp-rate transform
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Fig. 5. Left: RMSEs of the normalized IF (averaged over 50 realizations of
the noise) estimated from the MCS displayed in Fig. 2 (top) obtained with
the different competing methods for a varying SNR; right: same as the left
sub-figure but with the post-processing treatment.

of the observed signal, in which the axes of the transform
respectively correspond to time, frequency and chirp-rate. In
a second time, a tracking algorithm extracts the 3D ridges
associated with each of the signal components. This approach
can deal with components overlapping in the TF plane, since
these components are perfectly separated in the time-frequency
chirp-rate 3D space. This method relies on two parameters
tuning the level of frequency and chirp-rate regularization,
and on two others constraining the spatial variations of the
IF estimates.

We also consider the Carmona method [31] (whose code
made by Brevdo [16] can be found at https://ebrevdo.github.
io/) setting its respectively so-called jump parameters and
the clearing window size to v and vr, for the sake of a
fair comparison with the EM method (see Section. IV-D for
the definition of v and vr). In that method, we significantly
decrease the value of λb compared with the previous example,
to allow for higher variations of the ridges in the region of
overlap (we set λb = 10−5).

In the initial set of experiments, we assess the IF estimation
performance of the different methods without resorting to the
post-processing step. For that purpose, we consider the MCS
(displayed in Fig. 2 (top)), whose components overlap in the
TF plane. The obtained results are presented in Fig. 5 (left)
for varying SNR. From this figure, we observe that all the
methods perform similarly at low SNR, except for 3DRD that
is outperformed by all the other tested methods. The similar
behavior of all the tested methods at low SNR can be explained
by the presence of strong noise around the overlapping region,
which challenges the IF estimation since the signal information
disappears as the noise level increases (around SNR ≈ −5
dB). At high SNR, 3DRD performs the best since it provides
smoother estimates than both EM and Carmona methods
which exhibit oscillations in the region of overlap. The higher
performance of Carmona method compared to EM is explained
by the role of λb, which removes almost all the oscillations
in the region of interest. Finally, even PB approach performs
better than the proposed EM, since the Gaussian random walk
prior enforces the smoothness of the estimates in the region
of overlap.

An in-depth analysis of the suboptimal behavior obtained
with the proposed EM technique suggests that the error

comes from strong oscillations in the region of overlap, which
motivates the use of the post-processing step. Therefore, we
conduct a second set of experiments in which we evaluate
the effect of the post-processing step discussed in Section
IV-F on the quality of IF estimation with the different tech-
niques (denoted as ‘method + pp’). The results, displayed
in Fig. 5 (right) for varying SNR, show that smoothing the
estimates significantly improves the performance of both the
EM method and Carmona approach, which now provide with
the best performance for all SNRs. However, the Carmona
method outperforms the proposed EM within the SNR range
of [−5, 10] dB.
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Fig. 6. Left: amplitude profiles assigned to the linear chirps of Fig. 2; right:
RMSE of the normalized IF (averaged over 50 realizations of the noise)
estimated from the MCS displayed in Fig. 2(top) with amplitude profiles
displayed in the left sub-figures.

We aim to show that the effectiveness of the Carmona
method decreases as the amplitudes of the modes fluctuate.
This technique indeed focuses on maximizing the energy
concentration on the ridge, rather than ensuring the smoothness
of the components amplitude. In contrast, the observation
model used in the EM technique guarantees the continuity
of the estimated amplitude. To illustrate this, we assess the
performance of various methods on amplitude modulated
components, by replicating the experiment of Fig. 5 where an
amplitude function is assigned to each component. More pre-
cisely, the amplitude function of Fig. 6 (top left) (resp. (bottom
left)) is assigned to the red decreasing (resp. blue increasing)
linear chirp in Fig. 2 (top). The results shown in Fig. 6 (right)
highlight the limitations of Carmona method in handling over-
lapping components when their amplitudes change over time,
unlike the EM technique which still performs well under such
conditions. Except in the range [−20,−7] dB, where all the
methods perform similarly, the EM technique achieves the best
performance at all SNRs. Although the PB method appears to
be robust to amplitude modulation, it performs worse than
the EM technique. In order to prevent misinterpretation of the
results obtained with Carmona method, we present the results
with and without post-processing in Fig. 6 (right). Regardless
of whether a post-processing step is applied, the amplitude
modulation significantly alters the IF estimation with that
method, which hinders an efficient tracking of the ridges.

https://ebrevdo.github.io/
https://ebrevdo.github.io/
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C. Amplitudes

We now assess the performance of the amplitude estima-
tion method discussed in Section IV-E for the proposed EM
approach. To this end, we introduce the relative mean absolute

error RMAE = 1
NK

K−1∑
k=0

N−1∑
n=0
|ᾱk(n)− α̂k(n)|, where ᾱk(n)

(resp. α̂k(n)) is the actual (resp. estimated) amplitude of the k-
th component at time instant n. In our comparison, we use two
other amplitude estimation methods. PB method proposed in
[34] (denoted by PB), and the deterministic approach proposed
in [12] (denoted by Local) where an amplitude estimator
is derived assuming a local-log Gaussian approximation for
the amplitude of the modes. The hyperparameters of the PB
method are still set to α = 0.2 and β = 0.4 as they provide
the best trade-off between efficiency and robustness to outliers.
As far as the EM method is concerned, since similar results
are obtained using both prior models, we only display those
obtained using the Laplacian prior model. Additionally, for
each of the tested techniques, we associate an Oracle estimator,
which involves estimating the amplitude with knowledge of the
ground truth IF. These Oracles enable to assess the ability of
the tested methods to estimate the amplitude without the bias
potentially induced by an incorrect IF estimation. The Oracle
methods are respectively named Oracle PB, Oracle Local and
Oracle EM.
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Fig. 7. Left: amplitude profile; middle: (resp. right:) spectrogram of a pure
tone (linear chirp) with the amplitude profile given by the left subfigure

Our first goal is to investigate the influence of frequency
modulation on amplitude estimation. To this end, we compute
the RMAEs obtained with the tested methods, first for the pure
tone signal whose spectrogram is displayed in Fig. 7 (middle),
and also for the linear chirp displayed in Fig. 7 (right), the
amplitude profile being displayed on the left-hand side of that
figure.

In Fig. 8 (left), we observe a similar behavior for the
different methods for a SNR higher than 0 dB, though the
Local method performs slightly better at SNR above 15
dB. Conversely, this method is outperformed by the other
approaches at SNR below 0 dB, as the constraints imposed
by the signal model become too stringent. Furthermore, the
slight differences between PB, EM and their Oracle versions
illustrate the small effect incorrect IF estimation has on the
amplitude estimation.

Though PB and EM methods appear to behave similarly in
that case, the limitations of the former clearly arise when a
frequency modulation is introduced in the mode, as illustrated
in Fig. 8 (right). Indeed, when dealing with a linear chirp,
the results obtained with EM and Local methods are similar
to those observed in Fig. 8 (left), PB, as well as its Oracle
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Fig. 8. RMAE of estimated amplitudes with the different techniques, averaged
over 100 realizations of the noise, for the signal whose spectrogram is
displayed in Fig. 7(middle) (resp. Fig. 7 (right)) in the left-hand side (resp.
right-hand side).

version, are less efficient for SNR above 0 dB. Despite
frequency modulation is not considered in the models utilized
in PB or EM, the superior performance of the EM method can
be attributed to the method used for amplitude estimation. In
the PB technique, the amplitude is estimated by computing the
energy on the ridge and adjusting it with an estimation of the
average noise level. However, when dealing with a frequency
modulated mode, the energy on the ridge underestimates the
amplitude of the mode.

Next, we assess the ability of EM method to estimate
the amplitudes for the MCS associated with Fig. 3. In this
MCS, the linear chirp component exhibits a linearly decreasing
amplitude from 1 to 0.5 over the entire time range, and the
mode with a sinusoidal frequency is assigned the sinusoidal
amplitude depicted in Fig. 7 (left). The results obtained in that
two-component case, displayed in Fig. 9 (left), are similar to
those corresponding to mono-component signal except for the
Local method which appears to be more sensitive to noise.
Lastly, we examine the performance of the proposed method
in a specific scenario involving two overlapping components
depicted in Fig. 2 (top). Once again, each component is
assigned an amplitude function such that the linear chirp with
increasing (or decreasing) frequency has a linearly decreasing
amplitude from 1 to 0.5 (or the amplitude profile of Fig. 7
(left)). The results in Fig. 9 (right) show that the presence of
overlapping components does not reduce the accuracy of the
amplitude estimation with the EM method, as the results are
similar to those obtained in Fig. 9 (left).

D. Computational Time

Since the proposed algorithm depends on the number of
components K, the number of iterations Niter and the di-
mension of the observed TFR M × N , we estimate the run-
time complexity expressed in units of time using the “big O”
notation as O(KNiterNM

2).
Moreover, the computational times of the tested methods,

when applied to the two-component signal shown in Fig. 3
with N = 500 is reported in Table II, for different frequency
resolutions (indexed by M ). All the experiments have been
conducted using Matlab R2021b with an Intel(R) Xeon(R)
W-2123 CPU @ 3.60GHz. The time needed to perform
spectrograms computation is not included in the following
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Fig. 9. RMAE of estimated amplitudes, averaged over 100 realizations of
the noise, estimated from the MCS displayed in Fig. 3 (resp. Fig. 2 (top))
obtained with the different methods for a varying SNR in the left-hand side
(resp. right-hand side).

comparison, which only gathers the execution time of the
main algorithms. Despite the computational time required by
the EM method is considerably longer than that of Carmona,
RD, and PB, it still remains significantly shorter than that of
3DRD. Furthermore, it should be noted that this additional
computational time allows for much more accurate IF and
IA estimations, especially in the case of crossing modes,
compared with the other tested methods.

TABLE II
COMPUTATIONAL TIME (IN SECONDS) OF THE COMPETING APPROACHES

FOR SYNTHETIC DATA ANALYSIS, AVERAGED OVER 50 REALIZATIONS,
FOR N = 500.

M 500 1000 2000
Carmona [16] 0.03 0.04 0.05
PB [9] 0.07 0.15 0.51
RD [13] 0.41 0.63 1.25
Proposed EM-Lap 4.89 18.73 40.30
Proposed EM-TV 4.90 16.74 42.46
TF chirp-rate [18] 30.17 67.61 5220

E. Simulation efficiency
We now evaluate the behavior of the method according

to the number of Gibbs sampler iterations denoted Ns. We
consider the MCS (displayed in Fig. 3), without amplitude
modulation (amplitudes set to 1), and perform estimation of
the model parameters using different values for Ns.

The obtained results using the TV prior with ε = 10−2

and ε = 1 are displayed in Fig. 10 for varying SNR. From
Fig. 10 (left), we observe that Ns has a low impact on the
final estimation, while in Fig. 10 (right) the performance of
the method depends on the choice of Ns at high SNR. The
latter result is explained by the over-weighted prior model,
giving too much emphasis to the prior and corrupting the
estimation. These results highlight the difference between
our approach and the classical SEM algorithm, as we are
sampling from p(M) and not from the conditional distribution
p(M |W (i),S). Numerous update of the prior thus leads a
stronger regularization.

Both for estimation performance and computational cost, a
small number of iterations is required to perform a satisfying
estimation of the model parameters if no prior knowledge is
available on the IF of the modes.
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Fig. 10. RMSE of the normalized IF (averaged over 50 realizations of the
noise) estimated from the MCS displayed in Fig. 3 with ε = 10−2 (resp.
ε = 1) on the left-hand side (resp. right-hand side) obtained with varying Ns

and SNR.

F. Real-World Data

Here, we evaluate the performance of the proposed method
on real-world signals. Since the signals used in this section
do not contain overlapping modes, we are considering RD
[13] for comparison with the EM method. Since the ground
truth IF is not available, we compare the methods by assessing
the results through informal observation. As in the previous
experiments, we set λ = 10−1 when using EM method,
in order to enforce the regularization and limit the impact
of outliers. First, we consider a speech signal of Japanese
native speakers [35] whose spectrogram (STFT computed
using L = 40) is displayed in Fig. 11. We look only for
two components to enhance the readability of the results and
to assess the behavior of our method in a scenario involving
an underestimated number of components K. In Fig. 11, the
IF estimates obtained using respectively the proposed EM-
Lap and the estimation performed with RD method [13] are
superimposed to the signal spectrogram.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (s)

0

0.25

0.5

N
o

rm
a

li
z
e
d

F
re

q
u

e
n

c
y

mode 1

mode 2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (s)

0

0.25

0.5

N
o

rm
a

li
z
e
d

F
re

q
u

e
n

c
y

mode 1

mode 2

Fig. 11. Estimation of the first K = 2 signal components of the speech
signal using the proposed EM-Lap method (left-hand side) and using the RD
proposed in [13] (right-hand side).

One of the strengths of the EM method is its ability to
handle the presence of gaps in the ridges, which can be
observed, for example, on the lowest frequency component
associated with the estimated mode 2 in Fig. 11. These gaps
correspond to regions where the modes cannot be identified
as a continuous chain of local maxima along the frequency
axis, and are often caused by interferences between the signal
and noise. On the contrary, RD method is not able to track the
ridges when the chains of local maxima are broken. Moreover,
RD method completely misses the second mode.
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Fig. 12. Estimation of K = 3 signal components of the bat signal using the
proposed EM-Lap method (left-hand side) and using the RD proposed in [13]
(right-hand side).

We then conduct a test on an echolocation pulse signal
emitted by an Eptesicus Fuscus bat [36]. We compare the
results of the EM approach with those of RD and display both
the spectrogram and estimations in Fig. 12. Our observations
reveal that although both methods detect ridges and provide
satisfactory IF estimations, the results are different for the
two methods. Specifically, the estimates obtained using the
EM approach (left-hand side) exhibit oscillations around the
ridge positions, whereas those obtained using RD (right-hand
side) provide smoother estimates that are centered around the
expected IF of the modes. It is important to note that the RD
approach does not accurately estimate mode 3, particularly
around time index 100, where the associated ridge presents a
strong frequency variation due to aliasing. In contrast, the EM
approach captures this sharp transition.

VI. CONCLUSION

In conclusion, this study introduced a novel observation
model for estimating the instantaneous frequency and ampli-
tude of the modes of a multicomponent signal in the presence
of noise. The proposed approach outperformed state-of-the-
art methods in terms of both instantaneous frequency and
amplitude estimation in the case of crossing modes and ampli-
tude modulation. By leveraging EM algorithms, our method
achieves a reduction in problem complexity and reasonable
computational time for estimating mixture weights. Future
work includes extending the approach to estimate chirp rate
and generalizing the method to account for hyperparameter
estimation.
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