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Numerical homogenization of fibrous composites with equivalent inclusion
method

A. Martina,∗

aSpie batignolles génie civil, 30 avenue du Général Gallieni, CS 10192, 92023 Nanterre CEDEX

Abstract

The equivalent inclusion method is proposed for the homogenization of fibrous composites, as an alternative to costly
full-field methods and less accurate mean-field or effective-field approaches. General methodology was presented
in our previous study [14], where a discretized polarization field in fibers was introduced, which took advantage
of inhomogeneity slenderness. Here, a method for computing apparent 3d conductivities in periodic conditions is
proposed and implemented for numerical homogenization of fibrous composites. A wide range of aspect ratios and
volume fractions are investigated, and the data are used for providing analytical formulas which fit the curves.

Keywords: Homogenization, Conductivity, Equivalent inclusion method, Cylindrical inclusions, Periodic
microstructure,

1. Introduction

Fibers, for their high aspect ratio, are often used in industry or construction to improve performance of materials.
Various properties can then be enhanced, in fields of physics that are seemingly different but in fact obey to very
similar mathematical laws, such as mechanics [4], thermics [3], or electromagnetism [12]. Fibers are most of the time
added to a homogeneous matrix, and this is a challenging work to predict homogenized properties of such a composite.
In particular, it is known that for high volume fractions, some high interactions exist between fibers, whereas these
interactions are almost invisible at lower volume fractions.

On the one hand, mean-field or effective-field homogenization methods [16, 25, 20, 10] succeed to take into
account slenderness of fibers, and give good estimates of homogenized properties in the limit of a low volume fraction.
However, these methods become inaccurate when this fraction increases.

On the other hand, full-field simulations [23, 18, 11] are made difficult due to the fineness of the mesh, which is
governed not only by the small transverse dimension of the inhomogeneities but also by the distance between them.
The computation then makes intervene a large number of unknowns, when meshing operation is possible.

In a previous study [14], we present an intermediate technique between mean-field and full-field methods, within
the framework of electrical conductivity, which turns out to be more accurate than mean-field methods, and requires
less unknowns than finite element computation. This technique is based on the equivalent inclusion method, first intro-
duced by Moschovidis and Mura [17] and applied by various authors [6, 2, 22, 9, 26]. More precisely, it comes from
a Galerkin-based variational form of the equivalent inclusion method, introduced by Brisard et al. [5] for spherical
inhomogeneities within the framework of linear elasticity.

The study shows that this technique (referred to as the EIM below) is accurate and efficient and then can be used
for homogenization of fibrous composites. This homogenization procedure was lacking in our first study and it is the
purpose of the present paper to carry out this procedure. We introduce here a new framework for computing EIM
conductivities, in comparison to the boundary conditions introduced before [see [14]]. The gain in terms of unknowns
is huge compared to finite element method (FEM), but the homogenized values are very close.
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This paper is organized as follows. In Sec. 2, EIM for slender, cylindrical inhomogeneities, which was presented
in our first study [14], is recalled. The method for taking into account long distance interactions is presented and
implemented in Sec. 3. In Sec. 4, the homogenization procedure is carried out for an aspect ratio of 50, and is shown
to be both accurate and efficient. This procedure is repeated in Sec. 5 for aspect ratios between 40 and 400, providing
useful analytical formulas for homogenization of isotropic fibrous composites with high contrast. Finally, Sec. 6
closes this paper with a few concluding remarks and a discussion of future research directions.

2. Background: the EIM for slender, cylindrical inhomogeneities

The EIM developped in Martin et al. [14] is an adaptation of the variational form of EIM, introduced by Brisard
et al. [5], to slender, cylindrical inhomogeneities. It is based on a particular discretization of the Lippmann–Schwinger
equation and is recalled in the following. In Martin et al. [14], the method was presented with mixed boundary
conditions, but EIM can also be implemented with periodic boundary conditions, used in this paper.

2.1. Discretization of the Lippmann–Schwinger equation
We consider a periodic cell Ω of a random heterogeneous material. The conductivity at x ∈ Ω is σ(x) (symmetric,

positive definite, second-order tensor); E(x), ϕ(x) and j(x) denote the electric field, the electric potential and the
volumic current, respectively, at point x. The apparent conductivity of the cell Ω, σapp, is found from the solution to
the following problem

Ω : div j = 0, (1)
Ω : j = σ · E, (2)

Ω : E = E + grad ϕper, (3)

where ϕper is a Ω-periodic field, j is a Ω-antiperiodic field, and E is a prescribed constant vector. Eq. (3) ensures that
the electric field is curl-free, with E = ⟨E⟩, where angle brackets denote volume averages over the cell Ω

⟨•⟩ = 1
|Ω|
∫
Ω

•(x) d3x. (4)

Problem (1)–(3) can then be replaced by a unique integral equation of the Lippmann–Schwinger type [27](
σ − σ0

)−1 · τ + Γper
0 (τ) = E, (5)

where the main unknown is the polarization τ

τ = (σ − σ0) · E, (6)

and Γper
0 denotes the periodic Green operator, associated with the conductivity σ0, a symmetric, constant, positive

definite, second-order tensor.
From the volume average ⟨τ⟩ of the solution τ to the Lippmann–Schwinger equation (5), the apparent conductivity

is readily retrieved. Indeed, using Eq. (6)

σapp · E = ⟨σ · E⟩ = ⟨σ0 · E + τ⟩ = σ0 · ⟨E⟩ + ⟨τ⟩ = σ0 · E + ⟨τ⟩ (7)

We then follow a Galerkin procedure to derive an approximate solution to the Lippmann–Schwinger equation (5).
Contracting Eq. (5) with a test function ϖ ∈ V and volume averaging over Ω delivers the following variational
problem

Find τ ∈ V such that, for allϖ ∈ V : a(τ,ϖ) = E · ⟨ϖ⟩ (8)

where V is the set of square integrable Ω-periodic vector fields, and a is the following bilinear form

a(τ,ϖ) =
〈
ϖ · (σ − σ0)−1 · τ〉 + 〈ϖ · Γper

0 (τ)
〉
. (9)
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Discretization of the above variational problem then follows a standard Galerkin procedure. Introducing the
discretization parameter p ∈ N (to be defined) and the finite-dimensional discretization subspace Vp of V, we consider
the following variational problem

Find τp ∈ Vp such that, for allϖp ∈ Vp : a(τp,ϖp) = E · ⟨ϖp⟩. (10)

which differs from problem (8) only by the space to which the trial and test functions belong. Since the dimension
of Vp is finite, solving problem (10) amounts to solving a linear system. The resulting solution τp approximates
the solution to the initial problem (8). The variational form of the EIM results from the specialization of the above
procedure to matrix-inhomogeneity media, and a specific class of discretization spaces Vp.

2.2. The discretization for slender, cylindrical inhomogeneities
We therefore consider a periodic cell Ω that hosts N inhomogeneities Ω1, . . . ,ΩN embedded in a homogeneous

matrix Ω0. The inhomogeneities do not overlap, and each of them has homogeneous conductivity σα (α = 1, ...,N).
Conductivity σ0 is chosen to be equal to the matrix conductivity. τ is a Ω-periodic field and Ωα may be not connex
(when an inhomogeneity crosses the cell boundary).

The discretization space Vp is generated by a finite number of linearly independent functions supported on the
inhomogeneities. More precisely, we seek the following decomposition for the trial function τp

τp(x) =
N∑
α=1

Kp−1∑
k=0

τk
αΨ

k
α(x), (11)

whereΨk
α is a vector shape function supported inΩα, and τk

α are scalar unknowns in R. The number of shape functions
Kp ∈ N must be specified.

Remark 1. Unless otherwise noted, greek indices (α, β, . . .) span the 1, . . . ,N range in the remainder of this paper
(note that the matrix α = 0 is not included in the sum), while latin indices (k, l, . . .) span the 0, . . . ,Kp − 1 range.

For the sake of simplicity, monodisperse assemblies only will be considered in the derivations presented below,
and we introduce the common radius R and common total length 2L of the cylindrical inhomogeneities. The aspect
ratio e of the cylinders is defined as: e = L/R. Inhomogeneity α is centered at xα ∈ Ω and oriented by the unit-vector
nα. For such inhomogeneities, the longitudinal coordinate zα defined as follows

zα =
(
x − xα

) · nα (12)

clearly plays a specific role. In our previous paper [14], the chosen shape functions are composed of a vector field
polynomial in zα, with one component uniform in the transverse section, and the other component radial and slightly
dependent of the cylinder radial coordinate.

Plugging this decomposition into the discrete variational problem (10), and testing with test functions ϖp ∈ Vp

decomposed similarly, the following linear system is derived∑
l

Rkl
α τ

l
α +
∑
β,l

T kl
αβτ

l
β =Mk

α · E, (13)

where

Rkl
α =
〈
Ψk
α · (σα − σ0)−1 ·Ψl

α

〉
α, (14)

T kl
αβ =

〈
Ψk
α · Γper

0
(
Ψl
β

)〉
α, (15)

Mk
α =
〈
Ψk
α

〉
α, (16)

where the volume average over inhomogeneity Ωα, ⟨•⟩α, is defined as follows

⟨•⟩α = 1
|Ωα|
∫
Ωα

•(x) d3x. (17)
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Finally, Eq. (7) is applied to the solution to the linear system (13) to derive the EIM estimate of the apparent
conductivity, σEIM

σEIM · E = σ0 · E +
∑
α,k

fατk
αM

k
α. (18)

where fα = |Ωα|/|Ω| denotes the volume fraction occupied by inhomogeneity α within the cell Ω.
It must be emphasize that computation of T kl

αβ depends on periodic Green operator Γper
0 . In our previous work [14],

this computation was facilitated by the use of Green operator on the infinite medium, Γ∞0 , which can be expressed
with an explicit formula. For a periodic medium, it is possible to compute these coefficients in Fourier space, as it is
down for example in To et al. [24]. Unfortunately, the involved summations usually converge slowly. We therefore
need to look for a better strategy for computing T kl

αβ.

3. Computation of coefficients Tkl
αβ

T kl
αβ represents the Ψk

α-weighted average of the (opposite of the) electric field induced on inhomogeneity α by a
polarization Ψl

β situated on inhomogeneity β. However, in periodic conditions, we can consider that the polarization
is situated on β and all its periodic images. Therefore, it is tempting to sum the effects of each polarization to obtain
the coefficient, but it fails to give the true effect of surrounding inhomogeneities, as it will be shown in the following.
The ”good” strategy is given by Reaction Field Method, used in molecular physics.

Remark 2. It must be noted that the case α = β is particular since the polarization is situated on α (and also all its
periodic images). In this case, we note T kl

αβ=S kl
α .

3.1. Reaction Field Method: the ”good” strategy for computing interactions
The technique proposed for computing periodic Green operator will be based on the same concepts as Reaction

Field Method (RFM) in molecular simulation [7, 13, 8]. In this method, the operator ΓRFM
0 is not computed within

the framework of periodic boundary conditions, but rather on an infinite medium. The approach is intuitive and ΓRFM
0

is defined on a polarization field which is not normalizable. Indeed, this polarization field is defined on the infinite
medium, and may not tend to 0 at infinity.

Considering an inhomogeneity α centered on xα, surrounded by an infinite distribution of inhomogeneities, the
purpose is to compute the electric field ΓRFM

0 (τ) on α, induced by a polarization field τ defined on all inhomogeneities
(including α). The first idea is given by the well-known cavity problem used by various authors [15], which consists
in assimilate the polarization field defined on surrounding inhomogeneities to a uniform polarization field situated
outside a cavity, centered on xα. This first approximation is relevant, but could not take into account the effect of
nearby inhomogeneities. Hence, the second idea is to compute this effect with Green operator Γ∞0 , defined on an
infinite medium.

Hence, for each x on inhomogeneity α, the electric field ΓRFM
0 (τ) is proposed to be:

ΓRFM
0 (τ) (x) = Γ∞0

(
χd
ατ
)

(x) − P0 · ⟨τ⟩ (19)

with P0 = 1/(3σ0) and χd
α is indicator function of a bowl centered on xα, with a radius d (to be defined), called

here interaction distance. This bowl defines a spherical domain, in which polarization field τ is non zero on the
inhomogeneities, whereas outside this domain, τ is considered as a uniform field filling the space and equal to ⟨τ⟩.
Hence, the (opposite of the) electric field induced by the neighbouring inhomogeneities is given by Green operator in
an infinite medium Γ∞0 , whereas electric field induced by the polarization outside the cavity is simply given by P0 · ⟨τ⟩.
Remark 3. Here, inhomogeneities situated at the limit of the spherical domain can be split in two parts, which would
necessitate to compute interactions between α and half part of inhomogeneities. However, for the sake of simplicity,
we consider that an inhomogeneity is situated inside the spherical domain if and only if its center is strictly inside.

Remark 4. Here, definition of ⟨τ⟩ is not clear because the domain Ω on which computing the average has not been
defined. This problem will be resolved in the following considering a periodic cell.
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⟨τ ⟩

τ β

xα

d

D

Figure 1: Green operator in RFM, for a periodic distribution of fibers

Finally, the field ΓRFM
0 (τ) defined on α can also be written as

ΓRFM
0 (τ) (x) =

∑
β∈Iα
Γ∞0
(
χβτ
)
(x) − P0 · ⟨τ⟩ (20)

where Iα is the set of indices β such that xβ is strictly inside the cavity centered on xα (note that α ∈ Iα). Hence, it
must be pointed out that terms involving Γ∞0 in the sum can now be computed as it was already done in our previous
work [14] (the basic principles are recalled in Appendix A).

We can now see that the RFM helps us to define our periodic Green operator Γper
0 . Indeed, considering that τ

defines a Ω-periodic field τper, we propose (see Fig.1) that for each x ∈ Ω situated on fiber α (which may not be
connex),

Γ
per
0
(
τper) (x) = ΓRFM

0 (τ) (x) (21)

And the average ⟨τ⟩ is then performed on the basic cell Ω.
Coefficients T kl

αβ and S kl
α are then computed with expression (15), with Γper

0 defined above.

3.2. Applications and assessment of the new operator
Our new operator then defines a new EIM, and we can now apply it to a periodic cell. Particularly, we want to show

that this operator is relevant, and that there is two important contributions that can not be omitted: first, contribution
of fibers situated in the spherical domain (terms given by the operator Γ∞0 ), and second, contribution of further fibers
situated outside the domain (given by P0).

We then consider a cubic periodic cell aligned with the global cartesian basis (ex, ey, ez), with a uniform distribution
of fibers inside, whose angular distribution is uniform and isotropic. A single fiber, noted 1, is placed on the center of
the cell, along ez. The imposed field is E = Eez. We compute the new EIM field, for a distance d equal to the cell size
D = 4L. We also compute a field with FEM with COMSOL Multiphysics®5.61. Results on fiber 1 are shown on Fig.
2. We can see an excellent agreement between the two fields.

1COMSOL Multiphysics® v. 5.6. www.comsol.com. COMSOL AB, Stockholm, Sweden, last retrieved 2023-05-13.
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Figure 2: The longitudinal electric field in fiber 1, with FEM and new EIM
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Figure 3: Same computation as Fig. 2, omitting the term related to P0 in Green operator Γper
0

Moreover, we also compute the field with the new operator, but omitting the term related to P0 (the ”wrong”
strategy). As we can see on Figure 3, it seems that this latter field strongly underestimates the finite element field.
Changing d does not affect significatively the result. Intuitively, it seems that fibers situated within the spherical
domain, tend to decrease the field in fiber 1, as it can be seen on Fig. 3, whereas, as expected, the uniform polarization
⟨τ⟩ increases the field in fiber 1.

Finally, we consider the same case and compute EIM field, for different sizes d of the spherical domain. As we
can see on Fig. 4, EIM field in fiber 1 seems to converge, when d increases, to a limit which is in agreement with FE
field, but we will not investigate this point more in this work. In the following, we just set d equal to the cell size D.

4. Homogenization with the new EIM

4.1. Computing apparent and effective conductivities with new EIM
Because the method presented previously was shown to be accurate, it is now possible to compute apparent

conductivities on periodic cells, for different types of microstructures. We begin with isotropic microstructures with
high contrast, knowing that other cases could be considered in a further work. In this Section and in the remainder,
contrast in set to 106, and microstructures are isotropic, generated by Random Sequential Addition (RSA).

Remark 5. To check that cylinders do not overlap, it would have been long, in term of computation time, to perform
the tests on perfect cylinders. Here, we choose to perform the tests on sphero-cylinders, which is more efficient, and
then compute the fields on perfect cylinders.
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Figure 4: Same computation as Fig. 2, increasing the value of d
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Figure 5: Mean apparent conductivities for different sizes of cell. The volume fraction is f = 0.01

Particularly in this Section, the aspect ratio is e = 50, and other cases are considered in Section 5. We begin
by computing apparent conductivities on several microstructures whose volume fraction of fibers is 0.01. We recall
that the limit of apparent conductivities when size of the periodic cell tends to infinity is called effective conductivity.
Without loss of generality, we can also define this effective conductivity as

σeff = lim
D→∞
σapp(D) (22)

where σapp(D) is the average of several apparent conductivities computed on cells of the same size D. Hence, it is
interesting to compute apparent conductivities for different values of D, in order to study behaviour of σapp(D) when
D increases. We were able to perform this calculation for D between 4L and 8L, as shown on Fig. 5. We also plotted
the 95 percent confidence interval, calculated with the estimated standard deviation obtained with the microstructures
generated for each size D (the number of microstructures is between 11 and 16). We can see here that the apparent
conductivity is not very sensitive to the value of D.

In the following, we thus set D = 4L and compute the corresponding averages of apparent conductivities on a few
microstructures, for different volume fractions. We also made the finite element computation for a few microstructures
with COMSOL Multiphysics®5.6. Results are shown on Fig. 6. We can see an excellent agreement between FEM and
our EIM. Moreover, dilute scheme (DS) and Mori–Tanaka scheme (for ellipsoids of same aspect ratio) underestimate
FEM and EIM values, whereas Ponte-Castañeda & Willis scheme [21] gives highly overestimated conductivities.
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Figure 6: Mean apparent conductivities along volume fraction, for EIM and FEM, with e = 50, contrast of 106, and D = 4L

f n FEM n EIM
0.01 ∼ 8M 9 144
0.02 ∼15M 18 324
0.03 ∼ 28M 27 468
0.04 ∼49M 36 648

Table 1: Comparison of number of unknowns of EIM and FEM

4.2. Discussion on the number of unknowns

In terms of number n of unknowns, the gain between EIM and FEM is huge, as we can see on Table 1, for a cell
size D = 4L. As a consequence, solving time for EIM is also very small compared to FEM. Indeed, for f = 0.01,
solving the linear system only takes 3 s for EIM, and 13 min 16 s for FEM. Few remarks can be made here.

Remark 6. For a more precise evaluation of computation time, we here give the characteristics of the computer used
for values given in this Section:

• RAM: 32 Go

• Processor base speed : 2.71 GHz

• Cores : 6

• Logical processors : 12

First, at fixed aspect ratio e, with a RSA algorithm for generation of microstructures, there is a limit fc on the
volume fraction that can be reached, which is known to be proportional to 1/e [19, 1]. Moreover, the effect of
interactions between fibers is supposed to be greater around this volume fraction, and thus it is more relevant to
compute apparent conductivities around fc. It must also be noted that for a fixed volume fraction, and a fixed size
of cell, the number of fibers grows quadratically with e, so that this number of fibers grows linearly with e when
computing a conductivity around the volume fraction of interest fc. As a consequence, we can expect that all numerical
methods whose complexity depends on the number of fibers (like EIM) will encounter a limit when e increases.

Second, it must be noted on the base of the above consideration that EIM will always have less number of un-
knowns than FEM. Indeed, number of unknowns with EIM is about N × Kp where N is the number of fibers and Kp

does not depend on the aspect ratio. Hence, the number of unknowns around fc grows also linearly with e. On the
contrary, for FEM, it is expected that the number of unknowns is at least proportional to N × e, because the number of
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Figure 7: Mean apparent conductivities along volume fraction with EIM, for different aspect ratios (contrast of 106, and D = 4L). The aspect ratios
are precised at the end of each curve.

nods on the mesh of a unique fiber is proportional to e. Then, the number of unknowns for FEM is at least quadratic
in e around fc. Nevertheless, it is a lower bound on the number of unknowns, because space between fibers also needs
to be meshed. For a high volume fraction, the number of nods is not clear, but if we consider that each element in the
cell is of the order of magnitude of the radius R, the number of unknowns becomes cubic in the aspect ratio e. All
these considerations explain the huge gain between FEM and EIM in terms of number of unknowns.

However, for both FEM and EIM, time for assembling the linear system, must also be counted. One of the
drawbacks of the EIM proposed here is the time required for computing interaction coefficients, which is quadratic
in the number of unknowns n, whereas for FEM, it is linear with n. However, it can be noted that this operation is
embarassingly parallel2, and therefore depends on the characteristics of the processor used. As a consequence, EIM
computation may turn to be long for complex microstructures. As an example, at f = 0.01, EIM requires 11 min for
assembling the linear system, whereas FEM requires 5 min 40 s. However, FEM also requires time for computing
geometry (55 s), and mesh (8 min 10 s).

It must be noted that meshing operation cannot sometimes be performed without intervention of an operator.
Indeed, if distance between fibers is very small, or if the cell boundary splits a fiber in several parts, with a very small
one, element size becomes small and meshing operation is more difficult. As a consequence, the number of unknowns
for FEM can vary when volume fraction is high, whereas number of unknowns for EIM is always the same. It makes
also FEM more instable (we do not know the number of unknowns and if the computation will work), whereas EIM
is more robust.

Finally, even if computation time can be long for both methods, the number of unknowns very small for EIM is a
huge advantage when little RAM is available. As a consequence, EIM homogenization was possible in this paper for
an aspect ratio of 400, and for high volume fractions (6% for an aspect ratio of 50), while FEM could not be carried
out for these parameters.

5. Useful analytical formulas for homogenization of isotropic fibrous composites

Previous procedure shows that computing an apparent conductivity on a periodic cell of size is D = 4L gives a
relatively good estimate of effective conductivity. Therefore, this homogenization procedure has been performed on
cells of size D = 4L, for different aspect ratios (between 40 and 400) and different volume fractions (below 6%), for
the same high contrast of 106. Results are shown on Fig. 7, and provide useful abacuses for design of fiber materials.

2https://en.wikipedia.org/wiki/Embarrassingly_parallel, last retrieved 2023-05-13.
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Figure 8: c1 (e), based on cylinder Eshelby problem, fitted with shape function (24)

However, because these abacuses show only results for a few cases, computation must be carried out once again
for other aspect ratios or volume fractions. Moreover, as it was explained previously, computation time may be long
due to high aspect ratios involved here and depending on computational ressources. Therefore, in the following, we
propose to make a numerical fitting of previous curves, owing to provide analytical formulas that give an idea of the
effective conductivities without carrying out the full EIM computation.

We propose a Taylor expansion for the mean apparent conductivity, in the volume fraction, for each aspect ratio:

σapp(e, f )/σ0 = 1 + c1 (e) f + c2 (e) f 2 + c3 (e) f 3 + ... (23)

However, coefficients of degree 1, c1 (e) are already known. Indeed, for very low volume fractions, effective
conductivity may be computed by mean-field methods, based on Eshelby’s problem of a single inhomogeneity in an
infinite medium. Here, for each aspect ratio, c1 (e) have been computed with COMSOL Multiphysics®5.6, as shown
on Fig. 8 in a log-log scale.

We then propose to fit c1 (e) obtained with COMSOL Multiphysics®5.6, with another shape function of the
aspect ratio. To that extent, we inspire ourselves on the ellipsoidal case, for which solution of Eshelby’s problem can
be computed with analytical formulas. Indeed, in this case, effective conductivity is, for high aspect ratios and infinite
contrast, equivalent to σ0 + f e2/(3 ln e)σ0. We then propose to fit c1 (e) with the following shape function:

f1 (e) = a eb/(ln e)c (24)

where a, b, c ∈ R. We perform this fitting with function curve fit of library scipy of Python 3.8.3. We then find
a = 0.386, b = 1.91 and c = 0.925. This fitting is also shown on Fig. 8.

In the following, we truncate expansion (23), until order 5 (ci = 0 for i ≥ 5) and propose to realize a fitting of
datas obtained with EIM for aspect ratios between 40 and 400. However, we also propose to use values c1 (e) obtained
with COMSOL Multiphysics®5.6. In other words, we seek for c2 (e), c3 (e) and c4 (e) such that

σEIM(e, f )/σ0 − 1 − cCOM (e) f = c2 (e) f 2 + c3 (e) f 3 + c4 (e) f 4 (25)

where cCOM (e) are previous values of c1 (e) obtained with COMSOL Multiphysics®5.6. We also assume the following
form of the coefficients c2, c3, c4:

ci (e) = ai ebi (26)

where ai, bi ∈ R (i = 2, 3, 4). With scipy library, we find a2 = 4.49 × 10−2, a3 = −3.17 × 10−3, a4 = 2.20 × 10−4,
and b2 = 2.97, b3 = 4.39 and b4 = 5.60. It then gives the following approximation of mean apparent conductivity as
a function of aspect ratio e and volumic fraction of fibers f :

σapp(e, f )/σ0 ≈ 1 +
(
0.386 e1.91/(ln e)0.925) f + 0.0449 e2.97 f 2 − 0.00317 e4.39 f 3 + 0.00022 e5.6 f 4 (27)
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6. Conclusion and outlook

In this paper, a new framework for application of the equivalent inclusion method to fibrous composites is pro-
posed. It is based on a Green operator often used in molecular simulations, and arises naturally from the need of an
infinite medium computation. It is compared with FEM with periodic boundary conditions and results show that this
new EIM is very accurate and efficient for homogenization. We then computed a large set of apparent conductivi-
ties for different volume fractions (below 10%) and aspect ratios (between 40 and 400), which probably could not
have been possible with FEM. It allowed us to propose abacuses and analytical formulas which can be used as good
estimates for homogenized conductivities of isotropic fibrous composites.

Nevertheless, we highlighted some limits of our EIM, like computation time of interaction coefficients, or de-
pendence of the number of unknowns on the aspect ratio. Moreover, as it is explained in our previous study [14],
computation of interactions is approximated considering that distance between fibers is large in front of fiber diame-
ter. This means that our computation must be wrong for sufficiently higher volume fractions. In our paprer, we showed
that FEM and EIM were in agreement when FE computation was possible. However, when only EIM is possible, the
estimation of the error made is not clear.

Finally, as an interesting perspective, the case of linear elasticity, which makes intervene very similar equations,
may be studied in a further work.
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Appendix A. Computation details for interaction and self-influence coefficients

For the practical implementation of the method, it is convenient to write the interaction and self-influence coeffi-
cents in a 4 × 4 matrix form:

Tmn
αβ =


T m,n
αβ T m,n+p+1

αβ T m,n+2(p+1)
αβ T m,n+3(p+1)

αβ

T m+p+1,n
αβ T m+p+1,n+p+1

αβ T m+p+1,n+2(p+1)
αβ T m+p+1,n+3(p+1)

αβ

T m+2(p+1),n
αβ T m+2(p+1),n+p+1

αβ T m+2(p+1),n+2(p+1)
αβ T m+2(p+1),n+3(p+1)

αβ

T m+3(p+1),n
αβ T m+3(p+1),n+p+1

αβ T m+3(p+1),n+2(p+1)
αβ T m+3(p+1),n+3(p+1)

αβ

 (A.1)

and

Smn
α =


S m,n
α S m,n+p+1

α S m,n+2(p+1)
α S m,n+3(p+1)

α

S m+p+1,n
α S m+p+1,n+p+1

α S m+p+1,n+2(p+1)
α S m+p+1,n+3(p+1)

α

S m+2(p+1),n
α S m+2(p+1),n+p+1

α S m+2(p+1),n+2(p+1)
α S m+2(p+1),n+3(p+1)

α

S m+3(p+1),n
α S m+3(p+1),n+p+1

α S m+3(p+1),n+2(p+1)
α S m+3(p+1),n+3(p+1)

α

 (A.2)

with 0 ≤ m, n ≤ p where p is the order of polynomial in zα. Here, latin, superior indices to the matrices T and S are
assumed to span 0, ..., p.

Interaction coefficients. For two distinct inhomogeneities α , β, we have

Tmn
αβ = σ

−1
0

(
Umn
αβ − Vmn

αβ

)
(A.3)

where Umn
αβ and Vmn

αβ are 4 × 4 matrices. We have

(
Umn
αβ

)
i j
=

1
4πVα

∫
yα∈Ωα

∫
yβ∈Ωβ

zm
α zn
βδi j

∥yβ − yα∥3
d3yβ d3yα, (A.4)
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and (
Umn
αβ

)
4 j
=

1
4πVα

∫
yα∈Ωα

∫
yβ∈Ωβ

zm
α zn
β

∥yβ − yα∥3
rαer,α · e j d3yβ d3yα, (A.5)

for i, j = 1, 2, 3, and

(
Umn
αβ

)
44
=

1
4πVα

∫
yα∈Ωα

∫
yβ∈Ωβ

zm
α zn
β

∥yβ − yα∥3
rαrβ er,α · er,β d3yβ d3yα. (A.6)

We also have(
Vmn
αβ

)
i j
=

3
4πVα

∫
yα∈Ωα

∫
yβ∈Ωβ

zm
α zn
β

[(
yβ − yα

) · ei
][(

yβ − yα
) · e j
]

∥yβ − yα∥5
d3yβ d3yα, (A.7)

and (
Vmn
αβ

)
4 j
=

3
4πVα

∫
yα∈Ωα

∫
yβ∈Ωβ

zm
α zn
β rα

er,α · (yβ − yα
)

∥yβ − yα∥5
(
yβ − yα

)
j d3yβ d3yα, (A.8)

for i, j = 1, 2, 3, and

(
Vmn
αβ

)
44
=

3
4πVα

∫
yα∈Ωα

∫
yβ∈Ωβ

zm
α zn
β rαrβ

er,α · (yβ − yα
)

∥yβ − yα∥5
(
yβ − yα

) · er,β d3yβ d3yα. (A.9)

We were not able to derive a closed-form expression of the above integrals for two cylinders. However, assuming
that the radius R is small compared to the smallest distance between the two cylinders, a multipole expansion can be
produced. For low volume fractions, this assumption is certainly verified for most pairs of cylinders. We then propose
the following approximation for i, j = 1, 2, 3,

(
Umn
αβ

)
i j
=

Lm+n+3

8
R2

L2

∫ 1

−1

∫ 1

−1

ζm
α ζ

n
β δi j

∥w0∥3 dζα dζβ, (A.10)

(
Vmn
αβ

)
i j
=

3Lm+n+3

8
R2

L2

∫ 1

−1

∫ 1

−1

ζm
α ζ

n
βw

0
i w0

j

∥w0∥5 dζα dζβ. (A.11)

with

w0 = rαβ + Lζβnβ − Lζαnα and rαβ = xβ − xα. (A.12)

And for i = 4 or j = 4, we can prove that the first term of the multipole expansion of
(
Umn
αβ

)
i j

and
(
Vmn
αβ

)
i j

is null [see
[14] for details].

In the above expressions, integrals can be evaluated numerically. However, this method becomes inefficient for
a large number of inclusions, in which case it is more advantageous to evaluate the first integral (with respect to ζα)
analytically [see [14] for details].

Self-influence coefficients. When α = β, computing strategy is different because the principal value cannot be re-
moved, which makes the analytical evaluation of S kl

α difficult. Given that this coefficient can be precomputed off-line
prior to the full EIM calculation, a numerical approach is used, based on a 2d finite element computation [see [14] for
details].
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