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The spreading of viscous drops of density-matched suspensions on a solid surface is6
experimentally investigated at the global drop scale. The spreading dynamics still obeys7
Tanner’s law provided one uses an effective viscosity which happens to be smaller than the8
bulk viscosity of the suspension. When the height of the drop is of the order of the particle9
size, Tanner’s law breaks down as the particles start to freeze and the pure fluid drains out of10
the solid matrix.11

Key words:12

1. Introduction13

The spreading of a liquid on a solid substrate is a common phenomenon, e.g. on plant leaves14
after the impact of raindrops or insecticide droplets, or during the coating of surfaces in15
industry. In these examples, the spreading fluid is not always a pure liquid as it may carry16
rigid bodies, such as fine dust particles in raindrops or solid particles added to the coating17
fluid. It is therefore of great importance to examine whether the spreading laws established18
for a pure fluid are still valid for such a complex fluid.19

In this work, we focus on granular suspensions, a type of complex fluid extensively studied20
in bulk-flow situations, but quite unexplored when confined by a free interface such as for21
a spreading droplet. Granular suspensions are made of large particles (i.e. having diameter22
𝑑 > 10 µm) such that Brownian motion and colloidal forces are negligible. Despite their high23
degree of heterogeneity at the microscopic scale, these particulate systems can be seen as24
continuous effective fluids at the macroscopic scale, with a bulk viscosity that solely depends25
on the particle volume fraction, 𝜙, and is notably independent of particle diameter 𝑑 for26
monodisperse rigid spheres (see e.g. Guazzelli & Pouliquen 2018).27

Such a macroscopic description fails when the size of the system approaches that of the28
particle as seen in thin films (Palma & Lhuissier 2019; Gans et al. 2019) or near an advancing29
contact line (Zhao et al. 2020; Pelosse et al. 2023). In that latter case, the relation between30
the dynamic contact angle and the spreading velocity is similar to the classic Cox-Voinov31
law observed in the case of a pure liquid (Voinov 1976; Cox 1986). However, the wetting32
viscosity involved in this law differs from that of the bulk as it depends not only on 𝜙 but33
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also on 𝑑. This observation is linked to the ability of the particles to approach the contact34
line close enough to affect dissipation (Zhao et al. 2020; Pelosse et al. 2023).35

In the present work, the spreading of viscous drops of density-matched suspensions (having36
a volume𝑉0, a surface tension with air 𝛾, and a density 𝜌) on a solid surface is experimentally37
investigated at the global drop scale, i.e. by recording the time evolution of their radius, 𝑅(𝑡).38
For pure fluids, the radius growth is expected to follow Tanner’s law (Tanner 1979) such39
that 𝑅(𝑡) = 𝐴 𝑡𝑛, where both the factor 𝐴 and the exponent 𝑛 depend on 𝑉0. For drop radii40

smaller than the capillary length, i.e. 𝑅0 ∼ 𝑉
1/3
0 < ℓ𝑐 =

√︁
𝛾/𝜌𝑔 (with ℓ𝑐 = 1.8 mm in41

the present work), the spreading is driven by the balance of capillary and viscous forces,42
leading to 𝐴 ∝ (𝑉3

0 𝛾/𝜂)
1/10 and 𝑛 = 1/10 (De Gennes 1985). Conversely, for large drops,43

i.e. 𝑅0 > ℓ𝑐, gravity prevails over capillarity and the spreading behaviour is established44
through the balance between gravity and viscous dissipation, resulting in 𝐴 ∝ (𝑉3

0 𝜌𝑔/𝜂)
1/845

and 𝑛 = 1/8 (Lopez et al. 1976; Hocking 1983). This paper discusses the validity of Tanner’s46
law for large drops of granular suspensions and compares the present dynamics at the global47
drop scale to that previously obtained at a local scale in the vicinity of the contact angle.48

2. Experimental methods49

Two different types of granular suspensions have been used in the experiments. The first50
combination of particles and fluid consists of spherical polystyrene beads (Dynoseeds51
TS, Microbeads, Norway) suspended in a density-matched Newtonian PEG copolymer52
[Poly(ethylene glycol-ran-propylene glycol) monobutyl ether] (Sigma) widely used in pre-53
vious experimental work (see e.g. Guazzelli & Pouliquen 2018). The fluid density 𝜌 =54
1056 kg/m3 is close to that of polystyrene and its dynamic viscosity is measured to be55
𝜂 𝑓 = 2.4 ± 0.1 Pa.s at 22 ◦C. Different batches of particles are used with varying mean56
diameters 𝑑 = 20, 40, 80, 140, 250 and 550 µm (with dispersion in size of 10%). The57
suspension mixture is made by weighting a mass of suspending fluid and adding the amount58
of solid needed to reach the desired particle volume fraction 𝜙 = 40 % in most of the situations59
presented in §3. Larger loading in particles are also investigated as described in §3.4. Mixing is60
achieved by (i) first slowly stirring with a spatula and (ii) then using a rolling device overnight.61
The particles are found to be completely wet by the fluid and to experience no aggregation.62
The surface tension of the suspensions is that of the PEG copolymer, 𝛾 = 𝛾 𝑓 ≃ 35 mN m−1,63
as confirmed by pendant drop experiments. The second type of suspension consists of 60-µm64
PMMA spheres (Spheromers CA, Microbeads, Norway) immersed in a fluid chosen to match65
the density and index of the particles. This fluid is a mixture of Triton X-100 (73 wt%), zinc66
chloride (16 wt%), and water (11 wt%) having a viscosity 𝜂 𝑓 = 3.3 ± 0.1 Pa.s at 22 ◦C. A67
fluorescent dye, Rhodamine 6G, is added to the fluid to aid the visualisation with a laser68
sheet as described in §3.3. Only a single solid volume fraction of 𝜙 = 40% has been studied69
for this suspension mixture.70

Drops comprising the smallest particles (from 20 µm to 250 µm) are made using a syringe71
pump pushing the target volume of fluid at a flow rate 1 mL/min out of a 3 mm needle (inner72
diameter). To avoid transient heterogeneity in the suspension microstructure, at least 3 mL73
of suspension is discarded before any experiments. For the largest 550 µm particles, due to74
concerns about confinement effects in the tubing, the drops are made manually with a spatula75
ensuring a better control of 𝜙. In all cases, the drops are deposited onto (Neyco Fused Silica)76
Quartz substrates carefully enough to produce axisymmetric spreading. To this extent, before77
each experiment, the substrate is cleaned thoroughly with deionised water and ethanol and78
treated with a plasma cleaner to avoid pining of the advancing contact line. Under these79
conditions, the continuous phase of the suspensions wets completely the surface of the wafer.80

The spreading of the drop is recorded by a (Imaging Source) monochrome digital camera81
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(with a spatial resolution of 23 pixels/mm) located 50 cm above the solid substrate and82
operated at a frame rate of 1 s−1 which provides a capture of both early and long-time83
dynamics. Automatic measurement of the radius is performed by a Python script that (i) first84
blurs locally the raw picture over roughly 5 pixels, (ii) then detects the edges of the drop85
using the (scikit-image toolbox) Canny edge detector with a Gaussian width of 1, and (iii)86
finally returns the best circle fitting the outer radius using the (scikit-image toolbox) Hough87
transform function. Additional side-view recording is performed by a camera positioned at a88
few centimetres from the drop (with spatial resolution of 0.6 µm/pixel) which is synchronised89
with the top-view camera. Post-treatment of the recording uses the Sobel filter to detect drop90
contour and extract the drop profile as a function of time (Pelosse et al. 2023).91

In our experiments, the initial time is ill-defined, see figure 1(𝑎). Indeed, as the drop92
touches the solid surface and starts spreading, it is attached to the needle for a certain amount93
of time which goes from a few seconds to one minute depending on the drop composition.94
The growth of the radius according to Tanner’s law is therefore only investigated once the95
drop is fully detached from the needle, i.e. at a delayed time 𝑡0. The radius data are therefore96
fitted with the parameterised function 𝑅(𝑡, 𝑡0, 𝐴) = 𝐴(𝑡 + 𝑡0)1/8, where 𝐴 = 𝑘 (𝜌𝑔𝑉3

0 /𝜂 𝑓 )1/897
with 𝑘 a constant,𝑉0 the drop volume inferred from its mass, and 𝜂 𝑓 the viscosity of the PEG98
copolymer measured by a capillary viscometer for each experiment. The fitted parameters 𝑡099
and 𝐴 are estimated numerically. An alternative method is to use an initial radius instead of100
an initial time, i.e. 𝑅(𝑡, 𝑅0, 𝐴

′) = 𝑅0 + 𝐴′𝑡1/8 (Saiseau et al. 2022). This is equally efficient101
but we have chosen the time-offset correction in the present data analysis. For smaller drops,102
a transition from a (short-time) capillary to a (long-time) gravity regime has been reported103
(Cazabat & Cohen Stuart 1986; Levinson et al. 1988). Such changes in power law are not104
observed with the drop sizes investigated in the present work. It should be stressed that the105
time offset correction only affect the behaviour at short time and does not modify that at long106
time which is undoubtedly driven by gravity with a power law exponent of 1/8 as evidenced107
in figure 1(𝑎) discussed in § 3.1.108

3. Results109

3.1. Tanner’s law110

Figure 1(𝑎) shows the typical time-evolution of the radius of drops consisting of pure111
fluid and granular suspensions. The colour coding indicates the different fluids while the112
symbol coding the varying drop volume. The raw data are plotted versus time 𝑡 in the inset113
whereas the main graph displays the normalised radius 𝑅∗ = 𝑅(𝜂 𝑓 /𝑉3

0 )
1/8 versus 𝑡 + 𝑡0.114

This radius normalisation removes volume and viscosity effects, as evidenced by the tight115
collapse of the curves for a given fluid. The time offset corrects the initial bending seen116
in the inset as already explained at the end of § 2. The spreading clearly obeys a gravity-117
driven dynamic, i.e. 𝑅 ∼ 𝑡1/8, as expected for the relatively large Bond numbers considered,118
2.6 ⩽ 𝐵𝑜 = (3𝑉0/4𝜋)2/3/ℓ2

𝑐 ⩽ 11.9. Drops of suspensions of any volume and concentration119
seem to obey Tanner’s law established for continuous Newtonian fluids. However, there are120
two main differences. First, the curves of the main log-log plot for suspension drops exhibit121
a small vertical shift compared to those for the pure fluid which indicates that the factor 𝐴122
of Tanner’s law differs when adding particles to the fluid. Second, for the largest particles123
(𝑑 = 550 µm), the dynamic slows down for 𝑡 ≳ 200 s. Deviations from Tanner’s law will be124
successively discussed in the following § 3.2 and 3.4.125
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Figure 1: (𝑎) Normalised radius 𝑅∗ = 𝑅(𝜂 𝑓 /𝑉3
0 )

1/8 versus time (with the 𝑡0 offset) for
different drop volume 𝑉0 =100, 300, and 1000 µL and different fluids: suspensions with
𝑑 = 40 µm (purple symbols) and 550 µm (gold symbols) at 𝜙 = 40% and pure PEG (grey

and black symbols). Inset: raw data of the radius versus time. (𝑏) Normalised factor
𝐴∗ = 𝐴(𝜂 𝑓 /𝑉3)1/8versus particle diameter 𝑑 (from 20 µm to 550 µm). The open symbols
correspond to experiments with pure PEG. Inset: ratio of the relative effective viscosity

obtained from Tanner’s law, 𝜂𝑇 , to the relative bulk viscosity, 𝜂𝑠 , versus particle diameter
𝑑. The red horizontal line corresponds to this ratio for a polydisperse suspension made of

particles of 20 µm, 40 µm, 80 µm and 140 µm, each size representing 10 % of the
suspension volume. The star symbols corresponds to the relative effective wetting

viscosity of the same suspensions obtained from the Cox-Voinov law (Zhao et al. 2020).

3.2. Tanner’s effective viscosity126

We start by discussing the impact of adding particles on the factor 𝐴. In the main graph127
of figure 1(𝑏), the normalised factor, 𝐴∗ = 𝐴(𝜂 𝑓 /𝑉3

0 )
1/8, is plotted for all the experiments.128

This normalisation eliminates any 𝑉0-dependence for a given fluid. We see that the value129
of 𝐴∗ is smaller for suspensions than for the pure continuous phase and its value is130
roughly independent of 𝑑. The viscosity of the continuous phase 𝜂 𝑓 used to compute 𝐴∗131
underestimates the viscosity of the suspensions. Seeking to compare the effective viscosity132
inferred from Tanner’s law with its bulk counterpart, we write the Tanner suspension viscosity133
as 𝜂𝑇𝜂 𝑓 . To shift the suspension data onto the solid line corresponding to the PEG data in134
the figure 1(𝑎), the relative viscosity 𝜂𝑇 should be computed as 𝜂𝑇 = (𝜌𝑔/𝜂 𝑓𝑉

3
0 ) (𝑘/𝐴)

8,135
where 𝑘 = 0.61 ± 0.02 has been inferred from the pure PEG data (open symbols) using136
𝐴∗
𝑃𝐸𝐺

= 𝑘 (𝜌𝑔)1/8 = 1.94. This relative viscosity extracted from Tanner’s law is reported137
in the inset of figure 1(𝑏) for the different suspensions and drop volumes. It is found to be138
independent of 𝑑 and 𝑉0 with a value 𝜂𝑇 = 2.2 ± 0.5.139

This relative Tanner viscosity 𝜂𝑇 which describes the global dynamics of the drop differs140
from the relative wetting viscosity 𝜂𝑤 extracted from the Cox-Voinov law found in the141
viscous–capillary region corresponding to the very close vicinity of the contact line, see the142
star symbols on the inset of figure 1(𝑏). In contrast with the constant behaviour of 𝜂𝑇 , 𝜂𝑤143
decreases with increasing 𝑑 and reaches a value of one (that corresponding to the pure fluid)144
for a cut-off size (≈ 100 µm) above which particles are too large to affect dissipation in this145
region close to the contact line (Zhao et al. 2020; Pelosse et al. 2023). This difference between146
𝜂𝑤 and 𝜂𝑇 may not come as a surprise as it derives from two different energy balances at the147
local and global scales, i.e. from a balance of capillary and viscous forces at the local scale148
of the contact line and of gravity and viscous forces at the global scale of the drop.149

Focus on Fluids articles must not exceed this page length

Page 4 of 10

Cambridge University Press

Journal of Fluid Mechanics



5

Figure 2: (𝑎) Sketch of the apparatus used to visualize the particle flow in a spreading
rivulet with a laser sheet. A fluorescent dye suspended in the fluid is excited by the green

light and fluoresces red light collected by a side view camera. (𝑏) Imaging for a
suspension made of 60-µm particles at 𝜙 = 40% (scale bar: 1 mm). See accompanying

movie 1 in the supplementary material. (𝑐) Horizontal speed 𝑣𝑥 from PIV analysis of the
particle flow in (𝑏). The speed is normalised by the contact line velocity 𝑈. (𝑑) Sum of

raw pictures between 𝑡 and 𝑡 + Δ𝑡 with Δ𝑡 = 2𝑑/𝑈 in the corresponding red (left) and blue
(right) squares in subplot (𝑏).

The Tanner viscosity happens also to be much smaller than the bulk viscosity of the150
suspension as the relative bulk viscosity is 𝜂𝑠 ≃ 10 at the same 𝜙 = 40%. This may be151
due to particle slip along the very smooth substrate. Another difference may come from152
the suspension microstructure which certainly is dissimilar in the present non-viscometric153
flow and in a pure shearing flow. Besides, confinement by both the substrate and the mobile154
interface may create layering that could span over 10 particle diameters at 𝜙 = 40% (Gallier155
et al. 2016) and end up in a strong dip in dissipation (Ramaswamy et al. 2017). However,156
experiments with polydisperse suspensions do not support this explanation as suspensions157
consisting of a mixture of 20, 40, 80, and 140 µm particles (meant to hinder crystallisation)158
do not exhibit a significant increase in dissipation, see red line in the inset in figure 1(𝑏). To159
discriminate between possible causes of this smaller value of 𝜂𝑇 , we examine in detail the160
particulate flow during spreading in the following § 3.3.161

3.3. Visualisation of the particulate flow in the rivulet configuration162

To gain further insight into the particle motion during spreading, particle imaging is163
performed in a more convenient rivulet configuration, i.e. for a non-isotropic spreading164
along only one direction, using a density and index-matched suspension described in § 2. As165
sketched in figure 2(𝑎), imaging without optical distortion is achieved using two orthogonal166
microscope slides. A green laser sheet (Coherent lasers, 𝜆 = 532 nm, 50 mW) illuminates167
the fluid rivulet through the bottom slide and a side view camera images the flow. The168
laser sheet is not deflected across the flat walls nor in the index-matched suspension and169
induces fluorescence of Rhodamine 6G in the illuminated slice (about 30 µm thick) which170
is excited by the green light and emits red wavelengths. This light is filtered by a high-171
pass red filter (Thorlabs, 𝜆 > 550 nm) and collected by the monochrome camera (Imaging172
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Source, DMK33UX174, 2.3 MP) mounted with a zero distortion lens (Opto Engineering,173
MC100X), and orthogonal to the laser sheet. The spatial resolution is of 3 µm/pixel and the174
acquisition frame-rate of 1 s−1. With this apparatus, the non-fluorescing particles appear dark175
in the illuminated slice as seen in figure 2(𝑏) and the accompanying movie. The horizontal176
speed coming from the PIV analysis of a frame is displayed in figure 2(𝑐). The analysis is177
performed with the trackpy module of Python on two consecutive frames. The algorithm uses178
an interrogation window size of 16 pixels, a search area size of 18 pixels, and an overlap of179
9 pixels. The velocity is normalised by the speed of the advancing contact line (red arrow).180
In figure 2(𝑑), the sum of the pictures between 𝑡 and 𝑡 + Δ𝑡 is shown for Δ𝑡 = 2𝑑/𝑈 in181
two specific regions. With this time interval, particles moving at a speed close to that of the182
contact line should not appear as fixed dark dots but should be blurred.183

Visualisation of the particulate flow during the spreading of the suspension rivulet unveils184
several significant elements. Importantly, figure 2(𝑏) and its accompanying movie do not185
exhibit any clear development of layering or ordering during spreading, meaning that186
particle self-organisation cannot explain the strong decrease in viscosity as that reported187
by e.g. Ramaswamy et al. (2017). However, PIV measurements presented in figure 2(𝑐) and188
the sum of consecutive pictures in figure 2(𝑑) reveal two crucial features of the particle flow.189
First, a strong particle slip develops along the wall near the advancing contact line as shown190
by the velocity signal in figure 2(𝑐) or by the smearing of dark dots near the rivulet edge in191
figure 2(𝑑) (right). Second, in the centre of the rivulet, particles barely move as illustrated192
by the weak velocity signal from the PIV in figure 2(𝑐) or by the sum of the pictures in193
figure 2(𝑑) (left). In this later figure, sharp dots at the centre of the rivulet (i.e. on the left)194
indicate that the particles have not moved within the time interval Δ𝑡 = 2𝑑/𝑈, in contrast195
with the observations near the contact line (i.e. on the right) where the particulate phase196
undergoes a strong flow.197

These observations of the structure of the particulate flow can explain the low value of198
the effective spreading viscosity displayed in the inset of figure 1(𝑏). In rheometers, slip199
velocity of the particles leads to a smaller stress on the particles and results in an effective200
smaller viscosity (Jana et al. 1995; Yoshimura & Prud’homme 1988; Ahuja & Singh 2009).201
In spreading experiments, particles close to the tip of the rivulet exhibit a strong slip at202
roughly the contact line speed. This slip is not surprising under such strong confinement203
and given the very smooth surface of the solid substrate. Yet, slip by itself cannot account204
for such a large decrease in effective viscosity. This decrease could also be the result of the205
almost frozen particulate phase at the centre of the rivulet such that particles act more like206
a porous medium than like a flowing suspension in this region. Interestingly, the effective207
viscosity of a granular bed is found to be independent of particle size and to possess a208
value close to the Einstein viscosity (𝜂𝑠 = 1 + 2.5𝜙 = 2 at 𝜙 = 0.4), i.e. a value much209
smaller than that of a sheared dense suspension due to the screening of the hydrodynamic210
interactions (Vowinckel et al. 2021). This bears a striking resemblance to the behaviour of211
𝜂𝑇 in figure 1(𝑏). In summary, slip at the tip of the drop and porous-like behaviour at the212
centre of the drop/rivulet could both account for the observed 𝜂𝑇 .213

3.4. Long time behaviour: validity of Tanner’s law214

We now turn to the slowdown of the spreading dynamics observed above 200 s for suspensions215
made of the largest 550-µm particles. In figure 3, top view pictures of drop spreading evidence216
different patterns for suspensions having different particle size of 40 µm, 250 µm and 550 µm217
at 𝜙 = 40%. For the largest particles, top-views at a higher volume fraction, namely 𝜙 = 47%,218
are also presented on the last row (𝑑). Clearly, the particle phase initially spreads with the fluid219
but then does not expand further beyond a critical radius which decreases with increasing220
particle size, as depicted on the first three rows (𝑎), (𝑏), (𝑐), and with increasing particle221
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Figure 3: Top view pictures of the spreading of different suspensions. From top to bottom:
(𝑎) 𝑑 = 20 µm, 𝜙 = 40%; (𝑏) 𝑑 = 250 µm, 𝜙 = 40%; (𝑐) 𝑑 = 550 µm, 𝜙 = 40%; (𝑑)

𝑑 = 550 µm, 𝜙 = 47% (scale bar: 5 mm). See accompanying movie 2 in the supplementary
material.

volume fraction, as shown on the two last rows (𝑐), (𝑑). There is a striking difference between222
the behaviour for the smallest particles where the particle arrest is barely seen (top row) and223
that for the largest particles (bottom row) where particle freeze happens at very early stage.224
These observations suggest that the departure from Tanner’s law can be associated with the225
freezing of the particle matrix while the fluid continues to drain outward.226

In figure 4(𝑎), the fluid radius 𝑅 of a 100 µL drop of a suspension consisting of 550 µm227
particles is plotted as a function of time (black solid line). The particle spreading radius,228
𝑅𝑝, defined in the top left inset, is also plotted with a yellow solid line. Side-view snapshots229
numbered from (i) to (iv) taken during this spreading illustrate two different regimes. First,230
for pictures (i) and (ii), the drop profile is concave and 𝑅𝑝 increases, meaning that particles231
move with the fluid, in agreement with the early time dynamics in figure 3. In this regime, the232
drop radius growth obeys Tanner’s law and the suspension behaves like a continuous fluid.233
Second, while the contact line still progresses from (ii) to (iv), 𝑅𝑝 saturates, i.e. the particles234
do not move and remain at the centre of the drop, also in agreement with observations from235
figure 3. This translates into a significant slowdown of the drop radius growth 𝑅 and departure236
from Tanner’s law (black solid line). In this second regime, the continuous approach fails237
and the fluid drains out of the porous matrix consisting of the large particles. The drop238
profile then takes a convex shape near the edge to connect the contact line with the centre239
of the drop where the particles remain, as seen in the thumbnails (iii) and (iv). In these240
pictures, the particle protrusions become more significant and one can clearly identify a241
single monolayer of particles in the picture (iv). Time evolution of normalised particle radii242
for drop consisting of different particle sizes and volume fractions are plotted in figure 4(𝑏).243
The same normalisation to remove volume and viscosity effects is used and the drop volumes244
are kept similar at approximately 100 µL. This graph confirms that particle freezing happens245
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Figure 4: (𝑎) Drop of suspension consisting of 550-µm particles with 𝑉0 = 100 µL. Main
graph: fluid radius 𝑅 (black) and particle radius 𝑅𝑝 (yellow) as a function of time. The

dashed line correspond to Tanner’s law. Thumbnails (i) to (iv): side-view pictures
corresponding to the black dots in the main graph. Top inset: top view picture with fluid

(𝑅) and particle (𝑅𝑝) radii. (𝑏) Particle radius 𝑅𝑝 as a function of time for different
suspensions (see legend) with a drop volume 𝑉0 ≃ 100 µL. Error bars are computed from

standard deviations over different experiments.

earlier with large particles and large volume fractions. Conversely, for particle diameters246
≲100 µm, 𝑅𝑝 follows a power law growth with an exponent 1/8, i.e. the same dynamics as247
that predicted for a continuous fluid by Tanner’s law.248

To gain insight on the transition between these two regimes, the shape and thickness of249
the drop have been investigated. In figure 5(𝑎, 𝑏), plots of the time-evolution of the profile250
ℎ(𝑟, 𝑡), of the radius 𝑅, and of the drop-centre thickness ℎ0, for a drop of pure fluid (𝑟 is the251
radial distance from the drop centre) indicate that experimental profiles are well captured by252
the predictions of Hocking (1983) for Bond numbers 𝐵𝑜 = O(1),253

ℎ(𝑟, 𝑡) = 𝑉

𝜋𝑅(𝑡)2

𝐼0

(
𝑅 (𝑡 )
ℓ𝑐

)
− 𝐼0

(
𝑟
ℓ𝑐

)
𝐼2

(
𝑅 (𝑡 )
ℓ𝑐

) , (3.1)254

where 𝐼𝑛 (𝑥) is the 𝑛-th modified Bessel function of the first kind. In figure 5(𝑏), the radius255
data (computed from top views) are fitted with Tanner’s law (red dashed line) and used256
to compute the drop central thickness, ℎ0, according to (3.1) (blue dashed line). Excellent257
agreement is found with drop thickness data extracted from side views. Figure 5(𝑎) shows258
the drop profiles extracted from these side views and the comparison with (3.1) at the times259
indicated by the large dots in figure 5(𝑏). While not perfect, the agreement between the260
experimental and theoretical profiles is satisfactory, especially in predicting the central drop261
thickness. Side-views are therefore not required and drop profiles can be inferred using the262
drop radius 𝑅(𝑡) from top-view pictures.263

The simplest criterion that can be proposed is that the breakdown of Tanner’s law for264
granular suspensions happens when the drop thickness reaches approximately a particle265
diameter, as suggested by the side-view thumbnails in figure 4(𝑎) where drop thickness is266
roughly 2-diameter thick at the transition for the 550-µm particles. This can be estimated by267
evaluating the time 𝑡𝑐 (or equivalently the drop radius 𝑅𝑐) for which the central thickness268

ℎ0(𝑅𝑐) ≃ 𝑑 with 𝑅𝑐 = 𝐴𝑡
1/8
𝑐 . Figure 5(𝑐) show that a nice collapse of drop radius versus time269

can be obtained for different particle sizes and drop volumes by normalising the radius by the270
critical radius 𝑅𝑐 and the time by the critical time 𝑡𝑐. Spreading deviates from Tanner’s law271
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Figure 5: Spreading of a drop of pure fluid with 𝑉0 = 295 µL. (𝑎) Experimental profiles
from side views (solid lines) and predicted shapes (dashed lines) from (3.1). The colour

gradation indicates the time progression. The large dots in (𝑏) correspond to the moments
of the profiles plotted in (𝑎). (𝑏) Right axis: experimental radius 𝑅 as a function of time

and Tanner’s law (red dashed line) with the fitted parameters 𝐴 = 0.0059, 𝑡0 = 10.4 s. Left
axis: central thickness ℎ0 as a function of time with the prediction of (3.1) (blue dashed

line). (𝑐) Radius as a function of time, normalised by 𝑅𝑐 and 𝑡𝑐 , respectively, with
𝑅𝑐 = 𝐴𝑡

1/8
𝑐 and ℎ0 (𝑅𝑐) = 𝑑 (see legend in figure 1 for the symbols).

(solid line) for 𝑡 ≃ 𝑡𝑐 for the 250 and 550 µm particles when 𝑅 ≃ 𝑅𝑐. For the smallest particle272
diameter, the experiments are too short to observe the deviation as the critical thickness273
ℎ0 = 𝑑 is far from being reached.274

4. Concluding remarks275

A global-scale investigation of the spreading of a drop of granular suspension has been276
performed in the dense regime (𝜙 ⩾ 40%) in order to exhibit the strongest effects of the277
particle phase. The first major output, developed in § 3.2, is that Tanner’s law which describes278
the growth of the drop radius is still valid provided one uses an effective viscosity independent279
of the particle size. This so-called Tanner viscosity is much smaller than the bulk viscosity280
of the suspension probably due to the combined effect of particle slip near the tip of the drop281
and porous-like behaviour at the centre of the drop as shown by flow visualisation and PIV282
analysis in § 3.3. The second important finding is that, when the height of the drop becomes283
of the order of the particle spacing, the spreading slows down. This departure from Tanner’s284
law comes from particle freezing and drainage of the pure fluid out of the porous particle285
matrix. In § 3.4, simply stating that this transition happens when the drop thickness reaches286
a particle diameter, ℎ0(𝑡𝑐) = 𝑑, provides a decent prediction of the breakdown of Tanner’s287
law at a solid volume fraction 𝜙 = 40%. However, a 𝜙-dependent criterion (which is difficult288
to measure) is expected in view of the earlier particle freezing seen at larger 𝜙 in figure 4(𝑏),289
i.e. as 𝜙 becomes closer to a jamming volume fraction upon spreading, 𝜙𝑠

𝑐, which is certainly290
lower than the usual bulk jamming volume fraction because of confinement (Scott & Kilgour291
1969; Desmond & Weeks 2009). We anticipate a weak algebraic divergence with the distance292
to the jamming point similar to that found for the transition neck diameter in the pinch-off293
of a viscous suspension thread (Château et al. 2018). A tentative criterion could then be294
ℎ0(𝑡𝑐) = 𝑑/(𝜙𝑠

𝑐 − 𝜙)𝛼 with 𝛼 ≃ 1/3 and could help to rationalise the earlier freezing when 𝜙295
is close to 𝜙𝑠

𝑐. The spreading of granular drops and its transition from a continuous effective296
fluid to a discrete system is therefore the signature of a confinement-dependent jamming.297

Supplementary data. Supplementary material and movies are available at https://doi.org/10.1017/jfm.2023...298
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help at the beginning of this project.300

Declaration of interests. The authors report no conflict of interest.301

Author ORCIDs.302
Alice Pelosse https://orcid.org/0000-0002-4554-0604;303
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